
Decidability of Bisimulation Equivalence

for Processes Generating Context-Free Languages

1. C. M. BAETEN

Unicersity of Amsterdam, Amsterdam, The Netherlands

1. A. BERGSTRA

University of Amsterdam, Amsterdam, The Netherlands; State Unit·ersity of Utrecht, Utrecht,
The Netherlands

AND

J. W. KLOP

CW!, Amsterdam, The Netherlands; Free University, Amsterdam, The Netherlands

Abstract. A context-free grammar (CFG) in Greibach Normal Form coincides, in another
notation, with a system of guarded recursion equations in Basic Process Algebra. Hence, to each
CFG, a process can be assigned as solution, which has as its set of finite traces the context-free
language (CFL) determined by that CFG. Although the equality problem for CFLs is unsolvable,
the equality problem for the processes determined by CFGs turns out to be solvable. Here,
equality on processes is given by a model of process graphs modulo bisimulation equivalence. The
proof is given by displaying a periodic structure of the process graphs determined by CFG's. As a
corollary of the periodicity, a short proof of the solvability of the equivalence problem for simple
context-free languages is given.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Model of Computa
tion-Automata; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages
-algebraic approaches to semantics; F.4.3 [Mathematical Logic and Formal Languages]: Formal
Languages-decision problems

General Terms: Theory

Additional Key Words and Phrases: Bisimulation semantics, context-free grammars, context-free
languages, process algebra, simple context-free languages

The research of J. A. Bergstra and J. W. K1op was partially supported by ESPRIT project 432:
Meteor.

Authors' addresses: J. C. M. Bacten, Computer Science Department, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; J. A. Bergstra, Computer
Science Department, University of Amsterdam, Krnislaan 409, 1098 SJ Amsterdam, The Nether
lands; J. W. Klop, CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
© 1993 ACM 0004-5411 /93 /0700-0653 $01.50

Journal of the Association for Computing Machinery, Vol. 40, No. 3, July 1993, pp. 653-682.

654 J. C. M. BAETEN ET AL

1. Introduction

The origin of the study of process semantics can be situated in the field of
automata theory and formal languages. Typically, the abstract view that is
taken in this field leaves from a process only its set of execution traces, the
language determined by the process behavior associated to some abstract
machine. Although this abstraction from all but the execution traces is the
right one for a vast area of applications, Milner [27, 29] observed in his seminal
book that it precludes one from modeling, in a satisfactory way, certain
features that arise when communication between abstract machines is consid
ered, such as deadlock behavior. The same observation was made by Hoare,
who initially provided his CSP with a trace semantics [18] but later preferred a
less abstracting semantics-the so-called failure semantics [9, 19]. In recent
years, much work has been done and is going on to study such process
semantics that do not go all the way to the abstraction to trace sets or
languages.

However, much less work has been done to explore the relationships be
tween the "classical" and well-established theory of automata and formal
languages and the more recent views on processes. As one example of such an
exploration, we mention [13], where the trace semantics is called linear time
semantics (LT) and the less-abstract process semantics is called branching time
semantics (BT). For more work in the same direction, see [14] and [26].

The present paper also addresses a question that arises from the comparison
of LT and BT. The problem is as follows: As is well known, the equality
problem for context-free languages is unsolvable, meaning that it is undecid
able whether two context-free grammars have the same (finite) trace semantics.
With the availability of more discriminating process semantics, such as Milner's
bisimulation semantics or Hoare's failure semantics, it is natural to ask whether
the equality problem for context-free grammars is also unsolvable in such a finer
semantics. In this paper, we only look at bisimulation semantics (for some other
process semantics such as failure semantics, see Section 9). For the question to
make sense, we have to transpose the concept of a context-free grammar to the
setting of process algebra, as we collectively call the algebraic approaches to
process semantics that are exemplified by the work of Milner [27-29] and of
Hoare [9, 19]. This transposition is rather obvious: Every context-free grammar
can be converted (while retaining the same trace semantics) to a context-free
grammar in Greibach Normal Form. And such a grammar in GNF is just
another notation for what is known in process algebra as a process specifica
tion by means of a system of guarded recursion equations. (An alternative
notation for a system of recursion equations can be obtained in JL-calculus, see
[26] or [28].)

So the question that we consider is:

Is the equality problem for context-free grammars in Greibach Normal
Form, or, equivalently for process specifications by means of systems of
guarded recursion equations in the signature of Basic Process Algebra,
solvable when "equality" refers to bisimulation equivalence?

Here the word "basic" in Basic Process Algebra (or BPA) indicates that only
process operators + and · are present, and no parallel or other operators.
(Roughly, these operators can be compared with "union" and "concatenation,"
respectively, in trace semantics.)

Decidability of Bisimulation Equivalence for CFL Processes 655

Remarkably, the answer is affirmative, if we adopt the natural restriction to
grammars without useless symbols and useless productions. In hindsight, this is
not too surprising, since processes under bisimulation semantics contain much
more information than their abstractions, the corresponding finite trace sets
(the context-free languages). The proof of the decidability is based upon the
fact that the processes (under bisimulation semantics) that yield the context-free
languages as their trace sets, display a very periodical structure that can be
made explicit in the corresponding process graphs or transition diagrams. This
periodicity may in itself be illuminating when context-free languages are
considered. For instance, it would be interesting to derive well-known periodic
ity properties of context-free languages, such as the Pumping Lemma, directly
from the periodicity of the "underlying" processes.

The proof below employs, in an essential way, the supposition that the
context-free grammar has no useless symbols and productions, that is, useless
as regards generating the context-free language. A more general question,
however, would be the one without this assumption, that is, the question: "Is
bisimulation equivalence decidable for all guarded recursive process specifica
tions in BPA?" This question is specific for process algebra and "too general"
to be of interest for the theory of formal languages when only sets of finite
traces are considered, but would be of interest when infinitary trace languages
are considered also.

In Section 8, we show how, as a very straightforward corollary of the main
theorem, we find the well-known result of decidability of equality for simple
context-free languages. Section 9, finally, contains some further questions and
remarks; we also mention some alternative proofs of the main theorem, which
have been given subsequent to the first version of this paper [3].

2. Context-Free Languages

For definitions and terminology concerning context-free grammars (CFGs) and
context-free languages (CFLs), we refer to [20]. In this preliminary section, we
recall some basic facts that will be used in the sequel. The following example
fixes some notation:

Example 2.1

NOTE: This is EXample 4.3 in [20].

(i) {S - aB, S - bA, A - a, A - aS, A - bAA, B - b, B - bS, B ~ aBB}
is the CFG with variables S, A, B, terf11inals a, b and start symbol S. The
corresponding CFL consists of all words w E {a, b}* containing an equal
nonzero number of a's and b's, as will be apparent from an inspection of
the process graph determined by this CFG, in the sequel (Example 6.2.4).

(ii) Henceforth, we write CFGs using the bar notation, in which the CFG of (i)
looks like

S - aBlbA

A - alaSlbAA

B - blbSlaBB.

We suppose that all our CFLs do not contain the empty word E; hence, we
may suppose that no CFG contains an E-production, that is, a production of
the form A - E. (As is well known, this does not essentially restrict generality;

656 J.C. M. BAETEN ET AL

cf. Theorem 4.3 in [20].) A property of CFOs that is often used in the sequel is
given by the following definition:

Definition 2.2

(i) A CFO in which every production is of the form A ~ a a, where A is a
variable, a is a terminal, a is a possibly empty string of variables, is said to
be in Greibach Normal Fonn (GNF).

(ii) If moreover the length of a (in symbols) does not exceed 2, we say that the
CFO is in restricted GNF. (In [17], the format of restricted GNF is called
"2-standard form".)

