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knowledge, the same problems remain 
hard over arbitrary lattices, even with a 
quantum computer. More precisely, for cer-
tain sub-exponential approximation factors 
a, a-SVP on ideal lattices admit a polyno-
mial-time algorithm, as depicted in Figure 1. 
In this survey, we give an overview of the 
techniques that have lead to these results.

The first quantum attack on certain ideal 
lattices of cyclotomic fields was sketched 
by Campbell, Groves and Shefferd [5], and 
applies to a few schemes, in particular to 
one of the first Fully-Homomorphic En-
cryption schemes [17]. Yet those broken 
schemes were based on ad-hoc problems 
that do not benefit from worse-case hard-
ness. 

The first step of this attack does not 
actually solve a lattice problem: it does not 
provide guarantees about the shortness of 

lattices, such as lattices generated by a cir-
culant matrix. The earliest example of such 
a cryptosystem is the NTRUencrypt propos-
al from Hoffstein et al. [9] from 1998. Alge-
braically, those lattices can be viewed as 
ideals or modules over cyclotomic number 
fields.

Nevertheless, there is no guarantee that 
hard lattice problems remain hard on par-
ticular classes of structured lattices, and 
indeed, a series of results [4–8] have lead 
to new quantum algorithms solving certain 
ideal lattice problems. To the best of our 

The problem of finding a shortest vector 
of a Euclidean lattice (the shortest vector 
problem, or SVP) is a central hard prob-
lem in complexity theory. Approximated 
versions of this problem (e.g. a-SVP, the 
problem of finding a vector at most a 
times longer than the shortest one) have 
become the theoretical foundation for 
many cryptographic constructions. Indeed, 
lattice-based cryptography typically bene-
fits from worst-case hardness [1, 14, 18]: it 
is sufficient that there exists some lattices 
in which finding short vectors is hard for 
those cryptosystems to be secure. Among 
several advantages, lattice-based cryp-
tography is also praised for its apparent 
resistance to quantum algorithms, unlike 
the current public-key schemes based on 
factoring or discrete logarithm.

The main drawback of lattice-based 
cryptography is its large memory and band-
width footprints: a lattice is represented by 
a basis, i.e. an n n#  matrix for a dimen-
sion n of several hundreds. For efficiency 
reasons, it is tempting to rely on structured 
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Figure 1  Best known quantum algorithm for general a-SVP (left), and for a-SVP in cyclotomic ideal lattices (right).
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est enclosing sphere of (respectively largest 
enclosed sphere) of P. More precisely:
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where bi
0 denotes the i-th vector of the 

dual basis ( )BT 1- . We see that the ability 
to solve these problems highly depends on 
the quality of the basis B. For comparison, 
we picture what happens with a bad basis 
of the same lattice in Figure 3: the CVP and 
BDD radii get worse.

Lattice-based cryptography
The gap between what can be done with 
good and bad bases is what gives rise to 
public key cryptography: the bad basis will 
be used as a public key (allowing to gen-
erate noisy lattice points as ciphertexts), 
while the good basis is kept secret (al-
lowing to solve BDD for decryption). The 
secret-key owner is able to construct a 
good basis only because he controls the 
construction of the lattice.

In this brief overview, we explained 
why CVP and BDD are useful problems in 
cryptography, but it turns out that the core 
problem is SVP. For example, solving SVP a 
few times allows to construct a basis with 
small vectors, allowing in turn to solve 
CVP. And the converse is also true for cer-
tain variants of CVP and BDD, as demon-
strated by the worst-case to average-case 
reductions of Ajtai and others [1, 14, 18]. 
These converse results allow to prove that 
breaking certain cryptosystems is at least 
as hard as solving a-SVP for some approx-
imation factor, typically polynomially large 
in the dimension n ( )O 1a = .

them with respect to an absolute distance 
d, rather than an approximation factor a.

Definition. The Close Vector Problem up to 
distance d (d-CVP) is defined as:

–– Given a basis B of a lattice Rn1K ,
–– Given a target t Rn! ,
–– Find \{ }v 0! K  such that v t # d- ,

where d is large enough so that a solution 
exists for any target t (namely d is larger 
than the covering radius of K).

