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Abstract 

•.Ve claim that programming 'vithin the logic progTarnming paradigm suffen; from 
lack of attention given to iteration and arrays. To convince the reader about their 
merits \\·i: pres('Ill exarnples of logic and constraint logic programs \•:hich 
use iteration and arrays instead of e}..rpiicit recursion and lists. These programs 

they are easier to '"rite and to understand, are guaranteed to terminate and their 
., 
" 

implenwnte<l h~, means of hmm<lerl qnantitkat10n. 

1 Introduction 

Auy ::,ysLeurntic cuurse uu _µrugra1111mug m the imperaLh\.: ::>Lyle (:>ay W:>mg 
I)'''-'.(':>J'\ £!.r·~;r' (''Hlf'"Tif' r•>tm.: nP )i·or~or1'nn /'PI"':tr11'·t~: (~:·>v -.;•.'h1"}e nr "'·"De·~t· \ '·j'V'! ~~-••• J .... :.11. .. ,\,.,.,_t ..1-~t .• \,; ,;.,._.;i....,.,\~--~·-· ~ ... i ,,J.l,_,, 1. \-•·· , •• (.1,, w'I; j;. ;f;L. l.1...-r __ (.,;1..;! , .. _ .. 'l 

on1;; latrr drals >vith rrrnrsion. Purthrr, t.hr data structures am cxplttinr<l first 
Ls Uculiug \\'ilh Liu.~ :)LaLic Uata ~Lructure~ (llk.e airuy!:> u.11J 1ecurJ.s) uuls 
la t r~r \\. 1 t h th~~~ cl \"Itc.unic dnta :-:;{ ru~,·t u re:-:: ( Yvh ic11 are co11st ruct eel lrv rne~,.;~H~ of 
pointers). 

ln the logic programming framE"ivork the distinctions bet;;veen iteration and 
rt>rursion, and bNWPf'n stritir and rl.ynamic data stnwtnres arP lo.:;t. One shows 

" " 
latter bv idt•ntifving it with tail recursion. Arravs do not exist. In contrast. 
rPconis c-m1 iw mo<lPl!P.d by t.erms.. ;:inrl rl.ym1mi<' rl.i:ira stnwt.nrPs <'an ht> <lt>finP<i 

uu.);:_u1~: of use,):)~ iu a rt·cursiY~. 1 \\'l nf ~ 

;,vhkh in Prolog tJ10rC' is support in the form of buiit-in's and a more frif'ndiv 
nm.arion). 
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One of the side effects of this approach to programming is that one often uses 
a sledgehammer to cut the top of an egg. Even worse, simple problems have 
unnecessarily complex and clumsy solutions in which recursion is used when a 
much easier solution using iteration exists, is simpler to write and understand, 
and - perhaps even more important - is closer to the original specification. 

In this paper we would like to propose an alternative approach to programmiug 
in logic and in constraint logic programming --- an approach in which adequate 
stress is put on the use of arrays and iteration. Because iteration can be 
expressed by means of bounded quantification. a purely logical construct. the 
logic programming paradigm is not "violated". On the contrary, it is enriched, 
clarified and better tailored to the prugnmnning needs. 

Arrays are especially natural when dealing with vectors and matrices. The 
use of dynamic data structures to write programs dealing with such objects 
is unnatural. \Ve shall try to illustrate this point b~r presenting particularly 
simple solutions to problems such as the 8 queens problem, the knight's tour, 
an<l the map colouring prnLlem. 

Further, by adding to the language operators whieh allow us to express opti­
mization, i.e. minimization and maximization, we can <'asily write' progrnrm; 
for various optimization problems, like the cutting stock problem. 

For pedagogical wasons 'WC' limit here our attention to programs that involve 
arrays, iLeraLiou arnl uµLiwizatiou cousLruds. Of course, recursive <lata typei:; 

and explicit recun;ion Lave their place Loill in logic progrnru1uiug au<l iu con­
straint loµ;ie programming. One of the main purposes of this paper is to illns­
trate how much can be achieved without them. 

