
INTERFACES BETWEEN OPERATIONS RESEARCH AND COMPUTER SCIENCE 

J.K. Lenstra 

Centre for Mathematics and Computer Science (CWI), Amsterdam 

The subject of this lecture is the relation between two disciplines, both of 

which pertain to the use of mathematics in industry. Operations research 

emerged out of optimization questions in warfare logistics in the 1940's and 

quickly established itself as one of the cornerstones of industrial mathema

tics. Computer science and engineering is a younger discipline, which pervades 

all activities relating to the processing and manipulation of quantitative in

formation at an ever increasing rate. 

I cannot possibly give a complete overview of all interfaces between 

operations research and computer science. The time is too short and my back

ground is too limited. So you should expect a biased view of some interfaces. 

Let me give a short preview. I will make only a few remarks on the impact 

of operations research on computer science and concentrate on the influence in 

the other direction. Another bias is the emphasis on the combinatorial side 

of operations research rather than on the nonlinear or stochastic ones. I 

will go through issues of ccxnputation, complexity and analysis of algorithms, 

and then mention three new tools: randomization, parallelism (both quite 

briefly), and interaction. A substantial part of my lecture will be devoted 

to interactive computing or, more precisely, to the integration of interaction 

and algorithmics in what is nowadays called "decision support systems". I 

will finish with some remarks on the subject of expert systems. 

Operations research vs. computer science 

The basic claim which I would like to make is that operations research and 

computer science cannot exist without each other. More specifically, the evo

lution of either area to a discipline in itself has only been possible due to 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301634899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


80 

the use of concepts, results and techniques developed in the other area. 

As I said before, I will concentrate on the impact of computer science 

on operations research. That is not to say that the influence in the other 

direction is less important. It is hard to resist the temptation to spend the 

entire hour on this subject. Many applications of operations research occur 

in the design, analysis and control of computing devices. This has been true 

since the very beginning of automated computing. The three examples I will 

give are the more topical applications of the 1980's. 

First, the layout of integrated circuits. Locating several given compo

nents on a chip and routing the required connections between them in such a 

way that the total area is minimized, is a highly complex problem. It is, in 

fact, a combinatorial optimization problem, and many ideas from location, 

routing and scheduling theory could contribute to its solution. It is my im

pression that this interface is at a very early stage of exploration. 

On a larger scale, the performa.nce of computer systems is a subject of 

increasing interest. From an operations research point of view, it calls for 

the analysis of the behavior of communication networks and thus belongs to 

the application area of queueing theory. This interface is in rapid develop

ment. 

In the third place, the design and control of distributed systems leads 

to many algorithmic problems. Consider, for example, a network of processors 

that cooperate to perform a certain task. Each processor has its own memory. 

Which data must be stored where so as to achieve a reasonable balance between 

storage and access cost? This is just an example of a question in distributed 

computing to which operations research could contribute. 

It appears that computer science needs operations research. In that 

sense, it has already a substantial impact by providing a wealth of challeng

ing decision problems. 

The influence that I will emphasize, however, is more fundamental. With

out the achievements of computer science, the practical application of opera

tions research methods as well as our theoretical understanding of their 

behavior would have been very limited. 

Computations, efficiency, and complexity 

Operations research needs computer science. This was already evident at the 

origin of our discipline. The whole idea of solving large scale decision 



81 

?roblems by iterative techniques was only a feasible idea in view of the 

axistence, or the prospect of developing, automated equipment for performing 

nassive amounts of computation. This applies to the work on linear program

ning and network optimization that started in the late 1940's. It is also 

true for most of the subsequent methodological developments, such as cutting 

plane methods, dynamic programming, branch and bound, and Markov programming. 

So far, the influence of computer science was basically restricted to 

providing the machinery needed. During the 1960's, the impact deepened and 

acquired a component that was more algorithmic in nature. Operations research

ers became interested in the efficiency of computer algorithms. In order to 

reduce the time and space requirements of their implementations, they had to 

use sophisticated data structures. With this, operations research started to 

rely on the art of computer programming. 

