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ABSTRACT
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Normalization (SN), in the framework of first order orthogonal rewriting systems. With the help of
the Erasure Lemma we establish a Pumping Lemma, yielding information about exceptional
terms, defined as terms that are WN but not SN. A corollary is that if an orthogonal TRS is WN,
there are no cyclic reductions in finite reduction graphs. This is a stepping stone towards the
insight that orthogonal TRSs with the property WN, do not admit cyclic reductions at all.
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1 Introduction

The main concern in this paper is the notion of reduction cycle. Intuitively,
cyclic terms (i.e., terms lying on a reduction cycle) are ‘bad’, whereas normal
forms are ‘good’; a cyclic reduction is a failed attempt at normalization. This
picture is complicated by the fact that a term may be cyclic, but still have a
normal form, e.g., the CL-term KI(SII(SII)) has normal form I, but is also
cyclic. What we will prove is that the presence of a cyclic term t ‘entails’ the
presence of a term s without normal form, and even stronger, a term s without
head normal form. The latter means that the term s refuses to normalize
even at depth zero. (In λ-calculus such a term is also called ‘unsolvable’.)
And this in turn means that the term is meaningless. In a slogan: cycles ⇒
undefined terms, which confirms our intuition, that cycles are ‘vicious’. The
contraposition is that when ‘everything is defined’, there are no cycles. The
precise statement for orthogonal term rewriting is the implication WN ⇒ AC,
weak normalization implies acyclicity. This is in fact our main theorem in the
present paper. In fact, we also have the implication ‘head normalization’ ⇒
AC.

Of course we have trivially SN ⇒ AC, strong normalization implies acyclic-
ity. In the context of non-erasing reductions, where SN and WN are equivalent,
that would be the end of the present story.

The idea for these implications arose from establishing the weaker fact that
WN ⇒ ACfin, where the latter property means that at least finite reduction
graphs do not admit cycles. We will refer to this property in words as ‘finite

acyclic’. This is a property that, remarkably, also CL as based on I, K,
S, or just K, S enjoys (even while CL is by no means WN!). (See Klop
[7].) We will establish this implication WN ⇒ ACfin first, because the proof
yields some interesting information: it is done by a ‘pumping property’ that
is a consequence of the Erasure Lemma, a useful lemma in orthogonal term
rewriting.

Figure 1 shows the simplest cycles that there are, in λ-calculus, and to the
right, in Combinatory Logic (CL). As just mentioned, it is not possible to have
a cycle in CL and keep the reduction graph finite, and indeed the reduction
graph of SII(SII) is infinite.

2 Preliminaries

We suppose familiarity with the basic notions of term rewriting, such as CR,
(confluence or Church-Rosser property), UN (unique normal form property),
SN (strong normalization), WN (weak normalization). 4 In particular we need
the notion of orthogonal TRSs. 5 For general reference see Terese [9]. Here

4 See, e.g., Terese [9], Ch. 1, p. 13.
5 See, e.g., Ch. 4, Orthogonality, in Terese [9].
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SII(SII)(λx.xx)(λx.xx)

Figure 1. The ‘ur-cycles’, in λ-calculus and Combinatory logic (CL)

we single out the notion of a sub-TRS, which will play an essential role later
on.

2.1 Sub-TRSs

In this paper we will employ only a ‘neat’ kind of sub-TRS, namely one where:

(i) the signature is a sub-signature of the original TRS,

(ii) the reduction rules are a subset of the original set of rules, and

(iii) the set of terms is a subset of the original set of terms.

In particular, the reduction graph G(t) of t is a sub-TRS. Here the set of terms
consists of t and all of its reducts. Another sub-TRS that we will use below is
the family F(t) of t, where the set of terms consists of t and all subterms of
reducts, i.e., the universe contains t and is not only closed off under reduction
but also under taking subterms. It is important that sub-TRSs, including
F(t) and G(t), are considered as TRSs in their own right, for which the usual
notions and theorems apply, e.g., that orthogonal TRSs are confluent.

Remark 2.1

(i) The notion of family of a term F(t) stems from Barendregt [1].