In the programs conRi<lered in thiR paper recursion iR hidden in the implemen­
tation of the bounded quantifiers and this use of recursion is guaranteed to 
terminate. Consequently, these programs always terminate. As termination is 
one of the major concerns in the case of logic programming, from the cor­
rectness point of view it is better to use iteration instead of recursion, when 
a choice arises. Also, iteration ran be implcrn<:'nted mor<:' cffiri<:'ntly thnn r<:'­
cursion (see Barklund and Bevemyr [BB93J for an explanation how to extend 
WAM to implement iteration in Prolog). 

This work can be seen as an attempt to identify the right linguistic concepts 
which i:;irnplify :µrogra.u11ning in the logic progn1lllluing paradigm. \Vhen :µre­
sC'nting this view of programming within the logir programming paradigm 
we were very much influenced by the publications of Barklund and Millroth 
[BM94], Voronkov [Vor92] and Kluiniak [Klu93]. In fact, the constructs whose 
use we advocate. i.e. bounded quantification and arrays, were already pro­
p08ed in thoi;e paper:s. Apart from providing furl.her evi<lem;e for elegance of 
these coustru<.:to in logic; progra111rning, the only, posoibly new, contribution 
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of this paper is a proposal to integrate these constructs into constraint logic 
programming. 

2 Bounded Quantifiers 

Bounded quantifiers in logic programming were introduced in Kluiniak [Klu91] 
and are thoroughly discussed in Voronkov {Vor92J {where also earlier refer­
ences in Russian are given). They are also used in Kluiniak [Klu93] (see also 
Kluiniak and Milkowska [KM94]) in a specification language SPILL-2 in which 
executable specifications can be written in the logic programming style. 

Following Voronkov [Vor92] wf' writf' thf'm as 3X E L Q (the bonndf'd f'xis­
tential quantifier) and VX E L Q (the bounded universal quantifier), where L 
is a list and Q a query, and define them as follows: 

=ix E [Y I Ys] Q +-- Q{X/Y}. 
3X E [Y I Y s] Q - 3X E Y s Q. 

VX E [Y I Ys] Q - Q{X/Y}, VX E Ys Q. 
\IX E [] Q. 

To put these definitions into syntactically acceptable format, we could intro­
duce two relations, exists and forall, and write exists(X, L, Q) for :JX E: 

L Q and for all (X, L, Q) for VX E L Q. For clarity, we shall use the original 
syntax. 

The bounded quantifies can be easily expressed using the usual quantifiers, so 
the above language extension is subsumed by the proposal of Lloyd and Topor 
[LT84} (::;ee also Lluy<l [Llu87]) in which the querie::> and bodies of dallies cau 
be arhit.rary first-orcler formulas. Unfort.unately, this modelling of houn<lecl 
quantifiers yields unneces::;arily complex programs, among others due to the 
use of negation and the introduction of new relation symbols. 

Moreover, as pointed out by Barklund and Hill [BH95), this translation process 
introduces the possibility of incorrect use of negation \vhich in some circum­
stances limits the use of the program to ground queries. This difficulty was 
originally pointed out by Bundy [Bun88} in the context of another form of 
bounded universal quantification. 

Voronkov [Vor92] also discusses two other bounded quantifiers, written as .3X 
c L Q and VX c L Q, where X c Lis to be read "X is a suffi..x of L", which 
we do not consider here. 
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To some extent the use of bounded quantifiers allows us to introduce in some 
compact form the "and" and the "or" branching within the program com­
putations. This reveals some connections with the approach of Harel [Har80), 
though \Ve believe that the expressiveness and ease of programming within the 
logic programming paradigm makP.S Harel's programming proposal ohsolete. 

Even without the use of arrays the gain in expressiveness achieved by means 
of hounded quantifiers is quite spectacular. Consider for example the following 
problem which shows the power of the \IX E L :JY E M combination. 