The advent of computational complexity theory in the beginning of the 

1970's can, in retrospect, be seen as a natural culmination of this develop

ment. At the time, it was a surprising and exciting event. Complexity theory 

studies the inherent limitations to the efficiency of algorithms. It provides 

a simple tool to distinguish between the tractable problems and the intrac

table, or probably intractable, ones. This distinction is now common practice 

in combinatorial operations research. For the easy problems, a fast optimiza

tion algorithm is available. For the hard problems, one has to choose: if an 

optimal solution is required, then one must settle for some tedious form of 

enumeration; if speed is desired, then one must be satisfied with an approx

imate solution. Linear programming is an example of an easy problem; integer 

programming is probably hard. 

In what follows, I shall first take a closer look at the concepts of 

complexity and then return to the study of algorithms. 

A closer look at complexity 

You all know what a graph is: a collection of nodes and a collection of 

edges, each of which links two nodes together. The graph in Figure is con-

nected, because you can get from each node to any other. The graph in Figure 

2 is disconnected. The graph in Figure 3 is Hamiltonian, since there is a 

cycle which visits each node exactly once; such a Hamiltonian cycle is indi

cated by wiggly lines. The graph in Figure 4 is not Hamiltonian; you might 

want to prove this. 



82 

Figure 1 A connected graph. Figure 2 A disconnected graph. 

8 
Figure 3 A Hamiltonian graph. Figure 4 A non-Hamiltonian graph. 

/ / 

~ ! CONNECTED 
GRAPH 

v ~ • 
(a) ? (b) Right. (c) Wrong. 

Figure 5 Buying a connected graph. 

,,_/ ____ _,./ 

HAMILTONIAN k8 GRAPH 

I/ 
(a) ? (b) ?? 

Figure 6 Buying a Hamiltonian graph. 

Suppose that you are attending a conference and you want to buy a present 

for the people at home. You go to a graph store and ask for a connected graph. 

The shopkeeper puts a box on the counter (Figure 5 (a)) . You want to check this, 

open the box, and take out the graph. When it sticks together, it is connected 

(Figure 5 (b)); when it falls apart, it is not (Figure 5 (c)). The point I want 

to make here is that you can easily test a graph for connectivity by yourself; 

it takes an amount of time proportional to the number of edges. 



83 

Now you want to buy something special: a Hamiltonian graph. Again, there 

is a box (Figure 6(a)). You open it - but now you may find yourself in trouble 

(Figure 6(b)): there is no fast method available which can test any given 

graph for Hamiltonicity. Trial and error may work, but it does not have to. 

However, the shopkeeper can easily convince you, namely by pointing out a 

Hamiltonian cycle as in Figure 3; this takes an amount of time proportional 

to the number of nodes. 

This is exactly the difference between the problem classes p and NP. Both 

classes contain only decision problems, which require a yes/no answer; I will 

return to optimization problems shortly. P contains all those problems for 

which one can easily come up with the correct answer. NP contains all those 

problems for which one can easily be convinced of the correctness of the yes 

answer by checking a given structure: a Hamiltonian cycle in the example, a 

"certificate" in terms of complexity theory. 

These definitions only make sense if the notion of "easiness" is formal-

ized. A computation is easy if its running time is bounded by a polynomial 

function of the size of the problem under consideration. For a graph on n 

nodes, checking all nodes or all edges takes time polynomial inn, but gener

ating all permutations of the node set in the hope of finding a Hamiltonian 

cycle is superexponential. 

What are the virtues of an algorithm when it runs in polynomial time? 

First of all, its robustness. An algorithm that is polynomial on one machine 

is polynomial on any other reasonable type of machine, including theoretical 

models and commercial computers (but excluding parallel machines). Secondly, 

its asymptotic behavior. Any polynomial function inn is ultimately, when n 

is large enough, smaller than any superpolynomial function. In the third 

place, its practical efficiency. Polynomial algorithms tend to work well in 

practice. Some polynomial algorithms are pretty bad, but it seems to be the 

case that once a problem has been shown to belong to P, a truly efficient 

method is found sooner or later. Finally, polynomiality allows us to come to 

grips with computational complexity in a theoretical sense. It serves to ex

plain why some problems appear to be harder than others. More generally, it 

has proven to be a fundamental concept in the broad area of computational 

mathematics. 