Definition. The Bounded Distance Decod-
ing Problem up to distance d (d-BDD) is 
defined as:

–– Given a basis B of a lattice Rn1K ,
–– Given a target t Rn!  at distance at 

most d from K,
–– Find \{ }v 0! K  such that v t # d- ,

where d is small enough so that at most 
one solution exists for any target t (namely 

( )/2< 1d m K ).

Both problems are somehow dual, in 
particular d-CVP gets easier as d increases, 
while d-BDD gets easier as d decreases. 
A very simple and efficient algorithm for 
those problems is given by a simple coor-
dinate-wise rounding:

.v B B t1$ $= -6 h
This algorithm induces a parallelepipedic 
tiling of the space as depicted in Figure 2, 
where the shape of the tile P is given by 
the basis B:
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This fast algorithm solves d1-CVP (respec-
tively d2-BDD) for radii defined by the small-

the solution. Namely, hinted by recent re-
sults of Eisenträger, Hallgren, Kitaev and 
Song [8], it is conjectured in [5] that the 
Principal Ideal Problem (finding a gener-
ator of a given principal ideal) could be 
solved in quantum polynomial time. This 
was soon confirmed by the work of Bi-
asse and Song [4]. The second step was 
also only conjectured to be correct, but 
could easily be checked in practice. Pre-
cisely, taking logarithms, finding a short 
generator can be phrased as a lattice 
problem in a fixed lattice (Dirichlet’s unit 
lattice), for which we know a seemingly 
good basis. A detailed geometric analy-
sis of the cyclotomic units [6] confirmed 
that conjecture, using tools from analytic 
number theory. 

While this initial attack concerned a par-
ticular distribution of principal ideal lattices, 
the work of [6] also considers what can be 
done in the worst-case: using similar algo-
rithms, one can always recover a generator 
longer than the shortest vector by a factor 
at most ( ( ))exp O na = u . This constitutes a 
first worst-case hardness gap between ge-
neric lattices and structured ones. The gap 
was widened in a follow-up result of Cramer, 
Ducas and Wesolowski [7], showing how 
to extend these algorithms to non-principal 
ideals. Naturally, one would look for an ideal 
ab a1  which is a multiple of a, that is princi-
pal, and with a small relative index #( / )a ab . 
Again, this problem can be translated to 
a lattice problem in a fixed lattice, namely 
the lattice underlying Stickelberger’s class 
group annihilation theorem [19].

Lattices and computational problems
We recall that a lattice is a discrete sub-
group of the vector space Rn, equipped 
with its canonical Euclidean norm denoted 
$ . The minimal distance of a lattice K is 

defined by ( ) min x\{ }x1 0m K = !K .
Our main goal is to solve the following 

problem in a particular class of lattices.

Definition. The Short Vector Problem with 
approximation factor a (a-SVP) is defined 
as:

–– Given a basis B of a lattice Rn1K ,
–– Find \{ }v 0! K  such that ( )v 1$# a m K .

For our purpose, we will also consider 
two related problems, namely the approx-
imate Close Vector Problem (d-CVP), and 
the Bounded Distance Decoding problem 
(d-BDD). For convenience, we will define 
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Figure 2  Rounding with a good basis.
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Figure 3  Rounding with a bad basis.



186	 NAW 5/18  nr. 3  september 2017	 Advances on quantum cryptanalysis of ideal lattices	 Léo Ducas

quantum representations. While we do not 
know of an efficiently computable normal 
form for non-integer large dimensional lat-
tices, we do know how to sample according 
to a canonical distribution over a lattice, 
with an efficient classical probabilistic al-
gorithm. First, one would start by finding a 
weakly reduced basis with the LLL algorithm 
[11], followed by Klein’s sampling algorithm 
[10], which produces a wide discrete Gauss-
ian distribution supported by the lattice L.

This probabibilistic algorithm produc-
ing a classical distribution can be adapted 
[8, 14] to a quantum algorithm producing 
the corresponding quantum state S, name-
ly S is a weighted quantum superposition 
of all lattice points:

: ,

( ) | .exp
x

x

R S

R L
2

L

x L
2

2

"

$ H
v

= -

!

d n/

The above quantum superposition is in-
finite, but can be tail-cut considering the 
rapid decay of Gaussian distributions. Ex-
tra effort is also needed to discretize Rd 
and represent each point x Rd!  using a 
finite amount of qubits (see ‘straddle en-
coding’ in [8]).