Problem 1 ·write a program which tests whether one list contains all the 
elements of another one. 

Solution 

subset(Xs, Ys) +- \IX E Xs :lY E Ys X = Y. 

Several other examples can be found in Voronkov [Vor92]. Here we content 
ourselves with just one more, in which \Ve use delay declarations very much 
like in modern versions of Prolog (for example ECLi p3e [Agg95]) or the pro­
gramming language Godel of Hill and Lloyd [HL94]). 

Problem 2 \Vrite a program checking the satisfiability of a Boolean formula. 

Solution We assume here that the input Boolean formula is written using 
Prolog notation, so for example (-, X, Y) ; Z stands for (-, X /\ Y) V Z. 

sat (X) +- X, generate (X) . 

generate(X) +- vars (X, Ls), VY E Ls :::iz E [true, fail] Y = Z. 

DELAY X UNTIL nonvar(X). 

This remarkably short program uses rn.eta-variables and a mild extension of the 
delay dedarations to meta-variables. The delay declaration used here delays 
any call to a meta-variable until it becomes instantiated; vars (t, Ls) for a 
term t computes in Ls the list of the variables occurring in t. Its definition is 
omitted. vars (X, Ls) can be easily implemented using the var (X) and uni v 

built-in's of Prolog. true and fail are Prolog's built-in's. 

In Godel the calls to negative literals are automatically delayed until they 
become ground. In the case of the above program 8uch an automatic delay 
is not advisable as it would reduce cheeking for satisfiability of snbformnlas 
which begin with the negation sign to a naive generate and test method. 

Even though this program shows the power of Prolog, we prcfrr to tak<' another 
course and use types instead of exploring extensiuns of Prolog, which is an 
untyped language. 



1p11wm s 
lk:ow8:11 to f'nco<lt' 

employs 

Problem 3 C'he•·k 

Solution 

const n = 100. 

rel ordered: array [ 1 .. n] of intt."ger. 

ordered(!) <-- VI E [1. .n-1] A[I] < A[I+1]. 

This example 

here '·+" as an external 
This simple program ..,. ...... " ..... 



times. The programming construct VI E [1 .. n] Q actually corresponds to 
the construct 

for i:=l to n do if-, Q then 
begin 

failure := true; exit 
end 

which is clumsy and unnatural within the imperative programming paradigm. 

(Feliks Kll1Zniak suggested to us the following, slightly more natural interpre­
tation of VI E [1 .. n] Q: 

i:=l; 
while i :::; n cand Q do i:=i+ 1; 
failure := i ~ n, 

where cand is the "conditional and" connective (see Gries [Gri81, pages 68-
70].)) 

Problem 4 Linear Search. Check if an element is present in a given sequence 
of 100 integers. If yes, return its position, otherwise terminate with a failure. 

const n = 100. 
type seq: array [1. .n] of integer. 
rel find: (integer, seq, [1 .. n]). 
find(E, A, J) -+---- 3I E [1 .. n] (E = A[l], J = I). 

Here "=" is Prolog's built-in, defined by the single clause 

I = I. 

and called "is unifiable with". Now the query find(e, a, J) checks the pres­
ence of an element e in an array a. If the answer is positive, J is instantiated 
to the position of e in a. Otherwise failure results. During the execution of 
this query "=" is used first to compare two ground terms and then to assign 
a value to a variable, J. 

It is instructive to note that the development of the corresponding solution to 
the linear search problem in the imperative programming style, together with 
the formal correctness proof, takes Sethi [Set89] three pages. 

Note that in contrast to the imperative programming case, the above solution 
can also be used to generate all elements of a with their corresponding posi­
tions, by means of the query find(E, a, J). In this case both uses of •. ..,,,:: 
result in as.<;igning a value to a variable. first to E and then to J. 
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type seq: array [1 .. n] of *. 
rel find : ( * , seq. [ 1. . n] ) . 