Any problem in P also belongs to NP, so P is a subclass of NP. I have 

indicated that the connectivity problem is a member of P and that Hamilton-



84 

icity is in NP. If it could be shown that Hamiltonicity is outside P, then the 

problem would have no solution in polynomial time and one would justifiably 

call it "hard". Such a proof seems to be beyond the reach of present-day math

ematics. However, we can do slightly less. It can be shown that the Hamilton

icity problem is a generalization of any other problem in NP. Hamiltonicity is 

NP-complete, i.e., it is representative of the entire class NP. If Hamiltonici

ty would belong to P, then all other problems in NP would be easy as well and 

P would be equal to NP. No one believes this to be true, for the simple reason 

that NP seems to be so much richer than P. It follows that the Hamiltonicity 

problem is unlikely to be easy and therefore "probably hard". See Figure 7. 

checking a certificate is easy 

decision is easy 

Figure 7 A likely map of NP. 

Next to Hamiltonicity, many other combinatorial decision problems have 

been shown to be NP-complete. I have not told you how results of this type are 

obtained. That is of secondary importance here; suffice it to say that it is 

conceptually a simple affair, although it can be technically very intricate. 

What is the use of all this for operations research? Complexity theory 

deals with yes/no problems, in operations research we have optimization prob

lems. If a problem has a polynomial optimization algorithm, then it is said 

to be easy (or well solved, or tractable). If a problem is at least as hard 

as some NP-complete problem, then it is said to be NP-hard. This should not 

be the last word on the problem, but the first. It tells you that you cannot 

expect to find a guaranteed optimum in worst case polynomial time. You have 

to give in on either speed or solution quality. 

Analysis of algorithms 

Complexity theory has given a new impetus to the analysis of algorithms. In 

studying the behavior of an algorithm, you have to distinguish between its 



85 

efficiency and its effectivity. Efficiency measures the resources you need: 

time, space, or (in case of parallel computing) the number of processors. 

Effectivity measures the extent to which you reach your goal. As the qoal is 

usually an optimum solution, effectivity stands for solution quality or, more 

precisely, for the absolute or relative difference between the solution value 

obtained and the optimum value. It is the principal performance criterion for 

approximation algorithms. 

The traditional way to analyze the behavior of an algorithm is the 

empirical one. You actually run one or more algorithms on one or more comput

ers using one or more test problems and tabulate the results. There are some 

difficulties: Are the implementations of the algorithms of the same quality? 

How do the computers compare? Do the test problems form a fair collection? 

And, finally, how do you statistically validate the experimental results? In 

spite of this, empirical analysis is widely applied and generally very useful. 

However, it is not the only resort. Two new approaches have emerged, of a more 

theoretical nature: worst case analysis and probabilistic analysis. 

The purpose of a worst case analysis is to provide guarantees on the per

formance of an algorithm. Complexity theory is basically concerned with this 

type of analysis. Performance guarantees are solid but may be pessimistic, 

since the isolated difficult problem instance has to be accounted for. The 

simplex method for linear programming, for example, requires exponential time 

on a class of artificial instances, but the method performs quite satisfactor

ily in practice. It is reassuring to know that a list schedule of jobs on 

identical parallel machines is never longer than twice the optimal schedule, 

but it is usually much closer. 

Worst case analysis can give a misleading picture of the typical case. 

Thus the ultimate explanation of why algorithms behave as they do must be of 

a probabilistic nature. 

A probabilistic analysis requires first of all the specification of a 

probability distribution over the set of all problem instances. Several random 

graph models have been well studied, but for many other combinatorial struc

tures the choice of a reasonable probability model is far less obvious. More

over, the technical difficulties encountered in a probabilistic analysis are 

formidable. The main reasons for this are the special structure of problem 

instances and solutions, as well as the interdependence between the various 

steps of an algorithm. What happens at a node of a search tree, for example, 



86 

depends highly on what has happened at its predecessors, and no real way has 

been found around the resulting mathematical obstacles. 

