
Interval Scheduling: A Survey

Antoon W.J. Kolen∗, Jan Karel Lenstra†, Christos H. Papadimitriou‡

Frits C.R. Spieksma §

April 21, 2006

Abstract

In interval scheduling, not only the processing times of the jobs
but also their starting times are given. This paper surveys the area
of interval scheduling and presents proofs of results that have been
known within the community for some time. We first review the com-
plexity and approximability of different variants of interval scheduling
problems. Next, we motivate the relevance of interval scheduling prob-
lems by providing an overview of applications that have appeared in
literature. Finally, we focus on algorithmic results for two important
variants of interval scheduling problems. In one variant we deal with
nonidentical machines: instead of each machine being continuously
available, there is a given interval for each machine in which it is
available. In another variant, the machines are continuously available
but they are ordered, and each job has a given ‘maximal’ machine
on which it can be processed. We investigate the complexity of these
problems and describe algorithms for their solution.

Analysis of algorithms, computational complexity: exact algorithms. Produc-
tion/scheduling, sequencing, deterministic: interval scheduling

∗Antoon Kolen sadly passed away on October 3, 2004. His coauthors dedicate their
contribution to this paper to his memory.

†CWI, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands. E-mail:
Jan.Karel.Lenstra@cwi.nl

‡University of California, Berkeley, CA 94720, USA. E-mail:
christos@cs.berkeley.edu

§Katholieke Universiteit Leuven, Naamsestraat 69, B-3000, Leuven, Belgium. E-mail:
frits.spieksma@econ.kuleuven.be

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301634915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Scheduling problems are formulated in terms of machines and jobs. The
machines represent resources and the jobs represent tasks that have to be
carried out using these resources. In a traditional scheduling problem there
is freedom in determining the starting times of the jobs. The scheduler uses
this freedom by attempting to construct a schedule that satisfies certain con-
straints or even one that optimizes a certain criterion. Performance measures
for this type of scheduling problem reflect how well the resources are used.
For instance, minimizing the makespan measures the time it takes the ma-
chines to process all given jobs. Thus, the quality of a schedule measures
the performance of a set of machines processing all given jobs. Research on
these classical scheduling problems is abundantly present in the operations
research literature.

This survey deals with interval scheduling problems, also known as fixed
job scheduling or k-track assignment problems. In this type of scheduling
problem there is no freedom in determining the starting time of the job;
instead this is input for the problem. Decisions that the scheduler now faces
involve whether or not to accept the job and what resource to assign to it.
Performance measures here can focus on the individual jobs; for instance,
one may wish to maximize the total weight of the accepted jobs. Thus,
performance measures in interval scheduling allow to take into account the
cost of rejecting (or the profit of accepting) an individual job. Although there
is a sizable amount of literature on interval scheduling problems, research
on these problems has often been tailored to the application at hand, and
results are scattered through literature. For instance, the well known crew
scheduling problem is an interval scheduling problem (see Section 3).

Although the relevance of interval scheduling problems stems to a large
extent from the variety of applications that have an interval scheduling de-
cision as a core, recent trends in operations management also motivate their
study. In the following we elaborate on this subject. Recent literature in
operations management (see e.g. Graves et al. [42]) describes very clearly
how a transition took place in the last decennia from resource oriented logis-
tics (where the availability of resources dictated the planning and completion
of jobs) to demand oriented logistics (where the jobs and their completion
are more or less fixed and the appropriate resources must be found). This
transition has mainly been caused by increased competition and the contin-
uous drive to improve service to clients. In an environment where clients are

2

becoming more important they will have more influence on the delivery date,
and hence on the production date of their product. Thus, dates for produc-
tion tend to become more exogeneously determined, as opposed to a more
traditional setting where the plant itself could decide when to manufacture
a job (see e.g. Hall et al. [45]). This phenomenon is enhanced by current
logistic developments in which production is organized by supply chains. To
summarize: when phrasing the transition sketched above in scheduling termi-
nology, it is akin to going from traditional scheduling to interval scheduling.
We therefore believe that interval scheduling can provide a useful way to
model some of the operational planning problems in current logistics.

The history of interval scheduling can be traced back to the 1950’s when
Dantzig and Fulkerson [23] described a tanker scheduling problem. Ford and
Fulkerson [35] solve a basic interval scheduling problem (see Section 2.1),
using Dilworth’s theorem.

Resource allocation problems (see Ibaraki and Katoh [49]) are problems
where a given, fixed amount of a single resource is allocated to a number of
competing activities while optimizing some objective function. In an interval
scheduling problem the set of machines (the resource) is, at any given mo-
ment, used to process (some of) the jobs (the competing activities). Hence,
in this way, interval scheduling can be seen as a dynamic resource allocation
problem, since the resource allocation changes over time.

The purpose of this survey is twofold. First, we intend to give an overview
of work on interval scheduling; second, we present algorithmic results on two
fundamental problem variants. Except for Section 2.2.4, we restrict ourselves
to off-line settings, i.e., we assume that we know all data at the outset.

The paper is organized as follows. In the next section we give a problem
description, and describe related literature. Section 3 discusses applications
of interval scheduling problems. These applications are not meant to form an
exhaustive list, but rather intend to give a flavor of the variety of practical
applications of our model. Section 4 presents our results on an interval
scheduling problem with nonidentical machines. Section 5 gives our results
on the so-called hierarchical interval scheduling problem. Finally, Section 6
states some conclusions.

3

2 Problem description

We introduce the basic interval scheduling problem, our notation and termi-
nology, and results from literature in Section 2.1. We then consider different
variants of the basic interval scheduling problem, and describe known re-
sults focussing on the complexity and approximability of these variants in
Section 2.2.

2.1 The basic interval scheduling problem

The basic interval scheduling problem is stated as follows. Given are n in-
tervals of the form [sj, fj) with sj < fj, for j = 1, . . . , n. These intervals are
the jobs that require uninterrupted processing during that interval. We will
assume (without loss of generality) that the sj’s and the fj’s are nonnegative
integers. We say that two intervals (or jobs) overlap if their intersection is
non-empty, otherwise they are called disjoint. Further, there are machines.
In the basic interval scheduling problem each machine can process at most
one job at a time and is always available, i.e., each machine is continuously
available in [0,∞). We assume that, when processed, each job is assigned
to a single machine, thus, we do not allow interrupting a job and resuming
it on another machine, unless explicitly stated otherwise. The basic interval
scheduling problem is now to process all jobs using a minimum number of
machines. In other words, find an assignment of jobs to machines such that
no two jobs assigned to the same machine overlap while using a minimum
number of machines. We call an assignment of (a subset of) the jobs to the
machines a schedule.

It is well known that interval scheduling problems and interval graphs
are related. Indeed, the graph that arises when there is a node for each
interval and when there is an edge between two nodes if and only if the
corresponding intervals overlap, is a so-called interval graph. Hence, the
basic interval scheduling problem is in fact nothing else but finding a coloring
of an interval graph (see e.g. Golumbic [41]); the chromatic number of an
interval graph corresponds to the minimum number of machines used in the
interval scheduling context.

Another observation concerning the basic interval scheduling problem is
as follows. Consider a subset of jobs that pairwise overlap. Obviously, the
size of this set is a lower bound for the number of machines needed to process
all jobs. Given an instance of the basic interval scheduling problem, let us

4

call the maximum size of such a set the job overlap of the instance. Obvi-
ously, the job overlap is a lower bound for the number of machines needed.
However, using Dilworth’s chain decomposition theorem, one can show that
this number of machines actually suffices to process all jobs. An algorithm
to construct an optimal schedule (that is, one with a minimum number of
machines) is described by Ford and Fulkerson [35], who specified the so-called
staircase rule, which is based on Dilworth’s theorem. The rule involves O(n2)
operations. Alternative methods for the basic interval scheduling problem are
proposed by Hashimoto and Stevens [46] and by Gertsbakh and Stern [40].
Gupta et al. [43] propose yet another procedure that runs in O(n log n) time,
which they show to be best possible.

A succinct description of this procedure ([43], see also Kolen and Lenstra [56])
is as follows. Assign the jobs to the machines in order of nondecreasing start-
ing times, using a machine used before whenever possible. We refer to this
algorithm as the left-edge algorithm, see also Section 4.1.

Dekel and Sahni [24] describe a parallel implementation of this algorithm,
which solves the problem in O(log n) time using O(n2/ log n) processors.

