
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

IW 92/77

K.R. APT, J.A. BERGSTRA & L.G.L.T. MEERTENS

RECURSIVE ASSERTIONS ARE NOT ENOUGH - OR ARE THEY?

Preprint

~
MC

NOVEMBER

2e boerhaavestraat 49 amsterdam

PJt.i.nted a.t .the Ma.thema.tic.ai. Cent/Le, 49., 2e BoeJLhaa.ve-6.tJr.aA.:t, Am.6:tell.dam.

The. Ma.thema.tic.ai. Cen:tJr.e, 6ou.nded .the 11-.th 06 FebJr.u.aJty 1946, ,lo a non
p,r..06.U w.tltu.tlon aiming a:t :the p,r..omoUon 06 pWLe. ma.themaUC-6 and .lt6
app.Uc.a.tiotUi. I:t ,L6 ~ponhOJl.ed by :the Ne:thell1.a.nd6 Gove/l.nment .tlvr.ou.gh :the
Ne;thell1.a.nd6 0.Jtgan,i,za.ti.on 601t.. :the Advanc.ement 06 PU/Le Reh e.aJLc.h (Z. W. 0) •

AMS(MOS) subject classification scheme (1970): 68A05

ACM-Computing Reviews-categories: 5.24

* Recursive assertions are not enough - or are they?

by

K.R. Apt, J.A. Bergstra~& L.G.L.T. Meertens

ABSTRACT

Call a set of assertions A corrrplete (with respect to a class of

programs S) if for any p, q E A and S E S, whenever { p} S {q} holds, then

all intermediate assertions can be chosen from A. This paper is devoted

to the study of the problem which sets of assertions are complete in the

above sense. We prove that any set of recursive assertions containing

true and false is not complete. We prove the completeness for while pro

grams of some more powerful assertions, e.g. the set of recursively enumer

able ass~rtions. Finally, we show that by allowing the use of an "auxiliary"

coordinate, the set of recursive assertions is complete for while programs.

KEY WORDS & PHRASES: partial correctness, intermediate recursive assertions~

completeness, while programs.

* This report will be submitted for publication elsewhere

** Institute of Applied Mathematics and Computer Science
University of Leiden

1. INTRODUCTION

Two important methods that are used to establish the partial correct

ness (correctness without regard to termination) are the inductive assertion

method of Floyd (FLOYD [SJ) and the axiomatic method of Hoare (HOARE [6]).

These two methods are closely related; in particular, both use intermediate

assertions to express or derive local correctness properties.

A global correctness property {p}S{q} will in practice have reeUT'sive

assertions p and q. The precondition p will usually be some simple condition

on the input variables, or even "true". Similarly, one may expect that the

postcondition q can be checked effectively by inspection of the output vari

ables. A natural conjecture then is that all intermediate assertions may

also be chosen recursive. This is of relevance, e.g., in view of proposals

for "assert statements", (see e.g. MATUSZEK [JO]) where assert B, with B

some Boolean expression, supposedly signals an error if B evaluates to

false. Such a B should be chosen such that it could have served as inter

mediate assertion in a correctness proof for the intended program. Since

the value of B must be effectively computable, this assertion is recursive.

The present paper addresses the question which sets of assertions are suffi

ciently large to allow the intermediate assertions to be chosen from them.

It will be shown that the set of recursive assertions does not suffice, so

the above conjecture is false.

This question is one particular aspect of the completeness problem

for proof methods, i.e., the problem whether a given method can be used

to prove any true proposition from the class to which it pertains. Various

results concerning completenPss have been obtained, both for the method of

Floyd and that of Hoare. For Floyd's method we only mention the papers by

MANNA [9], DE BAKKER & MEERTENS [2] and APT & MEERTENS [!]. Hoare's method

is based on formal deduction systems to derive sentences of the form

{ p }S { q}, where S is a program from a given progrannning language and p and

q are formulas from a given first-order language of assertions. For this

method incompleteness threatens at every turn. We shall briefly review

h " · t t · " f r s of some of the problems and approac es to suppress unin eres 1ng om

incompleteness.

2

To start with, there is the relative weakness of formal deduction sys

tems compared to the power of computing systems. Even under rather general

assumptions any axiomatizable deduction system His incomplete. Take, e.g.,

the language of Peano arithmetic as assertion language. Since a sentence

{true} skip{p} is true iff pis true, we conclude immediately from Godel's

first Incompleteness Theorem that His incomplete. Now the language of Peano

arithmetic is rather powerful, but a restriction to a simpler assertion

language is of no help, as the following diagonalization argument shows.

Suppose that the class of programs Sunder consideration is such that every

recursive function can be computed by a program from S. (Several extremely

simple classes of programs with this property have been exhibited in the

literature.) Let H be a formal system to derive asserted statements for S.