Nevertheless, progress has been made on various fronts. One of these is 

probabilistic efficiency analysis, an approach that is now standard for the 

basic algorithms in computer science. In operations research, a substantial 

amount of work has been done to explain the success of the simplex method. A 

great challenge here is to give rigorous proofs of the polynomial expected 

running time of various enumerative methods, in order to confirm informal 

analyses or empirical evidence. Secondly, there is the area of probabilistic 

effectivity analysis. The empirical behavior of approximation algorithms sug

gests that the worst case is seldom met in practice, but theoretical verifi

cation remains very difficult. Most research of this type is actually based 

on probabilistic value analysis, the third and perhaps most surprising area. 

Many hard optimization problems, notably those with a geometric structure such 

as routing and location problems in the plane, allow a simple probabilistic 

description of their optimum solution value in terms of the problem parameters. 

The shining example here is the planar traveling salesman problem: the length 

of a shortest tour through n cities, uniformly distributed over a circle of 

area 1, is almost surely equal to sin, where B is a constant that can be esti

mated numerically. 

Three new tools 

Computer science has enabled us to perform large scale computations. It has 

taught us to achieve efficiency and also to accept the limits to efficiency. 

It has indicated how to attempt a formal analysis of algorithmic behavior. 

In the last few years, it has given us three new tools: randomization, 

parallelism, and interaction. Randomization and parallelism are the most im

portant new algorithmic concepts in theoretical computer science. Parallelism 

and interaction have become relevant topics due to the availability of new 

computer architectures. And interaction and randomization represent new modes 

of approximation: a randomized algorithm tosses a coin at certain points in 

order to decide how to proceed; an interactive method is not even completely 

algorithmic but relies on man-machine interaction. I will make a few brief 

remarks on two of these subjects and spend the rest of my time on the third 

one: interaction. 

In a randomized algorithm, the stochasticity is inside the algorithm and 



87 

not in the problem instances, as in the case of probabilistic analysis. A ran

domized algorithm makes guesses along the way and hence mistakes, but with a 

bounded probability. One of the earliest examples is Rabin's primality test. 

It runs in polynomial time and gives moral, although no absolute, certainty 

about the primality of the input number. The most topical example in operations 

research is the principle of simulated annealing. This is a technique for iter

ative improvement, based on neighborhood search, which accepts deteriorations 

with a small and decreasing probability in the hope of avoiding bad local opti

ma and getting settled in the global optimum. The investigation of the random

ization principle in operations research is still at a very early stage. Much 

can be expected along these lines in the near future. 

Parallel algorithms are designed to be executed on a collection of pro

cessors that operate in parallel and communicate with each other. For certain 

formal models of parallel computation, algorithms have been designed for the 

basic problems in computer science as well as for many optimization problems. 

The entire theoretical approach to the complexity of problems and the effi

ciency and effectivity of algorithms is being extended to this area. At the 

more practical side, many types of parallel and pseudoparallel architectures 

are now becoming available, from mainframes for vectorized computations to 

networks of micros for distributed computations. This leads to a broad range 

of research questions. For computer scientists: How do the results for formal 

models of parallel computing translate to realistic models? For operations 

researchers: How do we solve problem X on architecture Y? Is it a good idea 

anyhow? And for everyone: Are there one or two models that will be accepted 

as standards for the future? 

CAR: Computer Aided Routing 

The vehicle I will use to discuss interactive computing is CAR, a system for 

computer aided routing that we have been developing in Amsterdam over the 

past two years. 

Let me start by describing the practical decision situation in which the 

first release of CAR will be installed. It concerns the operational distribu

tion planning for the hanging garment division of Van Gend & Loos, the largest 

Dutch road transportation firm. They have one central depot, a number of 

vehicles, and each day a collection of customers. Each vehicle has its own 

capacity. Each customer has a demand, a time window (i.e., a time interval in 



88 

which he roust be visited), and a priority (indicating if the visit may be 

postponed until tomorrow or not). The time windows appear to be increasingly 

restrictive, especially for garment shops located in urban pedestrian areas. 

In addition to this, some customers may have a supply rather than a demand, 

and the combination of supply and demand may lead to precedence constraints 

between customers. The purpose of our involvement is to help in developing a 

tool for improved planning. Improved in terms of lower costs, better service 

to the customers, and a more even work load for the drivers. 

