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1. Introduction 

The origin of the study of process semantics can be situated in the field of 
automata theory and formal languages. Typically, the abstract view that is 
taken in this field leaves from a process only its set of execution traces, the 
language determined by the process behavior associated to some abstract 
machine. Although this abstraction from all but the execution traces is the 
right one for a vast area of applications, Milner [27, 29] observed in his seminal 
book that it precludes one from modeling, in a satisfactory way, certain 
features that arise when communication between abstract machines is consid
ered, such as deadlock behavior. The same observation was made by Hoare, 
who initially provided his CSP with a trace semantics [18] but later preferred a 
less abstracting semantics-the so-called failure semantics [9, 19]. In recent 
years, much work has been done and is going on to study such process 
semantics that do not go all the way to the abstraction to trace sets or 
languages. 

However, much less work has been done to explore the relationships be
tween the "classical" and well-established theory of automata and formal 
languages and the more recent views on processes. As one example of such an 
exploration, we mention [13], where the trace semantics is called linear time 
semantics (LT) and the less-abstract process semantics is called branching time 
semantics (BT). For more work in the same direction, see [14] and [26]. 

The present paper also addresses a question that arises from the comparison 
of LT and BT. The problem is as follows: As is well known, the equality 
problem for context-free languages is unsolvable, meaning that it is undecid
able whether two context-free grammars have the same (finite) trace semantics. 
With the availability of more discriminating process semantics, such as Milner's 
bisimulation semantics or Hoare's failure semantics, it is natural to ask whether 
the equality problem for context-free grammars is also unsolvable in such a finer 
semantics. In this paper, we only look at bisimulation semantics (for some other 
process semantics such as failure semantics, see Section 9). For the question to 
make sense, we have to transpose the concept of a context-free grammar to the 
setting of process algebra, as we collectively call the algebraic approaches to 
process semantics that are exemplified by the work of Milner [27-29] and of 
Hoare [9, 19]. This transposition is rather obvious: Every context-free grammar 
can be converted (while retaining the same trace semantics) to a context-free 
grammar in Greibach Normal Form. And such a grammar in GNF is just 
another notation for what is known in process algebra as a process specifica
tion by means of a system of guarded recursion equations. (An alternative 
notation for a system of recursion equations can be obtained in JL-calculus, see 
[26] or [28].) 

So the question that we consider is: 

Is the equality problem for context-free grammars in Greibach Normal 
Form, or, equivalently for process specifications by means of systems of 
guarded recursion equations in the signature of Basic Process Algebra, 
solvable when "equality" refers to bisimulation equivalence? 

Here the word "basic" in Basic Process Algebra (or BPA) indicates that only 
process operators + and · are present, and no parallel or other operators. 
(Roughly, these operators can be compared with "union" and "concatenation," 
respectively, in trace semantics.) 
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Remarkably, the answer is affirmative, if we adopt the natural restriction to 
grammars without useless symbols and useless productions. In hindsight, this is 
not too surprising, since processes under bisimulation semantics contain much 
more information than their abstractions, the corresponding finite trace sets 
(the context-free languages). The proof of the decidability is based upon the 
fact that the processes (under bisimulation semantics) that yield the context-free 
languages as their trace sets, display a very periodical structure that can be 
made explicit in the corresponding process graphs or transition diagrams. This 
periodicity may in itself be illuminating when context-free languages are 
considered. For instance, it would be interesting to derive well-known periodic
ity properties of context-free languages, such as the Pumping Lemma, directly 
from the periodicity of the "underlying" processes. 

The proof below employs, in an essential way, the supposition that the 
context-free grammar has no useless symbols and productions, that is, useless 
as regards generating the context-free language. A more general question, 
however, would be the one without this assumption, that is, the question: "Is 
bisimulation equivalence decidable for all guarded recursive process specifica
tions in BPA?" This question is specific for process algebra and "too general" 
to be of interest for the theory of formal languages when only sets of finite 
traces are considered, but would be of interest when infinitary trace languages 
are considered also. 

In Section 8, we show how, as a very straightforward corollary of the main 
theorem, we find the well-known result of decidability of equality for simple 
context-free languages. Section 9, finally, contains some further questions and 
remarks; we also mention some alternative proofs of the main theorem, which 
have been given subsequent to the first version of this paper [3]. 

2. Context-Free Languages 

For definitions and terminology concerning context-free grammars (CFGs) and 
context-free languages (CFLs), we refer to [20]. In this preliminary section, we 
recall some basic facts that will be used in the sequel. The following example 
fixes some notation: 

Example 2.1 

NOTE: This is EXample 4.3 in [20]. 

(i) {S - aB, S - bA, A - a, A - aS, A - bAA, B - b, B - bS, B ~ aBB} 
is the CFG with variables S, A, B, terf11inals a, b and start symbol S. The 
corresponding CFL consists of all words w E {a, b}* containing an equal 
nonzero number of a's and b's, as will be apparent from an inspection of 
the process graph determined by this CFG, in the sequel (Example 6.2.4). 

(ii) Henceforth, we write CFGs using the bar notation, in which the CFG of (i) 
looks like 

S - aBlbA 

A - alaSlbAA 

B - blbSlaBB. 

We suppose that all our CFLs do not contain the empty word E; hence, we 
may suppose that no CFG contains an E-production, that is, a production of 
the form A - E. (As is well known, this does not essentially restrict generality; 
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cf. Theorem 4.3 in [20].) A property of CFOs that is often used in the sequel is 
given by the following definition: 

Definition 2.2 

(i) A CFO in which every production is of the form A ~ a a, where A is a 
variable, a is a terminal, a is a possibly empty string of variables, is said to 
be in Greibach Normal Fonn (GNF). 

(ii) If moreover the length of a (in symbols) does not exceed 2, we say that the 
CFO is in restricted GNF. (In [17], the format of restricted GNF is called 
"2-standard form".) 

Example 2.3. The CFO in Example 2.1 is in restricted GNP. 

It is well known that every CFL (without e) can be generated by a CFG in 
ONF. We even have: 

THEOREM 2.4. Every CFL without e can be generated by a CFG in restricted 
GNF. 