One can construct a program SES which, for input i = n, generates all

proofs in Hand halts iff it finds H I- {true} i := n; Pn {false}, where

P stands for then-th program in S according to some enumeration. Such an
n

S diverges for input i = n iff H ~ {true} i := n; P {false}. S has itself
-- n

a number, say n .
s

for input 1 = n ' s

Now {true} i := n; Pn,..{false} holds iff Pn = S diverges
s ~ -- s

i.e., iff Hf+ {true} i := n; Pn {false}, so His not
-- s s

complete.

A way to overcome this inherent weakness of the axiomatic method

has been indicated in COOK [3]. Add to the Hoare system an oracle that can

supply answers to questions of the form f p, i.e., "is p true?" for all

first order formulas p (in some given structure with some fixed interpre

tation). This oracle 1s incorporated in the system by the

Rule of Consequence:
f p I ➔p ' { p } s { q } ' ~ q ➔ q I

{p'}S{q'}

This rule by itself still leaves room for rather inessential forms

of incompleteness. For example, WAND [12] exhibits a particular structure

for which the necessary intermediate assertions are not first-order defin

able. This problem had been taken care of by Cook by defining a notion of

"expressiveness" for the assertion language, and restricting the question

of completeness to structures with expressive assertion languages. Using

as definition for expressiveness of a language L the requirements

(i) for any assertion p from Land any program S the strongest post-

condition sp(p,S) is definable in L, and

(ii) the equality predicate is in the language,

Cook succeeded in showing the completeness of a Hoare system for a lan

guage of (essentially) while programs. GORELICK [6] extended this result

to a class of programs with recursive procedures. (Following CLARKE [4],

to prove these results one could also replace the above two requirements

by the single one that the weakest precondition be definable.)

3

CLARKE [4] finally reached along this road an incompleteness result:

for a progrannning language with global variables, "static scope" and recur

sive procedures with procedure parameters, he proved the incompleteness of

any Hoare system, by using a structure with two elements and an expressive

assertion language (in the sense of Cook).

For the purpose of the present paper we take the standard model of

Peano arithmetic as the underlying structure. As an immediate consequence,

the problem of expressiveness disappears if one allows all first-order de

finable assertions. However, we want to restrict the set of assertions and

to ask the question for which sets one obtains completeness.

It is convenient to consider this problem within a relational frame

work (see, e.g., DE BAKKER & MEERTENS [2]). We shall view a program as a

set of initial and final states, and an assertion as the set of states

"satisfying" it. This approach corresponds to the method of Floyd, but the

results are readily translated to Hoare's method (assuming an oracle), where

the class of programs under consideration corresponds to while programs.

2. PRELIMINARIES

Throughout the paper, V = { v 1 , v 2 , ... } stands for a finite, nonempty

set of "variables". A state is a (total) mapping V-+ N, where N denotes

the set of natural numbers. Letters a,T, ••. are used for states. U denotes

the set of all states. A program is a binary relation over the state space

U, i.e. a set of pairs of (initial and final) states. An assertion is a sub

set of U. Programs are denoted by s,s 1,s2 , ... , and assertions by p,q,r, •..•

4

The fact that Vis finite is merely a matter of convenience. With

suitably amended definitions, all theorems remain valid if Vis infinite

(which is obvious if one assumes that each particular program uses only a

finite number of variables).

DEFINITION 2. l •

{p}S{q} iff Va,,[(oEp A aS,) + TEq];

wp(S,q) = {cr: V,[aST + TEq]};

sp(p,S) = {,: 3o[aEp A os,J};

7p = U\p = {a: oip};

SI; S2 = {(a,,): 3a'[crS o' A o's ,J}·
I 2 ,

p ** s = {(a,,): 3n3oo,····,an[o = 00

p *S = {(a,,): a(p**Sh A T E 7p}

A 0 = T A Vi<n[o.Ep Ao.So. l]J};
n 1. 1. 1.+

The form p*S defines, of course, the meaning of a while loop "while p do

Sod".

Two obvious but important properties of the notions introduced are:

{p}S{q} iff p ~ wp(S,q);

{p}S{q} iff sp(p,S) ~ q.

COROLLARY. If p' .::: p, {p}S{q} and q.::: q', then {p'}S{q'}.

DEFINITION 2.2. Let f be a partial function from N into N. We say that S

computes f if

Throughout the paper, B stands for a set of recursive assertions (the

"conditionals") which is closed under the operations n and 7, and S stands

for a class of programs that satisfies the following three properties:

a) if SI ,S2 E S then s 1;s2 E s
(S is closed under sequencing) ;

b) if b EB and S E S then b*S Es

(S is closed under repetition over the conditionals);

c) every unary partial recursive function is computed by some program fromS

(S has the full power of recursion theory).