An important requirement, which we imposed ourselves, is the functional 

flexibility of the system. It should enable the planner to perform the tradi

tional planning more efficiently on the one hand, and it should be able to 

construct a complete plan by itself on the other hand. In different words, it 

should assist as an automatic scratch pad and advise as an automatic pilot. 

Another requirement is of major concern to the information engineers of 

Van Gend & Loos. The system should be implemented on a small configuration at 

the loading site. But it should also be integrated into the administrative 

organization of the firm. In the current situation, the planning is done by 

hand and the registration is done at a later stage on the firm's mainframe. 

In the new situation, the information of each order will be fed into a micro

computer at a much earlier stage. Both machines need to be linked, and Van 

Gend & Loos has to seriously reconsider the structure and control of its in

formation flows. 

The mathematical model motivated by this practical decision situation is 

a fairly typical vehicle routing problem. We have to find a tour for each ve

hicle, starting and finishing at the depot and collectively visiting all cus

tomers, such that three conditions are satisfied. First, the total load allo

cated to any vehicle should not exceed its capacity at any point in time; this 

is the clustering aspect. Secondly, the departure time at any customer should 

fall inside his time window (early arrivals are allowed but lead to waiting 

time); this is the scheduling aspect. Thirdly, the total travel time should be 

minimized; this is the routing aspect. 

The overall problem is very hard and you cannot hope to solve it to opti

mality for realistic problem sizes. In fact, each of the three aspects I men

tioned represents a problem which is NP-hard, independently of the other two 

aspects. We have chosen to follow an approximative two-phase approach suggest

ed by Fisher and Jaikumar: in the first phase, we cluster the customers into 



INPUT 
daily data 

road network 

Figure 8 CAR. 

VAN GENO 
& 

LOOS 

C A R 

0 

89 

OUTPUT 
routes 
etc. 

-practice 

-interface 

-mathematics 

vehicles by solving a generalized assignment problem; in the second phase, we 

route each vehicle through its customers by solving a traveling salesman prob

lem. This does not yet take care of the scheduling aspect. Time windows are a 

relatively neglected complication in vehicle routing theory. We have designed 

routing algorithms that take account of time windows as efficiently as one 

could hope for, but their incorporation in the clustering phase remains a 

challenge. 

After describing practice and sketching the mathematics inspired by it, I 

now want to discuss the implementation of the entire system. See Figure 8 and 

note that there are three levels. The top level stands for practice, consisting 

of the input to CAR, its output, and the rest of the outer world. The bottom 

level represents mathematics, a collection of algorithmic modules for solving 

several types of well-defined subproblems: clustering, routing, routing subject 

to time windows, and so on. The modular setup facilitates an extension of the 

system to a broader range of practical situations. Extensions that we would 

like to attack in the near future relate to multiple depots and heterogeneous 

commodities. The middle level is the core of the system: the interface between 

practice and mathematics where the man-machine interaction takes place. Its 



90 

implementation heavily relies on advanced information technology for the graph

ical display of data and solutions in a variety of ways. Some technical data: 

CAR is written in the C programming language and uses a C implementation of the 

Graphical Kernel System; implementations are available on an IBM PC/AT with an 

IBM Professional Graphics Display and on an IBM 5160 (PC/RT) with an IBM 5085 

Graphics Display. 

I should emphasize again that the solution approach followed by CAR is not 

purely algorithmic but that the man-machine interaction is an essential feature. 

Interaction has a threefold advantage in that it adds to effectivity, efficien

cy and acceptability. First, the cooperation between man and machine leads to 

better solutions. The machine cannot be beaten in solving well-defined detailed 

problems. The human planner is superior in judging fuzzy situations, in recog

nizing global patterns, and in observing ad hoe constraints which do not form 

part of the underlying models. Secondly, these better solutions are obtained 

faster, because interaction allows for flexibility in manipulating data and in 

selecting solutions. Finally, an interactive system is more readily accepted. 

The human planner is not replaced by a black box but gets a versatile tool. 