PROOF. See the solution to Exercise S4.16 [20] or see Lemma 6.4 [31, 
p. 100]. D 

3. Basic Process Algebra 

The axiom system Basic Process Algebra or BP A consists of the axioms in 
Table I: This axiom system is the core of a variety of more extensive process 
axiomatizations, including for instance axioms for parallel operators on pro
cesses as in ACP, Algebra of Communicating Processes (see [1], [2], and [4-8]). 
In this paper, we exclusively work in the setting of BP A. The signature of BPA 
consists of a set A = {a, b, c, ... } of constants, called atomic actions, and the 
operators + (alternative composition) and · (sequential composition). (The 
atomic actions will correspond with the terminal symbols from a CFO.) So, for 
instance, a· (b + c) · d denotes the process whose first action is "a" followed 
by a choice between b and c and concluding with action d. Often the dot · will 
be suppressed. In fact, the previous process expression denotes the same 
process as a(cd + bd), according to the axioms Al and A4 of BPA. Note, 
however, that BPA does not enable us to prove that a(cd + bd) = acd + abd. 
By a process, we mean an element of some algebra satisfying the axioms of 
BPA; the x, y, z in Table I vary over processes. Such an algebra is a process 
algebra (for BPA), for example, the initial algebra of BPA is one. 

In this paper, we are concerned with one process algebra only, namely, the 
graph model of BP A consisting of finitely branching process graphs modulo 
bisimulation. All these concepts are treated in extenso in [2], [4], and [6]; for the 
sake of completeness of the present paper, we give a short exposition. Figure 1 
contains two process graphs, g and h. Process graphs have a root node 
(indicated by the small arrow ~) and have edges labeled with elements 
a, b, c, ... from the action alphabet A. The two process graphs g, h displayed 
in Figure 1 are in fact bisimilar, that is, there exists a bisimulation between 
them. A bisimulation (from g to h) is a binary relation R with the set of nodes 
of g, NooES(g ), as domain and NooEs(h) as codomain, such that the roots of 
g, h are related and satisfying: 

(i) If s Rt and s ~a s' is an edge in g, then there is an edge t ~a t' in h 
such that s' R t'; 
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TABLE l. BASIC PROCESS ALGEBRA 

x + y = y + x Al 
(x+y)+z=x+(y+z) A2 
x + x =x A3 
(x+y)·z=x·z+y·z A4 
(x · y) · z = x · (y · z) AS 

g: 

a 

(a) (b) 

FIGURE l 
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(ii) If s R t and t ~" t' is an edge in h, then there is an edge s ~a s' in g 
such that s' R t'. 

Indeed, a bisimulation between g, h in Figure 1 is obtained by relating the 
nodes that can be joined by a horizontal line. (Incidentally, this bisimulation is 
unique.) We indicate the fact that g, h are bisimilar, thus: g 2 h. The notion 
of a bisimulation is originally due to Park [30]. 

Let G = {g, h, .. . } be the set of all finitely branching process graphs ("finitely 
branching" means that a node has only finitely many outgoing edges). Opera
tions + and · are defined on G as follows: 

- If g 1, g 2 E G, then the product g 1 • g 2 results from appending (a copy of) g 2 

at each terminal node (i.e., node without successors; this has nothing to do 
with the terminals in a CFG) of g 1, by identifying the root of g2 with that 
terminal node; 

-The sum g 1 + g 2 is the result of unwinding g 1, g2 to g'1, respectively, g~, in 
order to make the roots acyclic (i.e., not lying on a cycle of steps) and, next, 
identifying the roots. (For a more detailed definition, see [2], [4], and [6].) 

Now it turns out that bisimilarity 2 is not only an equivalence on G, but 
even a congruence with respect to the operations just defined; and further
more, we have 

G/~ I= BPA, 
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that is, the quotient structure G / ..::._ is a process algebra for BP A We refer to 
G / - as IG, the graph model of BP A. 

Each process graph g E G determines a s.et tr(g) ?f ~ompleted . tra~es, 
starting at the root and continued as far as possible, that is, either termmatmg 
in an end node, or infinite. We now drop the word "completed." For instance, 
g in Figure 1 has finite traces: a, bca, bcbdaca, and also infinite traces such as 
bdbdbd ... . We refer to the set of finite traces of g as ftr(g ). Now one can 
prove: 

PROPOSITION 3.1. Let g, h E G be bisimilar. Then, tr( g) = tr( h ), and hence 
ftr(g) = ftr(h). 

A proof will not be given here (see, e.g., [2], [4], and [6]). The proposition 
allows us to assign a trace set tr( p) and a finite trace set ftr( p) to an element p 
of IG (a "process"). 

For use in the sequel, we need the following notions: 

(1) If s is a node of process graph g E G, then (g )s is the subgraph of g 
determined by s, that is, the process graph with root s and having all nodes 
of g that are accessible from s. The edges of (g\ are inherited from g. 

(2) A process graph g is canonical if whenever for nodes s, t in g, the 
subgraphs (g ),, (g )1 are bisimi!ar, then s, t are identical. 

4. Recursive Definitions 

The model IG of Section 3 has the pleasant property that every system of 
guarded recursion equations has a unique solution in it. We explain the syntax 
of such definitions (also called specifications) in this section, and also point out 
the relation with CFGs. 

Definition 4.1 

(i) A system of recursion equations (over EPA) is a pair (X0 , E), where X 0 is a 
recursion variable and E is a finite set of recursion equations {X; = 
S;(Xo, ... ' Xn) Ii = 0, ... ' n}. We indicate the tuple Xo, ... ' xn by x. The S;(X) 
are process expressions in the signature of EPA, possibly containing occurrences of 
the recursion variables in X. The variable X0 is the root variable. Usually, we omit 
mentioning the root variable when presenting a system of recursion equations, with 
the understanding that it is the first variable in the actual presentation. 

(ii) Suppose that the right-hand side of a recursion equation X; = s;(X) is in 
normal form with respect to applications from left to right of axiom A4 in Table I, 
that is, (x + y )z = xz + yz. Such a recursion equation X; = s;(X) is guarded if 
every occurrence of Xj (j = 0, ... , n) in s;(X) is preceded ("guarded") by an atom 
from the action alphabet; more precisely, every occurrence of X. is in a subexpres
sion of the form a · s' for some atom a and expression s'. For ihstance, 

X0 = aX1 + X2 • b · X 2 

is not guarded, as the first occurrence of X 2 is unguarded; but the recursion 
equation 

is guarded. 
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If the right-hand side of X; = s;(X) is not in normal form with respect to axiom 
A 4, the recursion equation is said to be guarded if it is so after bringing the 
right-hand side into A4-normal form. 

A system of guarded recursion equations is also called a guarded system. 
(iii) An expression without visible brackets is one in which all +-operators 

precede, in the term formation, the ·-operators. For example, aX1 + X 2 • b · X 2 is 
without visible brackets, but c(aX1 + X2 • b · X2 ) is not. A recursion equation is 
without visible brackets if its right-hand side is. Note that it is not possible to prove 
each expression in BPA equal to one without visible brackets. 