(ii) Note that the reduction graph G(t) is a sub-TRS of the family F(t) of t.
For example, consider the TRS with rules {A → B(C), C → D}. Then
the TRS G(A) has as universe of terms {A,B(C), B(D)}, while F(t) has
universe {A,B(C), B(D), C,D}.

(iii) Define . =→ ∪ ⊃, where ⊃ is the converse of the proper subterm relation.

3
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ACfin

WIN SN

WNAC

NE

?
LF

O’Donnell

Figure 2.

Then: → is SN iff . is SN. 6 Using König’s Lemma 7 , we therefore have
that G(t) is finite iff F(t) is finite.

Example 2.2 (The set of S-terms in Combinatory Logic) The sig-
nature consists of a constant S, and binary application A. The single rule
is A(A(A(S, x), y), z) → A(A(x, z), A(y, z)), or in the usual notation of CL,
Sxyz → xz(yz).

The salient features of this orthogonal TRS are: ¬SN, WHN (head nor-
malization, defined below), AC (acyclicity, defined below). An example of a
term with ¬SN is SSS(SSS)(SSS). The head normalization property was
established by Waldmann [12]. The property AC is proved by Bergstra and
Klop [2].

Example 2.3 (The set of J-terms in CL) (See D. Probst and T. Studer
[8]) This orthogonal TRS is SN. The single reduction rule is in applicative
notation: Jxyzw → xy(xwz).

2.2 Basic notions

We need the folllowing basic properties of orthogonal first-order TRSs, as
in Figure 2. Some are standard, and we will not repeat their definitions:
SN (strong normalization), WN (weak normalization), WIN (weak innermost

normalization), NE (non-erasing). Further, AC means that the TRS has no
reduction cycles t →+ t or is acyclic. The property ACfin (finite acyclic) means

6 This is Exercise 2.3.11, p. 41 in Terese [9].
7 Lemma A.1.25, p.798 in Terese [9].
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that finite reduction graphs G(t) contain no cycle. In other words: if t →+ t,
then t has infinitely many different reducts.

The property LF (locally finite) is that all reduction graphs G(t), and hence
also the families F(t), are finite. This property is of marginal importance, and
is only mentioned to complete the picture given by the diagram in Figure 2.

2.3 Head normal forms

Definition 2.4

(i) A term t is in head normal form, if it is not a redex already, and also can-
not reduce to a redex. In other words, there is no reduction ‘activating’
the root. (We use ‘root’ and ‘head’ as synonyms.)

(ii) Further, t has a head normal form if it reduces to one.

(iii) A TRS has the property WHN (Weak Head Normalization) if every term
t in the TRS has a head normal form. If the term t has a head normal
form, we also write t ∈ WHN, or WHN(t). (The qualification ’weak’ is
in analogy with weak normalization, and refers to the existential content
of this property: there exists a reduction to head normal form.)

Theorem 2.5 (Head Normalization Theorem) Let R be an orthogonal

TRS and let t be a term in R with a reduction t → t′ → t′′ → . . . containing

infinitely many head steps.

(i) Then t has no head normal form.

(ii) A fortiori, t has no normal form.

Proof We employ outermost-fair reductions (see Def. 4.9.15(ii) and especially
Def. 9.3.1 in Terese [9]) and the theorem that outermost-fair reductions are
normalizing (see Theorem 9.3.10 in Terese [9]). From this, the theorem follows
immediately, since an infinite reduction with infinitely many head steps is
clearly outermost fair. So the initial term cannot have a normal form—if it
had, this outermost-fair reduction would have reached it. 2

Remark 2.6 For CL a warning is in order. The notion of head reduction
just defined, pertains to the root of the term. The analogy with λ-calculus
suggests another notion of head reduction, namely the one which contracts
the redex whose leading symbol S, K, or I is the leftmost symbol of the
term at hand. So, given the CL-term SKSIK the head-redex in that sense
would be SKSI. This term however has no redex at the root, so it admits
no head reduction step in the sense defined above. For S-terms these notions
of reduction are indeed different: head reduction as above (‘root reduction’)
terminates, but the head reduction in the sense of λ-calculus does not. An
example was given by Barendregt (personal communication): consider the
term BB with B = SAA and A = SSS. This term has an infinite reduction
of head steps in the sense of λ-calculus.
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3 The Erasure Lemma

The Erasure Lemma (EL) was stated without proof by Klop [5,6] and seems
to be first proved in Bergstra et al. [3]. 8 The EL has several important
corollaries, including the theorem of Church, the theorem of O’Donnell, and
has applications such as the modularity of SN for orthogonal TRSs. 9 We now
recall the relevant notion and the statement of the EL.

