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Abstract
This paper discusses the use of ensembles of regres-
sion trees as a straightforward but versatile method-
ology to generate short term (day-ahead) load fore-
casts for real data from the Global Energy Forecast-
ing Competition 2014. Since temperature is a strong
predictor of load, we investigate how forecast uncer-
tainty in temperature can affect the performance of
the prediction model. To this end, a singular value
decomposition (SVD) based approach is harnessed
to simulate noisy but realistic temperature profiles.
Our results show that as long as uncertainty is not
exceedingly large, it is worthwhile to include tem-
perature forecasts as predictors.

1. Introduction and Related Work
Due to the increasing integration of intermittent re-

newable energy sources and the lack of affordable large
scale storage, balancing electricity supply and demand
is becoming more challenging. Consequently, in to-
day’s competitive and dynamic environment, an accu-
rate load forecast is highly desirable both from a tech-
nical and an economic point of view. Indeed, without
accurate forecasts, issues like increasing rates, brown-
outs or even black-outs are inevitable [1].

Depending on the time horizons, the prediction of
the power (load) distribution is classified into short,
medium and long term forecasting. The context of
more than a couple of months to years in load predic-
tion is studied in long term load forecasting (LTLF).
It mainly assists in planning on setting up new power
plants. Medium term load forecasting (MTLF) is asso-
ciated with forecasts targeting few weeks to few months
ahead, whereas short term load forecasting (STLF)
deals with load estimations for the next few hours to
few days. The former is usually done for balance sheet
calculations, risk management, purchasing energy and
pricing plans. The latter plays a key role in unit com-
mitment and load dispatching. In this paper in addition
to proposing a novel STLF method, the effect of un-
certainty in the predictors on the performance of the
proposed model is investigated.

In the recent literature, there are numerous methods
to forecast electricity load over different time horizons.

This work was supported in part by the Dutch STW un-
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Artificial intelligence (AI) based methods such as arti-
ficial neural network [2], support vector machines [3]
and fuzzy methods [4] are popular, mostly due to their
robustness and ability to tackling the non-linearity be-
tween predictors and the target variables. Statistical
methods, on the other hand, are mostly popular in the
econometric studies, due to the interpretability of their
results. Members of this category include regression
models, autoregressive models, heteroskedastic mod-
els and so on. A bi-level prediction strategy for STLF
of micro grids using evolutionary algorithm and neural
networks is proposed in [5]. The reported work has the
advantage of using an enhanced differential evolution
algorithm in upper level to optimize the performance
of the forecaster in lower level. In [6], a self organiz-
ing map (SOM) approach is introduced to group the
load profiles in an unsupervised manner. Each iden-
tified cluster is then fed to individual support vector
regression (SVR) models to predict the daily profile.
Recently, modeling and forecasting the trend-seasonal
components and probabilistic (beyond point) forecasts
have attracted a lot of attention [7].

Problem statement and contribution As briefly ex-
plained, numerous prediction techniques have been ap-
plied to STLF problem. In the present work, we opt
for a relatively simple yet versatile technique: ensem-
bles of regression trees, as they are better suited to ad-
dress the heterogeneity of the data (see e.g., [8]). Due to
the characteristics of the available data, it is particularly
advantageous to include temperature as a predictor. It
is therefore of great interest to investigate how sensi-
tive the results are to the noise level in this input vari-
able. To model this uncertainty, we expand the avail-
able temperature time series in data-driven orthogonal
components for which the simulation becomes straight-
forward.

2. Data
To demonstrate the robustness of the proposed

method and to make the results reproducible, a case
study was constructed based on publicly available data
(average temperature and aggregated load) from the
Global Energy Forecasting Competition 2014 (GEF-
Com2014) [7]. The challenge in this competition was
to construct a probabilistic forecast of the (aggregated)
load. Our focus nonetheless is on developing a point
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Figure 1. Top: scatter plot of the load vs. temperature
(in 2009). An ad-hoc customized polynomial (f(T ) =
0.002T 3− 0.16T 2− 0.37T +318.1) is superimposed
on that. Bottom: comparison of the typical daily load
profiles in winter and summer times.

