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Abstract 
A number of scheduling and assignment problems are presented involving the execution 
of periodic operations in a multiprocessor environment. We consider the computational 
complexity of these problems and propose approximation algorithms for operations with 
identical periods as well as for operations with arbitrary integer periods. 
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1 Introduction 

This paper deals with the problem of scheduling periodic operations, i.e., operations that 
have to be repeated at a constant rate over an infinite time horizon. Periodic scheduling 
problems naturally arise in such diverse areas as real-time processing, process control, vehicle 
scheduling, personnel scheduling and preventive maintenance scheduling; see Section 2 for 
references. Our interests in periodic scheduling originate from the field of real-time video 
signal processing, where the samples of a video signal have to be processed at a constant 
high frequency (10- 100 MHz) on a network of processors. Due to the high frequencies, the 
processing of successive samples necessarily overlaps in time. The intrinsic periodic nature 
of video signal processing gives rise to a periodic scheduling formulation. This application 
area poses some specific constraints, resulting in a class of optimization problems that so far 
have received little attention in the literature. In this paper we discuss this class of problems 
by examining their computational complexity, introducing approximation algorithms, and 
indicating relevant results presented in the literature. 

We aim to keep the discussion as general as possible by proposing solution strategies that are 
also applicable in other application areas. Many papers on periodic scheduling are concerned 
with specific applications, proposing solution strategies that are often strongly tailored to 
the application at hand, a notable exception being the paper by Serafini & Ukovich [1989], 
which presents a general mathematical model for periodic scheduling problems. However, 
their emphasis is on periodic scheduling subject to precedence constraints. In our paper, the 
emphasis is on periodic scheduling subject to resource constraints. In that respect, our work 
is complementary to theirs. 

The organization of the paper is as follows. Section 2 briefly surveys the literature on periodic 
scheduling. Section 3 gives a mathematical model of periodic scheduling, from which a 
number of interrelated optimization problems are derived. The computational complexity 
of these problems is examined in Section 4. Section 5 gives approximation algorithms and 
bounds on their worst-case performance, if available. Section 6 contains some concluding 
remarks. 
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2 Survey of the Literature 

In the literature, the notion 'scheduling' refers to planning in time as well as planning in 
time and space. In this paper, we take the latter interpretation. We divide the literature on 
scheduling periodic operations into two main areas of interest, namely 

(i) Periodic Scheduling: assigning start times and processors to periodic operations so as 
to minimize the number of processors, possibly subject to precedence constraints, and 

(ii) Periodic Assignment: assigning processors to periodic operations so as to minimize the 
number of processors for periodic operations with fixed start times. 

Clearly, periodic assignment is a subproblem in periodic scheduling. Next, we briefly describe 
some results obtained in both areas. We do not aim to give a complete overview. 

2.1 Periodic Scheduling 

Most of the literature on scheduling periodic operations in time is restricted to preemptive 
scheduling. Preemptive scheduling allows interruption of an execution on a given processor 
at some time and its resumption at the same time on a different processor or at a later time 
on any processor. 

2.1.1 Preemptive Periodic Scheduling 
Preemptive periodic scheduling problems are usually modelled as follows. Given a set of 
operations 0 = { o1, ••• , on}, any operation o; E 0 is periodically requested to be executed 
with a given period p(o;) between two successive requests of operation o;. Once requested 
at time t an execution of o; is required to be completed at time t + d(o;), called its deadline. 
The objective is then to find a feasible schedule that requires a minimal number of proces
sors, where a schedule is called feasible if all deadlines are met. Leung & Merrill [1980] 
prove that the problem of deciding whether a feasible schedule exists on m processors is 
NP-complete, even for m = 1. However, this problem can b,e solved in polynomial time if 
the deadline of each execution coincides with the next request for the operation. Form = 1, 
Liu & Layland [1973] and Labetoulle [1974] prove that, if a feasible schedule exists, then it 
is obtained by the so-called deadline driven algorithm, which is a dynamic-priority algorithm 
that schedules executions with earliest deadlines as soon as possible. Liu & Layland also give 
a fixed-priority scheduling algorithm form= 1, known as rate-monotonic priority assignment, 
which is optimal in the sense that the algorithm finds a feasible schedule whenever a feasi
ble fixed-priority schedule exists. Dhall & Liu [1978] present two fixed-priority scheduling 
algorithms form 2:: 1, and discuss their worst-case performance. Leung & Whitehead [1982] 
study the complexity of preemptive fixed-priority scheduling. Lawler & Martel [1981] show 
that a feasible preemptive schedule exists if and only if a feasible periodic schedule exists 
with a period equal to the least common multiple of the periods of the individual operations. 
Bertossi & Bonuccelli [1983, 1985] consider preemptive scheduling on multiprocessor sys
tems consisting of 'processors of different speeds'. Scheduling periodic operations together 
with 'sporadic time-critical operations' is examined by Chetto & Chetto [1989]. 