Example 2.3. The CFO in Example 2.1 is in restricted GNP.

It is well known that every CFL (without e) can be generated by a CFG in
ONF. We even have:

THEOREM 2.4. Every CFL without e can be generated by a CFG in restricted
GNF.

PROOF. See the solution to Exercise S4.16 [20] or see Lemma 6.4 [31,
p. 100]. D

3. Basic Process Algebra

The axiom system Basic Process Algebra or BP A consists of the axioms in
Table I: This axiom system is the core of a variety of more extensive process
axiomatizations, including for instance axioms for parallel operators on pro
cesses as in ACP, Algebra of Communicating Processes (see [1], [2], and [4-8]).
In this paper, we exclusively work in the setting of BP A. The signature of BPA
consists of a set A = {a, b, c, ... } of constants, called atomic actions, and the
operators + (alternative composition) and · (sequential composition). (The
atomic actions will correspond with the terminal symbols from a CFO.) So, for
instance, a· (b + c) · d denotes the process whose first action is "a" followed
by a choice between b and c and concluding with action d. Often the dot · will
be suppressed. In fact, the previous process expression denotes the same
process as a(cd + bd), according to the axioms Al and A4 of BPA. Note,
however, that BPA does not enable us to prove that a(cd + bd) = acd + abd.
By a process, we mean an element of some algebra satisfying the axioms of
BPA; the x, y, z in Table I vary over processes. Such an algebra is a process
algebra (for BPA), for example, the initial algebra of BPA is one.

In this paper, we are concerned with one process algebra only, namely, the
graph model of BP A consisting of finitely branching process graphs modulo
bisimulation. All these concepts are treated in extenso in [2], [4], and [6]; for the
sake of completeness of the present paper, we give a short exposition. Figure 1
contains two process graphs, g and h. Process graphs have a root node
(indicated by the small arrow ~) and have edges labeled with elements
a, b, c, ... from the action alphabet A. The two process graphs g, h displayed
in Figure 1 are in fact bisimilar, that is, there exists a bisimulation between
them. A bisimulation (from g to h) is a binary relation R with the set of nodes
of g, NooES(g), as domain and NooEs(h) as codomain, such that the roots of
g, h are related and satisfying:

(i) If s Rt and s ~a s' is an edge in g, then there is an edge t ~a t' in h
such that s' R t';

Decidability of Bisimulation Equivalence for CPL Processes

TABLE l. BASIC PROCESS ALGEBRA

x + y = y + x Al
(x+y)+z=x+(y+z) A2
x + x =x A3
(x+y)·z=x·z+y·z A4
(x · y) · z = x · (y · z) AS

g:

a

(a) (b)

FIGURE l

657

(ii) If s R t and t ~" t' is an edge in h, then there is an edge s ~a s' in g
such that s' R t'.

Indeed, a bisimulation between g, h in Figure 1 is obtained by relating the
nodes that can be joined by a horizontal line. (Incidentally, this bisimulation is
unique.) We indicate the fact that g, h are bisimilar, thus: g 2 h. The notion
of a bisimulation is originally due to Park [30].

Let G = {g, h, .. . } be the set of all finitely branching process graphs ("finitely
branching" means that a node has only finitely many outgoing edges). Opera
tions + and · are defined on G as follows:

- If g 1, g 2 E G, then the product g 1 • g 2 results from appending (a copy of) g 2

at each terminal node (i.e., node without successors; this has nothing to do
with the terminals in a CFG) of g 1, by identifying the root of g2 with that
terminal node;

-The sum g 1 + g 2 is the result of unwinding g 1, g2 to g'1, respectively, g~, in
order to make the roots acyclic (i.e., not lying on a cycle of steps) and, next,
identifying the roots. (For a more detailed definition, see [2], [4], and [6].)

Now it turns out that bisimilarity 2 is not only an equivalence on G, but
even a congruence with respect to the operations just defined; and further
more, we have

G/~ I= BPA,

658 J.C. M. BAETEN ET AL

that is, the quotient structure G / ..::._ is a process algebra for BP A We refer to
G / - as IG, the graph model of BP A.

Each process graph g E G determines a s.et tr(g) ?f ~ompleted . tra~es,
starting at the root and continued as far as possible, that is, either termmatmg
in an end node, or infinite. We now drop the word "completed." For instance,
g in Figure 1 has finite traces: a, bca, bcbdaca, and also infinite traces such as
bdbdbd We refer to the set of finite traces of g as ftr(g). Now one can
prove:

PROPOSITION 3.1. Let g, h E G be bisimilar. Then, tr(g) = tr(h), and hence
ftr(g) = ftr(h).

A proof will not be given here (see, e.g., [2], [4], and [6]). The proposition
allows us to assign a trace set tr(p) and a finite trace set ftr(p) to an element p
of IG (a "process").

For use in the sequel, we need the following notions:

(1) If s is a node of process graph g E G, then (g)s is the subgraph of g
determined by s, that is, the process graph with root s and having all nodes
of g that are accessible from s. The edges of (g\ are inherited from g.

(2) A process graph g is canonical if whenever for nodes s, t in g, the
subgraphs (g),, (g)1 are bisimi!ar, then s, t are identical.

4. Recursive Definitions

The model IG of Section 3 has the pleasant property that every system of
guarded recursion equations has a unique solution in it. We explain the syntax
of such definitions (also called specifications) in this section, and also point out
the relation with CFGs.

Definition 4.1

(i) A system of recursion equations (over EPA) is a pair (X0 , E), where X 0 is a
recursion variable and E is a finite set of recursion equations {X; =
S;(Xo, ... ' Xn) Ii = 0, ... ' n}. We indicate the tuple Xo, ... ' xn by x. The S;(X)
are process expressions in the signature of EPA, possibly containing occurrences of
the recursion variables in X. The variable X0 is the root variable. Usually, we omit
mentioning the root variable when presenting a system of recursion equations, with
the understanding that it is the first variable in the actual presentation.

(ii) Suppose that the right-hand side of a recursion equation X; = s;(X) is in
normal form with respect to applications from left to right of axiom A4 in Table I,
that is, (x + y)z = xz + yz. Such a recursion equation X; = s;(X) is guarded if
every occurrence of Xj (j = 0, ... , n) in s;(X) is preceded ("guarded") by an atom
from the action alphabet; more precisely, every occurrence of X. is in a subexpres
sion of the form a · s' for some atom a and expression s'. For ihstance,

X0 = aX1 + X2 • b · X 2

is not guarded, as the first occurrence of X 2 is unguarded; but the recursion
equation

is guarded.

Decidability of Bisimulation Equivalence for CFL Processes 659

If the right-hand side of X; = s;(X) is not in normal form with respect to axiom
A 4, the recursion equation is said to be guarded if it is so after bringing the
right-hand side into A4-normal form.

A system of guarded recursion equations is also called a guarded system.
(iii) An expression without visible brackets is one in which all +-operators

precede, in the term formation, the ·-operators. For example, aX1 + X 2 • b · X 2 is
without visible brackets, but c(aX1 + X2 • b · X2) is not. A recursion equation is
without visible brackets if its right-hand side is. Note that it is not possible to prove
each expression in BPA equal to one without visible brackets.

(iv) If a system E of recursion equations is guarded and without visible brackets,
each recursion equation is of the form

X; = Ejaj · aj

where aj is a possibly empty product of atoms and variables (in case it is empty,
aj · aj is just a/ Now if, moreover, a; is exclusively a product of variables, Eis
said to be in Greibach Normal Form (GNF), analogous to the same definition for
CFGs. If each aj in E has length not exceeding 2, Eis in restricted GNF.

A well-known fact, for whose proof we refer to [2], [4], and [6], is:

PROPOSITION 4.2. A guarded system of recursion equations has a unique
solution in G.