HSPs in number theory
In this section, we describe algorithms 
[4, 5, 8] that apply to any number field K, 
given its ring of integers OK. Let us start 
by recalling the definitions of ideals of K:

Definition. An integral ideal I of K is an 
additive subgroup OI K1  closed by mul-
tiplication by elements of OK:

, .a x axOI IK "! ! !

A fractional ideal f of K is a set of the form 
f Iz

1=  for some non-zero integer z Z! , 
and some integral ideal OI K1 .

An ideal Kf 1  is said principal if it 
is generated by a single element, i.e. if 

{ }g gx xO Of K K; != =  for some g K! ; 
such a g is called a generator of f.

schemes deployed nowadays would be-
come insecure, as they are all based on 
factoring and discrete logarithm problems.

This motivates the development of cryp-
tosystems based on other mathematical 
problems, such as lattice-based schemes. 
This also calls for a better understanding 
of the power of quantum computers, espe-
cially with respect to Shor’s idea of period 
finding. This is generalized as the following 
problem.

Definition. The Hidden Subgroup Problem 
(HSP) over the Abelian group G is defined 
as:

–– Given an efficient quantum computa-
ble function :f G S" , which is exactly 
H-periodic for a subgroup H G1 ,

–– Find the hidden subgroup H,

where S denotes the set of quantum states.

This problem admits an efficient quan-
tum algorithm in many cases. For example, 
Shor’s algorithm is an instance of the HSP 
algorithm where G Z= , H rZ= , and where 
the function f is injective modulo the peri-
od r. In this particular case, f produces a 
classical result, that is trivially encoded as 
a quantum state. More generally, quantum 
algorithms for HSP are now known for larger 
Abelian groups such as Zn, and even Rn [8] 
with some technical restriction on f.

Quantum encodings of lattices
As we will see in the next section, many 
problems in number theory can be phrased 
as HSP using a function f producing lattic-
es rather than quantum states: :f G LV"  
where { |L L VL 1=  is a lattice}. To ap-
ply the known HSP algorithm (using R f%  )
one therefore needs to be able to com-
pute canonical representation for lattices 
:R SLV " , a task that is not always so 

easy.
For integer lattices L Zd1 , such a rep-

resentation is provided by the Hermite Nor-
mal Form, which is computable in classical 
polynomial time: the representation R is 
classical. When L Rd1  is a lattice of small 
dimension d, one can also compute a nor-
mal form, for example using an Hermite–
Korkin–Zolotarev (HKZ) reduced basis. 
Again, this representation of L is purely 
classical. But as dimension grows, HKZ re-
duction becomes exponentially hard.

This issue was circumvented by Eisen-
träger et al. [8], this time by resorting to 

The hardness of a-SVP decrease with 
growing approximation factor a. For small 

( )O 1a = , this problem is known to be NP-
hard [12], unfortunately it seems impossi-
ble to base cryptosystems on a-SVP with 
such a small approximation factor. The 
best known algorithms for a-SVP for pol-
ynomial approximation factors n ( )O 1a =  
in unstructured lattices require time ex-
ponential in n. The conjecture that it can-
not be done much faster implies that lat-
tice-based cryptosystems are unbreakable 
in an asymptotic sense. More generally, 
the best algorithms to solve ( )exp nc -SVP 
is BKZ [15], a generalization of the Lenstra–
Lenstra–Lovàsz algorithm (LLL) [11], and 
runs in time ( ( ))exp n c1H -u , as depicted in 
Figure 1.

Cyclotomic ideal lattices
Consider the m-th cyclotomic number field 

( )K Q g= , where g denotes a formal m-th 
primitive root of unity. Its ring of integer is 
known to be [ ]ZOK g= . The number field 
K is equipped with ( )n mz=  complex em-
beddings, sending g to each of the primi-
tive m-th roots of unity in C: :i

i7} g ~  for 
each ( / )i mZ Z! #, where ( / )exp m2-r~ = .

An (integral) ideal OI K1  is an addi-
tive subgroup of OK also closed under 
multiplication by elements of OK. An ideal 
may be viewed as a euclidean lattice via 
the Minkowski embedding:

: ( ( ), , ( ))

.

x K x x

H C R

m

n n

1 1

2

7 f!