2.1.2 Nonpreemptive Periodic Scheduling 
So far, nonpreemptive periodic scheduling has received little attention in the literature. To 
schedule periodic operations nonpreemptively, it is usually assumed that the operations have to 
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be executed with a fixed time between successive executions of the same operation. Gonzalez 
& Soh propose an optimization algorithm for nonpreemptively scheduling periodic operations 
for the rather special case that the period of the ith operation is half the period of the (i + 1)th 
one. Serafini & Ukovich [1989] discuss nonpreemptive periodic scheduling subject to prece
dence constraints and show that this problem is NP-complete. Park & Yun [1985] give an 
ILP formulation of a nonpreemptive scheduling problem. They consider a set of independent 
periodic operations, where each execution requires a given number of resources during one 
unit of time, and aim to minimize the maximum required amount of resources. They show 
how this problem can be partitioned into a set of independent subproblems, which can be 
optimized independently. The partitioning divides the operations into subsets such that the 
periods of operations in different subsets are relatively prime. A problem related to nonpre
emptive periodic scheduling is the problem of inscribing regular polygons in a circle so as to 
maximize the minimum distance between two vertices on the circle. Burkard [1986] solves 
this problem for a set of regular polygons that includes only two different types of polygons. 
Vince [1989] presents a more general approach to this problem. 

2.2 Periodic Assignment 
Periodic assignment deals with the problem of assigning the executions of periodic operations 
to a minimal number of processors, assuming that the executions are fixed in time. As we 
show in the next sections, this problem is closely related to that of colouring circular arcs. 
Circular-arc colouring has been studied by several authors. Garey, Johnson, Miller & Pa
padimitriou [1980] prove that circular-arc graph colouring is NP-hard. Tucker [1975] gives 
upper bounds on the number of colours needed to colour various types of circular-arc graphs. 
Orlin, Bonuccelli & Bovet [1981] and Shih & Hsu [1989] give efficient algorithms for the 
polynomially solvable subproblem of colouring proper circular-arc graphs. 

Bartholdi, Orlin & Ratliff [1980] consider the periodic assignment problem under the as
sumption that the availability of resources is also periodic. This problem naturally arises in 
the area of personnel scheduling, where periodic jobs have to be assigned to persons having 
periodic working hours. Bartholdi [1981] proposes a linear programming round-off algorithm 
and gives its worst-case deviation from optimum. Orlin [1982] discusses the periodic assign
ment problem under the assumption that processors require a setup time Sij to switch from 
execution i to execution j. This problem naturally arises in the area of vehicle scheduling, 
where a vehicle has to be transported from the end point of route i to the starting point of 
route j before it can start traversing route j. 

3 Problem Description 

In this section we give a formal description of a number of interrelated periodic scheduling 
and assignment problems. We restrict ourselves to nonpreemptive scheduling and do not 
consider precedence constraints. 

Let 0 = { o1, .•• , On} be a set of n periodic operations. For each o E 0 an execution time 
e(o) E IN and a period p(o) E IN are given. We assume that p(o) ~ 1 and e(o) ::::; p(o) for each 
o E 0. Once an execution of an operation o is started at a time unit t E 'ZZ, it is completed 
without interruption on the same processor. Note that in this paper time is measured in time 
units, i.e., time periods of equal length. If an operation o with execution time e(o) is said to 
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start at time unit t, it starts at the beginning of time unit t and completes at the end of time 
unit t + e(o) - 1. Similarly, a time interval [t1, t2 ] denotes a set of consecutive time units, 
given by {t1 ,t1 + 1, ... , t2}. The kth execution of operation o is denoted by o[k]. If execution 
o[k] is started at time unit t, then execution o[k+ 1] is started at time unit t+p(o). The set of 
all executions is given by 

E = {o[k] I o E 0, k E 7Z}. 