PROPOSITION 4.3. Each guarded system E of recursion equations over BPA
can, without altering the solution in G, be converled to a system E' in restricted
GNF.

PROOF. The conversion to a system in GNF is obvious. To prove that the
system can be converted to restricted GNF, assume that a system E in GNP is
given with variables X;, i = 1, ... , n. Introduce new variables U;j for the
products X;Xj, all i, j. Replace each string (i.e., product) over X in E by the
corresponding string that uses the U-variables, starting the consecutive replace
ments from the left. Then, form equations for U;j. Then, use again the
abbreviations U;j. This reduces the maximal length of the original strings by at
least one, if it is 3 or more. D

Example 4.4

(i) Let E be the guarded system consisting of the single equation X = a(X +
b)XX. Then, a conversion to GNF may yield {X = aYXX', Y = b + aYXX'}.

(ii) Let E be the system in GNF {X =a + bXYX, Y = b + cYXY}. Then a
conversion to restricted GNF may yield

{X =a + bUX, U = XY = aY + bUXY = aY + bUU,

Y = b + cW, V = YX = bX + cW}.

Henceforth, all our systems of recursion equations will be in restricted GNF. The
reason to prefer the GNF format of systems of recursion equations or CFGs is
that it implies in process algebra a well-understood theory of finding solutions.
In principle, it would also be possible to consider CFGs in say Chomsky
Normal Form or even general CFGs; then, the corresponding systems of
recursion equations would in general be unguarded. Now, although such

660 J. C. M. BAETEN ET AL

A~
(a)

(b)

FIGURE2

systems have always a solution in G, these solutions are in general not unique
for unguarded systems. Nevertheless, one can associate to a system of recur
sion equations, possibly unguarded, a certain solution that has again the
"intended" CFL as finite trace set; but this is much Jess straightforward than
for the guarded case.

Notation 4.5. If E is a system of recursion equations, £ 1 will denote the
CFO obtained by replacing + by I, and = by ~ . The start symbol of E 1 is
the root variable of E.

THEOREM 4.6. Let Ebe in restricted GNF, with solution p E G. Then ftr(p) is
just the CFL generated by E1•

PROOF. We merely sketch the proof; filling in the details is routine. By
Proposition 4.2 it is sufficient to consider one particular process graph g
representing p, the solution of E. Such a graph can be found by developing E
to a tree, in the obvious way illustrated with an example below. Now it is
convenient, while developing, to label the nodes with the process that remains
to be done at that stage; this process is represented by a string (i.e., a product)
of recursion variables. For example, E = {X = a + bXX} develops to the
graph in Figure 2(a); and since XX = (a + bXX) X = aX + bXXX we can
develop further to the graph (a tree, in fact) in Figure 2(b); and so on.

Clearly, the resulting possibly infinite tree is a record of all the leftmost
derivations using start symbol X by means of the CFG E1; and the terminating
branches in the tree correspond to derivations of words in which no variable
occurs, that is, to members of the CPL generated by E'. For example,
X = bXX = bbXXX = bbaXX = bbaaX = bbaaa. o

5. Normed Processes

We now describe a simplification algorithm to be applied to a system E of
recursion equations in restricted GNF, yielding a system E' that does in
general not have the same solution in the graph model G, but which has the
same finite trace set, that is, determines the same CPL. The idea is to remove
parts of E that do not contribute to the generation of the finite traces; cf. the
similar procedure in [20] to remove superfluous variables and productions from
a CFG. The algorithm is essentially the same as the one in [20], but the
presentation below, using an underlining procedure, is more in line with our
process algebra point of view.

Decidability of Bisimulation Equivalence for CFL Processes

Definition 5 .1

661

(i) A process graph g in G is perpetual if g has no finite (completed) traces.
A process p in G is perpetual if p is represented by a perpetual process
graph.

(ii) The norm of a process graph g, written lgl, is the least number of steps it
takes from the root to reach a termination node, if g is not perpetual. (So
Jgl is the minimum length of a completed finite trace of g.) If g is
perpetual, g has no norm.

(iii) The norm of a node s in process graph g, written lsl, is the norm of the
subgraph determined by s (if this subgraph is not perpetual).

(iv) The norm of a process p is the norm of a representing process graph. A
perpetual process has no norm. Ot is an easy exercise to prove that
bisimulations respect norms; hence, the norm of a process is well defined.)

(v) A process is normed if every subprocess has a norm. (Process q is called a
subprocess of process p if p, q have representing process graphs g, h,
respectively, such that h is a subgraph of g.)

PROPOSITION 5.2. Every CFL is the finite trace set of a nomzed process p,
recursively defined by means of a guarded system of recursion equations in
restricted GNF.

PROOF. Let E be a system of equations as in the proposition defining p.
We underline in an iterative procedure certain subexpressions in E, with the
interpretation that an underlined subexpression stands for a nonperpetual
process. The procedure is as follows:

(1) Underline all atoms in E.
(2) Extend underlinings ~ + t ors +!,where s + t is a subexpression in E, to

§ +tor s + f, respectively.
(3) If the right-hand side of a recursion equation in E is totally underlined, as

in X; = s(X), then the left-hand side is underlined: K_; = s(X)
(4) If a variable X; is underlined, then every occurre~ce clX; in E is

underlined.
(5) Extend underlinings § .f to §.f.
(6) Iterate these steps until no further underlining is generated.
(7) Erase all summands that are not totally underlined, and all equations

whose left-hand side consists of a variable that is not underlined.

Example 5.3. The system

E = {X = aY + bXZ + cXX, Y = d + eYY, Z = aZ + bYZ}

gets the underlining

{K = [!y + !!~Z + ~,y= <l +gr, Z = !!Z + !!YZ}.

Hence, the boldface parts of E are discarded, yielding the system

{x = aY + cXX, Y = d + eYY}.

The remainder of the proof, to show that the resulting system indeed defines
a normed process, is left to the reader. D

662 J. C. M. BAETEN ET AL

Definition 5.4. Let E be a system of recursion equations that is invariant
under the simplification procedure described in the proof of Proposition 5.2.
Equivalently, E has a solution which is normed. Then, E is called normed.

We can now state the main problem of our paper. The bisimulation equiva
lence problem is the problem to decide whether two systems of recursion
equations determine the same process (in ((),). The question now is:

Is the bisimulation equivalence problem for normed systems of recursion
equations solvable?

In the remainder of this paper, we show that this is indeed so, in remarkable
contrast with the well-known fact that the "finite trace equivalence problem"
for such normed systems, or in other words, irredundant CFGs, is unsolvable.
First, we demonstrate in Section 6 a periodicity phenomenon of processes
which are normed and recursively definable in BP A, the processes that can be
said to be the underlying processes for the generation of CFLs.

6. Periodicity of Nomzed Processes

To each system E of recursion equations (henceforth always supposed to be
normed and in restricted GNF), we assign a process graph g(E) that repre
sents the process defined by E and that displays the periodicity we are looking
for. In order to describe g(E), we first define:

6.1. THE UNIVERSAL TREE t(E). This is the tree having as nodes all the
words w E X* = {X1, •.. , Xn}*, where X 1, ••• , Xn are the variables used by E.
The top node is the empty word, and will be called the termination node. The
first level of t(E) is as in Figure 3(a); the other levels of t(E) are inductively
generated as follows: If w is a node of t(E), then its successors are as in Fig
ure 3(b). It is important that the successors are X;w rather than wX;.

The tree t(E) will serve as the underlying node "space" for the process
graph g(E) determined by E, which will be defined below in Section 6.3. A
node from this space, that is, a word x E X*, actually will denote the product
of the (solutions for the) variables in w. For example, if w = XYYXZ, then w
denotes the process K · Y · Y · K · ~ where K is the solution for the variable X,
etc.