2.2 Variants of the basic interval scheduling problem

In this section we consider different (optimization) variants of the basic in-
terval scheduling problem. In particular, we discuss here the known results
for the following settings:

• Cost minimization problems (see Subsection 2.2.1). Given the jobs,
given nonidentical (types of) machines, and given a specific cost func-
tion that assigns to each schedule a certain cost, find a minimum-cost
schedule in which all jobs are scheduled.

• Profit maximization problems (see Subsection 2.2.2). Given the jobs,
given (types of) machines, and given a profit when job j is carried out
by machine (type) i, find a maximum-profit schedule (in which not all
jobs need to be assigned).

• Job interval scheduling problems (see Subsection 2.2.3). In this setting,
instead of a single start time sj for each job j, a discrete set of possible
starting points Sj = {sj1, sj2, . . . , sjk} is given for each job j.

• Online interval scheduling problems and interval scheduling problems
with preemption (see Subsection 2.2.4).

5

For an overview of complexity theory we refer to Garey and Johnson [37].
For an overview of approximation algorithms we refer to Vazirani [71]. For
an overview of online algorithms in general, and the associated terminology,
we refer to Borodin and El-Yaniv [27]. For a survey on online scheduling
problems we refer to Sgall [69].

2.2.1 Cost minimization problems

In this section we consider the variant where the jobs are given, and we need
to minimize the total costs induced by carrying out all jobs on the noniden-
tical machines. (Notice that if the machines were identical, an instance of
the basic interval scheduling problem arises). There are different ways in
which the machines can be nonidentical. For instance, machines may differ
with respect to their availability. Indeed, consider the variant where to each
machine i, 1 ≤ i ≤ m, an availability interval [ai, bi) is associated, where
there is a given cost for using machine i, and where the goal is to minimize
total costs while scheduling all jobs. We denote this problem by Interval
Scheduling with Machine Availabilities, and address this variant extensively
in Section 4. The following statement applies to this variant: unless P=NP,
there is no approximation algorithm that achieves a finite worst-case ratio.
This statement follows essentially from Theorem 1 which says that deciding
whether a feasible schedule exists is NP-complete.

Bhatia et al. [9] consider a related setting where a machine type i cor-
responds to an an availability interval [ai, bi), 1 ≤ i ≤ m. Thus, for each
availability interval there is an unbounded number of machines available in-
stead of a single one, and there is a given cost ki for using a machine of type
i. Assuming that each job can go to each machine, Bhatia et al. [9] give
a 3-approximation algorithm (and a 2-approximation algorithm in case one
wants to minimize the number of machines used, i.e., in case ki = 1 for all
i).

Another way in which the machines can be nonidentical is by assuming
that there is a linear order given for the machines, and, in addition, for each
job j a ‘maximal’ machine m(j), 1 ≤ m(j) ≤ m is given on which it can be
processed. Thus machines 1, . . . , m(j) are capable of processing job j while
machines m(j) + 1, . . . ,m cannot process job j, j = 1, . . . , m. Given a cost
ki for using machine i, the goal is to minimize costs while scheduling all jobs
(recall that each machine is continuously available). We call the resulting
problem the hierarchical interval scheduling problem, and address this variant

6

in Section 5. Again, unless P=NP, there is no approximation algorithm that
achieves a finite worst-case ratio. This statement follows essentially from
Theorem 4 which says that deciding whether a feasible schedule exists is
NP-complete. However, in case there are types of machines, and there is a
linear order for these machine types, Bhatia et al. [9] give a 2-approximation
algorithm. When there are two machine-types, Dondeti and Emmons [25] and
Huang and Lloyd [48] show that (a generalization of) the resulting problem is
solvable in polynomial time. In Section 5 we prove that the problem becomes
NP-complete for three machine types. In case there is an arbitrary distance
given between each pair of jobs, and the cost of a machine depends on the
amount of distance travelled by the machine in order to process its jobs,
Faneyte et al. [31] show that the problem with two machine types is already
NP-complete.

Machines can also be nonidentical by associating to each job an arbitrary
subset of machines capable of processing that job. Hence, the machines differ
with respect to the set of jobs they can process in a more general way than
in the hierarchical interval scheduling problem. For this general setting,
Jansen [50] gives an O(log n) approximation algorithm. It is observed in
Bhatia et al. [9] that this is essentially best possible, since this problem is
as hard as set cover. The problem is further discussed in Kroon et al. [58]),
and - with additional side-constraints - is also considered by Fischetti et
al. [32, 33, 34]. Another variant arises when for each job that machine i
processes, a cost of ki is incurred, 1 ≤ i ≤ m. The resulting cost minimization
problem is investigated by Kroon et al. [59] and by Jansen [51]. Huang and
Lloyd [48] consider a similar setting where the cost of of processing job j on
machine i equals ki(fj − sj).

2.2.2 Profit Maximization problems

An important optimization variant is the case where one treats the machines
as given and the objective is to maximize the number of (weighted) jobs
that can be feasibly scheduled. This can be solved using a min-cost flow
formulation (see Arkin and Silverberg [3] and Bouzina and Emmons [12]). In
case each job has unit weight, a greedy algorithm finds a maximum number
of jobs (see Faigle and Nawijn [30], and Carlisle and Lloyd [16]). If each
job can only be carried out by an arbitrary given subset of the machines,
the problem becomes NP-hard ([3]). Heuristics and exact algorithms are
proposed by Kroon et al. [57]. In case an availability interval is associated to

7

each machine, Brucker and Nordmann [14] describe an O(nm−1) algorithm
that maximizes the number of jobs scheduled. Bhatia et al. [9] describe a
randomized approximation algorithm achieving a ratio of 1 − 1

e
when there

is a given profit wj for each job j scheduled.

2.2.3 Job interval scheduling problems

Job interval scheduling problems constitute an interesting generalization of
interval scheduling problems. Instead of a single starting time sj for each job
j, a discrete set of possible starting points Sj = {sj1, sj2, . . . , sjk} is given.
Of course, at most one starting time from each set Sj can be chosen.

Job interval scheduling problems are related to so-called time-constrained
scheduling problems. In a time-constrained scheduling problem, a release
date rj, a deadline dj, and a processing time pj is given for each job j.
Obviously, if dj = rj + pj for each job j, an interval scheduling problem
arises, but also, when assuming that there is an interval for each possible
realization of job j, we can model a time-constrained scheduling problem as
a job interval scheduling problem. Of course, one faces here the difficulty of
having to deal with, possibly, a continuum of intervals reflecting all possible
starting times of a job (notice that the word ‘job’ refers here to a set of
intervals), see [8, 19] for ways of dealing with this difficulty.

Results for job interval scheduling problems are given by Nakajima and
Hakimi [65], Nakajima et al. [66] (for a setting with fast and slow machines),
Keil [52], and Spieksma [70]. More in particular, in [70], a single machine is
considered, and the goal is to maximize the number of jobs selected. It is
shown that this problem is APX-hard (even if |Sj| = 2 for each job j), that
the integrality gap of a straightforward integer programming formulation
equals 2, and that a greedy algorithm yields a 2-approximation. Chuzhoy et
al. [21] improve this ratio by exhibiting a randomized e

e−1
+ ε-approximation

algorithm for any ε > 0. Berman and Dasgupta [8] describe a combinatorial
approximation algorithm to deal with the weighted case of the job interval
scheduling problem, and show how this can be used to derive approximation
factors for time-constrained scheduling problems involving identical machines
and unrelated machines, improving upon the LP-based approach described in
Bar-Noy et al. [6]. Similar bounds in a very general framework are explained
in Bar-Noy et al. [4].

Notice that these results apply to maximizing the (weighted) number
of jobs. There has also been work dealing with minimizing the number of

8

machines for job interval scheduling problems; we refer to Cieliebak et al. [22],
Chuzhoy et al. [19], and Chuzhoy and Naor [20].

2.2.4 Online interval scheduling problems

Lipton and Tomkins [61] introduce the online interval scheduling problem,
where intervals with a given length fj − sj are presented to the scheduler in
the order of their start time sj. The scheduler must decide whether to accept
each interval before a new interval is presented. The objective is to maximize
total length of the accepted intervals while ensuring that no pair of accepted
intervals overlap. They show that no (randomized) algorithm can achieve a
competitive ratio better than O(log ∆) (where ∆ denotes the ratio between
the longest and the shortest interval), and gave an O((log ∆)1+ε)-competitive
algorithm. They also present a 2-competitive algorithm for the case of two
lengths. These latter results have been generalized by Goldman et al. [44],
to the case of so-called delays where a delay δj of an interval j means that if
an interval is accepted it must start between sj and sj + δj.