So, each operation o E 0 is started exactly every p(o) time units. Consequently, if for an 
operation o the start time of an arbitrary execution is fixed, then all executions of o are 
fixed in time. Without loss of generality, the executions of operation o are uniquely specified 
by a start time s(o), with 0 ~ s(o) < p(o). Hence, a schedule S of the operations in 0 
is uniquely determined by an n-tuple (s(o 1), s(o2), ••• , s(on)), with 0 ~ s(o;) < p(o;) for all 
o; E 0. Furthermore, the operations are considered independent, i.e., there are no precedence 
constraints between executions of different operations. 

Scheduling periodic operations naturally leads to periodic schedules. A schedule S is called 
periodic with period P if for each time unit t E 7Z and each o E 0 the following holds: 

operation o is executed at time unit t if and only if it is executed at time unit t + P. 

Clearly, in order for a schedule to be periodic with period P, it is required that p(o) I P, for each 
o E 0. Consequently, the minimal period P of a schedule is given by lcm(p(o1), ••• ,p(on)), 
i.e., the least common multiple of the periods of the individual operations. 

Let M denote the set of processors. The processors are supposed to be identical, i.e., each 
operation o E 0 can be executed on any processor m E M and the time to execute operation 
o does not depend on the processor. Furthermore, a processor can only execute one operation 
at a time. We aim to minimize the number of processors necessary for the execution of the 
operations in 0. Given a schedule S, we can define the thickness function Ts : 7Z -+ IN 
which assigns to each t E 7Z the number of operations that are being executed at that time 
unit. Since a processor can only execute one operation at a time, max, T s(t) gives, for a given 
scheduleS, a lower bound on the number of processors that is required to carry out schedule 
S. If schedule S is. periodic with period P, then the thickness function Ts is also periodic 
with a period P', for which P' I P. Hence, to determine max, Ts(t), it suffices to consider 
time units t E {1, ... ,P}. 

With respect to the assignment of executions to processors we consider two different cases, 
namely 

(i) the constrained case, where all executions of an operation o have to be assigned to the 
same processor, for all o E 0, i.e., an assignment from 0 toM is required, and 

(ii) the unconstrained case, where each execution o[k] can be assigned to a different pro
cessor, i.e., an assignment from E to M is required. 

An assignment of each execution in E to a processor in M may be difficult to specify, since 
E is a (countably) infinite set. We therefore restrict ourselves to periodic assignments. An 
assignment is called periodic with period P E IN if for each time unit t E 7Z, each o E 0, 
and for each m E M the following holds: 

m executes oat time unit t if and only ifm executes oat time unit t + P. 
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If for a periodic schedule S with period P the corresponding assignment is periodic with pe
riod P', then necessarily P I P'. In the constrained case, i.e., if all executions· of an operation 
are assigned to the same processor, the assignment is necessarily periodic with period P' = P. 
For the unconstrained case, restricting oneself to periodic assignments does not lead to the 
use of extra processors as long as the length of period P' is not restricted. This is shown in 
the following theorem. 

Theorem 1 For each periodic scheduleS a periodic assignment exists requiring only max1 Ts(t) 
processors. 

Proof We have seen that max1 T 5 (t) gives a lower bound on the required number of proces
sors. Now a finite set of executions can be optimally assigned to max1 T5 (t) processors, using 
an O(nlogn) algorithm [Hashimoto & Stevens, 1971; Gupta, Lee & Leung, 1979], where n 
denotes the number of executions. The algorithm assigns the executions in order of increasing 
start times to the first available processor, i.e., to the available processor with the smallest 
index number. Let us consider the assignment of a finite set of executions, namely the set of 
all executions in the time interval [0, mP -1], with m E 1N and P = 1cm(p(o1), ••• ,p(on)). We 
show that, if m is chosen sufficiently large, the assignment necessarily becomes periodic with 
some period m' P, m' < m. Let us examine the assignment in intervals [lP, (l + 1 )P - 1], with 
0 :::; l < m. The assignment can attain only a finite set of different solutions in such an interval 
[lP, (l + 1)P- 1], since a finite set of executions can be assigned to a finite set of processors. 
Consequently, if m is chosen sufficiently large, then in two intervals [lP, (l + 1)P- 1] and 
[l'P, (l' + 1)P- 1], with 0 :::; l < l' < m, the assignment must necessarily be identical. Hence, 
the assignment necessarily becomes periodic with period (l' -l)P, using only max1 T s(t) pro
cessors, which completes the proof of the theorem. • 