Definition 3.1

(i) Notation: ∞(t) means that t has an infinite reduction. So ¬∞(t) means
that t is strongly normalizing, or t ∈ SN.

(ii) A reduction step t → t′ is called critical if ∞(t) but ¬∞(t′). So a critical
step is one where the possibility of performing an infinite reduction is
lost.

Proposition 3.2 (Erasure Lemma) Let t → t′ be a critical step in an or-

thogonal TRS, where s is the contracted redex. Then this step erases a subterm

p with ∞(p).

Proof See Terese [9], p. 126, Proposition 4.8.4. 2

Remark 3.3 The Erasure Lemma also holds for weakly orthogonal TRSs.
This is a consequence of Terese [9], Exercise 9.3.28.

4 The Pumping Lemma

We will now use the Erasure Lemma to obtain some information about terms
that are weakly normalizing, but still admit an infinite reduction. For ease of
reference we define:

Definition 4.1 Let the term t be weakly normalizing, but not strongly nor-
malizing. Otherwise said: t ∈ WN − SN. Then t is an exceptional term.

Remark 4.2 A related definition occurring in the literature is the following:
the term t is uniformly normalizing if WN(t) ⇒ SN(t). So t is uniformly
normalizing iff it is not exceptional. See, e.g., Khasidashvili et al. [4].

Now consider the exceptional term t0 as in Figure 3. Let t◦ be its normal
form. Consider a reduction t0 � t◦ to the normal form. Now t0 has an infinite
reduction, ∞(t0), but t◦ has not, ¬∞(t◦). So the reduction t0 � t◦ must have
a critical step contracting redex s (denoted by {s}), which is the heavily drawn
one in the vertical reduction t0 � t◦. The start of this critical step {s} is of
the form C1[A

∞

1 ] for some non-empty context C1[], and term A∞

1 having an

8 A proof is also in Terese [9], p. 126, Proposition 4.8.4 or p. 514, Lemma 9.3.27 together
with Exercise 9.3.28(i).
9 Theorem 5.9.5, p. 175 in Terese [9].
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t0 C1[A1
∞]

B1t°

C1[A1°]

Figure 3. First zoom-in step

infinite reduction. (It is nonempty, as redex s contains the ‘infinite’ subterm
A∞

1 to be erased.)

In turn, we normalize A∞

1 to A◦

1 (which is still contained in the residual
s′ of redex the s, at some erasable position). We conclude with a step {s′}
in which the normal form A◦

1 is erased. The result is B1. (Not necessarily
a normal form, but reducible by confluence to the first normal form t◦, the
reduction at bottom to the left in Figure 3.)

The vertical normalizing reduction A∞

1 � A◦

1 contained in the non-empty
context C1[], now has again a critical step, the heavy one in the second vertical
reduction in Figure 3, which is by the same reasoning, an erasing step in a
non-empty context C2[]. Zooming in on this step yields the third vertical
reduction in Figure 4.

ρ:

σ:

C1[C2[A2
∞]]

C1[B2] C1[C2[B3]]

C1[C2[C3[A3
∞]]]

C1[C2[A2°]] C1[C2[C3[A3°]]]

t0 C1[A1
∞]

B1t°

C1[A1°]

Figure 4. Repeated zoom-in construction

We repeat the zoom-in construction infinitely many times, yielding terms
as in Figure 5. Since the contexts Ci[] are non-empty, the terms in the upper
horizontal reduction in Figure 4 are unbounded in length, and likewise the
terms in the lower expansion in Figure 4. Here an ‘expansion’ is a backward
reduction.