A related setting where there is a given weight for each interval (not
necessarily equal to its length) is considered by Woeginger [72]. Here it is
allowed for the scheduler to interrupt a previously accepted interval in order
to accept a new interval; the weight of the interrupted interval is then lost.
The problem is then to maximize the total weight of the accepted (and not
interrupted) intervals. Woeginger [72] shows that no deterministic algorithm
can achieve a finite competitive ratio. In fact, even a randomized algorithm
does not achieve a finite competitve ratio (Canetti and Irani [15]). Further,
Woeginger [72] shows that in case the weight of an interval is a function of
its length, there are classes of functions for which matching upper and lower
bounds on the competitive ratio for deterministic algorithms can be shown.
Seiden [68] exhibits a randomized algorithm for a specific class of functions
that improves the competitive ratio achieved by a deterministic algorithm.
Further, Miyazawa and Erlebach [64] investigate the case of equal lengths
for the intervals and non-decreasing weights of arriving intervals. They show
that randomized algorithms can give a better competitive ratio than the best
possible deterministic algorithm.

In case each interval has unit weight, and there are m machines, Faigle
and Nawijn [30], and independently Carlisle and Lloyd [16], observed that
a greedy algorithm is in fact an online algorithm that always outputs an
optimal solution. This algorithm is extended to deal with the case of time-

9

windows in Faigle et al. [29].
Erlebach and Spieksma [28] study the online version of the job interval

scheduling problem (see Section 2.2.3) for multiple machines, and they con-
sider the intervals in the order of right endpoints. For this setting they give
best possible algorithms for various classes of weight functions.

Finally, preemptive versions of interval scheduling problems are inves-
tigated by Bouzina [11], Dondeti and Emmons [26], Kroon et al. [58], and
Fischetti et al. [33]. Notice that with preemption we refer here to interrupting
a job, and resuming it immediately on another machine.

3 Applications of interval scheduling prob-

lems

Interval scheduling problems have a broad diversity of applications, as is
witnessed by the following selection.

Crew/vehicle scheduling. The basic crew scheduling problem can be
formulated as follows (see e.g. Beasley and Cao [7] or Mingozzi et al. [63]).
Given is a set of crews, a set of locations, and a set of tasks. For each task a
starting time, an ending time and a location is given; for each pair of locations
a distance is given. The problem of assigning tasks to crews using a minimum
number of crews can be phrased in interval scheduling terminology by viewing
the tasks as the intervals, the crews as machines, and allowing for a distance
between any pair of intervals. Crew scheduling problems are among the most
celebrated problems in operations research. They also appear in bus driver
applications (see Martello and Toth [62]). Fischetti et al. [32, 33, 34] treat
two cases. In a first case each machine is only available for a given amount
of time w, i.e., the latest ending time of an interval assigned to machine i
minus the earliest starting time of an interval assigned to that machine i
should not exceed w. A second case assumes that the sum of the lengths of
the intervals assigned to a same machine should not exceed a given number
w. Heuristics, lower bounds, and exact approaches are described. A specific
problem involving hierarchies is described by Faneyte et al. [31].

Telecommunication. Consider a setting where users communicate with
each other using a network. A user communicates by requesting capacity of a
link (called bandwidth) in the network during a given interval. Of course, re-
quests of different users may not be compatible due to the amount of capacity

10

requested or the intervals requested. How to utilize the network optimally
by allocating the available bandwidth to the users is the main question in
this application. Notice that this application is especially relevant in an on-
line context. Using interval scheduling terminology, we can view requests as
intervals, and links as machines. We refer to Bar-Noy et al. citebarcankut-
mansch, Kumar [60], and Bhatia et al. [9] and the references contained therein
for more details.

Other applications. Gabrel [36] considers the following problem in
satellite photography. A satellite makes orbits around the earth. Its task
is to photograph pieces of the earth’s surface. Fulfilling a request for pho-
tographing a specific piece of the earth implies that the camera needs to
start and end filming at given moments in time. When formulated in terms
of interval scheduling, a request becomes a job and the camera is the machine.

Anthonisse and Lenstra [2] describe a cottage rental problem. Given a set
of identical cottages, can a client’s request for a reservation for a given time-
period immediately be answered? And what if some periods have already
been preassigned? Obviously, in an interval scheduling context, a cottage is
a machine and a request is an interval. The results described in this paper
answer the two questions above.

The interest of Gupta et al. [43] and Hashimoto and Stevens [46] in
the basic interval scheduling problem was sparked by a problem in VLSI-
layout, called the channel assignment problem. Given are pairs of compo-
nents. Each component must be placed on a printed circuit board at a given
y-coordinate. Moreover, components of a pair must be placed on the same
x-coordinate. Then, the two components are interconnected using a so-called
channel. Channels are not allowed to overlap. Observe now that minimizing
the number of channels boils down to solving the basic interval scheduling
problem.

In a series of papers, Kolen and Kroon [53, 54, 55] discuss a maintenance
problem in the aviation industry. More specifically, engineers need to carry
out maintenance jobs on aircraft. There are different types of aircrafts, and
an engineer is only allowed to perform a job on a specific type of aircraft if
(s)he has a license for that type. The jobs have fixed starting and ending
times. With the licensed engineers in the role of machines, the problem is
an interval scheduling problem where each machine can process a given set
of jobs.

Carter and Tovey [17] describe a problem in class room assignment. The
problem is to assign n classes that come together during given periods to

11

rooms Rj, j = 1, . . . , m, under various constraints and objectives. One of
the variants they consider is the setting where the rooms are ordered such
that if a class will accept room Rj, then it will also accept any room Rk with
k > j. With classes in the role of intervals and rooms in the role of machines
we have a hierarchical interval scheduling problem.

Brehob et al. [13] investigate replacement policies for non-standard caches
(a cache is a piece of memory in a computer; items are stored in cache-
locations). They draw a parallel with interval scheduling by letting each
access to a certain item correspond to a start time of an interval, and the
next access to that item serves as the finishing time of that interval. A
machine corresponds to a cache-location.

Another problem comes from computational biology (see Chen et al. [18]).
Given a sequence of amino-acids (the single machine) and so-called segments
(these correspond to the jobs), and a profit for each possible allocation of
segment to a position in the sequence of amino-acids, find an allocation such
that no two segments overlap, and total weight is maximized.

4 Interval scheduling with machine availabil-

ities

In the basic interval scheduling problem each machine is continuously avail-
able. When we associate to each machine an interval [ai, bi) during which it
is available, the interval scheduling problem with machine availabilities arises
(observe that a machine with non-contiguous availability can be viewed as
multiple machines each having a single contiguous availability interval). Al-
though the left-edge algorithm can be easily modified to deal with this setting,
it is easy to see that there are instances for which it fails to produce a feasible
solution while one exists. A formal description of the problem is as follows.

Problem: Interval Scheduling with Machine Availabilities (ISMA).

Instance: m machines, continuously available in [ai, bi), i =
1, . . . , m; n jobs, requiring processing from sj to fj, j = 1, . . . , n.

Question: Does there exist a feasible schedule? That is, can
each job be processed by a machine such that no two jobs processed
by a same machine overlap while respecting the availability of
each machine?

12

Consider an instance of ISMA. With each instance of ISMA we can as-
sociate a parameter l, referred to as machine-overlap, that is the maximum
number of machines that contain some point p (a machine i is said to contain
point p if ai ≤ p < bi). Formally, we define

l = maxp|{i : ai ≤ p < bi, 1 ≤ i ≤ m}|. (1)

Papadimitriou [67] proved that ISMA is NP-complete, by a reduction
from the circular arc coloring problem; see also [2, 32, 10, 26, 14]. In Sec-
tion 4.1 we show that ISMA and CAC are, in fact, polynomially equivalent.
We further sketch two algorithms for ISMA, a dynamic programming algo-
rithm (DP) and a breadth-first algorithm (BF). The latter algorithm runs
in time that is linear in the number of jobs. Finally, we end Section 4 by
discussing various optimization problems corresponding to ISMA.