:=t: , *)" 

morn than one unknown can be a program. 

shmv-s 
and a 

power VX E L 3Y E M combination in 
in.'5tance of the backtracking process. 

Arrange three l 's, three 2's, ... , three 9's in sequence so that for 
are i numbers between succe.ssh'e occurrences of i 

Cotta [CC88, page 193]}. 

Solution 

rel sequence: array [1 .. 27] of [1 . 9] . 
sequence(!) +- VI E [1. .9] 3J E [1. .25-21] 

(A[J] = I, A[J+I+1] = I, A[J+2I+2] = I)). 

range J E [1 .. 25-2I] comes from the requirement that the indices J. 
J+I+1, J+2I+2 should lie within [1. .27]. Thus J+2I+2 :s; 27, that is J :s; 
25-2!. 

It is useful to note here that the corresponding solution to this problem in 
is 

we show the usefulness of local definitions. 

Problem 6 Generate all permutations of a given sequence of 100 elements. 

First \\"e provide a solution for the ease when there are no repeated elements 
sequence. 

Solut.ion l 
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const n = 100. 
rel permutation: (array [1 .. n] of *, array [1 .. n] of *). 

permutation(X, Y) +-- VI E [1. .n] 3J E [1. .n] Y[J] = X[I]. 

Here, X is the given sequence. 

Note the similarity in the structure between this program and the one that 
solves problem 1. This program is incorrect when the sequence contains re­
peated elements. For example for n = 3 and X: = (0, 0, 1], the array Y: = 
[0, 1, 1] is a possible answer. 

To deal with the general case we use local array declarations and refine the 
above program. 

Solution 2 

const n = 100. 
rel permutation: (array [1. .n] of *, array (1. .n] of *). 

permutation(X, Y) +-

var A: array [1. .n] of [1. .n]. 
VI E [1. .n] 3J E [1. .n] A [J] = I, 
VI E [1. .n] Y(I] = X [A [I]] . 

This solution states that A is an onto function from [1 .. n] to [1 .. n] and that 
a permution of a sequence of n elements is obtained by applying the function 
A to its indices. 

Next, consider two well-known chess puzzles. 

Problem 1 Place 8 queens on the chess board so that they do not check each 
other. 

First, we provide a naive generate and test solution. It will be of use in the 
next section. 

Solution 1 

const n = 8. 
type board: array [1 .. n] of [1 .. n]. 
rel queens, generate, safe: board. 

queens(!) +-- generate(X), safe(X). 

generate(X) +-- VI E [1. .n] 3J E [1. .n] X [I] = J. 

safe(X) +-- VI E [1. .n] VJ E [1+1. .n] 
(X[I] -:/= X[J], X[I] -:/= X[J] + (J-I), X[I] =f. X[J] + (I-J)). 
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To improve readability board is explicitly declared here as a type. Declar­
atively, this program states the conditions which should be satisfied by the 
values chosen for the queens. "=f." is a built-in declared as 

and defined by the single clause 

X =f. Y +-- -, (X = Y). 

In this section we use it only to compare ground terms. A more general usage 
of "=f." will be explained in the next section. 

Next, we give a solution which involves backtracking. 

Solution 2 

const n = 8. 
type board: array (1. .n] of (1. .n]. 

rel queens: board. 

queens(X) +- VJ E (1. .n] 3K E (1. .n] 
(X[J] = K, 

VI E [1.. J-1] 
(X[I] =f. X[J], X[I] =f. X[J] + (J-I), X[I] =f. X[J] + (I-J))). 

Declaratively, this program states the conditions each possible value K for a 
queen placed in column J should satisfy. In its last line X [J] could be replaced 
by K. 

Problem 8 Knight's tour. Find a cyclic route of a knight on the chess board 
so that each field is visited exactly once. 