So we can choose the upper reduction t � t1 � t2 � . . . in the ‘ladder’ so
constructed to be pairwise different, and so that also for the lower expansion
t0 � t′1 � t′2 � . . . we have pairwise different terms. So, both the upper
reduction as well as the lower expansion are free from repetitions (acyclic),
and therefore infinite.
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Definition 4.3 A ladder of reductions is a diagram of reductions as in Figure
5. Here the ti and the t′j are pairwise different, so a ladder consists of infinitely
many different terms.

t1

normal form

t2 t3

t0 t’1

infinite acyclic reduction

infinite acyclic expansion

t’2 t’3

t

Figure 5. Infinite ladder of reductions

Theorem 4.4 (Pumping Lemma) Let t be an exceptional term in a weakly

normalizing orthogonal TRS. Then:

(i) t is the starting point of an infinite ladder.

(ii) t has an infinite acyclic reduction, and its normal form has an infinite

acyclic expansion.

Proof Directly from the definition of a ladder, and the iterated zoom-in con-
struction described above. 2

We will now conclude that for orthogonal TRSs: WN ⇒ ACfin.

Theorem 4.5 Let R be a weakly normalizing orthogonal TRS.

(i) Let G(t) be a finite reduction graph in R. Then t is SN.

(ii) A fortiori, G(t) does not contain a reduction cycle. That is, R has the

property ACfin.

Proof Suppose t is not SN. Then t is an exceptional term, and Theorem 4.4
applies. So t is the start of a ladder, which by definition is infinite. But that
does not fit in the finite G(t). 2

C DBA

Figure 6.

The well-known TRS in Figure 6 has four constant symbols in its signature
and the reduction rules as in the figure. It seems to refute the theorem, as
it is normalizing, while the finite reduction graph of the term B does have a
reduction cycle. However, this TRS is not orthogonal; the rules B → C and
B → A are overlapping.

8
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A B(A) B(B(A)) B(B(B(A)))

C B(C) B(B(C))

Figure 7.

Example 4.6 Consider the TRS with the two rules {A → B(A), B(x) → C}.
This is the simplest example of Theorem 4.4: A is an exceptional term, and
is indeed starting point of a ladder, see Figure 7. Note that this TRS also
satisfies WN. It is not SN, but is head normalizing (WHN). It is also AC. Note
that it is erasing (¬NE), which must be the case since WN holds, but ¬SN.

Remark 4.7 A rather similar zoom-in construction as used above also occurs
in Van Oostrom [10].

Theorem 4.8 Let R be an orthogonal TRS, not necessarily WN. If G(t) is

finite and contains a cycle, then t has a term in its family without normal

form.

Proof Suppose not, then the TRS G(t) is WN. By Theorem 4.5 there cannot
be a cycle in the finite graph G(t). Contradiction. 2

Theorem 4.8 was stated without proof by Klop [6]. Likewise the following:

Theorem 4.9 Let R be an orthogonal TRS, and t a term in R. If G(t) con-

tains an infinite reduction, but does not contain an infinite acyclic expansion,

then t contains a term without normal form in its family.

Proof Assume R is an orthogonal TRS, t a term in R, and G(t) has an
infinite reduction but not an infinite expansion. Now suppose for a proof
by contradiction, that t does not contain a term without normal form in its
family. In other words, the sub-TRS F(t) has the property WN. F(t) is an
orthogonal TRS, in which t is an exceptional term, because t has an infinite
reduction and WN holds. So by Theorem 4.4(ii) t is starting point of an
infinite ladder. Note that all the points in the ladder are in fact reducts of
t, hence the ladder resides entirely in G(t). But then G(t) does contain an
infinite acyclic expansion, contradiction. 2

Example 4.10 Let t be a term in an orthogonal TRS R with reduction graph
as in Figure 8; t0 is the top of this graph. (Such R and t0 do indeed exist,
an example is easily given.) So we have t0 → t1 → t2 → . . . tn → . . ., and
for all i ≥ 0: ti → tω, tω → tω+1, ti → tω+1. Then, since the graph contains
an infinite reduction but no infinite acyclic expansion, t0 must have a term
without normal form in its family. It follows that an orthogonal TRS R which
is WN, cannot have a term with such a reduction graph.