4.1 Complexity

As argued in Section 2.1, the basic interval scheduling problem is equivalent
to coloring an interval graph. This equivalence can be extended to show that
ISMA is polynomially equivalent to circular arc coloring:
Circular arc coloring
Consider the following problem. Given are nCAC circular arcs, each defined
by a pair of distinct, positive integers {sCAC

i , fCAC
i } (i = 1, . . . , n), and an

integer K. (Observe that it may happen that sCAC
i > fCAC

i for some i, see
Figure 1 for an example.)

As before, two arcs are said to overlap if their intersection is nonempty,
otherwise they are called disjoint.

The problem is to decide whether there exists a coloring of the arcs using
at most K colors such that arcs that overlap receive different colors. This
problem is known as the circular arc coloring problem (CAC).

Instance: nCAC circular arcs {sCAC
i , fCAC

i } and an integer K.

Question: Does there exist a partition of the circular arcs into
at most K sets such that arcs in a same set are disjoint?

Although an efficient algorithm for deciding the existence of a K-coloring
of an interval graph is known (see Golumbic [41]), such an algorithm is not
likely to exist for circular arc graphs. Indeed, Garey et al. [38] prove that
CAC is NP-complete. Notice that we can restrict ourselves to instances where

13

Figure 1: An instance of CAC where Ai represents arc i, i = 1, . . . , nCAC .

(i) K ≤ nCAC , (ii) maxi(s
CAC
i , fCAC

i) ≤ 2nCAC , and (iii) where each point
p on the circle is contained in exactly K arcs. To explain (ii), notice that
it is not the size of an integer sCAC

i or fCAC
i that matters, but rather their

ordering. We can therefore reduce any instance of CAC to an instance where
the integers defining the CAC instance are bounded by 2nCAC . Concerning
the latter restriction, if a point p is contained in more than K arcs, the
instance is trivially seen to be a no-instance; if a point p is contained in less
than K arcs, we can add arcs until point p is contained in exactly K arcs.
More specifically, consider all different sCAC

i and fCAC
i values, and rename

them u1, u2, . . . , uk such that u1 < u2 < . . . < uk (k ≤ 2nCAC). Now, if
point p is contained in less than K arcs, there exists precisely one arc from
∪k−1

i=1 {ui, ui+1} ∪ {uk, u1} that contains p. Next, we add copies of this arc to
the instance until p is contained in exactly K arcs. This does not affect the
K-colorability and the size of the extended instance is polynomial in the size
of the original instance (see Garey et al. [38]). In our reductions we assume
that the CAC-instances have these properties.

There is an intimate connection between CAC and ISMA. Intuitively,
this can be seen as follows. Let L be the largest integer among the endpoints
{sCAC

i , fCAC
i } of the CAC instance. Then we partition the circle using L

equally spaced points numbered clockwise 1, 2, . . . , L (recall that we can as-

14

sume that L ≤ 2nCAC). By disconnecting (or “cutting”) the circle at point
L, associating a machine to each cut arc (i.e., an arc containing L), and as-
sociating a job to each uncut arc (i.e., an arc not containing L), an essential
part of the reduction of CAC to ISMA is described (see Figures 1 and 2).
This idea is used in Papadimitriou’s proof ([67]); it also appears in Fischetti
et al. [32], Biró et al. [10], Dondeti and Emmons [26], and Brucker and Nord-
mann [14]. The reverse operation, that is, viewing the ISMA instance on the
time axis, and next connecting the leftmost point and the rightmost point to
each other, is used to turn an ISMA instance in a CAC instance.

Figure 2: A solution to the ISMA-instance corresponding to the CAC in-
stance from Figure 1.

Theorem 1 ISMA is polynomially equivalent to CAC.

Proof: We exhibit a reduction from ISMA to CAC. Together with the re-
duction of (Papadimitriou [67]) the result follows.

Given an instance of ISMA, we build an instance of CAC as follows.
We set K = m, and nCAC = m + n. There is an arc for each job with
characteristics sCAC

j = sj, f
CAC
j = fj for j = 1, . . . , n (the job-arcs), and

there is an arc for each machine with characteristics sCAC
n+i = bi, f

CAC
n+i = ai

for i = 1, . . . ,m (the machine-arcs). This completes the description of the
CAC instance. If a feasible schedule exists, we turn it into a feasible coloring
by giving the job-arcs corresponding to jobs on a same machine as well as the
corresponding machine-arc a same color. Finally, observe that in a feasible
coloring all K colors are used to color the machine-arcs. Therefore, each
job-arc is colored using one of these K colors and a feasible schedule follows.

tu

An implication of Theorem 1 is that an algorithm for CAC can be used to
solve ISMA and vice versa. We close this section with the following two

15

remarks.

Remark: One-sided ISMA, i.e., ISMA with ai = 0 for all i, (or bi = b
for all i), is solvable in polynomial time. One easily verifies that by adding
appropriate dummy jobs the basic interval scheduling problem discussed in
Section 2.1 arises.

Remark: Allowing preemption drastically changes the solvability of ISMA.
Observe that for any ISMA input, the existence of a preemptive schedule is
equivalent to whether at each moment t, the number of machines containing
t is not smaller than the number of jobs containing t. Indeed, a simple
generalization of the left-edge algorithm (see Section 2.1) decides whether a
preemptive schedule exists. Informally, this can be described as follows.

We order the sj and fj (j = 1, . . . , n), and the ai and bi (i = 1, . . . , m)
in nondecreasing order. Ties are handled in such a way that an fj precedes
an sj, and an ai as well as a bi are inserted after an fj and before an sj.
Also, there is a stack where machines can be placed; at the outset of the
algorithm, the stack is empty. We refer to the first machine in this stack
as the top-machine. The algorithm now scans the list of ordered numbers.
If it meets an ai, it puts the corresponding machine on top of the stack; if
it meets a bi, it removes the corresponding machine from the stack; if the
algorithm meets an sj, it assigns job j to the top-machine, and removes this
machine from the stack; if it meets an fj, then the machine to which job
j was assigned becomes the top-machine. Finally, if a job has not finished
processing when its machine is removed from the stack, the remainder of this
job is placed on the top-machine. If, during the course of this algorithm,
a job needs to be assigned while there is no top-machine (i.e., the stack of
machines is empty), no preemptive schedule exists, otherwise the algorithm
produces a preemptive schedule.

4.2 Algorithms

Let us now proceed by describing two exact algorithms for ISMA. Admit-
tedly, the running times of each of these algorithms is - in the worst case -
exponential in the size of the input, which should come as no surprise given
the hardness of ISMA. However, these algorithms may be efficient in practice,
in particular for instances with bounded machine overlap. In Section 4.2.1

16

we describe a dynamic programming algorithm, called DP; in Section 4.2.2
we describe a breadth-first algorithm, called BF.

4.2.1 Algorithm DP

Consider an instance of ISMA, and its overlap l (see (1)). Observe that we
can partition the set of m machines into l subsets Sh (h = 1, . . . , l), such
that each machine belongs to exactly one subset, and any pair of machines
in a same subset is disjoint. In fact, by viewing the machine intervals as
an instance of the basic interval scheduling problem, it follows from the
discussion in Section 2.1 that we can use the algorithms described there to
compute the sets Sh. We define:

Lh =
⋃

i∈Sh

[ai, bi) for h = 1, . . . , l.

We refer to Lh as layer h, and we say that job j can be processed on layer h if
the job-interval [sj, fj) is contained in a machine-interval [ai, bi) that belongs
to a machine in Sh. To proceed, let us index the jobs so that 0 ≡ f0 < f1 ≤
f2 ≤ . . . ≤ fn.

The idea behind the dynamic programming algorithm is to decide whether
a given set of largest ending times of jobs on the layers can correspond to a
partial feasible schedule of jobs 1, 2, . . . , j. Indeed, observe that in order to
decide whether we can add job j to a partial feasible schedule consisting of
jobs 1, 2, . . . , j− 1, it is sufficient to know the largest ending time of a job on
each layer. The dynamic programming recursion is based on the fact that if a
partial feasible schedule exists for jobs 1, 2, . . . , j − 1 (which is characterized
by the largest ending times of the jobs on layers 1, 2, . . . , l), the existence of
a feasible schedule for jobs 1, 2, . . . , j depends on verifying whether we can
feasibly assign job j to some layer h given the partial feasible schedule for
jobs 1, 2, . . . , j − 1. Verifying this amounts to checking whether sj exceeds
the largest ending time on some layer h, and whether job j can be processed
on layer h.