forecasting method. Obviously, to design a forecasting
model, load history is needed. A large portion of the
electricity is being used by the heating and cooling sys-
tems in the winter and summer times. Consequently,
load is considerably lower in spring and autumn as the
temperature is more moderate. This aspect of the data
is clearly visible in the top panel of Fig. 1. The depen-
dence on temperature is also responsible for the sub-
stantial change in the load profiles over the year as il-
lustrated in the bottom panel of Fig. 1. Furthermore, the
consumption patterns also change based on the work
schedule, hours of the day, days of the week, and so
on. Therefore, calendar information, holidays, and spe-
cial event information are also of great value. Although
temperature is an important (perhaps, the most impor-
tant) predictor of load there are a number of reasons
why, in and of itself, it is not sufficient:

1. As can be seen from the data analysis, load pat-
terns during week and weekend days are sub-
stantially different. This reflection of human ac-
tivity is of course absent in the weather patterns.
One can hence expect that the same temperature
will result in different load patterns depending
on whether we are looking at a week or week-
end day.

2. Path dependence: Similar temperatures might
also result in different behaviour depending on
the immediately preceding situation. For in-
stance, relatively high temperatures in early
spring might not result in massive AC activa-
tion since people might welcome the change in
weather after a cold winter. This would be very
different in the summer or autumn.

As explained before, the overall relationship between

Figure 2. Residuals of the fitted custom polynomial in
the top panel of Fig. 1.

load and temperature is clear: high and low tempera-
tures require more cooling or heating respectively, and
therefore result in higher loads (top panel of Fig. 1).
However, it is plain to see that the polynomial fits do not
sensibly capture the shape of the observed relationship
(Fig. 2) and a more complex model is needed. Before
explaining the methodology in Section 4, a brief intro-
duction to singular value decomposition (SVD) tech-
nique is brought in Section 3. Its importance lies in the
fact that, SVD was used to generate new temperature
profiles for uncertainty quantification purposes (Sec-
tion 4.3). We conclude our work in Section 5.

3. SVD-Based Representation of the
Data

Time series data in smart energy systems often
show two (or more) distinct time scales. The data
exhibit strong diurnal patterns reflecting the daily (or
weekly) rhythms of human activities. Apart from that,
these relatively fast diurnal patterns are superimposed
on slower seasonal variations that have a significant im-
pact on the overall structure of the data. Recasting such
a time series as a matrix, in which each column repre-
sents the data for a single day, can be helpful in gaining
more insight into the data. The advantage of this re-
casting is two-fold. First, the resulting matrix can be
displayed as an image, allowing one to scrutinize sub-
tle or faint features. Second, one can draw on well-
established matrix decomposition methods to elucidate
underlying data structure. To illustrate the latter point
using the data at hand, let’s take one year’s worth of ag-
gregated hourly load values (L say). We can then recast
L as a matrix in which each column represent the data
for a single day (i.e. L ∈ R24×365). As a consequence,
the matrix L can be satisfactorily represented by a
low-rank approximation. Singular value decomposition
(SVD) provides us with an efficient algorithm to com-
pute such low-rank approximations [9]. More specifi-
cally, given an arbitrary h× d matrix A ∈ Rh×d, there
exists orthogonal matrices U ∈ Rh×h and V ∈ Rd×d

(both with orthonormal columns) such that:

A = USV T =

r∑
k=1

σkUkV
T
k (1)

where S has the same size as A, and its non-zero ele-
ments (singular values: σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0) are
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Figure 3. Singular values obtained for load and temper-
ature daily profiles in 2009 (zero annual mean values).
Temperature values (top) suggest that a reconstruction
of rank-3 approximation would suffice, indicating that
temperature is quite regular. Load (bottom) on the other
hand, requires a rank-4 or 5 approximation.

uniquely positioned on the main diagonal, in descend-
ing order. Furthermore, Uk and Vk denote the kth col-
umn ofU and V , respectively, and r = min{h, d} (see
e.g. [9]). If there is only a small number of dominant
singular values (as is the case for the load and temper-
ature data in Fig. 3), then the expansion in (1) can be
truncated after the first few terms to yield an adequate
approximation Ap of (lower) rank p:

Ap =

p∑
k=1

σkUkV
T
k where p < r. (2)