(iv) If a system E of recursion equations is guarded and without visible brackets, 
each recursion equation is of the form 

X; = Ejaj · aj 

where aj is a possibly empty product of atoms and variables (in case it is empty, 
aj · aj is just a/ Now if, moreover, a; is exclusively a product of variables, Eis 
said to be in Greibach Normal Form (GNF), analogous to the same definition for 
CFGs. If each aj in E has length not exceeding 2, Eis in restricted GNF. 

A well-known fact, for whose proof we refer to [2], [ 4], and [6], is: 

PROPOSITION 4.2. A guarded system of recursion equations has a unique 
solution in G. 

PROPOSITION 4.3. Each guarded system E of recursion equations over BPA 
can, without altering the solution in G, be converled to a system E' in restricted 
GNF. 

PROOF. The conversion to a system in GNF is obvious. To prove that the 
system can be converted to restricted GNF, assume that a system E in GNP is 
given with variables X;, i = 1, ... , n. Introduce new variables U;j for the 
products X;Xj, all i, j. Replace each string (i.e., product) over X in E by the 
corresponding string that uses the U-variables, starting the consecutive replace
ments from the left. Then, form equations for U;j. Then, use again the 
abbreviations U;j. This reduces the maximal length of the original strings by at 
least one, if it is 3 or more. D 

Example 4.4 

(i) Let E be the guarded system consisting of the single equation X = a(X + 
b)XX. Then, a conversion to GNF may yield {X = aYXX', Y = b + aYXX'}. 

(ii) Let E be the system in GNF {X =a + bXYX, Y = b + cYXY}. Then a 
conversion to restricted GNF may yield 

{X =a + bUX, U = XY = aY + bUXY = aY + bUU, 

Y = b + cW, V = YX = bX + cW}. 

Henceforth, all our systems of recursion equations will be in restricted GNF. The 
reason to prefer the GNF format of systems of recursion equations or CFGs is 
that it implies in process algebra a well-understood theory of finding solutions. 
In principle, it would also be possible to consider CFGs in say Chomsky 
Normal Form or even general CFGs; then, the corresponding systems of 
recursion equations would in general be unguarded. Now, although such 
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A~ 
(a) 

(b) 

FIGURE2 

systems have always a solution in G, these solutions are in general not unique 
for unguarded systems. Nevertheless, one can associate to a system of recur
sion equations, possibly unguarded, a certain solution that has again the 
"intended" CFL as finite trace set; but this is much Jess straightforward than 
for the guarded case. 

Notation 4.5. If E is a system of recursion equations, £ 1 will denote the 
CFO obtained by replacing + by I, and = by ~ . The start symbol of E 1 is 
the root variable of E. 

THEOREM 4.6. Let Ebe in restricted GNF, with solution p E G. Then ftr( p) is 
just the CFL generated by E1• 

PROOF. We merely sketch the proof; filling in the details is routine. By 
Proposition 4.2 it is sufficient to consider one particular process graph g 
representing p, the solution of E. Such a graph can be found by developing E 
to a tree, in the obvious way illustrated with an example below. Now it is 
convenient, while developing, to label the nodes with the process that remains 
to be done at that stage; this process is represented by a string (i.e., a product) 
of recursion variables. For example, E = {X = a + bXX} develops to the 
graph in Figure 2(a); and since XX = (a + bXX) X = aX + bXXX we can 
develop further to the graph (a tree, in fact) in Figure 2(b); and so on. 

Clearly, the resulting possibly infinite tree is a record of all the leftmost 
derivations using start symbol X by means of the CFG E1; and the terminating 
branches in the tree correspond to derivations of words in which no variable 
occurs, that is, to members of the CPL generated by E'. For example, 
X = bXX = bbXXX = bbaXX = bbaaX = bbaaa. o 

5. Normed Processes 

We now describe a simplification algorithm to be applied to a system E of 
recursion equations in restricted GNF, yielding a system E' that does in 
general not have the same solution in the graph model G, but which has the 
same finite trace set, that is, determines the same CPL. The idea is to remove 
parts of E that do not contribute to the generation of the finite traces; cf. the 
similar procedure in [20] to remove superfluous variables and productions from 
a CFG. The algorithm is essentially the same as the one in [20], but the 
presentation below, using an underlining procedure, is more in line with our 
process algebra point of view. 



Decidability of Bisimulation Equivalence for CFL Processes 

Definition 5 .1 
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(i) A process graph g in G is perpetual if g has no finite (completed) traces. 
A process p in G is perpetual if p is represented by a perpetual process 
graph. 

(ii) The norm of a process graph g, written lgl, is the least number of steps it 
takes from the root to reach a termination node, if g is not perpetual. (So 
Jgl is the minimum length of a completed finite trace of g.) If g is 
perpetual, g has no norm. 

(iii) The norm of a node s in process graph g, written lsl, is the norm of the 
subgraph determined by s (if this subgraph is not perpetual). 

(iv) The norm of a process p is the norm of a representing process graph. A 
perpetual process has no norm. Ot is an easy exercise to prove that 
bisimulations respect norms; hence, the norm of a process is well defined.) 

(v) A process is normed if every subprocess has a norm. (Process q is called a 
subprocess of process p if p, q have representing process graphs g, h, 
respectively, such that h is a subgraph of g.) 

PROPOSITION 5.2. Every CFL is the finite trace set of a nomzed process p, 
recursively defined by means of a guarded system of recursion equations in 
restricted GNF. 

PROOF. Let E be a system of equations as in the proposition defining p. 
We underline in an iterative procedure certain subexpressions in E, with the 
interpretation that an underlined subexpression stands for a nonperpetual 
process. The procedure is as follows: 

(1) Underline all atoms in E. 
(2) Extend underlinings ~ + t ors +!,where s + t is a subexpression in E, to 

§ +tor s + f, respectively. 
(3) If the right-hand side of a recursion equation in E is totally underlined, as 

in X; = s(X), then the left-hand side is underlined: K_; = s(X) 
(4) If a variable X; is underlined, then every occurre~ce clX; in E is 

underlined. 
(5) Extend underlinings § .f to §.f. 
(6) Iterate these steps until no further underlining is generated. 
(7) Erase all summands that are not totally underlined, and all equations 

whose left-hand side consists of a variable that is not underlined. 

Example 5.3. The system 

E = {X = aY + bXZ + cXX, Y = d + eYY, Z = aZ + bYZ} 

gets the underlining 

{K = [!y + !!~Z + ~,y= <l +gr, Z = !!Z + !!YZ}. 