To state the algorithm formally, we define:

• F = {f0, f1, . . . , fn}, and F l is the cartesian product of l sets F , i.e.,
F l = F × F × . . . × F . We use a vector u = (u1, u2, . . . , ul) to denote
an element of F l.

17

• f(sj) = max0≤r≤n{fr : fr ≤ sj} for j = 1, . . . , n. Thus, f(sj) is the
largest ending time not exceeding sj, j = 1, . . . , n.

• the boolean parameters Bhj = TRUE iff job j can be processed on layer
h for j = 1, . . . , n and h = 1, . . . , l.

• the boolean variables gj(u) = TRUE iff jobs 1, 2, . . . , j can be processed
in L1 ∩ [0, u1), L2 ∩ [0, u2), . . . , Ll ∩ [0, ul) for j = 1, . . . , n and u ∈ F l.

• g0(u) = TRUE for all u ∈ F l.

Algorithm DP:

Step 1 (initialization): g0(u) = TRUE for all u ∈ F l;
gj(u) = FALSE for all u ∈ F l, j = 1, . . . , n.

Step 2 (recursion): compute gj(u) using

gj(u) =
∨

h:uh≥fj

(gj−1(u1, . . . , uh−1, f(sj), uh+1, . . . , ul) ∧Bhj)

for j = 1, . . . , n and for all u ∈ F l.

Step 3: Evaluate gn(fn, . . . , fn).

Figure 3: Algorithm DP.

Theorem 2 DP solves ISMA in O(lnl+1) time.

Proof: First, we argue that DP is correct, then we prove its complexity.
Correctness: We show by induction on j that the values of gj(u) computed

in Step 2 satisfy their definition. The case j = 0 is trivial. Next, observe
that, given some j and u ∈ F l, the left-hand side of the equality in Step 2 of
DP is only true when, using the induction hypothesis that the gj−1(u) values
satisfy their definition, jobs 1, 2, . . . , j − 1 can be processed such that there
exists a layer h that is occupied up to f(sj) and this layer h allows job j
to be processed on (i.e., Bhj is TRUE). Since sj ≥ f(sj) (by definition) and
since Bhj is apparently TRUE, we can assign job j to layer h. It follows that
DP is correct.

18

Complexity: The time bound follows from the observation that Step 2
is the dominating step in DP. To compute a single gj(u) variable at most l
values of gj−1(·) variables are needed. It follows that Step 2 can be carried
out in lnl+1 operations, and the time bound follows. tu

Algorithm DP does in fact more than announced in Theorem 2: not only
does it output a correct answer to the instance of ISMA (yes or no), in case
of a no-answer it also computes the largest j for which there exists a feasible
schedule of the jobs 1, 2, . . . , j.

We can achieve a slight improvement over the complexity of DP stated
in Theorem 2 by not explicitly considering all vectors u ∈ F l. We refrain
from sketching the details.

4.2.2 Algorithm BF

Our breadth-first enumerative algorithm requires that at each moment t,
the number of active machines equals the number of jobs containing t. To
accomplish this we add in a first step a number of dummy jobs, as follows.
First, we order the values of all starting and ending times sj and fj of the
n jobs and rename them u1, u2, . . . , uk such that u1 < u2 < . . . < uk (k ≤
2n). If, in some interval [ui, ui+1) the number of jobs is strictly less than
the number of available machines, we add dummy jobs j with sj = ui and
fj = ui+1 as needed. This procedure is akin to the procedure described in
Section 4.1 for CAC that achieves that each point p is contained in exactly
K arcs. Let us redefine n as the number of jobs in the resulting instance.

The algorithm makes use of the idea of partial schedules. A partial sched-
ule up to ui is a schedule that has assigned all jobs that start before ui to
the machines. We say that the partial schedule is feasible if no two jobs
overlap and each job can be carried out by the machine it is assigned to. The
algorithm makes a single pass through the time intervals [ui, ui+1). The idea
is to enumerate all partial feasible schedules up to ui. Thus, given a partial
schedule that has assigned all jobs starting before ui, the algorithm considers
the jobs that start at ui and explores all possible assignments of these jobs
to the machines. By detecting duplication of partial feasible schedules, it
can be shown that the number of partial feasible schedules that need to be
maintained in each iteration remains bounded. More precisely, consider two
partial schedules up to ui, say A and B. Observe that if each job j for which
sj < ui < fj is assigned to the same machine in both partial schedules A

19

and B, then these two partial schedules can be considered to be equivalent.
Indeed, each way that we can proceed from partial schedule A is also a way
to proceed from partial schedule B, and vice versa. It follows that, in order
to decide feasibility, we only need to maintain partial schedules that are not
equivalent.

This algorithm has been inspired by the algorithm for CAC due to Garey
et al. [38], and can be seen as an adaptation of that algorithm to the ISMA-
setting. We refrain from giving the exact details, and simply state the result.

Theorem 3 BF solves ISMA in O((n + m)m!m log m) time.

Proof: This result follows from Garey et al. [38] and Theorem 1. tu

Remark: Consider the case of a fixed number of machines in ISMA. Then
algorithm BF is linear in the number of jobs.

5 Hierarchical interval scheduling

A formal description of this problem is as follows.
Problem: Hierarchical Interval Scheduling with T machine types (HIS(T)).

Instance: mt machines of type t, t = 1, . . . , T , continuously
available in [0,∞); nt jobs of type t, t = 1, . . . , T . A job of type t
can only be processed by a machine of type r, r ≤ t (t = 1, . . . , T).
Each job j requires processing from sj to fj, j = 1, . . . , n ≡ ∑

t nt.

Question: Does there exist a feasible schedule? That is, can
each job be processed by an appropriate machine such that no
two jobs processed by a same machine overlap?

When the number T of machine types is part of the input, a reduction
from CAC, very similar to the one proposed by Papadimitriou [67] for ISMA,
shows that HIS(T) is NP-complete, even when there is exactly one machine
of each type. Dondeti and Emmons [26] establish NP-completeness of HIS(T)
without the latter restriction.

As stated in Section 2.2.1, Dondeti and Emmons [25] and Huang and
Lloyd [48] show that a generalization of HIS(2) is solvable in polynomial time.
HIS(3), however, turns out to be hard again, as we show by a reduction from
Numerical 3-Dimensional Matching (N3DM).

20

First we consider the case where T is part of the input. We use a similar
construction as in the proof of Theorem 1 to turn an instance of CAC into
an instance of HIS(T) (see Figure 4).

Figure 4: An instance of HIS(T) corresponding to the CAC instance from
Figure 1.

Theorem 4 HIS(T) is NP-complete, even if mt = 1 for each t.

Proof: Clearly, HIS(T) is in NP. We use CAC to prove the result. Consider
an instance of CAC. Select point L on the circle and index the arcs containing
L by 1, 2, . . . , K. Arbitrarily index the remaining arcs K + 1, . . . , nCAC . Set
T = K, and “cut” the circle open at L. Each arc j containing L corresponds
to two jobs of type j, one with s2j−1 = 0, f2j−1 = fCAC

j , and the other with
s2j = sCAC

j , f2j = L+1, j = 1, . . . , T . Each arc not containing L corresponds
to a job of type T with s2K+j = sCAC

K+j , f2K+j = fCAC
K+j for j = K+1, . . . , nCAC .

There is one machine of each type. This completes the description of an
instance of HIS(T).

Now, suppose the answer to the CAC instance is yes, that is, a feasible
coloring exists. We place the two jobs corresponding to an arc containing L on
the same machine, together with those jobs of type T that correspond to arcs
that received the same color. Thus, a feasible schedule exists. Conversely, if
there exists a feasible schedule, we know that the two jobs of type 1 must be
present on the machine of type 1 (since they cannot be processed by any other
machine). In fact, from this we deduce the more general observation that the
two jobs of type t must be present on the machine of type t, t = 1, . . . , T .
Thus, a feasible coloring exists. tu

Let us now consider the case where T is fixed. Obviously, the case T =
1 is simply the basic interval scheduling problem discussed in Section 2.1.