! -

} } }

=

-

Each embedding i}  is a field morphism; in 
particular } is linear, and multiplication in 
K corresponds to component-wise multipli-
cation in H.

Quantum algorithms and HSP
In 1994, Shor [16] formulated a factoriza-
tion algorithm that would run in polynomi-
al time on a quantum computer. Shor’s al-
gorithm exploits the properties of quantum 
mechanics to efficiently find the period of 
the function:

: modf x a NZ x7!

which reveals the order r of ( / )a NZ Z! #. 
Unless moda N1/r 2 =- , the quantities 
( , )gcd a N1/r 2 +  and ( , )gcd a N1/r 2 -  will 

provide non-trivial factors of N. Very similar 
ideas also allow to solve the discrete loga-
rithm problem over any cyclic group G. In a 
world with large general-purpose quantum 
computers, all the public key cryptographic 

Figure 4  Discrete Gaussian distribution over a lattice.
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Definition. The Short Generator Problem 
a-SGP consists in:

–– Given an element h K! #, generating an 
ideal hOI K=

–– Find a generator g K! # of I of small 
Euclidean length: ( )g I1$# a m .

Remembering that h and g generate the 
same ideal if and only if g hu=  for some 
unit u OK! , the idea consists in rephras-
ing this problem as a close vector problem 
using the logarithmic embedding: indeed, 
we have that Log Log Logg h u= +  must 
belong to the lattice coset log Logh OK+ # . 
Furthermore, up to appropriate rescaling, 
it can be proved that the length of g is 
related to the length of its logarithmic em-
bedding Log g. Minimizing g can therefore 
be rephrased as finding a unit u such that 
Logu is close to Logh- , in other words 
solving a Close Vector Problem over Dir-
ichlet’s logarithmic unit lattice LogOK

# .
Moreover, in certain cryptosystems, we 

have additional constraints on the ideal I, 
ensuring that a unusually short generator g 
exists (which is used as the secret key). This 
suggested that the Close Vector Problem 
may actually become a BDD problem [5]. 
And indeed, experiments confirmed that 
this BDD is easily solved in practice. Run-
ning such experiments requires knowing 
the group of units OK

# . Fortunately, in the 
case of cyclotomic number fields, there are 
some well known units — that very often 
generate the whole group OK

#  — namely, 
the cyclotomic units:

{ } ( / ) .u
i

i m
1
1

Z Zi, ; !g
g
g

=
-
- #* 4

Geometric analysis of the cyclotomic units
The fact that the attack works in practice sug-
gests that the matrix ( )LogU u ( / )i i mZ Z= ! # 
forms a good basis for BDD. Yet it is not so 
straightforward to prove it: recalling the first 
section, one needs to show that the dual 
vectors ui

0 are short. To proceed with the 
analysis, Cramer et al. [6] instead consid-
ered the related matrix ( ( ))LogM 1 i

i
1

g= -
-

, 
where

| ( ) | | |log logM 1 1,i j j
i ji1 1

} g ~= - = -
- -

for indices i, j running over the group 
( / )G mZ Z= #. Since this matrix is G-circu-

lant, it can therefore be explicitly diagonal-
ized, and a lower-bound on the diagonal 
coefficients will provide an upper-bound 

wishes to apply the known HSP algorithm 
over the vector space Rn. This issue is es-
sentially dealt with by resorting to the well 
known logarithmic embeddings:

:

( | ( ) | , , | ( ) |) .

Log

log log

K

x x x

Rn

m1 1

"

7 f} }

#

-

In more details, define :Exp C Hn "  by co-
ordinate-wise application of :exp C C" #. 
Up to an appropriate quotient on the do-
main, one can set 

:

( ) ( )Expy y

f C L

O
UGP

n

K

"

7 9 }

and recovers LogOK
#  from the period of 

fUGP. Geometrically, ( )yfUGP  is a deforma-
tion the of the lattice ( )OK} , where the 
i-th coordinate axis of H Cn=  has been 
stretched by the complex factor ( )exp yi ; 
this deformation leaves ( )OK}  invariant 
precisely when ( )Exp y  equals to ( )u}  for 
some unit u OK! # .