Hence, the boldface parts of E are discarded, yielding the system 

{x = aY + cXX, Y = d + eYY}. 

The remainder of the proof, to show that the resulting system indeed defines 
a normed process, is left to the reader. D 
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Definition 5.4. Let E be a system of recursion equations that is invariant 
under the simplification procedure described in the proof of Proposition 5.2. 
Equivalently, E has a solution which is normed. Then, E is called normed. 

We can now state the main problem of our paper. The bisimulation equiva
lence problem is the problem to decide whether two systems of recursion 
equations determine the same process (in ((),). The question now is: 

Is the bisimulation equivalence problem for normed systems of recursion 
equations solvable? 

In the remainder of this paper, we show that this is indeed so, in remarkable 
contrast with the well-known fact that the "finite trace equivalence problem" 
for such normed systems, or in other words, irredundant CFGs, is unsolvable. 
First, we demonstrate in Section 6 a periodicity phenomenon of processes 
which are normed and recursively definable in BP A, the processes that can be 
said to be the underlying processes for the generation of CFLs. 

6. Periodicity of Nomzed Processes 

To each system E of recursion equations (henceforth always supposed to be 
normed and in restricted GNF), we assign a process graph g( E) that repre
sents the process defined by E and that displays the periodicity we are looking 
for. In order to describe g(E), we first define: 

6.1. THE UNIVERSAL TREE t(E). This is the tree having as nodes all the 
words w E X* = {X1, •.. , Xn}*, where X 1, ••• , Xn are the variables used by E. 
The top node is the empty word, and will be called the termination node. The 
first level of t(E) is as in Figure 3(a); the other levels of t(E) are inductively 
generated as follows: If w is a node of t(E), then its successors are as in Fig
ure 3(b). It is important that the successors are X;w rather than wX;. 

The tree t(E) will serve as the underlying node "space" for the process 
graph g(E) determined by E, which will be defined below in Section 6.3. A 
node from this space, that is, a word x E X*, actually will denote the product 
of the (solutions for the) variables in w. For example, if w = XYYXZ, then w 
denotes the process K · Y · Y · K · ~ where K is the solution for the variable X, 
etc. 

Definition 6.1.1 

(i) Let w EX*. The translation Tw is the mapping from X* to X* defined by: 
Tw(v) = vw, the concatenation of v followed by w. The inverse translation 
T,.-: 1 is the partial mapping from X * to itself which removes the postfix w. 
A shift is an inverse translation followed by a translation: TwT,~ 1 • (So a 
shift replaces a postfix v by a postfix w.) 

(ii) Let w E X*. The length of w, Ith( w ), is the number of symbols of w. 
(iii) Let v, w EX*. The (genealogi.cal) distance d(v, w) between v and w is the 

minimum number of steps (edges) necessary to go from v to w in the tree 
t(E), where E has variables X. Alternatively, let u be the maximal 
common postfix of v, w; let v = v'u and w = w'u; then d(v, w) = lth(v') 
+ lth(w'). For example, d(XYXZXXYZ, ZflXXYZ) = lth(XYXZ) + 
/th(ZYY) = 7. (The reason for the term genealogical will be clear in 
Section 6.2.) 
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(a) (b) 

FIGURE 3 

(iv) Let v, w EX*. Then v, ware called far apart if d(v, w) > 3. (The number 
3 is connected to the restriction in "restricted GNF", as will be clear 
later.) Furthermore, let X* 2 V, W. Then, the sets V, Ware far apart if all 
pairs v E V, w E W are far apart. 

(v) The sphere with centre wand radius r (a natural number), notation B(w, r), 
is the subset of X* consisting of all v whose distance to w does not ex
ceed r. 

Definition 6.1.2 

(i) Let V = {V;li EI} be a collection of subsets of X*. Suppose V contains a 
subcollection W = {Jtjlj E J}, I 2 J, such that every V;(i E /) can be 
obtained by translation of some Jtj(j E J), that is, V; = Tw(Uj) for some w. 

Then, W is called a basis (with respect to translations) for V. 
(ii) Let X* 2 V, W and suppose for some U and v, w we have: TJU) = V, 

Tw(U) = W. Then, we say that V, W are equivalent modulo translation, 
notation V =T W. 

PROPOSITION 6.1.3 

(i) =r is an equivalence relation. 
(ii) If V =r W, then V, W differ by a shift. 

PROOF 

(i) To prove the transitivity, note that if sets V, W can be translated to a 
common set U, then either V can be translated to W or vice versa. More 
precisely: suppose V1 =r V2 and V2 =T V3. Take U1, U2 , w 1, w2, w2, w3 such 
that 

Tw1<U1) = v,, Tw2<U1) = V2, 

Tw2·<U2) = V2, Tw3(Uz) = V3. 

Now consider w2 and w;. Suppose that /th(w 2) ;;:::: lth(w;); the other case is 
entirely analogous. Let w be the word obtained from w2 by deleting the 
last lth(w;) symbols. We claim that Tw(U1) = U2 ; the proof of the claim is 
easy. Now 

so Vi =T V3. 
(ii) Easy. D 

PROPOSITION 6.1.4 

(i) Let B, be the collection of all spheres with a fixed radius r. Then B, has a 
finite basis. 
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FIGURE 4 

(ii) B, is finitely partitioned by the translation equivalence. 

PROOF 

(i) It is not hard to check that the spheres B( w, r) with l th( w) s; r form a 
basis. 

(ii) Immediately from (i). D 

Example 6.1.5. See Figure 4, where X = {X, Y} and where B(YX, 1) is 
indicated. A basis for the collection of all spheres with radius 1 is given by the 
three spheres B(E, 1) = {E, X, Y}, B(X, 1) = {E, X, XX, YX}, and B(Y, 1) = 
{E, Y, XY, YY}. 

Definition 6.1.6 

(i) If a subset V of X* is contained in some B( w, r ), V is called r-bounded. 
(ii) If V = {v;li E J} is a collection of subsets of X*, and: 3r Vi 3 w B( w, r) ;;;2 

v;, then the elements of V are uniformly bounded. 

PROPOSITION 6.1.7. Let V be a unifonnly bounded collection of subsets of X*. 
Then V is finitely partitioned by translation equiualence. 

PROOF. Clear from the preceding proposition, since the number of subsets 
of B(w, r) is bounded by a constant depending only from r. D 

PROPOSITION 6.1.8. Let W be a subset of X*, where X is the list of variables 
used by E, such that: 

(i) 3c 1, c2 EN Vw E W c1 ::::; /th(w)::::; c2 , 

(ii) W cannot be partitioned into W1, W2 which are far apart. 