To elaborate more, Fig. 4 illustrates a plot of the first
three columns of Uk (left) and Vk (right) for the 2009
hourly temperature data. The columns Uk can be in-
terpreted as daily profiles and successive increments,
while the coefficients of Vk represent the correspond-
ing scaling factors. Put differently, the original time se-
ries is represented as a linear combination of the (data-
driven) profiles specified by the columns of U while
the V columns provide the corresponding coefficients.
For instance, looking at figure, we clearly recognize
in U1 (top left panel) an averaged daily temperature
profile, whereas the corresponding coefficients in V1

outline daily temperature evolution over the year (top
right panel). The middle panels display the most dom-
inant corrective incremental profile U2 (left) and the
corresponding coefficients V2 (right) which needs to be
added to the first profile to get a better approximation.
Similarly for the third profile (bottom). Looking at the
right column one gets the distinct impression that tem-
peratures are less variable during the summer (middle
parts). In Section 4.3 we will use this decomposition to
investigate how uncertainty affects the forecasting re-
sults.
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Figure 4. SVD-based decomposition of hourly tem-
perature data for 2009. Left column are the first three
columns Uk whereas the right column shows the corre-
sponding Vk’s.

4. Prediction using Tree Ensembles
After the data exploration above, this section fo-

cuses on our approach to the point (single-valued) fore-
casting problem. We have opted to use an ensemble
of regression trees to predict the daily load prognoses
given the daily temperature profiles, date and time. The
rationale underpinning this choice is that trees are well
suited to handle the heterogeneous input data which
comprise both continuous and discrete variables. In ad-
dition, tree models are modular in that new predictors
can easily be added. Furthermore, it is well-known that
ensemble models are less prone to overfitting. So, tree
ensemble models promise to strike a good balance be-
tween flexibility and generalizability.

4.1. Basic methodology

The individual (weakly trained) regression trees in
the ensemble are constructed using least-squares boost-
ing method [10]. We have tried three different models
(see below), which all have been trained on years 2005
through 2009, and tested on the data from 2010. In
all of the following cases, the aim is to predict the 24
hourly load values for the next day d (L(d)). The com-
mon inputs in all three models are discrete values such
as month of the year (M ∈ [1 : 12]), day of the week
(W ∈ [1 : 7]), and hour of the day (H ∈ [1 : 24]).
Furthermore, we assume that the load and temperature
profiles for the previous day (d− 1) are also available.

Model 1: The first case, we only use information which
is available on day d − 1. In particular, we do
not use the predicted temperature profile for day
d. This provides us with a baseline performance
gain which we will gauge the next models.
Predictors: [M,W,H,L(d− 1), T (d− 1)].



Model 2: In this and the next model we do use the
actual(!) temperature profile T (d) to predict the
load on that day. The rationale for this is that
fairly accurate temperature predictions for day
d are available on day d − 1. Furthermore, in
Section 4.3 we will try and quantify the amount
of additional uncertainty this assumption can
introduce in the forecast.
Predictors: [M,W,H,L(d − 1), T (d −
1), T (d)].

Model 3: This model expands the previous one by adding
first and second derivatives of the temperature
and load profiles. The thinking behind this ex-
pansion of variables is that oftentimes the ac-
tual values are not as important as the general
underlying trend ((.)′: first derivative) or trend
changes ((.)′′: second derivative).
Predictors: [M,W,H,L(d− 1), L′(d− 1),
L′′(d− 1), T (d− 1), T ′(d− 1),
T ′′(d− 1), T (d), T ′(d), T ′′(d)].

4.2. Experimental Results

The accuracy of the forecasts is evaluated using a
conventional method, i.e., the mean average percentage
error (MAPE):

MAPE =
1

n

n∑
t=1

∣∣∣∣ ŷt − ytyt

∣∣∣∣ (3)

where yt is the hourly value of the load profile from
GEFComp2014 timeseries and ŷt is the correspond-
ing forecast value (using one of the models specified
above).

Table 1. MAPE (in %) results for the three models

Train (2005-9) Test (2010)
Model 1 (24 hrs) 9.57 10.35
Model 2 (24 hrs) 4.42 5.06
Model 3 (24 hrs) 3.95 4.81

4.3. Sensitivity to Uncertainty on Temperature
Forecasts

As pointed out above, we have used the tempera-
ture profiles for the next day as a proxy for the temper-
ature forecasts. For that reason the error rates reported
in Table 1 are over-optimistic and we need to attempt
to quantify the extra amount of uncertainty that results
from using forecasts rather than actual values.