Solution We assign to each field a value between 1 and 64 and formalize the 
statement "from every field there is a "knight-reachable" field with the value 
one bigger" . By symmetry we can assume that the value assigned to the field 
X [1, 1] is 1. Taking into account that the route is to be cyclic we actually 
get the following solution. 

const n = 8. 
type board: array (1 .. n, 1. .n] of (1 .. n2]. 

rel knight : board. 
go_on: (board, (1 .. n), (1 .. n]). 

knight(X) +- VI E (1. .n] VJ E [1. .n] go_on(X, I, J), X[1, 1] = 1. 

go_on(X, I, J) +- 3!1 E [1 .. n] 3J1 E [1 .. n] 
(abs((I-I1)·(J-J1)) = 2, X[I1, J1] = (X[I, J] mod n2) + 1). 
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DELAY go_on(X, I, J) UNTIL ground(X[I,J]). 

Note that the equation abs (I · Y) = 2 used in the definition of go_on has 
exactly 8 solutions, which determine the possible directions for a knight move. 
Observe that each time this call to "=" is selected, both arguments of it are 
ground. The efficiency of go_on could be of course improved by explicitly 
enumerating the choices for the offsets of the new coordinates w.r.t. the old 
ones. 

The behaviour of the above program is quite subtle. First, thanks to the delay 
declaration, 64 constraints of the form go_on(X. I, J) are generated. Then, 
thanks to the statement 1(1, 1] = 1, the first of them is "triggered" which 
one by one activates the remaining constraints. The backtracking is carried out 
by choosing different values for the variables I1 and Ji. The delay declaration 
is not needed, but without it this program would be hopelessly inefficient. 

It is interesting to note that in Wirth [Wir76], a classical book on program­
ming in Pa.seal, the solutions to the last two problems are given as prototypical 
examples of recursive programs. These solutions are based on the same prin­
ciple, namely backtracking. Here recursion is implicit in the implementation 
of bounded quantifiers. 

We conclude this section by one more program which shows the use of another 
type of quantifier. 

Problem 9 Let m = 50 and n = 100. Determine the number of different el­
ements in an array X:array [1. .m, 1. .n] of integer. 

Solution 

const m = 50. 
n = 100. 

type board: array [1. .m, 1. .n] of integer. 
rel count: (board, natural) . 

count (X, Number) +-

Number = m · n -
#(I, J: I E [1. .m], J E [1. .n]: 

) . 

(3K E [1. .I-1] 3L E [1. .n] X[I,J] = X[K,L]) 
% X[I,J] occurs in an earlier row 

V (3L E [1. .J-1] X[I,J] = X[I,L]). 
% X[I,J] occurs earlier in the same row 

In this program we used the counting quantifier introduced in Gries [Gri81, 
page 7 4] and adopted in Kluiniak [Klu93J in the specification language SPILL-
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2. In general, given lists Li, L2, the term #(I, J: I E Li, J E L2: Q) 

stands for the number of pairs ( i, j) such that i E Li , j E L2 and the 
query Q{ I/ i, JI j} succeeds. It is possible to avoid the use of the counting 
quantifier at the expense of introducing a local array of type board. This 
alternative program is more laborious to write. 

This concludes our presentation of selected logic programs written using ar­
rays, bounded quantifiers and some other features. Other examples, involving 
among others numerical computation, can be found in Barklund and Millroth 
[BM94]. 

4 Arrays and Bounded Quantifiers in Constraint Logic Program­
ming 

In this section we illustrate the use of arrays and bounded quantifiers in con­
straint logic programs. We assume from the reader some familiarity with the 
basic principles of constraint logic programming (see e.g. the survey article of 
Jaffar and Maher [JM94}). 

The programs presented here are constraint programs with finite domains in 
the style of van Hentenryck [vH89), where we refer the reader for a number of 
unexplained notions. Each of these programs has a similar pattern: first con­
straints are generated, and then resolved after the possible values for variables 
are successively generated. We explain here briefly how individual constraints 
are processed, but do not discuss the strategies for constraint solving and con­
straint propagation. This calls for a generalization of the constraint solvers 
proposed in the literature to a more general situation in which subscripted 
variables are used. 