The minimum period for which a periodic assignment uses max1 T s(t) processors may gener
ally be very large. For reasons of simplicity, we restrict ourselves in this paper to periodic 
assignments with periods of minimal length, i.e., with a period P = lcm(p(o1), ••• ,p(on)). In 
this way, an operation o is executed on at most P jp(o) different processors. For the uncon
strained case, an assignment is thus completely specified if the processor is given for P jp(o) 
successive executions of each operation o E 0, denoted by o[1], o[2], ... , o[P jp(o)], where 
o[l] is defined to be the first execution starting at a time unit t;::: 0. 

Given the definitions and assumptions described above, we can define the following periodic 
assignment problems. We formulate these problems as decision problems. 

Unconstrained Periodic Assignment (UPA) 
Given a scheduleS for a set 0 of periodic operations with an execution time e(o) E 1N and a 
period p(o) E 1N for each o E 0, and an integer k, does an unconstrained periodic assignment 
with period P = lcm(p(o1), ••• ,p(on)) exist that uses at most k processors? 

Constrained Periodic Assignment (CPA) 
Given a scheduleS for a set 0 of periodic operations with an execution time e(o) E 1N and 
a period p(o) E 1N for each o E 0, and an integer k, does a constrained periodic assignment 
exist that uses at most k processors? 
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Likewise, we define the following periodic scheduling problems. 

Unconstrained Periodic Scheduling (UPS) 
Given a set 0 of periodic operations with an execution time e(o) E IN and a period p(o) E IN 
for each o E 0, and an integer k, does a schedule exist for which an unconstrained periodic 
assignment with period P = lcm(p(o1), ••• ,p(on)) uses at most k processors? 

Constrained Periodic Scheduling (CPS) 
Given a set 0 of periodic operations with an execution time e(o) E IN and a period p(o) E IN 
for each o E 0, and an integer k, does a schedule exist for which a constrained periodic 
assignment uses at most k processors? 

With respect to CPS the following theorem gives a necessary and sufficient condition for 
scheduling the executions of two operations on the same processor. 

Theorem 2 The executions of two periodic operations o; and Oj can be scheduled on the same 
processor if and only if 

gcd(p(o;),p(oj)) ~ e(o;) + e(oj). (1) 

Proof Let g = gcd(p(o;),p(oj)). We first prove that (1) is a sufficient condition. This is shown 
as follows. Choosing the start times s(o;) = 0 and s(oj) = e(o;), operation o; is executed in 
a subset of the set I; of intervals, defined by [lg, lg + e(o;) - 1], 1 E 7Z, and operation Oj is 
executed in a subset of the set Ij of intervals, defined by [lg + e(o;), lg + e(o;) + e(oj) - 1], 
1 E 7Z. Hence, if g ~ e(o;) + e(oj), then no intervals of I; and Ij overlap, which proves the 
sufficiency of (1 ). 

We prove the necessity of (1) by showing that, if g < e(o;) + e(oj), operation o; and Oj cannot 
be scheduled on the same processor. So, assume that g < e(o;) + e(oj). Without loss of 
generality we may assume that s(o;) = 0. We now have to prove that integers x,y exist for 
which 

[xp(o;),xp(o;) + e(o;)- 1] n [s(oj) + yp(oj), s(oj) + yp(oj) + e(oj)- 1] =/0 
or, equivalently, 

[xp(o;)- yp(oj), xp(o;)- yp(oj) + e(o;) - 1] n [s(oj), s(oj) + e(oj)- 1] =/0. 

From elementary number theory it is known that integers w, z exist for which wp(o;)+zp(oj) = 
g. If we choose x = lw andy= -lz, with 1 E 7Z, it suffices to show that for some integer 1 

[lg, lg + e(o;)- 1] n [s(oj), s(oj) + e(oj)- 1] =/0. 