Then W is contained in a sphere B(w, r) where r depends only from c 1, c 2 • 

PROOF. It is not hard to check that for a pair of points in a set W as in the 
proposition, the distance is in fact bounded by 2(c2 - c 1 ) + 2. D 

This proposition says that if horizontal slices of thickness c 2 - c 1 are taken 
from the tree t( E), and the slices of the tree are further divided into "parts" 
that are far apart, then the collection of these "parts" is uniformly bounded. 
See Figure 5, where X = {X, Y} and where the slices have thickness 1; the 
"parts" are contained by the indicated rectangles. 
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FIGURE 5 

Before defining the process graph g(E), we make a simple observation about 
he relation of the length and the norm function. Our assumption is that E is 
lormed, that is, all perpetual parts have been pruned away as described in 
:>roposition 5.2. That means that all subprocesses of the solution of E, which 
lre of the form w EX*, have a norm lwl, the distance in steps to termination. 
[t is easy to determine the relationship between /th(w) and lwl: 

PROPOSITION 6.1.9. Let Ebe a normed system of recursion equations and I.I 
~he corresponding norm. Then: 

(i) lwvl = lwl + lvl, 
(ii) lwl = c 1.IX11 + ··· +cwlXnl, where c;U = 1, ... , n) is the number of occur

rences of X; in w, 
(iii) the length function and the norm function are linearly equivalent in this sense: 

for some constants n 1 and n 2 we have for all w 

lwl::; n 1.lth(w), 

Ith( w) :S: n 2 .lwl. 

PROOF. (i) is trivial, (ii) follows at once from (i) and (iii) follows from (ii) by 
setting n 1 = max(IX11, .. ., IXnD and n 2 = 1. 0 

Remark 6.1.10. Using the preceding proposition it is not hard to prove a 
proposition analogous to Proposition 6.1.8 where /th(w) is replaced by lwl. 

6.2. THE PROCESS GRAPH g(E). According to the equations in E, we now 
fill in, in the obvious manner, labeled edges in t(E). This will not give rise 
immediately to g(E), but first to an intermediate graph g'(E) from which 
g(E) originates by leaving out inaccessible parts (inaccessible from the root 
node, X1). For instance, if 

E = {X =a+ bYX, Y = c + dXY}, 

then the upper part of t(E) gets the edges, drawn boldface in Figure 6(a). 
This basic figure (the boldface part) corresponds just to the equations of E. 

But these equations give also rise to the following equations, for every w E 
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{X, Y}* (of course, considered as a product): 

Xw = (a + bYX)w = aw + bYXw, 
Yw = (c + dXY)w =cw + dXYw. 

J. C. M. BAETEN ET AL 

These equations yield the edges in t(E) as in Figure 6(b). So, the graph we 
want originates by reiterating the basic figure in Figure 6(a) wherever possible 
in t(E). The result is g'(E) as in Figure 7. 

However, it is easily seen that large parts (the shaded rectangles in Figure 7) 
of the graph g'(E) are inaccessible from the root X. After leaving these out, 
we have g(E), which has a "linear" structure; it is the graph in Figure l(a), 
Section 3. 

Erample 6.2.l. Let E be {X =a+ bXY, Y = c + dYX}. Then, g'(E) = 
g(E), that is, g(E) uses all nodes of the tree t(E), as one easily verifies. 

Example 6.2.2. The previous two systems of equations were as "economical" 
as possible and therefore the process graph coincided in fact with the canonical 
process graph of the solution. The present example is one where this is not 
so-it consists of a reworking of the system used as example in the introduc
tion of this section: 

E = {X =a+ bU, U = cX + dZX, Y = c + dZ, Z = aY + bYU}. 
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FIGURE 8 

FIGURE 9 

(This system originates from the above one by putting U = YX, Z = XY, etc.) 

We show the "basic figure", in Figure 8. The process graph g(E) is shown in 

Figure 9. In this case, g(E) is not identical to the canonical process graph. 

Note that, by the restriction in "restricted GNF," the only possible arrows 

(edges) in g(E) are: 

(i) from a node to itself, 
(ii) from a node to its "mother" (e.g., XX -?" X in Figure 7), 

(iii) from a node to a "daughter" (e.g., X-X -?h YX-X in Figure 7), 

(iv) from a node to a "sister" (e.g., X -? c U in Figure 8, 9), 

(v) from a node to a "niece" (i.e., daughter of a sister, e.g., U -? d ZX m 

Figure 8, 9). 
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So, in all cases the nodes connected by an edge of g( E) have distance 0, 1, 2, 
or 3. 

In the rest of this paper, we will present graphs g(E) such that the nonns are 
"respected graphically", that is, a node with nonn n will be positioned on level n. 

Thus, Figure 9 becomes as shown in Figure 10. 
Note that the graphs of Figure 7 (the unshaded "linear" graph also appear

ing in Figure l(a), Section 3) and Figure 10 (also in Figure l(b)) are bisimilar, 
as can be seen by relating all nodes on the same level. This example of two 
bisimilar process graphs shows that our bisimulation equivalence has nothing 
to do with the so-called "structural equivalence" or "strong equivalence" of 
CFGs (see [32, p. 287]), an equivalence notion that also happens to be 
decidable. (See also Problem 26 in Section 10.4 of [17].) Indeed, the "parenthe
sized versions" (see [32]) of both CFGs yield different languages (e.g., the word 
(b(c)(a)) is in the first CFL but not in the second, whereas (b(c(a))) is in the 
second but not in the first). 

Example 6.2.3. Let E be 

{ X = a + b Y + fXY, Y = cX + dZ, Z = gX + eXZ}. 

Then, g(E) is as shown in Figure 11. 

Example 6.2.4. Let E be 

{X = dY + bZ, Y = b + bX + dYY, Z = d + dX + bZZ}. 

This example is the same as Example 2.1. The corresponding CFL consists of 
words with equal numbers of b's and d's (see Figure 12). 

Anticipating further developments, let us note here that the graphs g(E) as 
in the examples above exhibit a striking regularity; although they are, in 
general, not trees (as there may be cycles present), the process graphs g(E) 
nevertheless have, from a more global point of view, a "tree-like" structure. 
For instance, in the last example there are three "fragments" of the process 
graph that are strung together not only in tree-like fashion, but also in a 
regular way, as suggested in Figure 13. 
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FIGURE 11 

FIGURE 12 

6.3. PROCESS GRAPH FRAGMENTS. To describe the periodicity of the pro
cess graphs g( E), we need the notion of a fragment of a process graph. 

Definition 6.3. l. Let E be a system of recursion equations with variables 
X = {X1, •.• , Xn} and action alphabet A(E). 