Definition 6.1.1

(i) Let w EX*. The translation Tw is the mapping from X* to X* defined by:
Tw(v) = vw, the concatenation of v followed by w. The inverse translation
T,.-: 1 is the partial mapping from X * to itself which removes the postfix w.
A shift is an inverse translation followed by a translation: TwT,~ 1 • (So a
shift replaces a postfix v by a postfix w.)

(ii) Let w E X*. The length of w, Ith(w), is the number of symbols of w.
(iii) Let v, w EX*. The (genealogi.cal) distance d(v, w) between v and w is the

minimum number of steps (edges) necessary to go from v to w in the tree
t(E), where E has variables X. Alternatively, let u be the maximal
common postfix of v, w; let v = v'u and w = w'u; then d(v, w) = lth(v')
+ lth(w'). For example, d(XYXZXXYZ, ZflXXYZ) = lth(XYXZ) +
/th(ZYY) = 7. (The reason for the term genealogical will be clear in
Section 6.2.)

Decidability of Bisimulation Equivalence for CFL Processes 663

(a) (b)

FIGURE 3

(iv) Let v, w EX*. Then v, ware called far apart if d(v, w) > 3. (The number
3 is connected to the restriction in "restricted GNF", as will be clear
later.) Furthermore, let X* 2 V, W. Then, the sets V, Ware far apart if all
pairs v E V, w E W are far apart.

(v) The sphere with centre wand radius r (a natural number), notation B(w, r),
is the subset of X* consisting of all v whose distance to w does not ex
ceed r.

Definition 6.1.2

(i) Let V = {V;li EI} be a collection of subsets of X*. Suppose V contains a
subcollection W = {Jtjlj E J}, I 2 J, such that every V;(i E /) can be
obtained by translation of some Jtj(j E J), that is, V; = Tw(Uj) for some w.

Then, W is called a basis (with respect to translations) for V.
(ii) Let X* 2 V, W and suppose for some U and v, w we have: TJU) = V,

Tw(U) = W. Then, we say that V, W are equivalent modulo translation,
notation V =T W.

PROPOSITION 6.1.3

(i) =r is an equivalence relation.
(ii) If V =r W, then V, W differ by a shift.

PROOF

(i) To prove the transitivity, note that if sets V, W can be translated to a
common set U, then either V can be translated to W or vice versa. More
precisely: suppose V1 =r V2 and V2 =T V3. Take U1, U2 , w 1, w2, w2, w3 such
that

Tw1<U1) = v,, Tw2<U1) = V2,

Tw2·<U2) = V2, Tw3(Uz) = V3.

Now consider w2 and w;. Suppose that /th(w 2) ;;:::: lth(w;); the other case is
entirely analogous. Let w be the word obtained from w2 by deleting the
last lth(w;) symbols. We claim that Tw(U1) = U2 ; the proof of the claim is
easy. Now

so Vi =T V3.
(ii) Easy. D

PROPOSITION 6.1.4

(i) Let B, be the collection of all spheres with a fixed radius r. Then B, has a
finite basis.

664 J. C. M. BAETEN ET AL

FIGURE 4

(ii) B, is finitely partitioned by the translation equivalence.

PROOF

(i) It is not hard to check that the spheres B(w, r) with l th(w) s; r form a
basis.

(ii) Immediately from (i). D

Example 6.1.5. See Figure 4, where X = {X, Y} and where B(YX, 1) is
indicated. A basis for the collection of all spheres with radius 1 is given by the
three spheres B(E, 1) = {E, X, Y}, B(X, 1) = {E, X, XX, YX}, and B(Y, 1) =
{E, Y, XY, YY}.

Definition 6.1.6

(i) If a subset V of X* is contained in some B(w, r), V is called r-bounded.
(ii) If V = {v;li E J} is a collection of subsets of X*, and: 3r Vi 3 w B(w, r) ;;;2

v;, then the elements of V are uniformly bounded.

PROPOSITION 6.1.7. Let V be a unifonnly bounded collection of subsets of X*.
Then V is finitely partitioned by translation equiualence.

PROOF. Clear from the preceding proposition, since the number of subsets
of B(w, r) is bounded by a constant depending only from r. D

PROPOSITION 6.1.8. Let W be a subset of X*, where X is the list of variables
used by E, such that:

(i) 3c 1, c2 EN Vw E W c1 ::::; /th(w)::::; c2 ,

(ii) W cannot be partitioned into W1, W2 which are far apart.

Then W is contained in a sphere B(w, r) where r depends only from c 1, c 2 •

PROOF. It is not hard to check that for a pair of points in a set W as in the
proposition, the distance is in fact bounded by 2(c2 - c 1) + 2. D

This proposition says that if horizontal slices of thickness c 2 - c 1 are taken
from the tree t(E), and the slices of the tree are further divided into "parts"
that are far apart, then the collection of these "parts" is uniformly bounded.
See Figure 5, where X = {X, Y} and where the slices have thickness 1; the
"parts" are contained by the indicated rectangles.

)ecidability of Bisimulation Equivalence for CFL Processes 665

FIGURE 5

Before defining the process graph g(E), we make a simple observation about
he relation of the length and the norm function. Our assumption is that E is
lormed, that is, all perpetual parts have been pruned away as described in
:>roposition 5.2. That means that all subprocesses of the solution of E, which
lre of the form w EX*, have a norm lwl, the distance in steps to termination.
[t is easy to determine the relationship between /th(w) and lwl:

PROPOSITION 6.1.9. Let Ebe a normed system of recursion equations and I.I
~he corresponding norm. Then:

(i) lwvl = lwl + lvl,
(ii) lwl = c 1.IX11 + ··· +cwlXnl, where c;U = 1, ... , n) is the number of occur

rences of X; in w,
(iii) the length function and the norm function are linearly equivalent in this sense:

for some constants n 1 and n 2 we have for all w

lwl::; n 1.lth(w),

Ith(w) :S: n 2 .lwl.

PROOF. (i) is trivial, (ii) follows at once from (i) and (iii) follows from (ii) by
setting n 1 = max(IX11, .. ., IXnD and n 2 = 1. 0

Remark 6.1.10. Using the preceding proposition it is not hard to prove a
proposition analogous to Proposition 6.1.8 where /th(w) is replaced by lwl.

6.2. THE PROCESS GRAPH g(E). According to the equations in E, we now
fill in, in the obvious manner, labeled edges in t(E). This will not give rise
immediately to g(E), but first to an intermediate graph g'(E) from which
g(E) originates by leaving out inaccessible parts (inaccessible from the root
node, X1). For instance, if

E = {X =a+ bYX, Y = c + dXY},

then the upper part of t(E) gets the edges, drawn boldface in Figure 6(a).
This basic figure (the boldface part) corresponds just to the equations of E.

But these equations give also rise to the following equations, for every w E

666

(a) (b)

F!GURE6

FrouRE 7

{X, Y}* (of course, considered as a product):

Xw = (a + bYX)w = aw + bYXw,
Yw = (c + dXY)w =cw + dXYw.

J. C. M. BAETEN ET AL

These equations yield the edges in t(E) as in Figure 6(b). So, the graph we
want originates by reiterating the basic figure in Figure 6(a) wherever possible
in t(E). The result is g'(E) as in Figure 7.

However, it is easily seen that large parts (the shaded rectangles in Figure 7)
of the graph g'(E) are inaccessible from the root X. After leaving these out,
we have g(E), which has a "linear" structure; it is the graph in Figure l(a),
Section 3.

Erample 6.2.l. Let E be {X =a+ bXY, Y = c + dYX}. Then, g'(E) =
g(E), that is, g(E) uses all nodes of the tree t(E), as one easily verifies.