Clearly, this must be the case since the free intervals between the intervals [lg, lg + e(o;)- 1], 
1 = 0, 1, ... , are of length g- e(o;), while the intervals [s(oj), s(oj) + e(oj) - 1] are of length 
e(oj). Hence, the assumption that g < e(o;) + e(oj) implies that some integer 1 necessarily 
exists for which [lg, lg + e(o;) - 1] and [s(oj), s(oj) + e(oj) - 1] overlap. This completes the 
proof of the theorem. • 

A similar condition can be derived for CPA, as is shown in the following theorem. 
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Theorem 3 For CPA, two periodic operations o; and Oj with given start times s(o;) and s(oj), 
can be executed on the same processor if and only if 

e(o;) $ (s(oj) - s(o;)) mod g $ g - e(oj), 

where g = gcd(p(o;),p(oj)). 

(2) 

Proof Without loss of generality we may assume that s(o;) = 0. This is true since, if s(o;) =I 0, 
then the start times of o; and oi can be shifted such that s(o;) becomes zero, without affecting 
possible overlap. The sufficiency of (2) is shown as follows. Let us consider time intervals 
[0 +kg, g - 1 +kg], with k E 'ZZ. The first e(o;) time units of each of these intervals can 
be allocated for executions of o;, and the remaining g - e(o;) time units for executions of 
oi. Now, if (2) holds, then the allocated time units surely suffices to execute o; and Oj· The 
first e(o;) time units of the intervals are only used to execute o; once every p(o;)jg intervals. 
The remaining g- e(o;) time units are only (partly) used to execute oi once every p(oj)/g 
intervals. 

The necessity of (2) is shown as follows. Let us again consider the time intervals [0 +kg, g -
1 + kg], with k E 'ZZ. If (2) does not hold then the execution of oi overlaps the first e(o;) 
time units once every p(oj)/g time intervals. We have already seen that the first e(o;) time 
units of the intervals are used for the execution of o; once every p(o;)/g time units. Now, by 
definition, gcd(p(o;)/g,p(oj)/g) = 1. Hence, if (2) does not hold, then operations o; and oi 
cannot be executed on the same processor. This completes the proof of the theorem. • 

Note that Theorem 2 can be considered a corollary of Theorem 3, since (1) directly follows 
from (2). In the next section we examine the computational complexity of the problems 
defined above. 

4 Computational Complexity 

To examine the complexity of the periodic assignment problems CPA and UPA, we focus 
our attention on the subset of problem instances for which p(o) = p for all o E 0. Note that 
under this restriction CPA and UPA are identical. If we prove that this subset of instances is 
NP-complete, then both CPA and UPA have been proved to be NP-complete. 

Theorem 4 CPA and UPA are NP-complete. 

Proof It is easily verified that CPA and UPA are in NP. Now the NP-completeness is 
proved by a reduction from circular-arc colouring, which has been shown to be NP-complete 
by Garey, Johnson, Miller & Papadimitriou [1980]. We first define circular-arc colouring. Let 
a set of circular arcs A = { a1, ••• , an} be given, where each arc a;, specified by an ordered pair 
(l;, r;), with 1;, r; E {0, 1, ... , 2n -1 }, is an arc on a circle with circumference 2n that stretches 
clockwise from point I; to point r;, containing both endpoints, and let an integer k be given. 
The problem is now: is A k-colourable, i.e., does a function f : A ~ { 1, ... , k} exist such 
that f(a;) =I f(ai) whenever a; and ai overlap? Any instance of circular-arc colouring can be 
transformed to a periodic assignment instance as follows. For each arc a; we define a periodic 
operation with period p(o;) = 2n, start time s(o;) = I;, and execution time e(o;) = r; - I;+ 1 if 
r; ;?: I; and e(o;) = r; - I; + 2n + 1 if r; < l;. Now two periodic operations can be assigned 
to the same processor if and only if the corresponding circular arcs can be coloured with the 
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same colour. Consequently, the circular arcs can be coloured using k colours if and only if 
the periodic operations can be assigned to k processors. Evidently, this is a polynomial-time 
transformation, which completes the proof of the theorem. • 

Note that the transformation from circular-arc colouring defines an equivalence between 
circular-arc colouring and the problem of assigning operations with identical periods, which 
we will use in Section 5.1. 

To consider the complexity of CPS and UPS we again focus our attention on the subset of 
problem instances for which p(o) = p for all o E 0. Again notice that this subset is in the 
intersection of the CPS and UPS problem instances. 

Theorem 5 CPS and UPS are NP-complete in the strong sense. 