Unfortunately we do not have access to the historic
forecast data, and it is therefore difficult to quantify the
corresponding amount of uncertainty directly. To inves-
tigate how sensitive our results are to additional uncer-
tainty, we therefore add noise to the input temperature
profiles and feed these perturbed inputs into the tree en-
semble, upon which we can compute the corresponding
change in MAPE. However, simply adding independent
Gaussian noise to the hourly values of individual tem-
perature curves results in unrealistically jagged profiles.
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Figure 5. Top: Histogram of the V2 coefficients for the
2009 temperature data (365 values). Note that the dis-
tribution is approximately normal with zero mean and
std(V2) ≈ 0.05. Bottom: Twenty examples of gen-
erated noisy temperature profiles. The solid line is the
actual profile. Noise was generated by tweaking the
V2, V3 and V4 coefficients to which we added indepen-
dentN (0, ε2) noise (with ε = 0.01).

We therefore propose to use the SVD decomposition
results to create realistic noise. From the training set
(covering 2005 through 2009) we know that the singu-
lar values σk as well as the daily (incremental) profiles
Uk show negligible change over the years. So we can
reuse them for the test year 2010. The real variation is
in the coefficients Vk which behave much more errat-
ically from day to day (Fig. 4). So in order to create
noisy temperature profiles we proceed as follows:

1. For each of the coefficients V2 through V4 we
estimate the corresponding standard deviation
sk = std(Vk). The histogram for V2 is shown
in the top panel of Fig. 5, which shows that
s2 ≈ 0.05. In fact, from the data analysis it turns
out that all three standard variations s2 through
s4 have similar values of about 0.05. (Recall
however that the contribution to the final profile
is scaled up or down by the corresponding sin-
gular value for which we know: σ2 > σ3 > σ4).

2. Next, for any particular day d in the test year
for which we want a forecast, we take the ac-
tual temperature profile for that day T = T (d),
compute the corresponding SVD coefficients
v01 , v

0
2 . . . v

0
4 and then perturb them by adding

zero-mean Gaussian noise: vnk = v0k+N (0, ε2).
These perturbed SVD coefficients are then used
to reconstruct a noisy version of the temperature
profile. An example (for 20 different noise sam-
ples) is shown in the lower panel of Fig. 5.
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Figure 6. Impact on MAPE (for models 2 and 3) of
uncertainty on temperature profile. The x-axis displays
the standard deviation ε of the Gaussian noise applied
to the V2 : V4 coefficients. Notice how model 3 is doing
slightly worse than model 2 for large values of ε.

3. To quantify the effect of temperature uncertainty
on the forecast results we generate for each ac-
tual day profile T (d) one hundred perturbed pro-
files according to the scheme outlined above.
All of these profiles are fed into the prediction
model and the forecasts are duly compared to
the actually observed values. This allows us to
compute the corresponding MAPEs.

4. For completeness’ sake, we point out that we did
not perturb V1 as this is a proxy of the average
temperature on a particular day, for which uncer-
tainty is negligible. Similarly, there is little to be
gained from perturbing higher order coefficients
(V5 etc) as their impact on the profile is slight.

The results of these experiments (for models 2 and
3) are shown in Fig. 6, where we plot MAPE as a
function of the standard deviation ε of the Gaussian
noise imposed on the SVD coefficients V2 through V4.
When there is no uncertainty (i.e. ε = 0) the results
for both models are the ones reported in Table 1 (i.e.
MAPE ≈ 5). Increasing ε to about 0.05 (the standard
deviation seen in the training data) inflates the MAPE
of both models to about 7.5. Furthermore, the MAPEs
attain a value of 10 for ε ≈ 0.1 which means that for
that amount of noise it is no longer advantageous to in-
clude a temperature forecast as a predictor. Put differ-
ently, models 2 and 3 are then doing worse than the
baseline model 1. Finally, for even larger values of
ε model 3 does slightly worse than model 2. This is
probably due to the inclusion of derivatives in model 3,
which are well-known to be more sensitive to noise.

5. Conclusion and Future work
In this paper we discussed the use of ensembles

of regression trees as a straightforward but versatile
methodology to generate short term (day-ahead) load
forecast for real data from the Global Energy Forecast-
ing Competition 2014 . Since load strongly depends on
temperature (heating and cooling), performance of the

prediction models is significantly boosted if tempera-
ture is included as a predictor. However, for real-time
day-ahead prediction, actual temperatures are not avail-
able, only forecasts. We therefore investigated how un-
certainty on the temperature forecasts affects the per-
formance of the prediction model. To this end, we in-
troduced an SVD-based noise model and showed that
as long as uncertainty is below a certain threshold, it is
worthwhile to include temperature forecasts as predic-
tors. We intend to extend this methodology towards a
larger class of probabilistic load forecasting tasks.
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