Example 6.2.2. The previous two systems of equations were as "economical"
as possible and therefore the process graph coincided in fact with the canonical
process graph of the solution. The present example is one where this is not
so-it consists of a reworking of the system used as example in the introduc
tion of this section:

E = {X =a+ bU, U = cX + dZX, Y = c + dZ, Z = aY + bYU}.

Decidability of Bisimulation Equivalence for CFL Processes 667

FIGURE 8

FIGURE 9

(This system originates from the above one by putting U = YX, Z = XY, etc.)

We show the "basic figure", in Figure 8. The process graph g(E) is shown in

Figure 9. In this case, g(E) is not identical to the canonical process graph.

Note that, by the restriction in "restricted GNF," the only possible arrows

(edges) in g(E) are:

(i) from a node to itself,
(ii) from a node to its "mother" (e.g., XX -?" X in Figure 7),

(iii) from a node to a "daughter" (e.g., X-X -?h YX-X in Figure 7),

(iv) from a node to a "sister" (e.g., X -? c U in Figure 8, 9),

(v) from a node to a "niece" (i.e., daughter of a sister, e.g., U -? d ZX m

Figure 8, 9).

668 J. C. M. BAETEN ET AL

0

2

FIGURE 10 3

4

So, in all cases the nodes connected by an edge of g(E) have distance 0, 1, 2,
or 3.

In the rest of this paper, we will present graphs g(E) such that the nonns are
"respected graphically", that is, a node with nonn n will be positioned on level n.

Thus, Figure 9 becomes as shown in Figure 10.
Note that the graphs of Figure 7 (the unshaded "linear" graph also appear

ing in Figure l(a), Section 3) and Figure 10 (also in Figure l(b)) are bisimilar,
as can be seen by relating all nodes on the same level. This example of two
bisimilar process graphs shows that our bisimulation equivalence has nothing
to do with the so-called "structural equivalence" or "strong equivalence" of
CFGs (see [32, p. 287]), an equivalence notion that also happens to be
decidable. (See also Problem 26 in Section 10.4 of [17].) Indeed, the "parenthe
sized versions" (see [32]) of both CFGs yield different languages (e.g., the word
(b(c)(a)) is in the first CFL but not in the second, whereas (b(c(a))) is in the
second but not in the first).

Example 6.2.3. Let E be

{ X = a + b Y + fXY, Y = cX + dZ, Z = gX + eXZ}.

Then, g(E) is as shown in Figure 11.

Example 6.2.4. Let E be

{X = dY + bZ, Y = b + bX + dYY, Z = d + dX + bZZ}.

This example is the same as Example 2.1. The corresponding CFL consists of
words with equal numbers of b's and d's (see Figure 12).

Anticipating further developments, let us note here that the graphs g(E) as
in the examples above exhibit a striking regularity; although they are, in
general, not trees (as there may be cycles present), the process graphs g(E)
nevertheless have, from a more global point of view, a "tree-like" structure.
For instance, in the last example there are three "fragments" of the process
graph that are strung together not only in tree-like fashion, but also in a
regular way, as suggested in Figure 13.

Decidability of Bisimulation Equivalence for CFL Processes 669
o~~~-Q-~~~~~~~~~~~~~~~~~

FIGURE 11

FIGURE 12

6.3. PROCESS GRAPH FRAGMENTS. To describe the periodicity of the pro
cess graphs g(E), we need the notion of a fragment of a process graph.

Definition 6.3. l. Let E be a system of recursion equations with variables
X = {X1, •.• , Xn} and action alphabet A(E).

(i) A process graph fragments in the space t(E) consists of some subset N of
nodes of X* together with some edges w ~a v(w, v E N) labeled by atoms
in A(E). We use a, {3, ... to denote process graph fragments. Sometimes
we omit the word "process".

670 J. C. M. BAETEN ET AL

FIGURE 13

(ii) Two graph fragments in t(E) are disjoint if they have no nodes in
common.

(iii) A graph fragment is weakly connected if it cannot be partitioned into two

graph fragments which are far apart. Note that "weakly connected" does

not imply "connected" (i.e., indivisible into disjoint fragments).

(iv) If a, f3 are graph fragments, the union a U f3 is the graph fragment

obtained by taking the union of the respective nodes and edges.

(v) Translations Tw of graph fragments and translation equivalence are de

fined as for node sets, with the extra understanding that a translation also
respects labeled edges.

PROPOSITION 6.3.2. If a, a' are graph fragments in g(E), and a =r a', then

there are words w,v such that a= T,,(T:; 1(a')).

PROOF. Evident from the definitions. O

PROPOSITION 6.3.3. Let a be a graph fragment of g(E) such that

(i) 3c1, c2 E N 'rfw E a c 1 :s; lwl s c2, and
(ii) a is weakly connected.

Then a is contained by a sphere B(w, r) where r only depends (in a computable
way) from c 1' c2 and E.

PROOF. By Proposition 6.1.8 (or rather its analogous version mentioned in
Remark 6.1.10). D

PROPOSITION 6.3.4. Let (a); e 1 be a collection of fragments of g(E). Let the

a, be unifonnly bounded. Then the collection is finitely partitioned by translation

equivalence. Moreover, the number of elements of the partition can be computed
from E.

PROOF. At once from Proposition 6.1.7 and 6.3.3. o

6.4. REGULAR DECOMPOSITIONS. We are now arriving at the heart of the

matter. First, we define what is meant by a "regular decomposition" (also
called "periodical decomposition").

Decidability of Bisimulation Equicalence for CFL Processes 671

FIGURE 14

Definition 6.4.1. A regular node-labeled tree T is a tree T with a labeling of
the nodes, such that there are (modulo isomorphism of node-labeled trees)
only finitely many subtrees.

NOTE: The labels can be any mathematical objects-in our case, they will be complicated
objects, viz. translation equivalence classes of process graph fragments.

Definition 6.4.2. A regular decomposition of the process graph g(E) is a tree
lf where each node s is labeled with a process graph fragment fr" such that

-each a5 is a finite graph fragment in t(E),
-the union of all as is g(E),
-for nodes s, t in lf, a, and a1 are disjoint iff s, t are not connected by a

single edge in lf,
-the collection of a5 (all nodes s in lf) is finitely partitioned by translation

equivalence,
-if g 1, ••• , !lk denote the finitely many equivalence classes in which the a_,

are partitioned, and each label as is replaced by the label denoting its
equivalence class, the resulting node-labeled tree lf' is regular.

Example 6.4.3. Let lf' be the regular tree as in Figure 14. Then, the actual
tree 11 has the same tree structure and as node labels: fragments a" which are
translation equivalent in the way indicated by lf'.

The following proposition is essential in the proof of the existence of a
regular decomposition:

PROPOSITION 6.4.4. Let a and a' be fragments of g(E), which are translation
equivalent. Lets be a node in a that has a length not minimal in a. Suppose
s ~a t is an edge such that a U {s ~a t} is again a fragment of g(E). Lets' be
the point in a' corresponding (after the same shift as from a to a') to s.

Then there is a t' and an edge s' ~a t' such that a' U {s' ~a t') is also a
fragment of g(E); moreover, the two extended fragments are again translation
equivalent by the same shift.