Finally• A stands throughout t}1e paper for ,::'I. set of assertions which

contains at least 0 ("false") and U ("true"), so that trivial complete

ness is excluded.

We adopt now the following completeness definition:

DEFINITION 2.3. A is c:orrrplete for (S,8) if for all p, q E A, b t: B and

s,s 1,s2 ES the following three requirements are satisfied:

(i) p n b E A;

(ii) if {p}s 1;s 2{q}, then, for some r;:: A, {p}s 1{r} and (r}s 2{q};

5

(iii) if {p}b*s{q} • then, for some r E A, p::: r, {rr,b}s{r} and r n 7 b ,_ q.

So, informally speaking, A is complete for (S,R) if for every p, q EA

and SES the truth of {p}S{q} can be verified using only intermediate

assertions fro1n A.
It may seem that we unduly omitted conditional statements from our

definition. Note, however, that if A is complete for (S,8) and (informally)

{p} "if b then s 1 else s2 fi" {q}, with p, q EA, b EB and s1,s2 ES, then

the necessary intermediate assertions p n band p n 7 bare already elements

of A by virtue of requirement (i).

3. INCOMPLETENESS FOR RECURSIVE ASSERTIONS

For the result of this section, we rely heavily on a theorem due to

Mostowski (GRZEGORCZYK & al. [7]):

THEOREM 3. l. '!here e::::'ist tu,.:-: d-isjcint recursivety enwneiv:ibl-e subsets X

and Y of N., such that for no recursive z both X .5 Z and Y n Z = r/J.

Through the remainder of this section X and Y will stand for two

such sets.

DEFINITION 3. L For n € N and A 5:: N:

[n] = {a: C (vi) = n};

[A] = fo: ,-c(v)
V I' E: A};

[nB = ;\ VE: V[if \} = vi then n else Ql • -'.
[A) = { ! n) : n E AL

6

Note that [nJ, [A] and [A] are assertions, whereas [n] is a state.

First, an incompleteness result is proved that is based on a con

struction involving repetition. We must assume something about the class

B, namely that it contains some conditionals of a very simple nature.

THEOREM 3.2. If A is a set of recursive assertions and {[OJ,[1]} s. B, then

A is incorrrplete for (S,B).

Proof. We exhibit the existence of a program SES such that {[OJ}7 [IJ* S{0},

but, for no recursive assertion r, [OJ s. r, {r n 7 [l]} s{r} and r n [lJs_ 0,.

thus contradicting the third requirement of the completeness definition.

Observe that for this case the characterization of an invariant r can be

simplified to [OJ s. rs. 7 [lJ and {r}S{r}.

Assume (without loss of generality) that OE X and l E Y. Let

g be a total recursive fun<;.tion enumerating X without repetition (so

X = {g(O),g(I), ... }). We may also assume that g(O) = O. Define f by

f(n)

f g(k+l), where n = g(k),

= l I if n E Y,

divergent otherwise.

if n EX,

Clearly, f is a partial recursive function. Let S be a program computing

f. Observe that the application off ou an argument from X, say g(k),

yields the value g(k+l), which is again an element of X. So {[xJ}s{[xJ}.

Moreover, [OJ S. [XJ S. 7 [I] (since I E Y and X and Y are disjoint). It

follows that indeed {[OJ} 7 [IJ * S{0}.

Now assume [OJ s. r S. 7 [IJ and {r}S{r}. From [g(O)] = [O] E [OJ s_ r

and {r}s{r} we find [g(l)] Er, [g(2)] Er, ... , so [X] s. r. From rs. 7 [lJ

and {r}S{r} we find rs. wp(S, 7 [I]) s. 7 [Y], so r n [Y] s. r n [Y] = 0.
The set Z defined by [Z] = r n [N] satisfies [X] s. [Z] and [Z] n [Y] = 0,
so XS.Zand Zn Y = 0. By theorem 3.1, Z is not recursive, so neither is

r. D

Slightly surprising, a stronger incompleteness result (without addi

tional assumption on B) can be proved without explicit use of repetition.

(Of course, the property of S that it has' the full power of recursion

theory implicitly assumes repetition or its like.)

THEOREM 3.3. If A is a set of recursive assertions, then A is incomplete
for (S, B).

7

Proof. We exhibit the existence of programs s 1 ,s2 E S for which {U}s 1 ;s2{0},

but, for no recursive assertion r, {U}s 1{r} and {r}s 2{0}.