Decision support systems 

At the CWI we are involved in the development of other interactive planning 

systems in which the same design philosophy is applied. One of these concerns 

the operational production planning for assembly lines in the Dutch clothing 

industry. Rather than going into any detail here, I would like to discuss the 

combination of interaction and algorithmics in more general terms. 

In the few formal descriptions of decision support systems which I have 

seen, whether they were logical, technical or functional, there was always an 

implicit three-level structure, which is made explicit in Figure 9. The core 

of the system is the man-machine interaction, the dialogue between user and 

computer. on the practical level, the input consists of all kinds of data and 

also "scenarios", i.e., solutions and strategies proposed to the system. The 

output is, of course, decision support. And the communication with other sys

tems is a very important subject but it falls outside the decision support 

system. on the mathematical level, there is a collection of quantitative mod

els and methods. 

The system must be able to perform a broad range of functions. This range 

should include the assisting role of an automatic scratch pad and the advisory 



91 

1----- l DATA, 
~-~ 

OTHER 
~ --

DECISION 
SCENARIOS SYSTEMS SUPPORT L _____ J 

-practice 

INTERACTION, 
DIALOGUE - interaction 

MODELS & 
ALGORITHMS -mathematics 

Figure 9 Decision support system. 

role of an automatic pilot, which I already discussed in the context of CAR. 

In the first role, the interaction is essential and the computations are usu

ally restricted to "what-if analyses", i.e., evaluations of given scenarios. 

In the second role, the algorithmics is essential; it should be sufficiently 

powerful to propose solutions of a reasonable quality. 

I do not want to attempt to give anything like a definition of what a 

decision support system is. I do want to claim, however, that the ability to 

play both roles is a necessary functional condition for a system in order to 

qualify as such. The roles are at the extremes of the spectrum, and there is 

much inbetween. The aim to integrate the functions of assistant and advisor 

implies the need to combine interaction and algorithmics. This makes interac

tive decision support one of the great challenges on the interface between 

operations research and computer science. 

Let me briefly compare traditional operations research with this concept 

of a decision support system. On the practical level, decision making, some

times in terms of commands, is replaced by decision support, in terms of sug

gestions. on the level of information technology, the classical black box 

becomes transparent. on the mathematical level, the algorithms are no longer 



92 

at the core of the system. They are less visible to the user and may seem to 

be of secondary importance. However, for the investigator who is primarily 

motivated by the mathematics of operations research, a decision support system 

is like the wooden horse of Troy, enabling him to disguise his models and 

methods in an attractive fashion. Information technology provides facilities 

for manipulating information, but these facilities only pertain to the form. 

The practical situation in question has to give substance to the information, 

and some sort of mathematical abstraction is needed to make the manipulation 

meaningful. 

Expert systems 

I would like to spend the last few minutes on expert systems. Please do not 

ask me what an expert system is. As the term suggests, it should encapsulate 

human expertise, in terms of knowledge and inference power, for a certain 

application area. But it remains a very vague notion, at least in operations 

research. The expertise of today may be common knowledge tomorrow. Sometimes 

a straightforward collection of heuristic rules is called an expert system 

because it outperforms experts. That is fine, but it deprives the notion of 

its contents. 

I will sketch one type of system which, in my opinion, deserves the name. 

It receives as input the description of a problem type or situation (rather 

than the data of a specific problem instance). It gives as output a mathemat

ical model and a suggestion of a suitable algorithmic approach (rather than a 

specific numerical solution) • Input and output are concepts of a higher order 

than we are used to in traditional operations research or interactive decision 

support. And the transformation can only be made on the basis of a formal rep

resentation of operations research expertise. 

Back in 1975, we built a system of this type. It is called MSPCLASS and 

handles a class of 4,536 deterministic machine scheduling problems. As any 

expert system, it has a knowledge base and an inference engine. The knowledge 

base consists of a subclass of known easy problems, a subclass of known NP-hard 

problems, and a partial order on the entire class. The partial order is denoted 

by an arrow: +; X+Y means that problem Y is at least as hard as problem X. The 

inference engine applies four rules: 

if X+Y and Y is easy, then x is easy; 

if X+Y and X is NP-hard, then Y is NP-hard; 



93 

if X is easy and there is no easy Y with X+Y, then x is maximally easy; 

if Y is NP-hard and there is no NP-hard X with X+Y, then Y is minimally 

NP-hard. 