Proof It is easily verified that CPS and UPS belong to NP. We now prove the NP
completeness by a reduction from bin packing, which is NP-complete in the strong sense 
[Garey & Johnson, 1979]. An instance of bin packing is specified as follows. Let a finite 
set A = { a 1, ••• , an} of items be given, with for each item a; E A a positive integer size 
s(a;), a positive bin capacity B and a positive integer k. Can A be partitioned into k disjoint 
subsets A 1 , ••• , Ak> such that the sum of the sizes in each subset A; does not exceed the bin 
capacity B? Any instance of bin packing can be directly transformed into an instance of CPS 
or UPS as follows. For each item a; we define a periodic operation o; with execution time 
e(o;) = s(a;) and period p(o;) =B. Clearly, a number of periodic operations can be executed 
on the same processor if the corresponding items can be packed in one bin, and vice versa. 
Hence, the items a 1, ••• , an can be packed into k bins if and only if the operations o1, ••• , On 
can be scheduled on k processors. Since the above transformation is polynomial, CPS and 
UPS are both NP-complete in the strong sense. • 

An alternative reduction from 3-partition can be constructed, showing that the problems re
main NP-complete in the strong sense for the case that only one processor is available. 
Hence, this gives a stronger result. We have chosen, however, to give the reduction from 
bin packing since this reduction defines an equivalence between bin packing and the prob
lem of scheduling periodic operations with identical periods, which we will use in Section 5 .1. 

5 Approximation Algorithms 

All problems presented in Section 3 are NP-complete. This means that, unless P = NP, 
efficient optimization algorithms do not exist for these problems. We therefore focus our 
attention on approximation algorithms, i.e., algorithms which do not guarantee to find an 
optimal solution for every instance but attempt to find near-optimal solutions. In the remainder 
of this paper we present approximation algorithms for the periodic scheduling and assignment 
problems presented in Section 3 and, to some extent, analyse their performance. An interesting 
subclass of problems arises if we assume that the operations all have identical periods. We 
first consider approximation algorithms for this subclass of problems. 

5.1 Periodic Operations with Identical Periods 
In Section 4 we already indicated the equivalence between bin packing and the problem 
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of scheduling periodic operations with identical periods. Hence, approximation algorithms 
for bin packing can be directly applied to this problem. A large number of approximation 
algorithms exist for bin packing, ranging from simple approximation algorithms called first fit 
and first fit decreasing, which have asymptotic performance ratios of ~ and ¥, respectively, 
to approximation schemes. An extensive survey of the literature on approximation algorithm!: 
for bin packing is given by Coffmann, Garey & Johnson [1984]. A bin packing algorithm 
gives a partitioning of the operations into subsets such that the operations in the same subset 
can be assigned to the same processor. A feasible schedule can then easily be obtained by 
scheduling the operations in each subset one after the other, in some arbitrary order. The 
wealth of approximation algorithms for bin packing provided by the literature surely suffices 
to effectively handle this subclass of periodic scheduling problems. 

To present approximation algorithms for the assignment of periodic operations with identical 
periods we refer to its equivalence with the problem of colouring circular arcs, as indicated 
in Section 4. To the best of our knowledge, Tucker [1975] is the only author who considers 
the subject of approximation algorithms for colouring circular arcs, in order to give an upper 
bound on the number of colours necessary for colouring circular arcs. Elaborating on this 
result, we present the following 2-step approximation algorithm for colouring circular arcs, 
called sort&match. 

1. Partition the set of arcs into two subsets A and B, where A contains all arcs that cover one 
specific point t E { 0, 1, ... , 2n- 1} for which the thickness function attains a minimum 
value, and B contains all remaining arcs. Consequently, !AI = min1 T8 (t). Now the 
arcs in B can be optimally assigned using the assignment algorithms of Hashimoto & 
Stevens [1971] or Gupta, Lee & Leung [1979] using max,T8 (t) colours: the arcs a; in 
B are sorted in order of their starting point l; and they are assigned in this order to the 
first available colour, i.e., the available colour with the smallest index number. 

2. Determine a maximum subset A' of arcs in A which can be coloured with a colour 
that is already used in step 1 to colour arcs in B. This problem can be formulated 
as a maximum-carcjinality matching problem in a bipartite graph, which can be solved 
efficiently using an augmenting path algorithm [Edmonds, 1965; Hopcroft & Karp, 
1973]. Finally, each remaining arc in A- A' is given a different free colour. 