21

Consider now the case T = 2. Notice that the input of an instance of HIS(2)
consists of 2n+2 numbers. Thus, in order for an algorithm to be polynomial
in the size of the input, the number of machines (m ≡ m1 + m2) should
not appear linearly in the running time. However, it is easy to first verify
whether m1 ≥ n or whether m2 ≥ n. If yes, it is trivial to determine whether
a feasible schedule exists: in case m1 ≥ n a feasible schedule exists, and in
case m2 ≥ n, the instance reduces to the basic interval scheduling problem
involving only jobs of type 1. Thus, we can assume that m1 and m2 are
bounded by n. In the sequel we will assume that this test is performed, i.e.,
we assume that max(m1,m2) ≤ n.

In their work on interval scheduling problems, Dondeti and Emmons [25]
consider a more general problem than HIS(2). They consider a variant which,
in addition to jobs of type 1 and type 2, also contains jobs of type 3. Jobs of
type 3 can only be processed by machines of type 2. An important concept
to decide feasibility of this problem is the so-called job schedule network; we
give, in this survey, a description of this network (see [25]).

We order the 2n numbers sj, fj, j = 1, . . . , n. We get a sequence of values
that we denote by u1 < u2 < . . . < uk, where k ≤ 2n. We define l1i (l2i) as the
overlap of jobs of type 1 (2) in the time-interval [ui, ui+1), i = 1, . . . , k − 1.
Further, we define l1 = maxil

1
i ; similarly we define l2 = maxil

2
i . The network

has a vertex i for each ui value, i = 1, . . . , k. For each job j of type 1, let p
and q be such that up = sj and uq = fj. We draw an arc from vertex p to
vertex q. This arc has a lower bound on the flow of value 1 and a capacity
of value 1. We will refer to such an arc as a job arc of type 1. Similarly, for
each job j of type 2, let p and q be such that up = sj and uq = fj. We draw
an arc from vertex p to vertex q. This arc has a lower bound on the flow of
value 0 and a capacity of value 1. We will refer to such an arc as a job arc
of type 2. Finally, we draw an arc from vertex i to vertex i + 1; this arc has
a lower bound of 0, and a capacity of value m1 − l1i − max(0, l2i − m2) for
i = 1, . . . , k−1. We will refer to such an arc as a dummy arc. This completes
the construction of the network. Notice that this network has O(n) nodes
and O(n) arcs. As mentioned above, in [25] a problem more general than
HIS(2) is solved; they use a job schedule network involving O(n) nodes and
O(n2) arcs.

Below we will argue that the existence of a flow of value m1 between
vertex 1 and vertex k determines whether a feasible schedule exists. If a
feasible schedule exists, the flow in the network will determine which jobs of
type 2 go to machines of type 1 (the arcs with flow value 1), and which will

22

go to machines of type 2 (the arcs with flow value 0). Thus, by solving a
maximum flow problem on this network we determine the answer. For the
time-bounds that can be achieved when solving a maximum flow problem we
refer to Ahuja et al. [1].

Of course, necessary conditions for the existence of a feasible schedule
are l1 ≤ m1 and maxi(l

1
i + l2i) ≤ m1 + m2. In the sequel we assume these

conditions to hold.

Theorem 5 HIS(2) can be solved as a max-flow problem on a network with
O(n) nodes and O(n) arcs.

Proof: We argue that the existence of a flow of value m1 between vertices 1
and k implies the existence of a feasible schedule and vice versa. Obviously,
we can use a max-flow algorithm to determine whether a flow of that value
exists.

Suppose that a flow of value m1 exists between vertices 1 and k. Consider
this flow in the network. The amount of flow that crosses a cut of the form
({1, . . . , i}, {i+1, . . . , k}) equals m1 for each i = 1, . . . , k−1. In each of these
cuts, this flow consists of three parts: flow that goes through job arcs of type
1 (this must equal l1i), flow that goes through the dummy arc (say Di), and
finally flow that goes through job arcs of type 2 (say F2i). We have, for each
i,

l1i + Di + F2i = m1. (2)

It follows that the number of job arcs with flow 1 is less than or equal to
m1 in each time interval [ui, ui+1) (1 ≤ i ≤ k − 1). Thus, we can view the
set of jobs whose corresponding arcs have a flow of value 1 as an instance of
the basic interval scheduling problem. Since the overlap in this instance is
bounded by m1, the results in Section 2.1 imply that the jobs whose job arcs
have a flow of 1 can be feasibly scheduled on the type 1 machines.

Let us now argue that the remaining jobs (whose arcs have a flow of 0)
can be feasibly scheduled on the machines of type 2. Rewriting (2) gives:

F2i = m1 − l1i −Di. (3)

The capacity restriction on the dummy arc implies that

Di ≤ m1 − l1i −max(0, l2i −m2). (4)

23

(3) and (4) imply that for each i = 1, . . . , k − 1

F2i ≥ max(0, l2i −m2),

which implies that out of the l2i jobs of type 2 that are active in [ui, ui+1) at
least max(0, l2i −m2) jobs of type 2 are scheduled on the machines of type 1.
There remain at most

l2i −max(0, l2i −m2) = min(l2i ,m2) ≤ m2

jobs of type 2 to be processed on machines of type 2 in [ui, ui+1), i = 1, . . . , k−
1. Again, since apparently the number of remaining type 2 jobs in each time-
interval [ui, ui+1) is bounded by the number of available machines we can use
the results in Section 2.1 to find a feasible schedule for these jobs.

To complete the proof, notice that if there exists a feasible schedule to
the HIS(2) instance, we can send, for each machine of type 1, a flow of value
1 through the network. Each arc corresponding to a job processed by a
machine of type 1 has a flow of value 1. Notice that the capacity of each
dummy arc suffices to accommodate the resulting flow. This gives us a flow
of value m1. tu

Finally, we show that the hierarchical interval scheduling problem with
three machine types is NP-complete.

Theorem 6 HIS(3) is NP-complete.

Proof: Observe that HIS(3) is in the class NP. We use N3DM.

Numerical 3-dimensional matching.
The numerical 3-dimensional matching (N3DM) can be stated as follows.

Instance: 3t positive integers ci, di, ei, i = 1, . . . , t, and a posi-
tive integer B such that ci, di, ei ≤ B (i = 1, . . . , t) and

∑
i(ci +

di + ei) = tB.

Question: Do there exist two permutations π and σ of {1, . . . , t}
such that ci + dπ(i) + eσ(i) = B, for i = 1, . . . , t ?

N3DM is well known to be NP-complete (Garey and Johnson [37]).

24

Let m1 = t, m2 = t(t − 1), and m3 = t2, i.e., there are t machines of
type 1, t(t− 1) machines of type 2, and t2 machines of type 3. Each machine
is available from time 0 to t2 + 2t + 2B. For some moments in time we
define specific parameters: for i, j = 1, . . . , t let Ai = i, Bi = t + i and
Xij = 2t + (i− 1)t + j. Finally, let S = t2 + 2t.

Let us now consider the jobs. We distinguish three types of jobs: we set
n1 = 2t, n2 = 2t2− t, and n3 = 4t2. To specify each individual job j we need
to specify its starting time sj and its finishing time fj. We do this by simply
stating an interval of the form [sj, fj). For the 2t jobs of type 1 we have:

• [0, Ai) for i = 1, . . . , t, and

• [S + B − ei, S + 2B) for i = 1, . . . , t.

For the 2t2 − t jobs of type 2 we have:

• t− 1 jobs of the form [0, Bi) for i = 1, . . . , t, and

• [Xij, S + ci + dj) for i, j = 1, . . . , t.

For the 4t2 jobs of type 3 we have:

• t− 1 jobs of the form [0, Ai) for i = 1, . . . , t,

• [0, Bi) for i = 1, . . . , t,

• [Ai, Xij) for i, j = 1, . . . , t,

• [Bi, Xij) for i, j = 1, . . . , t,

• [Xij, S + 2B) for i, j = 1, . . . , t,

This completes the description of an instance of HIS(3). Let us now argue
that the existence of a feasible schedule implies a yes-answer to the N3DM
instance and vice versa.