Let f 1 be a total function enumerating X, and let s 1 be a program

computing f 1• We have, for arbitrary n EN, [n] E sp(U,S 1) iff 3m[f 1(m)=n],

that is, iff n E: X. Since obviously sp(U,s 1)::::. [N], sp(U,S 1) = [X].

Let f 2 be defined by

f 2 (n)
=fOifnEY,

l divergent otherwise,

Let s2 be a program computing f 2 . We have, for arbitrary m EN,

[m] E wp(S 2,0) iff Vn[7f 2(m)=n], that is, iff n f. Y, so wp(s·2,0) n [N] = [7Y],

implying [7Y] S wp(S 2,0). Since X n Y = 0, X s 7 Y, so [X] s [7Y]. Now we

have sp(U,S 1) = [X] S [7Y] S wp(S 2,0), so clearly {U}s 1;s2{0}.

Now assume that {U}s 1{r} and {r}s 2{0}. Then [X] = sp(U,S 1) s rand

r n [Y] S wp(S 2 ,0) n [Y] = 0. The set Z defined by [Z] = r n [N] satisfies

X c Zand X n Z=0 and is, by theorem 3.1, not recursive. Consequently, r is

not recursive either. D

In our opinion, this result shows that assert statements have only

limited applicability. It might be argued, however, that the notion of

partial correctness - essential to our proofs - is not the proper one to

consider here, and that the conditional of an assert statement should also

express termination. Although termination cannot be dealt with by Floyd's

(nor by Hoare's) method, it is not difficult to show that this suggestion

does not save the assert statement. For, if {p}S 1;s2{q} in the sense of

total correctness, an intermediate r would have to satisfy

where the addition 7 wp(S 2,0) expresses termination. Now, let Z be an

arbitrarv recursh•elv enumerable, but not recursive, subset of ,IJ, and let ., .
S, and S,, respectively, compute a total function with range Z and a partial

I ~ -

function .;ith dorr1,1in Z. c:early, {U}s 1 ;Szt['.} in the sense of total correct-

ness. Since sp(U,S 1) "'7wp(s 2.0) = [ZJ, r must be equal to ;zJ, which is not

recursive.

4. MORE POWERFUL ASSERTIONS

Having established that the set of recursive assertions has insuf

ficient power for completeness, we now turn to more powerful classes. It

is clearly fruitless to hope for coopleteness proofs without additional

asst.nnptions about the class of programs.

DEFINITION 4.l. A progra.~ S 1s r.oI"mal if (the set which is) S 1.s recursively

enumerable.

Observe that this 1s a quite normal property for programs indeed; it

certainly holds for all programs corresponding to computational processes.

LEMMA 4. l.

(a) If s lS a norm.al program and b E B, then

b**S 1S a normal program.

(b) If s lS a normal program and p lS recursively enumerable, then

sp(p,S) 1S recursively enumerable.

(c) If s is a normal program and 7q l.S recursively enumerable, then

7wp(S,q) is recursively enumerable.

PROOF.

(a) Since bis recursive and Sis recursively enumerable,

b**s = { (o,,): 3n3oo····•an[cr=oo A on=, A Vi<n[cr.Ep Ao.So. l]J}
l. l. 1+

is recursively enumerable.

(b) Since p and Sare recursively enumerable, sp(p,S) = {,: 3a[oEp A aS,]}

is recursively enumerable.

(c) Since Sand 7q are recursively enumerable,

7wp(S,q) == to: :h[oS, A TE7q]} is recursively enumerable.

9

THEOREM 4. 1. If Sis a class of normal programs and A= {p: pis recursively

enumerable}, then A is corrrplete for (S,B).

Proof. We shall verify each of the three requirements from definition 2. 3.

First, if p EA and b EB, then, since bis recursive, p n bis re

cursively enumerable, sop n b EA.

Next, suppose {p}S 1;s2{q} for some s 1,s2 ES and p, q EA. Take

r = sp(p,S 1). Clearly, {p}S 1{r} and {r}s 2{q}, By (b) of lenrrna 4.1, r is

recursively enumerable, so r EA.

Finally, suppose {p}b*S{q} for some SES, b EB and p, q EA. Take

r = sp(p,b**S). It is easy to verify that r is a proper invariant, i.e.,

that p ~ r, {rnb}S{r} and r n 7 b c q. By (a) and (b) of lemma 4.1, r is

recursively enumerable, so r EA. D

THEOREM 4.2. If Sis a class of normal programs and A= {p: 7p is recursively

enumerable}, then A is complete for (S,B).

Proof. Left to the reader. (Hint: take wp(S 2 ,q) and wp(b*S,q) as inter-

mediate assertions.) D

A natural question 1s whether the intersection or the union of the

sets of assertions considered in the last two theorems is complete for

(S,B). The intersection of these two sets is the set of recursive assertions

which is incomplete by the results of the previous section. As we shall see

in the next section the union of them is also incomplete for (S,B).