While this strategy seems simple, prov-
ing its correctness requires an in-depth 
analysis of the metric properties of R fUGP% : 
Lipschitz continuity and some strong form 
of injectivity. We refer to the original article 
for more details [8].

Finally, we sketch a (over-)simplified 
strategy to generalize the above to the 
Principal Ideal Problem. Given a principal 
ideal I, one extends the function f to:

: ( , ) ( ) ( ) .Expy yf i IPIP( )
i

I 7 9 }

The periods of this function contains 
the extension of the previous, namely, 
it is ( , )Log 0OK

#  periodic; but it is also 
( , )Log g 1-  periodic for any generator g of 
I, as ( , )Logf g g1 OI K

1$- = =- . With this 
function fPIP( )I , the quantum algorithm for 
Hidden Subgroup Problem of [8] allows not 
only to recover the unit group, but also a 
generator of the principal ideal I. Again, 
much care is required to ensure that this 
strategy will indeed work, see [4].

Short generators of principal ideals
So far, we have been concerned with prob-
lems that were purely of number theoretic 
nature, in the sense that the solutions to 
UGP and PIP have no guarantees in term 
of size. In this section we explain how one 
can recover a short generator of a prin-
cipal ideal from an arbitrary generator in 
the particular case of cyclotomic number 
fields.

Principal ideals have multiple genera-
tors, more precisely, g and 'g K!  generate 
the same ideal if and only if / 'u g g=  is a 
unit of OK. The multiplicative group of units 
is denoted { }u uO O OK K K

1! ; !=# - .
Recall that ideals can be multiplied:

, ,a b a ba b a bi i i i$ ; ! != # -/

which makes the set FK of fractional ide-
als an Abelian group. The set of P FK K1  
of principal ideals form a subgroup of FK.

With those definitions, we can already 
consider two important computational 
problems in number theory.

Definition. The Unit Group Problem (UGP) 
consists in:

–– Given a number field K and its ring of 
integers OK,

–– Find a finite set of units , ,u u Od K1 f ! #  
that generate OK

# .

Definition. The Principal Ideal Problem (PIP) 
consists in:

–– Given a number field K and its ring of 
integers OK,

–– Given a principal ideal KI 1 ,
–– Find a generator g of I.

Both problems can be viewed as par-
ticular cases of the more general problem 
of computing the group of S-units for a 
well chosen set S of prime ideals, as done 
in the paper of Biasse and Song [4].

We start by phrasing the Unit Group 
Problem as a multiplicative Hidden Sub-
group Problem. Note that u K!  is a 
unit of OK if and only if uO OK K= , and 
more generally 'g gO OK K=  if and only if 

/ 'u g g=  is a unit of OK. This means that 
the function:

:f K

x x

P

O
UGP K

K

"

7 $

#

is (multiplicatively) OK
# -periodic, and one 

easily checks that it is injective modulo OK
#  

as well. The images of such a function are 
ideals, and can therefore be viewed as lat-
tices. Using the strategy described in the 
previous section, one can efficiently con-
struct a canonical quantum representation 
of these lattices.

A lot of technicalities remain to imple-
ment this approach. In particular, the do-
main of the function f described above 
is the multiplicative group K#, while one 
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is small, and all positive. Then b pi
c vi i=
-%  

will be an appropriate solution to CPM, up 
to a factor ( )F N np ( )

i
v c O v ci i 1= =- -%  

where | |x xi1 = /  denotes the 1, -norm 
of x.

In general, there is no reason why CVP 
should be easy in the lattice K, which is 
not even explicitly known. Yet, by choos-
ing an appropriate factor basis, namely, 
a basis composed of all the Galois con-
jugates of a single ideal, one can on the 
contrary get a very explicit description of 
the lattice K thanks to the classical theo-
rem of Stickelberger [19]. It turns out that 
one may easily explicitly construct a short 
basis of K. Again, this overview is highly 
simplified, and hides several technicalities, 
see [7].

Conclusion and open questions
There remain serious obstacles for this 
approach to attack ideal lattice-based 
cryptosystems. First the approximation fac-
tor ( ( ))exp O na = u  is too large to affect 
cryptographic schemes. Second, these al-
gorithms are limited to ideal lattices (i.e. 
module lattices of rank 1), while most cryp-
tosystems in fact use module lattices of 
rank 2 or more.