Assume that the answer to the N3DM instance is yes, i.e., there exist
two permutations π and σ such that ci + dπ(i) + eσ(i) = B for i = 1, . . . , t.
Then we construct the following schedule. There are t2 type 2 jobs of the
form [Xij, S + ci + dj), i, j, = 1, . . . , t. Out of these we select t jobs such that
j = π(i), i = 1, . . . , t. These t jobs go to the t machines of type 1. Notice
that since each of these t jobs contains S they must go to a unique machine.
Moreover, each job of this form, i.e., [Xi,π(i), S + ci + dπ(i)), is followed by the

25

job [S + B − eσ(i), S + 2B) of type 1 for i = 1, . . . , t. This is feasible since
S + ci + dπ(i) = S + B − eσ(i) by the solution to N3DM. Next we schedule
each type 1 job of the form [0, Ai) on a unique machine of type 1, and select
the type 3 jobs of the form [Ai, Xi,π(i)) to complete the assignment of jobs
to machines of type 1. Each of the type 2 jobs of the form [0, Bi) goes to a
unique machine of type 2, and is followed by the appropriate type 3 jobs of
the form [Bi, Xij), which are in turn followed by the remaining type 2 jobs
of the form [Xij, S + ci + dj). All remaining type 3 jobs fit on the machines
of type 3.

Conversely, assume that a feasible schedule exists. Consider the total
processing time required in the interval [0, S) for each of the job types: jobs
of type 1 require time 1

2
t(t+1), jobs of type 2 require time 1

2
t(t−1)(3t+1)+

t2S −∑
i,j Xij, and jobs of type 3 require time 1

2
t(t− 1)(t + 1) + 1

2
t(3t + 1) +

(
∑

i,j Xij − t
∑

i Ai) + (
∑

i,j Xij − t
∑

i Bi) + (t2S − ∑
i,j Xij). Summing this

up yields 2t2S, which equals the total available machine time. Thus, each
job that ends before S is followed immediately by another job. In particular,
in any feasible schedule each job of the form [0, Ai) is followed by a job of
the form [Ai, Xij) on the same machine. Also, each job of the form [0, Bi) is
followed by a job of the form [Bi, Xij) on the same machine.

Recall that a job of type 1 can only be processed by a machine of type 1,
a job of type 2 can only be processed by a machine of type 1 or 2, and a job
of type 3 can be processed by each machine.

Consider the t2 type 2 jobs of the form [Xij, S + ci + dj), i, j = 1, . . . , t.
Since each of them contains point S, and since there are t2 machines of types
1 and 2, each of these jobs is assigned to a unique machine of type 1 or 2.
Moreover, it follows that each of the t2 type 3 jobs of the form [Xij, S+ci+dj)
is assigned to a unique machine of type 3. Observe further, that each machine
of type 2 must start with a type 2 job of the form [0, Bi), since the machines
of type 1 must start with the type 1 jobs of the form [0, Ai). Therefore, each
machine of type 2 must look as follows: [0, Bj), [Bj, Xij), [Xij, S + ci + dj).
Notice that each index j occurs exactly t−1 times. The t machines of type 1
each have the following jobs: [0, Ai), [Ai, Xij), [Xij, S + ci + dj), where each
index i and each index j occur exactly once.

Consider now the interval [S, S + 2B) for machines of type 1. The total
required processing time equals

∑
i ci +

∑
j dj (by the arguments sketched

above) +
∑

k(S + 2B − (S + B − ek)). This sum amounts to 2tB, which is
equal to the total amount of processing time that is available. It follows that
a job of the form [Xij, S + ci + dj) must be directly followed by a job of the

26

form [S + B − ek, S + 2B). Thus S + ci + dj = S + B − ek. Setting π(i) = j
and σ(i) = k when a job of the form [Xij, S + ci + dj) is followed by a job
of the form [S + B − ek, S + 2B) gives us the required permutations for the
instance of N3DM. tu

6 Conclusions

Interval scheduling problems appear in diverse fields ranging from crew schedul-
ing to telecommunication. They form an important class of scheduling prob-
lems and have been studied under various names and with application-specific
constraints. We have surveyed the complexity and approximability of differ-
ent variants of the basic interval scheduling problem. We have shown that
interval scheduling with machine availabilities is related to the problem of
coloring a circular arc graph. We provided algorithms for this variant of
interval scheduling. Further, we have shown that in the case of ordered ma-
chine types, the case of two machine types can be efficiently solved whereas
the problem for three machine types is NP-complete.

Acknowledgment

We thank Esther Arkin for her comments on an earlier version of this pa-
per. We also thank the referees for their remarks which led to an improved
presentation of this work.

References

[1] Ahuja, R.K., T.L. Magnanti, and J.B. Orlin (1993), Network Flows,
Prentice Hall, New Jersey.

[2] Anthonisse, J.M. and J.K. Lenstra (1984), Operational operations re-
search at the Mathematical Centre, European Journal of Operational
Research 15, 293–296.

[3] Arkin, E.M. and E.B. Silverberg (1987), Scheduling with fixed start and
end times, Discrete Applied Mathematics 18, 1–8.

27

[4] Bar-Noy, A., R. Bar-Yehuda, A. Freund, J.S. Naor, and B. Schieber.
(2005), A unified approach to approximating resource allocation and
scheduling, Journal of the ACM 48, 1069–1090.

[5] Bar-Noy, A., R. Canetti, S. Kutten, Y. Mansour, and B. Schieber (2005),
Bandwith allocation with preemption, SIAM Journal on Comnputing 28,
1806–1828.

[6] Bar-Noy, A., S. Guha, J.S. Naor, and B. Schieber (2001), Approximat-
ing the throughput of multiple machines in real-time scheduling, SIAM
Journal on Computing 31, pages 331–352.

[7] Beasley, J.E. and B. Cao (1998), A dynamic programming based algo-
rithm for the crew scheduling problem, Computers and Operations Re-
search 25, 567–582.

[8] check Berman, P. and B. DasGupta (2000), Multi-phase algorithms for
throughput maximization for real-time scheduling, Journal of Combina-
torial Optimization 4, 307–323.

[9] Bhatia, R., J. Chuzhoy, A. Freund, and J. Naor (2003), Algorithmic as-
pects of bandwidth trading, Proceedings of the 30-th International Con-
ference on Automata, Languages, and Programming, Lecture Notes in
Computer Science 2719, 751–766, Springer, Heidelberg.

[10] Biró, M., M. Hujter, and Zs. Tuza (1992), Precoloring extensions. I.
Interval graphs, Discrete Mathematics 100, 267–279.

[11] Bouzina, K.I. (1994), On interval scheduling problems: a contribution,
Ph.D. Thesis of Case Western Reserve University.

[12] Bouzina, K.I. and H. Emmons (1996), Interval scheduling on identical
machines, Journal of Global Optimization 9, 379–393.

[13] Brehob, M., S. Wagner, E. Torng, and R. Enbody (2004), Optimal re-
placement is NP-hard for nonstandard caches, IEEE Transactions on
Computers 53, 73–76.

[14] Brucker, P. and L. Nordmann (1994), The k-track assignment problem,
Computing 54, 97–122.

28

[15] Canetti, R. and S. Irani (1998), Bounding the power of preemption in
randomized scheduling, SIAM Journal on Computing 27, 993–1015.

[16] Carlisle, M.C. and E.L. Lloyd (1995), On the k-coloring of intervals,
Discrete Applied Mathematics 59, 225–235.

[17] Carter, M.W. and C.A. Tovey (1992), When is the classroom assignment
problem hard?, Operations Research 40, S28–S39.

[18] Chen, Z., G. Lin, R. Rizzi, J. Wen, D. Xu, Y. Xu, and T. Jiang (2005),
More reliable protein NMR peak assignment via improved 2-interval
scheduling, Journal of Computational Biology 12, 129–146.

[19] Chuzhoy, J., S. Guha, S. Khanna, and J.S. Naor (2004), Machine mini-
mization for scheduling jobs with interval constraints, Proceedings of the
45th Annual Symposium on Foundations of Computer Science, 81–90.

[20] Chuzhoy, J., J.S. Naor (2004), New hardness results for congestion min-
imization and machine scheduling, Proceedings of the 36th ACM Sym-
posium on the Theory of Computing, 28–34.

[21] Chuzhoy, J., R. Ostrovsky, and Y. Rabani (2001), Approximation al-
gorithms for the job interval selection problem and related scheduling
problems, Proceedings of the 42nd Annual Symposium on Foundations
of Computer Science, 348–356.

[22] Cieliebak, M., T. Erlebach, F. Hennecke, B. Weber, and P. Widmayer
(2004), Scheduling with Release Times and Deadlines on a Minimum
Number of Machines, Proceedings of the 3rd IFIP International Confer-
ence on Theoretical Computer Science, 209–222.

[23] Dantzig, G.B. and D.R. Fulkerson (1954), Minimizing the number of
tankers to meet a fixed schedule, Naval Research Logistics Quarterly 1,
217–222.