MSPCLASS registrates our current knowledge by partitioning the entire class 

into three subclasses of easy, NP-hard and open problems. It also determines 

the borderlines between the subclasses by identifying the maximal and minimal 

problems in each subclass. This feature turned out to be helpful in suggesting 

future research. 

In a technical sense, there is nothing sophisticated about MSPCLASS. All 

we need are elementary operations on the product of seven directed graphs. In 

a functional sense, MSPCLASS represents the bottom of the type of system I am 

discussing. The algorithmic suggestion implied by the complexity classification 

is certainly a very global one. However, in a conceptual sense, MSPCLASS fully 

qualifies, although we did not realize this at the time. 

One of the things we intend to do in the near future is to build a system 

of this type for a broader input class of more practical relevance, the routing 

and scheduling of vehicles and crews, and also with a broader range of output 

statements than the bare distinction between easy and NP-hard. The system might 

consist of two phases: one phase in which a question-and-answer game transforms 

a practical decision situation into a rough model, and a second phase in which 

true expertise is applied to strip the rough model to a tractable model. This 

might lead to a third phase in which a decision support system is selected and 

applied. 

It is in the development of such systems where the needs from practice 

and the possibilities offered by theory, from complexity theory to mathematical 

programming, are meeting. 

Acknowledgement 

The work which I reported on decision support and expert systems is carried out 

by the combinatorial optimization group at the Centre for Mathematics and Com

puter Science (CWI) in Amsterdam. The views which I expressed on these subjects 

are based on discussions with members of the group. I am pleased to acknowledge 

the contributions by J.M. Anthonisse, G.A.P. Kindervater, B.J. Lageweg, and 

M.W.P. Savelsbergh. 



94 

Bibliographical notes 

A volume of annotated bibliographies [O'hEigeartaigh et al., 1985] provides 

classified reviews of the recent literature in four interface areas, namely 

complexity [Papadimitriou, 1985], probabilistic analysis [Karp et al., 1985), 

randomization [Maffioli et al., 1985], and parallelism [Kindervater & Lenstra, 

1985). A tutorial introduction to the latter subject is given by Kindervater & 

Lenstra [1986]. For the Fisher-Jaikumar algorithm and much more on vehicle 

routing, see the annotated bibliography and the survey by Christofides [1985a, 

1985b]. MSPCLASS is described by Lageweg et al. (1982]. 

References 

N. Christofides (1985a). Vehicle routing. [O'hEigeartaigh et al., 1985), 148-

163. 

N. Christofides (1985b). Vehicle routing. [Lawler et al., 1985], 431-448. 

R.M. Karp, J.K. Lenstra, C.J.H. McDiarmid, A.H.G. Rinnooy Kan (1985). Proba

bilistic analysis. [O'hEigeartaigh et al., 1985], 52-88. 

G.A.P. Kindervater, J.K. Lenstra (1985). Parallel algorithms. [O'hEigeartaigh 

et al., 1985], 106-128. 

G.A.P. Kindervater, J.K. Lenstra (1986). An introduction to parallelism in 

combinatorial optimization. Discrete Appl. Math. 14, 135-156. 

B.J. Lageweg, J.K. Lenstra, E.L. Lawler, A.H.G. Rinnooy Kan (1982). Computer

aided complexity classification of combinatorial problems. Comm. ACM 25, 

817-822. 

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (eds.) (1985). The 

Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, 

Wiley, Chichester. 

F. Maffioli, M.G. Speranza, C. Vercellis (1985). Randomized algorithms. 

[O'hEigeartaigh et al., 1985), 89-105. 

M. O'hEigeartaigh, J.K. Lenstra, A.H.G. Rinnooy Kan (eds.) (1985). Combinato

rial Optimization: Annotated Bibliographies, Wiley, Chichester. 

C.H. Papadimitriou (1985). Computational complexity. [o'hEigeartaigh et al., 

1985], 39-51. 