9



Ketema, Klop, Van Oostrom

Figure 8.

5 Cycles and Weak Normalisation

Let us now survey the situation, in Figure 9.

ACfin

WIN SN

WNAC

NE

?
LF

Figure 9.

Theorem 4.5 above raises the question for an example of a weakly normal-
izing, orthogonal TRS where a reduction cycle is present. We know that it
cannot occur in a finite reduction graph; but maybe then in an infinite re-
duction graph? Somewhat surprisingly, such an example is not easy to find,
and thus the conjecture arises that such an example does not exist. In other
words, the conjecture arises that weakly normalizing orthogonal TRSs do not
admit any reduction cycle, or for short, are acyclic (AC). This is the implica-
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tion labeled with ‘?’ in the Figure 9, which we will prove now. As an essential
part of the proof we use the Head Normalisation Theorem.

Theorem 5.1 For orthogonal TRSs: WN ⇒ AC.

Proof We will prove the contraposition ¬AC ⇒ ¬WN. Suppose ¬AC. So
there is a cycle. Now take a minimal cyclic term t, minimal with respect to
the size of t. So there is a cyclic reduction C: t → . . . → t, and all terms
smaller than t are not cyclic.

Claim 5.2 One of the steps of C is a root step.

Proof of the claim Let t have the form F (t1, . . . , tn) for some n. Suppose
the claim is not true. So the root symbol F is ‘frozen’, i.e., not active, and all
steps in C take place in the subterms t1, . . . , tn. There must be a step done in
C, say in ti. Now we lift out of C all the steps in ti. They are not influenced
by the the other steps in C. But then, obviously, these steps in C constitute
a cycle ti → . . . → ti, a contradiction with the minimality of t. 2

Now we unwind the cycle into an infinite reduction C; C; C; . . . C; . . ., i.e.,
C repeated infinitely often, notation Cω. By Claim 5.2 the reduction Cω has
infinitely many root steps. Hence, by the Head Normalisation Theorem, the
starting term t does not have a head normal form, and a fortiori no normal
form. That is, we have proved ¬WN. 2

Corollary 5.3 Let R be an orthogonal TRS, not necessarily WN. If t is a

cyclic term, then t has a term in its family without normal form.

Proof Let t be a cyclic term in R. Suppose t does not have a term without
normal form in its family. That is, F(t) is an orthogonal TRS with property
WN. Then by Theorem 5.1, F(t) is acyclic, contradiction. 2

Remark 5.4 Compare Theorem 5.1 with the following related observation
by Van Oostrom [11]: A term allowing a trivial head step is not normalizing

in a weakly orthogonal TRS. Here a step is ‘trivial’ if it is of the form t → t,
so a one-step cycle. Compared to the present Theorem 5.1 this observation
is more general in that it holds for weakly orthogonal TRSs (left-linear and
only trivial critical pairs). On the other hand it is less general in that only
one-step cycles are considered. However, in our planned sequel to the present
paper (see Section 6), a full generalization to the weakly orthogonal case is
obtained.

Remark 5.5 Theorem 5.1 is also stated in Terese [9], p. 469, where it has
been proved in a very different way that yields a more general theorem. The
technique used there will be employed in our planned sequel, described in
Section 6.

11
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6 Concluding Remarks and Questions

The main theorem of this paper, Theorem 5.1 stating that WN ⇒ AC for
orthogonal TRSs, in fact extends into three distinct directions:

(i) to fully-extended higher-order pattern rewrite systems, where terms may
contain bound variables,

(ii) to the weakly orthogonal case, where rules may have (trivial) conflicts,
and

(iii) to weak head normalisation (WHN), where reductions to head normal
form are assumed to exist.

In a sequel to the present paper we will treat these extensions, first sep-
arately, and next their combinations. By means of alternative techniques it
turns out that for each pair of combinations of the three extensions we find
a generalization of our present theorem. Part of the relevance of these exten-
sions is that our theorem is shown to hold for sub-calculi of λβη-calculus, in
particular typed sub-calculi. Then our result pertains to the area of typed
λ-calculi. The combination of all three extensions remains open however.
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