[24] Dekel, E. and S. Sahni (1983), Parallel scheduling algorithms, Operations
Research 31, 24–49.

[25] Dondeti, V.R. and H. Emmons (1992), Fixed job scheduling with two
types of processors, Operations Research 40, S76–S85.

29

[26] Dondeti, V.R. and H. Emmons (1993), Algorithms for preemptive
scheduling of different classes of processors to do jobs with fixed times,
European Journal of Operational Research 70, 316–326.

[27] Borodin, A. and R. El-Yaniv (1998), On-Line Computation and Com-
petitive Analysis, Cambridge University Press, Cambridge.

[28] Erlebach, T. and F.C.R. Spieksma (2003), Interval selection: applica-
tions, algorithms, and lower bounds, Journal of Algorithms 46, 27–53.

[29] Faigle, U., W. Kern, and W.M. Nawijn (1999), A greedy on-line algo-
rithm for the k-track assignment problem, Journal of Algorithms 31,
196–210.

[30] Faigle, U., and W.M. Nawijn (1995), Note on scheduling intervals on-
line, Discrete Applied Mathematics 58, 13–17.

[31] Faneyte, D.B.C., F.C.R. Spieksma, and G.J. Woeginger (2001), A
branch-and-price algorithm for a hierarchical crew scheduling problem,
Naval Research Logistics 49, 743–759.

[32] Fischetti, M., S. Martello, and P. Toth (1987), The fixed job schedule
problem with spread-time constraints, Operations Research 35, 849–858.

[33] Fischetti, M., S. Martello, and P. Toth (1989), The fixed job schedule
problem with working-time constraints, Operations Research 37, 395–
403.

[34] Fischetti, M., S. Martello, and P. Toth (1992), Approximation algorithms
for fixed job schedule problems, Operations Research 40, S96–S108.

[35] Ford, L.R., Jr., and D.R. Fulkerson (1962), Flows in networks, Princeton
University Press, Princeton, New Jersey.

[36] Gabrel, V. (1995), Scheduling jobs within time windows on identical
parallel machines: New models and algorithms, European Journal of
Operational Research 83, 320–329.

[37] Garey, M.R. and D.S. Johnson (1979), Computers and intractability, a
guide to the theory of NP-completeness, W.H. Freeman and Company,
New York.

30

[38] Garey, M.R., D.S. Johnson, G.L. Miller, and C.H. Papadimitriou (1980),
The complexity of coloring circular arcs and chords, SIAM Journal on
Algebraic and Discrete Mathematics 1, 216–227.

[39] Gertsbach, I. and Y. Gurevich (1977), Constructing an optimal fleet for
a transportation schedule, Transportation Science 11, 20–36.

[40] Gertsbakh, I. and H.I. Stern (1978), Minimal resources for fixed and
variable job schedules, Operations Research 26, 68–85.

[41] Golumbic, M.C. (1980), Algorithmic graph theory and perfect graphs,
Academic Press, San Diego, California.

[42] Graves, S.C., A.H.G. Rinnooy Kan, and P.H. Zipkin (editors) (1993), Lo-
gistics of production and inventory, Handbooks in Operations Research
and Management Science 4, North-Holland, Amsterdam.

[43] Gupta, U.I., D.T. Lee, and J.Y.-T. Leung (1979), An optimal solution
for the channel-assignment problem, IEEE Transactions on Computers
C-28, 807–810.

[44] Goldman, S.A., J. Parwatikar, and S. Suri (2000), Online scheduling
with hard deadlines, Journal of Algorithms 34, 370–389.

[45] Hall, N.G., M. Lesaoana, and C.N. Potts (2001), Scheduling with fixed
delivery dates, Operations Research 49, 134–144.

[46] Hashimoto, A. and J. Stevens (1971), Wire routing by optimizing chan-
nel assignment within large apertures, Proceedings of the 8th Design
Automation Workshop, 155–169.

[47] Hochbaum, D. (editor) (1997), Approximation algorithms for NP-hard
problems, PWS Publishing Company, Boston.

[48] Huang, Q. and E. Lloyd (2003), Cost constrained fixed job scheduling,
Italian Conference on Theoretical Computer Science, Lecture Notes in
Computer Science 2841, 111–124.

[49] Ibaraki, T. and N. Katoh (1988), Resource allocation problems: algo-
rithmic approaches, The MIT Press, Cambridge.

31

[50] Jansen, K. (1994), An approximation algorithm for the license and shift
class design problem, European Journal of Operational Research 73,
127–131.

[51] Jansen, K. (2000), Approximation results for the optimal cost chromatic
partition problem, Journal of Algorithms 34, 54–89.

[52] Keil, J.M. (1992), On the complexity of scheduling tasks with discrete
starting times, Operations Research Letters 12, 293–295.

[53] Kolen, A.W.J. and L.G. Kroon (1991), On the computational complex-
ity of (maximum) class scheduling, European Journal of Operational
Research 54, 23–38.

[54] Kolen, A.W.J. and L.G. Kroon (1993), On the computational complex-
ity of (maximum) shift scheduling, European Journal of Operational
Research 64, 138–151.

[55] Kolen, A.W.J. and L.G. Kroon (1994), An analysis of shift class design
problems, European Journal of Operational Research 79, 471–430.

[56] Kolen, A.W.J. and J.K. Lenstra (1995), Combinatorics in operations
research, Handbook of Combinatorics, edited by R.L. Graham, M.
Grötschel, and L. Lovász, North-Holland, Amsterdam, pp. 1875–1910.

[57] Kroon, L.G., M. Salomon, and L. van Wassenhove (1995), Exact and
approximation algorithms for the operational fixed interval scheduling
problem, European Journal of Operational Research 82, 190–205.

[58] Kroon, L.G., M. Salomon, and L. van Wassenhove (1997), Exact and ap-
proximation algorithms for the tactical fixed interval scheduling problem,
Operations Research 45, 624–638.

[59] Kroon, L.G., A. Sen, H. Deng, and A. Roy (1996), The optimal cost
chromatic partition problem for trees and interval graphs, Proceedings
of the 22nd International Workshop on Graph-Theoretic Concepts in
Computer Science, Lecture Notes in Computer Science 1197, 279–292.

[60] Kumar, V. (1998), Approximating circular arc colouring and bandwidth
allocation in all-optical ring networks, Proceedings of the first AP-
PROX Conference, Lecture Notes in Computer Science 1444, 147–158,
Springer, Heidelberg.

32

[61] Lipton, R.J. and A. Tomkins (1994), Online interval scheduling, Pro-
ceedings of the fifth annual ACM-SIAM Symposium On Discrete Algo-
rithms, 302–311.

[62] Martello, S. and P. Toth (1986), A heuristic approach to the bus driver
scheduling problem, European Journal of Operational Research 24, 106–
117.

[63] Mingozzi, A., M.A. Boschetti, S. Ricciardelli, and L. Bianco (1999),
A set partitioning approach to the crew scheduling problem, Operations
Research 47, 873–888.

[64] Miyazawa, H. and T. Erlebach (2004), An improved randomized on-line
algorithm for a weighted interval selection problem, Journal of Schedul-
ing 7, 293–311.

[65] Nakajima, K. and S.L. Hakimi (1982), Complexity results for scheduling
tasks with discrete starting times, Journal of Algorithms 3, 344–361.

[66] Nakajima, K., S.L. Hakimi, and J.K. Lenstra (1982), Complexity results
for scheduling tasks in fixed intervals on two types of machines, SIAM
Journal on Computing 11, 512–520.

[67] Papadimitriou, C.H. (1982), Private communication to J.K. Lenstra,
April 25, 1982.

[68] Seiden, S.S. (1998), Randomized online interval scheduling, Operations
Research Letters 22, 171-177.

[69] Sgall, J. (1998), On-line scheduling - a survey, in: Online Algorithms:
The State of the Art, (editors: A. Fiat and G. J. Woeginger), Lecture
Notes in Computer Science 1442, 196-231, Springer, Heidelberg.

[70] Spieksma, F.C.R. (1999), On the approximability of an interval schedul-
ing problem, Journal of Scheduling 2, 215–227.

[71] Vazirani, V.V. (2002), Approximation Algorithms, Springer, Heidelberg.

[72] Woeginger, G.J. (1994), On-line scheduling of jobs with fixed start and
end times, Theoretical Computer Science 130, 5–16.

33