PROOF. (See Figure 15.) Since a =r a', there are w, v EX* such that
a'= Tv(T; 1(a)). Sos= uw for some u EX* and s' = uu. Since the length of
s is not minimal in a, u is not empty. So s and s' start with the same variable;
say, s = X;u'w and s' = X;u'v. In particular, ifs ~at is a step obtained from
the recursion equation X; = · ·· +au" + ··· (i.e., from the displayed summand,
where u" EX*), then t = u"u'w, and we have the steps' = X;u' u ~a u"u' v =
t'. So the step s' ~" t' is at least in g'(E) (the graph where also inaccessible

672 J.C. M. BAETEN ET AL

FIGURE 15

parts are present, see Section 6.2). It is also in g(E), because t' is an accessible
node. This is so as s' is accessible, being a node in a' which is in g(E).
Therefore, a' U {s' ~a t'} is indeed a fragment of g(E), and clearly it is
equivalent to a U {s ~a t} by the same shift T,,T:; 1• D

We now define the decomposition that will be proved to be regular in
Theorem 6.4.8.

Definition 6.4.5. Let g(E) be the process graph corresponding to E.

(i) g(E) will be divided in fragments called slices, numbered 0, 1, 2, 3,
Each slice has thickness d; we also call d the amplitude of the decomposi
tion.

(ii) The nth slice (n = 0, 1, 2, 3, ...) contains the nodes s of g(E) with
n.d ,s; lsl :s; (n + 1).d and moreover those nodes reachable by one step in
g(E) from a node s with n.d < isl < (n + 1).d. For instance, in Figure 16,
slice 1 of thickness 2 is displayed of the process graph in Figure 11.

(iii) The nodes s in the nth slice with lsl :s; n.d are called the upper nodes of
the nth slice; the nodes s with lsl ~ (n + 1).d are the bottom nodes of the
nth slice.

(iv) The nth slice is now the fragment of g(E) obtained by taking the
restriction of g(E) to the set of nodes of the nth slice. (In the example of
Figure 16, the boldface part.)

Each slice will now be partitioned into maximal weakly connected graph
fragments. More precisely:

Definition 6.4.6

(i) The nodes of the nth slice will be partitioned into equivalence classes as
follows: Define for nodes s, t in the nth slice: s ~ t if s, t have distance 0,
1, 2, or 3. Let ~ be the transitive closure of ~ . Clearly, this is an
equivalence relation on the nodes of the nth slice, partitioning these nodes
into equivalence classes denoted by [s].., .

(ii) The restriction of g(E) to the set of nodes [s L. in slice n, is called a
principal fragment. Note that the principal fragments of g(E) are uniquely
determined, once the decomposition in slices is given.

Decidability of Bisimulation Equivalence for CFL Processes 673
o~~~<J-~~~~~~~~~~~~~~~~~~

a

FIGURE 16

PROPOSITION 6.4.7. Let g(E) be divided in slices. Then the corresponding
principal fragments of g(E) are uniformly bounded, and hence, finitely partitioned
by translation equivalence. Moreover, the number of principal fragments of g(E)
can be computed from E.

PROOF. By the construction in Definition 6.4.6, each two principal frag
ments of slice n are far apart (Definition 6.1.l(iv)). Now, using Proposition
6.1.8 (or rather its analogous version mentioned in Remark 6.1.10), we have
that the collection of all principal fragments (of all slices) of g(E) is a
uniformly bounded collection. Proposition 6.3.4 states that the collection of
principal fragments is finitely partitioned by translation equivalence, and that
the number of elements is computable from E. D

THEOREM 6.4.8. Let E be a normed system of recursion equations in restricted
GNF, in the signature of BPA, and let g(E) be the corresponding normed process
graph. Then g(E) has a regu,lar decomposition; moreover, the amplitude d of the
decomposition can be chosen arbitrarily such that d ~ c(E) for some constant
c(E) computable from E.

PROOF. Consider the decomposition with amplitude d as just defined.

(i) It is easy to see that the tree of fragments thus obtained is indeed a tree.
To prove this, we must show that a situation (e.g., as in Figure 17) cannot
happen. The reason that such a "confluence" is impossible is that (all
points of) (3 and y are too far apart. Going downwards from such points
only increases the distance-hence, there is no confluence of lower
principal fragments possible.

(ii) There are only finitely many labels (fragments) modulo translation equiva
lence. This follows from Propositions 6.3.3 and 6.3.4.

(iii) Next, we must prove the regularity of the decomposition. So consider two
nodes s, t in lf occupied by as, a 1 with as =r a 1• Let lf,, lf1 be the
subtrees of lf determined by s, t, respectively. Further, let Gs, G1 be the
graph fragments of g(E) obtained by taking the unions of all the labels in
lfs, respectively, lf1•

676 J.C. M. BAETEN ET AL

translation equivalent to their unprimed versions), such that the restriction of
R to a X f3 coincides, modulo translation equivalence =T , with the restric
tion of R to a' X /3'. (Of course, =T extends to pairs of nodes (s, t)
coordinate-wise.)

If for each pair a, f3 in the k th slice such a copy a', f3' exists, then the
partial bisimulation R is called d-sufficient.

Definition 7.4. Let a partial bisimulation R as in Definition 7.3 be given,
which is sufficient. Then, the periodical continuation of R is constructed as
follows:

Let a, f3 be as in Definition 7.3. The partial bisimulation R is extended to

(a 1 U ··· U an) X (/31 U ··· U /3m)

by copying the restriction of R to

(a; U ··· U a~) X (13; U ··· U /3~).

This is done for all pairs a, f3 in slice k of g(E1), g(E2). It is now easily
checked that the result is a partial bisimulation up to slice k + 1, which again
is sufficient; for, clearly the extended partial bisimulation does not contain a
bisimulation error-if it did, the bisimulation error was copied from an earlier
slice, quad non.

The periodical continuation of the sufficient, partial bisimulation R is
obtained as the limit of this extension procedure. Clearly, it is a total
bisimulation.

PROPOSITION 7.5. Let g(E1), g(E2) be as before, and let R be a bisimulation
between them. Then:

(i) each n-prefix of Risa partial bisimulation up to n,
(ii) R has ad-sufficient M-prefixfor each M ~ N(E1, E2, d), where N(E1, E 2 , d)

is some constant computable from EI> E2 , and d.

PROOF. Part (i) is obvious. Part (ii): The proof follows by elementary
finiteness considerations; there are only finitely many possible relations
(a x /3) n R. o

THEOREM 7.6

(i) Let E1, E2 be normed systems of recursion equations (over BPA) in restricted
GNF. Then the bisimilarity relation g(E1) ~g(E2) is decidable.

(ii) Equality of recursively defined normed processes in the graph model G of BPA
is decidable.

PROOF

(i) According to Theorem 6.4.8 the graphs g(E1), g(E2) have a regular de
composition, with a common amplitude d. Now search through all (finitely
many) relations between the nodes of g(E1), g(E2) up to level N =

N(E1, E 2 , d).If there is no such relation that is a partial bisimulation up to
N, there cannot be a bisimulation between g(E1), g(E2), by Proposi
tion 7.5(i). If there is such a bisimulation, this is revealed by finding a
d-sufficient partial bisimulation up to N.

(ii) A rephrasing of (i). D

Decidability of Bisimulation Equivalence for CPL Processes

8. Simple Context-Free Languages

677

In this section, we derive, as an application of the method used in this paper,
the well-known fact that simple CFLs have a decidable equivalence problem.

Definition 8.1

(i) A simple CFG is a CFG in GNF such that there is no pair of different
productions A -7 a a, A -7 a {3. Equivalently, in the notation of systems of
guarded recursion equations in GNF, a system E is simple if it contains no
recursion equation

X; = · .. + aw + av + · · · ,

for different w, L' E X*.
(ii) A CFL is simple if it can be obtained from a simple CFG.

Definition 8.2. A process graph g is deterministic if there is no node s E g
having two outgoing edges with the same label.

PROPOSITION 8.3. Let E be a simple system of recursion equations in restricted
GNP. Then g(E) is deterministic.