We begin by providing here alternative solutions to two problems discussed in 
the previous section. 

Problem 10 Solve problem 7 by means of constraints. 

Solution 

const n = 8. 
type board: array [1. .n] of [1. .n]. 
rel queens, safe, generate: board. 

queens (X) +- safe (X) , generate (X) . 

safe(X) +- \II E [1. .n] \IJ E [1+1. .n] 
(X[I] =f. X[J], X[I] =f. X[J] + (J-I), X[I] =/= X[J] + (I-J)). 
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generate(X) +- VIE [1. .n] 3J E dom(X[I]) X[I] = J. 

Here dom(X), for a (possibly subscripted) variable X, is a built-in which denotes 
the list of current values in the domain of X, say in ascending order. The value 
of dom(X) can change only by decreasing. This can happen only by executing 
a constraint, so in the above program an atom of the form X i= t. 

The relation "i=" was used in the previous section only in the case when both 
arguments of it were ground, so known. Here we generalizes its usage, as we 
now allow that one or both sides of it are not known. In fact, "i=" is a built­
in defined as in van Hentenryck [vH89, pages 83-84], though generalized to 
arbitrary non-compound types. 

We require that one of the following holds: 

- Both sides of "i=" are known. This case is explained in the previous section. 
- At most one of the sides of "i=" is known and one of the sides of "i=" , 

denoted below by X, is either a simple variable or a subscripted variable 
with a known subscript. 

In the second case X i= t is defined as follows, where for a term s, Val(s) 
stands for the set of its currently possible values: 

if Val(X) n Val(t) = 0 then succeed 
elseif Val(t) is a singleton then 
% t is known, so X is not known, i.e. dom(X) has at least 2 elements 

begin dom(X) := dom(X) - Val(t); 
% remove the value oft from dom(X) 

if dom(X) = [f] then X := f 
end. 

If neither Val(X) n Val(t) = 0 nor Val(t) is a singleton, then the execution 
of X # t is delayed. We treat t # X as X # t. 

So for example in the program fragment 

type bool: [false, true]. 
rel p: (bool, bool, bool) . 
p(A,B,C) +- A # B, B i= C, C = true, ... 

during the call of p (A, B , C) the constraints A # B and B # C are first delayed 
and then upon the execution of the atom C = true the variable B becomes 
false and subsequently A becomes true. 

In tum, in the case of the solution to the 8 queens problem given above, during 
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the call of safe(X) the execution of an atom of the form X[I] = K for some 
I, K E [1 .. n] can affect the domains of the variables X [J] for J E [I +1 .. n] 
via the execution of a constraint of the form X [I] -=/=- X [J] + t. 

This solution to the 8 queens problem is a forward checking program (see 
van Hentenryck [vH89, pages 122-127]). Note the textual similarity between 
this program and the one given in solution 1 to problem 7. Essentially, the 
calls to the safe and generate relations are now reversed. The generate 
relation corresponds to the labeling procedure in van Hentenryck [vH89]. In 
the subsequent programs the definition of the generate relation has always 
the same format and is omitted. 

Problem 11 Solve problem 6 by means of constraints. 

Solution 

const n = 100. 
rel permutation: (array [1. .n] of*, array [1. .n] of*). 
permutation(X, Y) +-

type board: array [1 .. n] of [1 .. n]. 
rel one_one, generate: board. 

one_one(Z) +- VI E [1. .n] VJ E [I+1. .n] Z[I] -=/=- Z[J]. 

var A: board. 
one_one(A), generate(A), 
VI E [1. .n] Y[I] = X[A[I]]. 

In this solution, apart of the local declaration of the variable A, we also use 
local type and relation declarations. The efficiency w.r.t. to the logic program­
ming solution is increased by stating, by means of the call to the one_one 
relation, that A is a 1-1 function. This replaces the previously used statement 
that A is an onto function. The call to one_one generates n · ( n - 1) /2 = 4950 
constraints. 