5. ARITHMETICAL ASSERTIONS

Let A be a subset of Nn (n>O). Recall that A is called Z~(Ilg) if it

1s recursive. A is called Z~+l(Il~+l) where k:?. 0 if for some B being a

n°cr0) subset of Nn+I and all 0 E Nn
k k

0 EA+-+ 3x[(o,x) E BJ

(o E A ++ Vii.J (o ,x) E BJ)

called t::,, O (n:?.O) if it is both zO and n° A 1s called OY.'ithmeticaZ if A is n n n

IO

it is E~ for some n. It is well known that a set 1.s L~ iff it is recursively

enumerable. This implies that a set is ti.~ iff it is recursive. It is clear

now what we mean by saying that a set of states (i.e. an assertion) or a set

) o no , o . - 1 of k-tuples of states (k>O is I: , , o or ar1.thmet1.ca .
n n O n O 0

The following easy facts about I: , IT or ti. sets (see for them e.g.
n n n

SHOENFIELD [11]) will be needed below.

LEMMA. Let A, B ~ Nk ~here k > O.

(a) A is LO iff Nk\A is n°.
n O n

(b) if A and Bare I: then so are Au.Band An B.
n

(c) if A is LO then the set {(o 1, ... ,ok-l): 3ok[(o 1, ... ,ok) EA]} is
0 n

L ., as weU.
n

(d) if A is LO then A is LO n° and 1:i.0 for any m > n.
n m' m m

By iocno)(ti.o)
n n n

we denote, from now on, the set of all E0 cn°)(1:i.O) assertions.
0 n n n

We shall also use the following facts about zO n'

LEMMA 5.1. Let S be a normal program.

IT or 1:i.O assertions.
n n

(a) if pis a E~ assertion (n~l) then sp(p,S) is E~., too.

(b) if q is a ng assertion (n~l) then wp(S,q) is ng., too.

(c) if q is a EO assertion (n~2) ands is a deterministic program
n

then wp(S,q) is i: 0., too.
n

Proof. (a), (b) By definition.

(c) Since Sis deterministic, we have for all states o

0 E wp(S,q) ++ VT(70ST) V 3T(0ST A TEq)

which shows that wp(S,q) is t:: 0 •
n

At first we shall prove the theorem we promised in the last section. We

have to make a very mild assumption about S, namely that it contains the

program [v2:=0] corresponding to the statement v 2 := 0. Thus for any two

states cr and T

o(v.)J.
1.

I 1

THEOREM 5. l. If [v2 :=0] E S and A = Z:i u 11~ then A is incorrrplete for (S,B).

Proof. Let A be a Z:~ nonrecursive subset of the even natural numbers and let
B b rl o j • •

ea 1 nonrecursive subset of the odd natural numbers. Then C = AuB is a

set which is neither Ii or TI~. Indeed, we have for all x EN

x EA+-+ x EC Ax is even

x EB+-+ x EC Ax is odd,

. "o ~o . IIO IIO so if C were ~1 then B would ~1 and if C were I then A would be 1•

Let f be the following partial recursive function:

__ { X if X f. B
f(x)

divergent otherwise

and let S be a program which computes f. Thus S = {(0,0): OE[7B]}.

We prove now that

wp (S, [A]) n [N] = [C].

We have for any n EN

[n] E wp(S,[A]) +-+ Vo[7[n]So) v 3o[[n]So "oE[A]]

+-+ nEB V 3m[[n]S[m] A [ra] E [A]]

+-+ nEB V ([n] E [A])

+-+ nEAuB

+-+ nEC,

so indeed (1) holds.

(I)

For any state o if o(v 1) EC, then either OE[C], in which case by

(I) OEwp(S,[A]), or o is not of the form [n] for any n, in which case

VT[7 oST], i.e. OEwp(S,[A]), as well. This shows that

{o:o(vl)EC} £ wp(S,[A]). (2)

o . no c is a I 2 set, so for some D which is -1

x EC+-+ 3y[(x,y)ED],

12

Let p = {o:(o(v2),o(v2))ED}. Then pis a IT~ assertion.

We show now that

(3)

but for no assertion q EI~ u IT~

{p}[v2 :=0]{q} and {q}S{[A]}. (4)

At first observe that

sp(p,[v2:=0]) = h: 3 o[OEp A o[v 2:=0lr]} =

{,: 3o[(o(v 1),o(v2))ED] 11 ,(v2) = 0 11 Vi<n0[ii2 + ,(vi)

{,: 3x[(,(v 1),x)ED] A T(v2) = O} =

= o(v.)J]} =
1

h: ,(vl)EC A ,(vz) o}.