Nevertheless, these recent works ques-
tioned our understanding of the hardness 
of lattice problems when using special 
classes of lattices. We now know of a spe-
cialized algorithm for relevant classes of 
structured lattices that outperforms generic 
ones (see Figure 1). Alternatives to cycloto-
mics ideal lattices are already being stud-
ied [2, 3, 13] from various point of view: 
complexity theory, concrete cryptographic 
design and cryptanalysis.

There are many cases where the volume 
of the log-unit lattice (the regulator) and 
the lattice of class relation (the class num-
ber) is well understood. We have seen here 
that in the case of cyclotomic number field, 
much more can be said about those lattic-
es (known good bases, covering radius,...). 
Generalizing this geometric analysis to oth-
er number fields seems to be an interest-
ing mathematical problem, with potential 
cryptanalytic implications.	 s
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very small fraction of all ideals, it is unclear 
whether this previous result has an impact 
on lattice-based cryptography beyond the 
few aforementioned atypical cryptosys-
tems [5, 17]. Indeed, most schemes are in-
stead based on worst-case problems, and 
are not affected by the presence of a small 
fraction of weak ideal lattices.

The obstacle ahead to attack non-prin-
cipal ideals is the class group, the quotient 
of all ideals by the principal ones:

Cl / .F PK K K=

The class of an ideal Ka 1  in this quotient 
is denoted [ ] Cla K! , and the neutral ele-
ment is [ ]OK  (the class of principal ideals). 
This quotient is always finite, and in the 
case of cyclotomic number fields, it has 
size about #Cl 2 ( )log

K
n n= H : the fraction 

of principal ideals is super-exponentially 
small.

To generalize the previous result to 
non-principal ideals, the natural strategy 
consists in trying to find sub-ideals that 
are principal. More formally, Cramer, Ducas 
and Wesolowski [7] define the following 
problem:

Definition. The Close Principal Multiple 
problem with approximation factor F 
(F-CPM) is defined as:

–– Given an ideal Ka 1 ,
–– Find an integral ideal b such that ab is 

principal (i.e. [ ] [ ]Oab K= ) and such that 
b is a dense ideal: N Fb # ,

where #( / )N Ob bK|=  denotes the alge-
braic norm (i.e. the sparsity) of the ideal b.

Combining algorithm for F-CPM with 
the previous algorithms provides solution 
to a-SVP over non-principal ideals within 
approximation factor:

( ( )) .expF O n/n1 $a = u

In this section, we will sketch how this CPM 
problem was solved for ( ( ))expF O n /3 2= u , 
which leads to a similar SVP approximation 
factor ( ( ))exp O na = u  as in the principal 
case. Consider a factor basis of prime ideals 
{ , , }B p pd1 f=  that are dense (N np ( )

i
O 1# ) 

and the morphism:

: Cl , ( ) .eZ pd
K i

ei"z z = 7 A%
Assuming that z is surjective, we can re-

phrase CPM as a CVP problem in the lattice 
of class relations kerzK = . Indeed, consid-
er ([ ])v a1! z- , and c ! K such that c v-  

on the length of the dual vectors mi
0 . 

The eigenvalue m| associated to the char-
acter :G C"|  of G is given by:

( ) | | .logi 1 i

i G
m | ~= -

!
| /

Using classical techniques of analytic num-
ber theory (in this case, the Taylor series 
of log, and separation of Gauss sums), the 
above formula can be massaged to

( , ),f L 1$m |=| |

where f| is the conductor of |, and L de-
notes Dirichlet’s L-series. Lower bounds on 
L-series at 1 have a very long history and 
play a crucial role in the study of the dis-
tribution of prime numbers. For example, 
Landau proved that ( , ) / ( )logL O f1 1$| |  
for non-quadratic characters. With more ef-
fort, Cramer et al. [6] conclude on an upper 
bound on mi

0  and then on ui
0 .