We conclude this section by dealing with another classical problem - that of 
a map colouring. It shows the use of implication. 

Problem 12 Given is a binary relation neighbour between countries. Colour 
a map in such a way that no two neighbours have the same color. 

Solution 

type color: [blue, green, red, yellow]. 
countries: [austria, belgium, france, italy, .. .]. 

rel map_color, constrain, generate: array countries of color. 
neighbour: (countries, countries). 
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map_color(X) +-- constrain(X), generate(X). 

constrain (X) +- VI E countries VJ E countries 
neighbour (I, J) ~ X [I] =/= X [J] . 

The declarative interpretion of P ~ Q is as follows: 

(P ~ Q) +- p, Q. 

(P - Q) +- -,p. 

So P - Q corresponds to the IF P THEN Q statement of Godel. Obviously, an 
efficient implementation of P - Q should avoid the reevaluation of P. Note that 
in the above program, at the moment of selection of the P ~ Q statement, P 
is ground. 

Thus the constrain relation generates here the constraints of the form X [I] 
=/= X [J] for all I, J such that neighbour(I, J). 

5 Adding Minimization and Maximization 

Next, we introduce constructs allowing us to express in a compact way the 
requirement that we are looking for an optimal solution. To this end we in­
troduce the minimization operator X = µQ which declaratively is defined as 
follows: 

X = µQ +- Q, -i(3Y ( Y < X, Q{X/Y})). 

We assume here that X and Y are of the type integer. The existential quantifier 
3X Q is defined by the clause 

3X Q +- Q. 

The efficient implementation of the minimization operator should employ some 
specialized methods, like the branch and bound technique, in order to limit 
the search process during the successive attempts of finding a minimal solution 
to the query Q. 

A dual operator, the maximization operator X = vQ, is defined declaratively 
by: 

X = vQ +-- Q, -.(3Y ( Y > X, Q{X/Y})). 

To put these definitions into syntactically acceptable format, we could write 
min(X,Q) for X = µQ and max(X,Q) for X = vQ. 
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In Barklund and Hill [BH95] the minimization and the maximization operators 
are introduced as a form of arithmetic quantifiers, in the style of the counting 
quantifier introduced earlier. 

We now show the use of the minimization operator. 

Problem 13 The cutting stock problem (see van Hentenryck [vH89, pages 
181-187]). There are 72 configurations, 6 kinds of shelves and 4 identical boards 
to be cut. Given are 3 arrays: 

Shelves: array [1 .. 72. 1 .. 6] of natural, 
Req: array [1 .. 6] of natural, 
Waste: array [1 .. 72] of natural. 

Shelves [K, J] denotes the number of shelves of kind J cut in configuration 
K, Waste [I] denotes the waste per board in configuration I and Req [J] the 
required number of shelves of kind J. The problem is to cut the required 
number of shelves of each kind in such a way that the total waste is minimized. 

Solution We represent the chosen configurations by the array 
Conf: array (1 .. 4] of [1 .. 72] 

where Conf [I] denotes the configuration used to cut the board I. 

rel solve: (array [1 .. 4] of [1 .. 72], natural). 
generate: array [1 .. 4] of (1 .. 72]. 

solve(Conf, Sol) +-

Sol = µ 
% Sol is the minimal TCost such that: 

VI E [1 .. 3] Conf [I] ~ Conf [I +1] , 
% symmetry between the boards 

VJ E [1..6] Ej=1 Shelves[Conf[I],J] > Req[J], 
% enough shelves are cut 

Sol= Ej=1 Waste[Conf[I]], 
% Sol is the total waste 

generate(Conf). 

The constraints Conf [I] ~ Conf [I +1], for I E [1 .. 3], limit the number of 
generated solutions and (like in van Hentenryck (vH89]) are added here only 
for the efficiency purposes. 