Thus by (2) sp(p,[v2:=0]) ~ wp(S,[A]) which means that (3) holds. Suppose

now that for some assertion q (4) holds. Then sp(p,[v 2 :=0]) £ q and

q E wp(S,[A]), so

[C] = sp(p,[v2:=0]) n [N] sq n [N] s;; wp(S,[A]) n [N] = [C]

i.e. [C] = q n [N] •

Since C is not I? or Il~, qi I~ u IT~. D

Using the lerrnna 5. 1 we can easily extend results of the section

to the sets z::O and rr0 . Using lennna 5.1 (a) and following the proof of
n

4

the
n 0

theorem 4. 1 we obtain that I (n~l) 1.S complete for (S, B) under the assump-
n

tion that S 1.S a class of normal programs. Also due to leunna 5. I (b) we

obtain that if s is a class of normal programs then no
n

(n~l) is complete

for (S, B) • As a corollary we have: if Sis a class of normal programs then

the set of all arithmetical assertions 1.S complete for (S, B) • If s 1S a

class of deterministic normal programs then due to leunna 5.1 (c) for every

n ~ 2 ~O and z:: 0 u rr0 is complete for (S,B).
n n n

13

6. COMJ>LETENESS FOR RECURSIVE ASSERTIONS

From the result of the section 3 we learned that recursive asser

tions are not sufficient to obtain completeness. This fact is connected

with a phenomenon (difficult to define formally) of loss of information

about the program in question. Both the assertion method and the Hoare

axiomatic method are concerned only with the input-output behaviour of a

given program and not with the whole history of computation resulting from

the execution of S. In this section we show that, by aliowing the use of

an "auxiliary" coordinate, the set of recursive assertions is complete for

while programs. This result is obtained by using that coordinate to keep

track of the history of computation.

We extend the domain V by adding a fresh variable u, and we denote,

for 0 EU and x EN, the extended state Av[if v EV then cr(v) else x] by
+ cr&x and the extended state space by U • Programs and assertions on the ex-

tended state space will in general be denoted by letters bearing a super

script+.

For p ~ U, we write pt for{cr&x: 0Ep, xEN}. We denote {bt: bEB} by B+.

DEFINITION 6.1. S+ is a faithful extension of S if

V0,,Vx[0S,

The relevance of this definition will become clear in the light of the

following lemma, especially part (c).

LEMMA 6.1.

(a) Ifs~ is a faithful extension of s1 ands; is a faithful extension

of s2, then s:;s; is a faithful extension of s1;s2•

(b) Ifs; is a faithful extension of s3, then, for any b EB,

bt * s; is a faithful extension of b * s3 .

(c) Ifs+ is a faithful extension of S, then

Proof. The verification of (a) and (b) 1.s straightforward from the

14

definitions of";" and"*" and is therefore omitted. As for (c), suppose

first {p}S{q}, that is, Vo,,[(oEp & oS,) ➔ ,Eq]. We must prove {pt}s+{qt},

that is, Vo,x,,,y [(o&x E pt A o&x s+ ,&y) + ,&y E q+]. If o&x E pt, then

o E p. Also, if o&x s+ T&y, then oST, since s+ is a faithful extension of

S. From OEp and OST we have TEq, and therefore ,&y E qt. Next, suppose

{pt}s+{qt}. Let x be some arbitrary element of N (e.g. 0). If OEp, then
t h + .

o&x E p. Also, if oS,, then there exists a y such tat o&x S ,&y, since

s+ is a faithful extension of S. From o&x E pt and o&x s+ ,&y we have

,&y E qt, and therefore TEq. D

DEFINITION 6.2. A class of programs (S,B) is well-founded if S

where

f So is some class of recursive (i.e.~~) programs,

00

U Sk,
k=O

l sk+l ~ sk u {s 1;s 2: s 1,s 2 E sk} u {b*s 3: b EB, s 3 E sk}.

REMARK. A well-founded class of programs consists of normal programs only.

THEOREM 6.1. If (S,B) is well-founded, then there exists a class of

programs s+ such that

(i) each s ES has a faithful extension S+ Es+;

(ii) if A is the set of recursive assertions from the extended state

space of s+, then A is corrrplete for (S+,B+).

Proof. We construct S+ by using the fresh variable of the extended state,

intuitively speaking, to keep track of the history of computation (which

notion, however, is not properly definable in a relational framework). Let

<o 1, .•. ,crn> stand for an encoding in N of the sequence o 1 , ... ,on, n ~ 0,

o. EU, with the following properties:
i

(i) the set {<o 1, ... ,on>: n ~ 0, oi EU} of all encodings is exactly N;

(ii) for x EN, the function lxl = n, where x = <o 1, ... ,on>' is total

recursive;

(iii) for n EN and o EU, the function xno = <0 1 , ... ,on,o>, where

x = <0 1, ... ,on>' is total recursive;

(iv) for y EN, with lyl ~ 1, the functions pre(y) = x and last(y) = o,

where y = xno, are total recursive.