PROOF. Clear. 0

The reason for our interest in deterministic process graphs is that if they are
normed, their bisimulation equivalence problem coincides with the equality
problem for their finite trace sets.

PROPOSITION 8.4. Let g, h be normed, deterministic process graphs. Then:

g - h = ftr(g) = ftr(h).

PROOF

(=): Proposition 3.1.
(~): Suppose ftr(g) = ftr(h). Let a E ftr(g). Then u has a unique location

in g as well as in h. Now we connect, in a construction of a bisimulation
between g, h, the intermediate nodes lying on a in g, h. More precisely, let if

in g be obtained by the path

where s0 is the root of g, s11 is a final state (termination node), and if i E A(i
< n) such that a = (a 0)(u 1) .. · (O"(n - 1)). Furthermore, let a in h be
obtained by the path

where t 0 is the root of h, t,, a final state.
Then, we put the pairs (~\1 ,t0),(s 1 ,t 1), ••• ,(sn,t11) in the relation R to be

constructed. This is done for all s E ftr(g)(= ftr(h)); result: R.
We claim that R is a bisimulation between g and h. Proof of the claim:

(1) The roots of g, h are related by R.
(2) Suppose s, s' E g, t Eh are nodes such that s Rt and s -7 a s' is an edge

of g.

Since g is nomied, there is a path 7T from s' to a termination node r. By the
construction of R, there is some path in g from s0 (the root) to s and some

678 J. C. M. BAETEN ET AL

h

R

R

FIGURE 20

path in h from t0 (the root) such that both paths determine the same word a,
a prefix of an element from ftr(g). These paths in g, h are uniquely determined
by fT, as the graphs are deterministic. So we identify these paths, for conve
nience, with the word u. (See Figure 20.) Now ua71' E ftr(g) = ftr(h). Hence,
there must be such a path ua71' in h, and it has to pass node t. So, indeed,
there is a step t ~a t' such that s' R t'. 0

As a corollary, we have the following fact from [25] (or see [17, Sect. 11.10]):

THEOREM 8.5 (KORENJAK-HOPCROFT 1966). The equicalence problem for
simple CFLs is decidable.

PROOF. Immediate from Theorem 7.6(i), Proposition 8.3 and Proposi
tion 8.4. D

9. Concluding Remarks and Questions

We have shown that equality of the processes generating CFLs is decidable, in
remarkable contrast with the unsolvability of equality of CFLs. As equality of
processes, we mean here the equality obtained by dividing out the well-known
bisimulation equivalence in the domain of process graphs. The proof of the
decidability essentially uses the fact that the process graphs associated to CFGs
in (restricted) Greibach Normal Form possess a tree-like periodical structure,
which in itself is interesting. It should be noted that this periodicity holds for
all process graphs g(E) with E a system of guarded recursion equations in
Basic Process Algebra. However, in order to prove decidability of bisimulation
equivalence for such graphs, we have adopted the restriction that they are
normed; that is, there are no redundant parts as regards the generation of the
finite trace set, a CFL From the point of view of CFGs and CFLs this is
perfectly natural; but the general question for BPA remains: Is bisimilarity of
process graphs g(E) for all guarded recursive specifications E in BPA decidable?
Or, rephrased: Is equality of all recursiuely defined processes in the graph model G
of BPA decidable? We conjecture that this is the case. 1

1 See Note Added in Proof.

Decidability of Bisimulation Equivalence for CFL Processes 679

FIGURE 21

One can associate to push-down automata (PDAs) in a similar manner a
process; however, as pointed out in [12] (correcting an earlier statement in [3]),
there is a PDA, even without e and deterministic, whose associated graph does
not display the periodicity exploited in this paper.

Several other interesting questions remain. We conclude this paper with a
small list of such questions. First an observation:

Remark 9.1. A regular process is one with finitely many subprocesses;
equivalently, a regular process (in G) has a representing process graph that is
finite. If process p is defined by a system of recursion equations using the
singleton alphabet {a} only, is it true that p is regular? (The corresponding fact
for CFLs is true; see Remark 7.3 in [17]. The answer is negative, as witnessed
by

E = {X = a(Xa + a)a}

or, equivalently, the system

E' = {X = aY, Y = aYZ + aU, Z = aU, U =a}

in restricted GNP. Indeed, the CPL determined by E' is {a3nln ~ 1}, hence
regular, but g(E') in Figure 21 shows that the process p determined by E' is
not regular (as there are infinitely many different norms lsl for s a node in
g(E')):

Remark 9.2. The process graph g(E) corresponding to the system E (see
Section 6.2) need not be a canonical process graph (cf. Figure 9); the canonical

680 J.C. M. BAETEN ET AL

t _.a t .a • - +---~ ~

a . a .,
'

b b. b b. b b.

FIGURE 22 - .a
lr - .a

,
~

...___
a . a -

' '
b !i. b !i. b D.

lr .a ' - .a II'
- - ...__

~ - a - a -
process graph originates by collapsing all bisimilar subprocesses. Now one may
ask: If g is the canonical process graph of process p, recursively defined by
some system £, does g have a periodical decomposition? This question has
been answered positively by [10] and [11]. This is interesting also because it
provides a tool to obtain certain nondefinability results. For instance, the
process BAG as defined by the recursion equation

BAG = a(~llBAG) + b(.QllBAG)

is the behavior of a bag over a data domain of two elements; a means: put a in
the bag, ~ means: get a from the bag, and likewise for b. Here we have used in
the definition an interleaving operator II as in PA, an extension of BP A with
some axioms for II. (See [5], [6], and [7].) Now the canonical process graph of
BAG is as in Figure 22.

Clearly, this graph does not possess a tree-like periodical decomposition as
we have defined before. Hence, the associated process is not definable in BP A,
that is, the definition must use a parallel operator. (For a different proof of this
nondefinability result, not employing the method suggested here, see [7].)

Remark 9.3. The problem of this paper can also be considered in the setting
of readiness or failure semantics instead of bisimulation semantics. (See [8] for
an account of BPA with failure semantics or readiness semantics.) As these
semantics are intermediate between bisimulation semantics and trace seman
tics, it is an interesting question whether decidability still holds. Since the first
version of this paper as [3], this question has been answered in [23]; surpris
ingly, the answer is negative-decidability no longer holds for readiness and
failure semantics. In [16], this undecidability result is extended to several other
process semantics that are intermediate between bisimulation equivalence and
trace equivalence.

As a generalization of the main theorem in the present paper, Hiittel (21]
has obtained a positive decidability result for so-called "branching bisimula
tion" (treated in [4]). Added to the signature of BPA, one considers "T-steps"
(silent steps, introduced in [27] and [29]), with the notion of bisimulation called
"branching bisimulation" (without T-steps present, this reduces to bisimulation
as in this paper). A somewhat coarser congruence, dealing also with T-steps, is
the one called "weak bisimulation" in [27] and [29], and called "rooted
T-bisimulation" in [2], [4], and [6]. For this notion of bisimulation, the decidabil
ity question is open.

Decidability of Bisimulation Equivalence for CPL Processes 681

Remark 9.4. Alternative and shorter proofs of the main theorem of this
paper have been given in [10] (by an analysis employing rewriting rules), in [22]
(by a tableau proof method), and in [15].

Remark 9.5. We have been concerned with processes that may have in
finitely many states; for a decidability and complexity analysis of various
equivalences on finite state processes, we refer to [24] and [33]. For the present
case of infinite-state processes, but in the setting of failure and readiness
semantics, a complexity analysis (for some subclasses of processes) has been
given in [23].

Question 9.6. If BPA is extended to PA (see Remark 9.2), is the equivalence
problem for recursively defined processes still decidable? And if PA is re
stricted to "prefix multiplication" as in Milner's CCS [27, 29]?