In this program we used as a shorthand the sum notation "E ... ". In general, 
it is advisable to use the sum quantifier (see Gries (Gri81, page 72)), which 
allows us to use E~=k t as a term. The sum quantifier is adopted in SPILL-2 
language of Kluzniak [Klu93]. Kluiniak's notation for this expression is: 
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(S I: k ~ I ~ 1: t). The interpretation of the constraints of the form X 
~ t, X 2:': t or X = t is similar to that of X =f. t and is omitted. 

6 Conclusions 

We have presented here several logic and constraint logic programs that use 
bounded quantification and arrays. We hope that these examples convinced 
the readers about the usefulness of these constructs. We think that this ap­
proach to programming is especially attractive when dealing with various 
optimization problems, as their specifications often involve arrays, bounded 
quantification, summation, and minimization and maximization. Constraint 
programming solutions to these problems can be easily written using arrays, 
bounded quantifiers, the sum and cardinality quantifiers, and the minimization 
and maximization operators. As examples let us mention the stable marriage 
problem, the knapsack problem and various scheduling problems. 

Of course, it is not obvious whether the solutions so obtained are efficient. 
We expect, however, that after an addition of a small number of built-in's, 
like deleteff and deleteffc of van Hentenryck [vH89, pages 89-90) and 
specialized versions of the bounded quantifiers that allow us to alter the search 
order through the range, it will be possible to write simple constraint programs 
which will be comparable in efficiency with those written in other languages 
for constraint logic programming. 

When introducing arrays we were quite conservative and only allowed static 
arrays, i.e. arrays whose bounds are determined at compile time. Of course, in 
a more realistic language proposal also open arrays, i.e. arrays whose bounds 
are determined at run-time, should be allowed. One might also envisage the 
use of flexible arrays, i.e. arrays whose bounds can change at run-time. 

In order to make this programming proposal more realistic one should provide 
a smooth integration of arrays with recursive types, like lists and trees. In the 
language SPILL-2 of Kluzniak [Klu93) types are present but only as sets of 
ground terms, and polymorphism is not allowed. Barklund and Hill [BH95] 
proposed to add arrays to Godel (which does support polymorphism) as a 
system module. We would prefer to treat arrays on equal footing with other 
types. 

We noticed already that within the logic programming paradigm the demarka­
tion line between iteration and recursion differs from the one in the imperative 
programming paradigm. In order to better understand the proposed program­
ming style one should first clarify when to use iteration instead of recursion. 
In this respect it is useful to quote the opening sentence of Barklund and 
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Millroth (BM94]: "Programs operating on inductively defined data structures, 
such as lists, are naturally defined by recursive programs, while programs op­
erating on "indexable" data structures, such as arrays, are naturally defined 
by iterative programs". 

We do not entirely agree with this remark. For example, the "suffix" quantifiers 
mentioned in Section 2 allow us to write many list processing programs without 
explicit use of recursion (see Voronkov (Vor92]) and the quicksort program 
written in the logic programming style is more natural when written using 
recursion than iteration. 

The single assignment property of logic programming makes certain programs 
that involve arrays (like Warshall's algorithm) obviously less space efficient 
than their imperative programming counterparts. This naturally motivates 
research on efficient implementation techniques of arrays within the logic pro­
gramming paradigm. 

Finally, a comment about the presentation. We were quite informal when 
explaining the meaning of the proposed language constructs. Note that the 
usual definition of SLD-resolution has to be appropriately modified in presence 
of arrays and bounded quantification. For example, the query X [1] = 0, I 
= 1, X [I] = 1 fails but this fact can be deduced only when the formation 
of resolvents is formally explained. To this end substitution for subscripted 
variables needs to be properly defined. One possibility is to adopt one of the 
definitions used in the context of verification of imperative programs (see Apt 
[Apt81, pages 460-462]). We leave the task of defining a formal semantics of 
the constructs proposed here to another paper. 
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