The actual construction of such an encod1.ng is ieft to the reader. Only

properties (i)-(iv) are of relevance for our purpose.
00

Since (S,B) is well-founded, we

tion 6.2. We first construct, for SE
can write S = k~O Sk, as in defini-

SO'

15

From this definition it is obvious thats+ is a faithful extension of Sand

thats+ is recursive.

The complete class s+ is then defined bys+= 00 +
U S where

k=O k'

+ Clearly, S is closed under sequencing and repetition. It is trivially

proved from this construction of S+ (by induction on k and using lennna

6.l(a) and (b)) that indeed each SES has at least one fa~thful extension

S+ ES+. The proof of the second part of the claim of the theorem is more
. . . kl d . h f . + + + B+ intricate. It is tac e by proving tat, or arbitrary p ~ U, b E

+ S+ (+ +) (+ b+ +) . . f + . . and S E , sp p ,S and sp p , **S are recursive i p is recursive.

Since these forms already suffice for providing the necessary intermediate

assertions, as in the proof of theorem 4.1, the claim then follows.

In the sequel of the proof p+ stands for an arbitrary recursive
. u+. assertion~

First we prove a lennna that, in spite of its seeming simplicity,

contains the essential step:

+ + + +
LEMMA 6.2. If, for some S ES , sp(p ,S) is recursive for all recursive

+ + + ++ +. p , then for all b EB, sp(p ,b **S) ~s recursive.

+ + + + Proof. If T&y E p then clearly T&y E sp(p ,b **S). Also, if for some

o' and x'

(I)

then
+ + + +

o'&x'(S) T&y, so T&y E sp(p ,b **S).

16

(+ b+ +) . + We prove now that, conversely, if ,&y Esp p , **S then either ,&y E p

or for some o' and x' (I) holds.
+ + +) h d f" . . f Assume that ,&y E sp(p ,b **S • Byte e inition o sp, for some

+ + d f. . . f b+ + o&x o&x E p and o&x(b **S),&y. By the e inition o **S there exists

Obviously each o.&x. E sp(p+,b+**S+). There ~re two possibilities.
i i

If all o.&x. are equal then ,&y = o&x, so
i i

o.&x. be the last extended state different from
J J + +

o.&x.(S),&y. By the construction of S y is of
J J

for some i < lyl. We also have o. Eb and ,&y E
J

have in fact, shown that

+ ,&y E p . Otherwise, let

,&y. Then we have
n n n n the form x. o. \)l ..• \),

J +J i
sp({cr.&x.},s). Thus we

J J

++ + +. ++ +
,&y E sp(p ,b **S) ++ ,&y E p v 3i<lyl[o'&x' E sp(p ,b **S)

A a'Eb A ,&y E sp({o'&x'},s+), .

It is easily seen from this formulation, by induction on lyl, that the
. (+ b+ +) d . f d . . question ,&y Esp p, **S a mits o a ecision procedure, so

(+ + +) . . □ sp p ,b **S is recursive.

We now proceed with the proof of the theorem, and use induction on
+ + ++ ++ +

k to show that for S E Sk, sp(p ,S) (and, therefore, sp(p ,b **S)) is

recursive.

(B .) Let S+ E S+ B h ' f S+ S+ ' f ' hf 1 ' asis 0 . y t e construction o 0 , 1.s a ait u extension

of some program SE S 0 , and ,&y E sp(p+,S+) iff lyl ~ 1 A (cr&x E p+ A crS,,

where y = xno). Since S 0 consist of recursive programs only, sp(p+, s+) is

recursive.

(Induction Step) Let the recursivity of sp(p+,S+) already have been
+ + + + +

S E Sk. Let now S ES k+l = Sk u
{ + + + + + +} u b * s3 : b EB, s3 € sk.

+ + + + Case A: S E Sk. Then sp(p ,S) is already known to be recursive.