(i) A process graph fragments in the space t(E) consists of some subset N of 
nodes of X* together with some edges w ~a v( w, v E N) labeled by atoms 
in A(E). We use a, {3, ... to denote process graph fragments. Sometimes 
we omit the word "process". 
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FIGURE 13 

(ii) Two graph fragments in t( E) are disjoint if they have no nodes in 
common. 

(iii) A graph fragment is weakly connected if it cannot be partitioned into two 

graph fragments which are far apart. Note that "weakly connected" does 

not imply "connected" (i.e., indivisible into disjoint fragments). 

(iv) If a, f3 are graph fragments, the union a U f3 is the graph fragment 

obtained by taking the union of the respective nodes and edges. 

(v) Translations Tw of graph fragments and translation equivalence are de

fined as for node sets, with the extra understanding that a translation also 
respects labeled edges. 

PROPOSITION 6.3.2. If a, a' are graph fragments in g(E), and a =r a', then 

there are words w,v such that a= T,,(T:; 1(a')). 

PROOF. Evident from the definitions. O 

PROPOSITION 6.3.3. Let a be a graph fragment of g(E) such that 

(i) 3c1, c2 E N 'rfw E a c 1 :s; lwl s c2, and 
(ii) a is weakly connected. 

Then a is contained by a sphere B( w, r) where r only depends (in a computable 
way) from c 1' c2 and E. 

PROOF. By Proposition 6.1.8 (or rather its analogous version mentioned in 
Remark 6.1.10). D 

PROPOSITION 6.3.4. Let (a); e 1 be a collection of fragments of g( E). Let the 

a, be unifonnly bounded. Then the collection is finitely partitioned by translation 

equivalence. Moreover, the number of elements of the partition can be computed 
from E. 

PROOF. At once from Proposition 6.1.7 and 6.3.3. o 

6.4. REGULAR DECOMPOSITIONS. We are now arriving at the heart of the 

matter. First, we define what is meant by a "regular decomposition" (also 
called "periodical decomposition"). 
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FIGURE 14 

Definition 6.4.1. A regular node-labeled tree T is a tree T with a labeling of 
the nodes, such that there are (modulo isomorphism of node-labeled trees) 
only finitely many subtrees. 

NOTE: The labels can be any mathematical objects-in our case, they will be complicated 
objects, viz. translation equivalence classes of process graph fragments. 

Definition 6.4.2. A regular decomposition of the process graph g(E) is a tree 
lf where each node s is labeled with a process graph fragment fr" such that 

-each a5 is a finite graph fragment in t(E), 
-the union of all as is g(E), 
-for nodes s, t in lf, a, and a1 are disjoint iff s, t are not connected by a 

single edge in lf, 
-the collection of a5 (all nodes s in lf) is finitely partitioned by translation 

equivalence, 
-if g 1, ••• , !lk denote the finitely many equivalence classes in which the a_, 

are partitioned, and each label as is replaced by the label denoting its 
equivalence class, the resulting node-labeled tree lf' is regular. 

Example 6.4.3. Let lf' be the regular tree as in Figure 14. Then, the actual 
tree 11 has the same tree structure and as node labels: fragments a" which are 
translation equivalent in the way indicated by lf'. 

The following proposition is essential in the proof of the existence of a 
regular decomposition: 

PROPOSITION 6.4.4. Let a and a' be fragments of g(E), which are translation 
equivalent. Lets be a node in a that has a length not minimal in a. Suppose 
s ~a t is an edge such that a U {s ~a t} is again a fragment of g(E). Lets' be 
the point in a' corresponding (after the same shift as from a to a') to s. 

Then there is a t' and an edge s' ~a t' such that a' U {s' ~a t') is also a 
fragment of g(E); moreover, the two extended fragments are again translation 
equivalent by the same shift. 

PROOF. (See Figure 15.) Since a =r a', there are w, v EX* such that 
a'= Tv(T; 1(a)). Sos= uw for some u EX* and s' = uu. Since the length of 
s is not minimal in a, u is not empty. So s and s' start with the same variable; 
say, s = X;u'w and s' = X;u'v. In particular, ifs ~at is a step obtained from 
the recursion equation X; = · ·· +au" + ··· (i.e., from the displayed summand, 
where u" EX*), then t = u"u'w, and we have the steps' = X;u' u ~a u"u' v = 
t'. So the step s' ~" t' is at least in g'( E) (the graph where also inaccessible 
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FIGURE 15 

parts are present, see Section 6.2). It is also in g( E), because t' is an accessible 
node. This is so as s' is accessible, being a node in a' which is in g(E). 
Therefore, a' U {s' ~a t'} is indeed a fragment of g( E), and clearly it is 
equivalent to a U {s ~a t} by the same shift T,,T:; 1• D 

We now define the decomposition that will be proved to be regular in 
Theorem 6.4.8. 

Definition 6.4.5. Let g(E) be the process graph corresponding to E. 

(i) g(E) will be divided in fragments called slices, numbered 0, 1, 2, 3, .... 
Each slice has thickness d; we also call d the amplitude of the decomposi
tion. 

(ii) The nth slice (n = 0, 1, 2, 3, ... ) contains the nodes s of g( E) with 
n.d ,s; lsl :s; (n + 1).d and moreover those nodes reachable by one step in 
g(E) from a node s with n.d < isl < (n + 1).d. For instance, in Figure 16, 
slice 1 of thickness 2 is displayed of the process graph in Figure 11. 

(iii) The nodes s in the nth slice with lsl :s; n.d are called the upper nodes of 
the nth slice; the nodes s with lsl ~ (n + 1).d are the bottom nodes of the 
nth slice. 

(iv) The nth slice is now the fragment of g(E) obtained by taking the 
restriction of g(E) to the set of nodes of the nth slice. (In the example of 
Figure 16, the boldface part.) 

Each slice will now be partitioned into maximal weakly connected graph 
fragments. More precisely: 

Definition 6.4.6 

(i) The nodes of the nth slice will be partitioned into equivalence classes as 
follows: Define for nodes s, t in the nth slice: s ~ t if s, t have distance 0, 
1, 2, or 3. Let ~ be the transitive closure of ~ . Clearly, this is an 
equivalence relation on the nodes of the nth slice, partitioning these nodes 
into equivalence classes denoted by [s].., . 

(ii) The restriction of g( E) to the set of nodes [ s L. in slice n, is called a 
principal fragment. Note that the principal fragments of g(E) are uniquely 
determined, once the decomposition in slices is given. 
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FIGURE 16 

PROPOSITION 6.4.7. Let g(E) be divided in slices. Then the corresponding 
principal fragments of g(E) are uniformly bounded, and hence, finitely partitioned 
by translation equivalence. Moreover, the number of principal fragments of g(E) 
can be computed from E. 