Extension to the worst-case
In addition, the article [6] also covers the 
performance of this strategy in the worst-
case, that is when there is no guarantee of 
existence of a particularly short generator g, 
by quantifying how good is the basis U to 
solve CVP. This analysis is somewhat eas-
ier as it concerns the length of the primal 
vectors, whose length can be bounded us-
ing the following finite integral:

( | ( ) |) .log exp x dx1 2 <2

0

1

- 3r-#

Further efforts lead to a classical probabil-
istic polynomial time algorithm that solves 
a-SGP for sub-exponential ( ( ))exp O na = u . 
Combined with the previous algorithm of 
Biasse and Song for PIP [4], this provides 
a solution to a-SVP in quantum polynomi-
al time over principal ideal lattices in the 
worst case, outperforming the best known 
generic algorithms LLL and BKZ.

Finally, it is also shown in [6] that this 
result is roughly optimal: there exist many 
ideals for which the shortest generator g is 
much larger than the shortest vector, by a 
factor ( ( ))exp O nu . This is established by a 
lower bound on the covering radius of the 
lattice LogOK

# . Lowering the SVP approxi-
mation factor reachable in polynomial time 
will necessarily require algorithms that are 
not limited to finding generators.

Short vectors in arbitrary ideals
Considering that the previous result only 
applies to principal ideals, which form a 



Léo Ducas	 Advances on quantum cryptanalysis of ideal lattices	 NAW 5/18  nr. 3  september 2017	 189

1	 M. Ajtai, Generating hard instances of the 
short basis problem, ICALP 1999.

2	 J. Bauch, D. J. Bernstein, H. de Valence, T. Lange 
and C. van Vredendaal, Short generators 
without quantum computers: The case of 
multiquadratics, Eurocrypt 2017.

3	 D. J. Bernstein, C. Chuengsatiansup, T. Lange 
and C. van Vredendaal, NTRU Prime, Preprint 
2016.

4	 J.-F. Biasse and F. Song, A polynomial time 
quantum algorithm for computing class 
groups and solving the principal ideal prob-
lem in arbitrary degree number fields, SODA 
2016.

5	 Peter Campbell, Michael Groves and Dan 
Shepherd, Soliloquy: A cautionary tale, ETSI 
2nd Quantum-Safe Crypto Workshop, 2014.

6	 R. Cramer, L. Ducas, C. Peikert and O. Regev, 
Recovering short generators of principal ide-
als in cyclotomic rings, Eurocrypt 2016.

7	 R. Cramer, L. Ducas and B. Wesolowski, 
Short Stickelberger class relations and ap-
plication to ideal-SVP, Eurocrypt 2017.

8	 K. Eisenträger, S. Hallgren, A. Kitaev and F. 
Song, A quantum algorithm for computing 
the unit group of an arbitrary degree num-
ber field, STOC 2014.

9	 J. Hoffstein, J. Pipher and J. H. Silverman, 
NTRUSIGN: Digital signatures using the 
NTRU lattice, CT-RSA 2003.

10	 P. Klein, Finding the closest lattice vector 
when it’s unusually close, SODA 2000.

11	 A. K. Lenstra, H. W. Lenstra and L. Lovàsz, 
Factoring polynomials with rational coef-
ficients, Mathematische Annalen 261(4) 
(1982).

12	 M. Daniele, The shortest vector in a lattice 
is hard to approximate to within some con-
stant, SIAM Journal on Computing 30(6) 
(2001).

13	 C. Peikert, O. Regev and N. Stephens-Dav-
idowitz, Pseudorandomness of Ring-LWE for 
any ring and modulus, STOC 2017.

14	 O. Regev, On lattices, learning with errors, 
random linear codes, and cryptography, 
STOC 2005.

15	 C.-P. Schnorr, A hierarchy of polynomial time 
lattice basis reduction algorithms, Theoreti-
cal Computer Science 53(2) (1987).

16	 P. W. Shor, Algorithms for quantum compu-
tation: Discrete logarithms and factoring, 
FOCS 1994.

17	 N. P. Smart and F. Vercauteren, Fully homo-
morphic encryption with relatively small key 
and ciphertext sizes, PKC 2010.

18	 D. Stehlé, R. Steinfeld, K. Tanaka and K. 
Xagawa, Efficient public key encryption 
based on ideal lattices, Asiacrypt 2009.

19	 L. C. Washington, Introduction to Cyclotomic 
Fields, Springer, 1997.

References