17

Case B:

Case C:

+ + + + + + + +
S = s1;s2 , where s1 and s2 E Sk. Then sp(p ,S) =

+ + +
sp(sp(p ,S 1),s 2), which is clearly recursive.
+ + + + + + +

S = b *s3 , where s3ESk. Then sp(p ,S) =
+ + + +

sp(p ,b **S3) n 7b, which, due to lemma 6.2, is recursive. □

We shall briefly dwell on the question how these results could be transla

ted to Hoare's method. The use of auxiliary variables corresponds to the
+ use of auxiliary variables that are not used by the program. A program S

is a faithful extension of a program S if its input-output behaviour on

the variables of Sis the same as that of S, but it can in addition use

auxiliary variables. For the use of this notion in a formal deduction sys

tem this criterion has to be reformulated in syntactic terms. If we now

add to the usual Hoare-like proof system the following proof rule

{ p}S+{ q}

{p}S{q}
provided that q does not

contain auxiliary variables,

then for any recursive assertions p and q which do not contain auxiliary

variables, we haver= {p}S{q} if and only if t-- {p}S{q}, where the latter

can be proved using only recursive assertions. Examination of the proof of

theorem 6.1 suggests that the same result can be obtained without intro

duction of faithful extensions by adding instead the curious rule

{ p}S{q} where z is an auxiliary

variable. {p[e/z]}S{q}

(As usual p[e/z] stands from the result of substituting e for z in p.)

This rule is obviously not sound in the usual technical sense, but it

appears to be sound in the sense that only true sentences of the form

{p}S{q} can be derived by its use, provided that p and q do not contain

auxiliary variables.

This result is not too surprising if one looks at it from another

point of view.
,..0 •
1.. 1 assertions.

3z 1, ••• ,zn[~J,

We have proved in section 4 completeness for the class of

Each I:~ set can be defined by a formula of the form

where <P contains only bounded quantifiers. Call such a

18

formula a E~ formula. Assume now that~· {p}S{q}, where p and q are re

cursive. By the I~ completeness there exists a proof of {p}S{q} which uses

only I~ assertions. If in each of the assertions - apart from p and q -

used in the proof we erase the existential quantifiers, we obtain a sequence

of formulas which can easily be transformed into a proof in our new system.

This sequence is the proof, apart from the places where the rule of conse

quence has been used. With not too much trouble the use of the rule of con

sequence can now be replaced by the use of our new rule. Theorem 3.3 indi

cates a way to construct a program S such that f= {true} S {false}, but

{true} S {false} can not be proved in the usual Hoare-like system using

only recursive assertions. It can be proved using only recursive assertions

with the help of the above proof rule.

Auxiliary variables have also been used in APT & MEERTENS [l] to

show completeness of Floyd's method for recursive program schemes. The

results of that paper indicate a way to extend the present notion of com

pleteness of a set of assertions from the class of while programs to the

class of recursive program schemes by allowing assertions from an extended

state space. It would be interesting to investigate whether the complete

ness results proved in this paper can then be extended to the latter class.

REFERENCES

[l] APT, K.R. & L.G.L.T. MEERTENS, Completeness with finite systems of

assePtions for recursive pPogram schemes, Report IW 84/77,

Mathematical Centre, Amsterdam, (1977).

[2] DE BAKKER, J.W. & L.G.L.T. MEERTENS, On the completeness of the

inductive assertion method, Journal of Computer and System

Sciences, vol. 11, No. 3, pp. 323-357 (1975).

[3] COOK, S.A., Axiomatic and intePpretive semantics for an Algol

fragment, Technical Report no. 79, University of Toronto (1975).

[4] CLARKE, E.M., Programming Zanguczge constructs for which it is

impossible to obtain good Hoare-Zike axioms, Proc. of 4th ACM

Symposium on Principles of Programming Languages, pp. 10-20,

(1977).

19

[SJ FLOYD, R.W., Assigning meanings to programs, in 11Mathematical Aspects

of Computer Science,, (J.T. Schwartz, Ed.), pp. 19-32, Proceedings

of a Symposium in Applied Mathematics, Vol. 19, American Math.

Soc., Providence (1967).

[6] GORELICK, G.A., A complete axiomatic system for proving assertions

about recursive and non-recursive programs, Technical Report

no. 75, University of Toronto (1975).

[7] GRZEGORCZYK, A. & A. MOSTOWSKI & C. RYLL-NARDZEWSKI, The classical

and thew-complete arithmetic, Journal of Symbolic Logic 23,

pp. 188-205 (1958).

[8 J HOARE , C. A. R. , An axiomatic basis for programming language constructs,

C. ACM _!2, pp. 576-580 (1969).

[9] MANNA, Z., The correctness of programs, Journal of Computer and

System Sciences vol. 3, pp. 119-127 (1969).

[10] MATUSZEK, D., The case for the assert statement, SIGPLAN Notices, pp.

36-37, August (1976).

[II] SHOENFIELD, J.R., Mathematical logic, Addison-Wesley, New York (1967).

[12] WAND, M., A new incompleteness result for Hoare's system, 8th Annual

Symposium on Theory of Computing, pp. 87-91, (1976).