PROOF. By the construction in Definition 6.4.6, each two principal frag
ments of slice n are far apart (Definition 6.1.l(iv)). Now, using Proposition 
6.1.8 (or rather its analogous version mentioned in Remark 6.1.10), we have 
that the collection of all principal fragments (of all slices) of g(E) is a 
uniformly bounded collection. Proposition 6.3.4 states that the collection of 
principal fragments is finitely partitioned by translation equivalence, and that 
the number of elements is computable from E. D 

THEOREM 6.4.8. Let E be a normed system of recursion equations in restricted 
GNF, in the signature of BPA, and let g(E) be the corresponding normed process 
graph. Then g(E) has a regu,lar decomposition; moreover, the amplitude d of the 
decomposition can be chosen arbitrarily such that d ~ c(E) for some constant 
c(E) computable from E. 

PROOF. Consider the decomposition with amplitude d as just defined. 

(i) It is easy to see that the tree of fragments thus obtained is indeed a tree. 
To prove this, we must show that a situation (e.g., as in Figure 17) cannot 
happen. The reason that such a "confluence" is impossible is that (all 
points of) (3 and y are too far apart. Going downwards from such points 
only increases the distance-hence, there is no confluence of lower 
principal fragments possible. 

(ii) There are only finitely many labels (fragments) modulo translation equiva
lence. This follows from Propositions 6.3.3 and 6.3.4. 

(iii) Next, we must prove the regularity of the decomposition. So consider two 
nodes s, t in lf occupied by as, a 1 with as =r a 1• Let lf,, lf1 be the 
subtrees of lf determined by s, t, respectively. Further, let Gs, G1 be the 
graph fragments of g(E) obtained by taking the unions of all the labels in 
lfs, respectively, lf1• 
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translation equivalent to their unprimed versions), such that the restriction of 
R to a X f3 coincides, modulo translation equivalence =T , with the restric
tion of R to a' X /3'. (Of course, =T extends to pairs of nodes (s, t) 
coordinate-wise.) 

If for each pair a, f3 in the k th slice such a copy a', f3' exists, then the 
partial bisimulation R is called d-sufficient. 

Definition 7.4. Let a partial bisimulation R as in Definition 7.3 be given, 
which is sufficient. Then, the periodical continuation of R is constructed as 
follows: 

Let a, f3 be as in Definition 7.3. The partial bisimulation R is extended to 

(a 1 U ··· U an) X (/31 U ··· U /3m) 

by copying the restriction of R to 

(a; U ··· U a~) X ( 13; U ··· U /3~). 

This is done for all pairs a, f3 in slice k of g(E1), g(E2 ). It is now easily 
checked that the result is a partial bisimulation up to slice k + 1, which again 
is sufficient; for, clearly the extended partial bisimulation does not contain a 
bisimulation error-if it did, the bisimulation error was copied from an earlier 
slice, quad non. 

The periodical continuation of the sufficient, partial bisimulation R is 
obtained as the limit of this extension procedure. Clearly, it is a total 
bisimulation. 

PROPOSITION 7.5. Let g(E1), g(E2) be as before, and let R be a bisimulation 
between them. Then: 

(i) each n-prefix of Risa partial bisimulation up to n, 
(ii) R has ad-sufficient M-prefixfor each M ~ N(E1, E2, d), where N(E1, E 2 , d) 

is some constant computable from EI> E2 , and d. 

PROOF. Part (i) is obvious. Part (ii): The proof follows by elementary 
finiteness considerations; there are only finitely many possible relations 
(a x /3) n R. o 

THEOREM 7.6 

(i) Let E1, E2 be normed systems of recursion equations (over BPA) in restricted 
GNF. Then the bisimilarity relation g(E1) ~g(E2 ) is decidable. 

(ii) Equality of recursively defined normed processes in the graph model G of BPA 
is decidable. 

PROOF 

(i) According to Theorem 6.4.8 the graphs g(E1), g(E2) have a regular de
composition, with a common amplitude d. Now search through all (finitely 
many) relations between the nodes of g(E1), g(E2 ) up to level N = 

N(E1, E 2 , d).If there is no such relation that is a partial bisimulation up to 
N, there cannot be a bisimulation between g(E1), g(E2), by Proposi
tion 7.5(i). If there is such a bisimulation, this is revealed by finding a 
d-sufficient partial bisimulation up to N. 

(ii) A rephrasing of (i). D 
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In this section, we derive, as an application of the method used in this paper, 
the well-known fact that simple CFLs have a decidable equivalence problem. 

Definition 8.1 

(i) A simple CFG is a CFG in GNF such that there is no pair of different 
productions A -7 a a, A -7 a {3. Equivalently, in the notation of systems of 
guarded recursion equations in GNF, a system E is simple if it contains no 
recursion equation 

X; = · .. + aw + av + · · · , 

for different w, L' E X*. 
(ii) A CFL is simple if it can be obtained from a simple CFG. 

Definition 8.2. A process graph g is deterministic if there is no node s E g 
having two outgoing edges with the same label. 

PROPOSITION 8.3. Let E be a simple system of recursion equations in restricted 
GNP. Then g(E) is deterministic. 

PROOF. Clear. 0 

The reason for our interest in deterministic process graphs is that if they are 
normed, their bisimulation equivalence problem coincides with the equality 
problem for their finite trace sets. 

PROPOSITION 8.4. Let g, h be normed, deterministic process graphs. Then: 

g - h = ftr(g) = ftr(h). 

PROOF 

( = ): Proposition 3.1. 
( ~): Suppose ftr(g) = ftr(h). Let a E ftr(g). Then u has a unique location 

in g as well as in h. Now we connect, in a construction of a bisimulation 
between g, h, the intermediate nodes lying on a in g, h. More precisely, let if 

in g be obtained by the path 

where s0 is the root of g, s11 is a final state (termination node), and if i E A(i 
< n) such that a = (a 0)( u 1) .. · ( O"(n - 1)). Furthermore, let a in h be 
obtained by the path 

where t 0 is the root of h, t,, a final state. 
Then, we put the pairs (~\1 ,t0 ),(s 1 ,t 1 ), ••• ,(sn,t11 ) in the relation R to be 

constructed. This is done for all s E ftr(g )( = ftr(h)); result: R. 
We claim that R is a bisimulation between g and h. Proof of the claim: 

(1) The roots of g, h are related by R. 
(2) Suppose s, s' E g, t Eh are nodes such that s Rt and s -7 a s' is an edge 

of g. 