If PA is further extended to ACP, Algebra of Communicating Processes,
where also communication is present, the decidability no longer holds (see [7]).

NOTE ADDED IN PROOF. Recently, Christenson et al. [12a] have solved the conjecture in
Section 9 affirmatively.

ACKNOWLEDGMENTS. We thank Jan-Friso Groote for pointing out an erro
neous statement in the first version of this paper.

REFERENCES

1. BAETEN, J. C. M., AND BERGSTRA, J. A. Global renaming operators in concrete process
algebra. Jnf. Comput. 78, 3 (1988), 205-245

2. BAETEN, J. c. M., BERGSTRA, J. A., AND KLOP, J. w. On the consistency of Koomen's Fair
Abstraction Rule. Theoret. Comput. Sci. 51, 1/2 (1987), 129-176.

3. BAETEN, J. c. M., BERGSTRA, J. A., AND KL.OP, J. w. Decidability of bisimulation equiva
lence for processes generating context-free languages. In Proceedings of the PARLE Confer
ence, J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, eds. Lecture Notes in Computer
Science, vol. 259. Springer-Verlag, New York, 1987, pp. 94-113.

4. BAETEN, J.C. M., AND WEIJLAND, W. P. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, Cambridge, Mass., 1990.

5. BERGSTRA, J. A., AND KLOP, J. W. Process algebra for synchronous communication.
Inform. Cont. 60 (1984), 109-137.

6. BERGSTRA, J. A., AND KLoP, J. W. Algebra of communicating processes. In Proceedings of
the CW! Symposium on Mathematics and Computer Science J. W. de Bakker, M. Hazewinkel.
and J. K. Lenstra, eds. CWI Monographs I. North-Holland, Amsterdam, The Netherlands,
1986, pp. 89-138.

7. BERGSTRA, J. A., AND KLOP, J. W. The algebra of recursively defined processes and the
algebra of regular processes. In Proceedings of the I Ith JCALP (Antwerp, Belgium). Lecture
Notes in Computer Science, vol. 172. Springer-Verlag, New York, 1984, pp. 82-94.

8. BERGSTRA, J. A., KLOP, J. W., AND OLDEROG, E.-R. Readies and failures in the algebra of
communicating processes. SIAM J. Comput. 17, 6 (Dec. 1988), pp. 1134-1177. . .

9. BROOKES, S. D., HOARE, c. A. R., AND ROSCOE, A. w. A theo1y of commumcatmg
sequential processes. J. ACM 31, 3 (July 1984), 560-599.

10. CAUCAL, D. Graphes canoniques de graphes algebriques. Rapport de Recherche 872.
INRIA, 1988.

11. CAUCAL, D. Graphes canoniques de graphes algebriques. Infomzatique theo1ique et Applica-
tions (RAJ RO) 24, 4 (1990), 339-352.

12. CAUCAL, D. Les graphs a motifs. Rapport de Recherche 958. INRIA, 1988.
12a. CHRISTENSEN, S., HOTTEL, H., AND STIRLING, c. Bisimulation equivalance is decidable for

all context-free processes. In Proceedings of Concur '92, R. Cleaveland, ed. Lecture Notes m
Computer Science, vol. 630. Springer-Verlag, New York, 1992, pp. 138-147.

682 J. C. M. BAETEN ET AL

13. DE BAKKER, J. W., BERGSTRA, J. A., KLOP, J. W., AND MEYER, J.-J. CH. Linear time and
branching time semantics for recursion with merge. In Proceedings of the JOth ICALP
(Barcelona, Spain). Lecture Notes in Computer Science, vol. 154. Spnnger-Verlag, New
York, 1983, pp. 39-51. (An expanded version appears in Theoret. Comput. Sci. 34 (1984),
135-156.)

14. DE BAKKER, J. W., MEYER, J.-J. CH., OLDEROG, E.-R., AND ZUCKER, J. I. Transition
systems, infinitary languages and the semantics of uniform concurrency. In Proceedings of
the 17th Annual ACM Symposium on Theory of Computing (Providence, R. I., May 6-8).
ACM, New York, 1985, pp. 252-262.

15. GROOTE, J. F. A short proof of the decidability of bisimulation for normed BP A-processes,
Inj: Proc. Lett. 42 (1992), 167-171.

16. GROOTE, J. F., AND HOrrEL, H. Undecidable equivalences for basic process algebra. lnj:
Computation, to appear.

17. HARRISON, M. A. Introduction to formal language theory. Addison-Wesley, Reading,
Mass., 1978.

18. HOARE, C. A. R. A model for communicating sequential processes. In On the Construction
of Programs R. M. McKeag and A. M. McNaughton, eds. Cambridge Univ. Press,
London/New York, 1980, pp. 229-243.

19. HOARE, C. A. R. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs,
N.J., 1985.

20. HOPCROFT, J. E., AND ULLMAN, J. D. Introduction to Automata Theo1y, Languages, and
Computation. Addison-Wesley, Reading, Mass., 1979.

21. HOTTEL, H. Silence is golden: Branching bisimilarity is decidable for context-free pro
cesses. In Proceedings of the Jrd Workshop on Computer Aided Verification (Alborg, Denmark,
1991). K. Larson and A. Skow, eds. Lecture Notes in Computer Science, vol. 575, Springer
Verlag, New York, 1992.

22. HDITEL, H., AND STIRLING, C. Actions speak louder than words: Proving bisimilarity for
context-free processes. In Proceedings of 6th Annual IEEE Symposium LICS 91. IEEE
Computer Society Press, New York, 1991, pp. 376-385.

23. HUYNH, D. T., AND TIAN, L. On deciding readiness and failure equivalences for processes.
Tech. Rep. UTDCS-31-90. Univ. Texas at Dallas, Dallas, Tex., Sept. 1990.

24. KANELLAKJS, P. C., AND SMOLKA, S. A. CCS expressions, finite state processes, and three
problems of equivalence. In Proceedings of the 2nd Annual ACM Symposium on Principles
of Distributed Computing (Montreal, Que., Canada, Aug. 17-19). ACM, New York, 1983,
pp. 228-240.

25. KORENJAK, A. J., AND HOPCROFT, J. E. Simple deterministic languages. In Proceedings of
the 7th Annual Symposium on Switching and Automata Theory (Berkeley, Calif.). 1966, pp.
36-46.

26. MEYER, J.-J. CH. Programming calculi based on fixed point transformation: Semantics and
applications. Ph.D. dissertation, Free University, Amsterdam, The Netherlands, 1985.

27. MILNER, R. A Calculus of Communicating Systems. In Lecture Notes in Computer Science,
vol. 92. Springer-Verlag, New York, 1980.

28. MILNER, R. A complete inference system for a class of regular behaviours. J. Comput. Syst.
Sci. 28 (1984), 439-466.

29. MILNER, R. Communication and Concurrency. Prentice-Hall, Englewood Cliffs, N.J., 1989.
30. PARK, D. Concurrency and automata on infinite sequences. In Proceedings of the 5th Cl

Conference on Theoretical Computer Science. Lecture Notes in Computer Science, vol. 104.
Springer-Verlag, New York, 1981, pp. 167-183.

31. SALOMAA, A. Computation and Automata. Cambridge Univ. Press, Cambridge, Mass., 1985.
32. SALOMAA, A. Formal languages. Academic Press, Orlando, Fla., 1973.
33. SMOLKA, S. A. Analysis of communicating finite state processes. Ph.D. dissertation, Brown

Univ. Tech. Rep. CS-84-05. Brown Univ., Providence, R.I., 1984.

RECEIVED OCTOBER 1987; REVISED NOVEMBER 1991; ACCEPTED NOVEMBER 1991

Journal of the Association for Computing Machinery, VoL 40, No. 3, July 1993.