Since g is nomied, there is a path 7T from s' to a termination node r. By the 
construction of R, there is some path in g from s0 (the root) to s and some 
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FIGURE 20 

path in h from t0 (the root) such that both paths determine the same word a, 
a prefix of an element from ftr( g ). These paths in g, h are uniquely determined 
by fT, as the graphs are deterministic. So we identify these paths, for conve
nience, with the word u. (See Figure 20.) Now ua71' E ftr(g) = ftr(h). Hence, 
there must be such a path ua71' in h, and it has to pass node t. So, indeed, 
there is a step t ~a t' such that s' R t'. 0 

As a corollary, we have the following fact from [25] (or see [17, Sect. 11.10]): 

THEOREM 8.5 (KORENJAK-HOPCROFT 1966). The equicalence problem for 
simple CFLs is decidable. 

PROOF. Immediate from Theorem 7.6(i), Proposition 8.3 and Proposi
tion 8.4. D 

9. Concluding Remarks and Questions 

We have shown that equality of the processes generating CFLs is decidable, in 
remarkable contrast with the unsolvability of equality of CFLs. As equality of 
processes, we mean here the equality obtained by dividing out the well-known 
bisimulation equivalence in the domain of process graphs. The proof of the 
decidability essentially uses the fact that the process graphs associated to CFGs 
in (restricted) Greibach Normal Form possess a tree-like periodical structure, 
which in itself is interesting. It should be noted that this periodicity holds for 
all process graphs g(E) with E a system of guarded recursion equations in 
Basic Process Algebra. However, in order to prove decidability of bisimulation 
equivalence for such graphs, we have adopted the restriction that they are 
normed; that is, there are no redundant parts as regards the generation of the 
finite trace set, a CFL From the point of view of CFGs and CFLs this is 
perfectly natural; but the general question for BPA remains: Is bisimilarity of 
process graphs g(E) for all guarded recursive specifications E in BPA decidable? 
Or, rephrased: Is equality of all recursiuely defined processes in the graph model G 
of BPA decidable? We conjecture that this is the case. 1 

1 See Note Added in Proof. 
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One can associate to push-down automata (PDAs) in a similar manner a 
process; however, as pointed out in [12] (correcting an earlier statement in [3]), 
there is a PDA, even without e and deterministic, whose associated graph does 
not display the periodicity exploited in this paper. 

Several other interesting questions remain. We conclude this paper with a 
small list of such questions. First an observation: 

Remark 9.1. A regular process is one with finitely many subprocesses; 
equivalently, a regular process (in G) has a representing process graph that is 
finite. If process p is defined by a system of recursion equations using the 
singleton alphabet {a} only, is it true that p is regular? (The corresponding fact 
for CFLs is true; see Remark 7.3 in [17]. The answer is negative, as witnessed 
by 

E = {X = a(Xa + a)a} 

or, equivalently, the system 

E' = {X = aY, Y = aYZ + aU, Z = aU, U =a} 

in restricted GNP. Indeed, the CPL determined by E' is {a3nln ~ 1}, hence 
regular, but g(E') in Figure 21 shows that the process p determined by E' is 
not regular (as there are infinitely many different norms lsl for s a node in 
g(E')): 

Remark 9.2. The process graph g(E) corresponding to the system E (see 
Section 6.2) need not be a canonical process graph (cf. Figure 9); the canonical 
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process graph originates by collapsing all bisimilar subprocesses. Now one may 
ask: If g is the canonical process graph of process p, recursively defined by 
some system £, does g have a periodical decomposition? This question has 
been answered positively by [10] and [11]. This is interesting also because it 
provides a tool to obtain certain nondefinability results. For instance, the 
process BAG as defined by the recursion equation 

BAG = a(~llBAG) + b(.QllBAG) 

is the behavior of a bag over a data domain of two elements; a means: put a in 
the bag, ~ means: get a from the bag, and likewise for b. Here we have used in 
the definition an interleaving operator II as in PA, an extension of BP A with 
some axioms for II. (See [5], [6], and [7].) Now the canonical process graph of 
BAG is as in Figure 22. 

Clearly, this graph does not possess a tree-like periodical decomposition as 
we have defined before. Hence, the associated process is not definable in BP A, 
that is, the definition must use a parallel operator. (For a different proof of this 
nondefinability result, not employing the method suggested here, see [7].) 

Remark 9.3. The problem of this paper can also be considered in the setting 
of readiness or failure semantics instead of bisimulation semantics. (See [8] for 
an account of BPA with failure semantics or readiness semantics.) As these 
semantics are intermediate between bisimulation semantics and trace seman
tics, it is an interesting question whether decidability still holds. Since the first 
version of this paper as [3], this question has been answered in [23]; surpris
ingly, the answer is negative-decidability no longer holds for readiness and 
failure semantics. In [16], this undecidability result is extended to several other 
process semantics that are intermediate between bisimulation equivalence and 
trace equivalence. 

As a generalization of the main theorem in the present paper, Hiittel (21] 
has obtained a positive decidability result for so-called "branching bisimula
tion" (treated in [4]). Added to the signature of BPA, one considers "T-steps" 
(silent steps, introduced in [27] and [29]), with the notion of bisimulation called 
"branching bisimulation" (without T-steps present, this reduces to bisimulation 
as in this paper). A somewhat coarser congruence, dealing also with T-steps, is 
the one called "weak bisimulation" in [27] and [29], and called "rooted 
T-bisimulation" in [2], [4], and [6]. For this notion of bisimulation, the decidabil
ity question is open. 
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Remark 9.4. Alternative and shorter proofs of the main theorem of this 
paper have been given in [10] (by an analysis employing rewriting rules), in [22] 
(by a tableau proof method), and in [15]. 

Remark 9.5. We have been concerned with processes that may have in
finitely many states; for a decidability and complexity analysis of various 
equivalences on finite state processes, we refer to [24] and [33]. For the present 
case of infinite-state processes, but in the setting of failure and readiness 
semantics, a complexity analysis (for some subclasses of processes) has been 
given in [23 ]. 

Question 9.6. If BPA is extended to PA (see Remark 9.2), is the equivalence 
problem for recursively defined processes still decidable? And if PA is re
stricted to "prefix multiplication" as in Milner's CCS [27, 29]? 

If PA is further extended to ACP, Algebra of Communicating Processes, 
where also communication is present, the decidability no longer holds (see [7]). 

NOTE ADDED IN PROOF. Recently, Christenson et al. [12a] have solved the conjecture in 
Section 9 affirmatively. 
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