Tucker [1975] only considers the first step of the algorithm presented above. Clearly the 
algorithm requires at most max, T 8 (t) +min, T 8 (t) colours. Since max, T8 (t) is a lower bound 
on the number of required colours, sort&match has a worst-case performance ratio of 2. This 
worst"case performance ratio already holds for the first step of the algorithm (assuming that 
all arcs in A are given a different free colour), which Tucker already showed. The worst-case 
performance bound can be shown to be tight [Korst, Aarts, Lenstra & Wessels, 1991]. The 
average-case performance of sor.t&match is much better. Experimental results indicate that 
the algorithm almost always finds solutions that are within 10% of the optimum for randomly 
generated instances [Korst, Aarts, Lenstra & Wessels, 1991]. 

5.2 Periodic Operations with Arbitrary Periods 
In this subsection we discuss possible approximation algorithms for the UPA, CPA, UPS and 
CPS problems, for the case that operations have arbitrary integer periods. 

Approximation Algorithm for UPA 



175 

Sort&match, presented in Section 5.1, can also be used as an approximation algorithm for 
UPA by associating an arc with each execution that is contained in a time window of length 
P = Icm(p(o1), ••• ,p(on)). Note, however, that here the number of arcs is not polynomially 
bounded by the number of operations. The performance bound of sort&match clearly remains 
unaffected. Circular arcs can be efficiently coloured if they are proper, i.e., if no arc is 
completely contained in another arc [Orlin, Bonuccelli & Bovet, 1981;Shih & Hsu, 1989]. 
Hence, if periodic operations all have identical execution times, they can be optimally assigned 
to processors in a time that is polynomial in the number of executions. 

Approximation Algorithms for CPA 
Using Theorem 3 we can easily determine for each pair of periodic operations whether they 
can be assigned to the same processor. Consequently, we can define a graph g = (V, £), 
where each v; E V is associated with a periodic operation o;. Two vertices v; and vi are 
adjacent if the associated operations o; and oi cannot be assigned to the same processor. The 
resulting graph g is called a periodic-interval graph. Now it is easy to see that solving 
a CPA instance is identical to colouring the vertices of the corresponding periodic-interval 
graph with a minimum number of colours. A periodic-interval graph can be considered to 
be a generalization of a circular-arc graph in the case that all periods are identical. To the 
best of our knowledge no graph colouring algorithms are presented in the literature that 
are tailored to colouring periodic-interval graphs. However, approximation algorithms for 
colouring arbitrary graphs might give satisfactory results in practice. 

Approximation Algorithms for UPS 
Experimental results indicate that sort&match is able to find solutions for UPA that are often 
close to max1 T8 (t). It therefore seems tempting to handle UPS using the following two-step 
approach: 

1. first determine start times for the operations such that max1 T 8 (t) is minimized, and 

2. next use sort&match to find a feasible assignment. 

Now the problem of finding a schedule such that max1 T 8 (t) is minimized can be shown to 
be NP-complete. This immediately follows from the fact that UPS remains NP-complete 
for the single processor case. Consequently, we can restrict ourselves to constructing an 
approximation algorithm for the problem of finding start times that minimize max1 T 8 (t). 
Note that for a set O' of periodic operations with gcd(p(o;),p(oj)) = 1 for all o;, Oj E 0', 
we have max1 T 8 (t) = JO'J for any possible choice of start times. This is a corollary of 
Theorem 2; see also [Park & Yun, 1985]. Consequently, the set of periodic operations 0 can 
be partitioned into a number of disjoint subsets 0 1, 0 2 , ••• , 0 1 such that gcd(p(o;),p(oj)) = 1 
for each pair of operations o;, oi that have been assigned to different subsets, and max1 Ts(O;)(t) 

can be minimized independently for each subset 0;. The total thickness max1 T 8 (t) is then 
given by I:o; max1 T S(O;>· This partitioning approach will reduce the size of the problem. 

We now restrict ourselves to minimizing max1 T 8 (t) for a given subset 0;. This can be done 
as follows. First select a subset O;r of 0;, for which gcd(p(o;),p(oj)) = 1 for all o;, Oj E 0;', 
such that 0;' is as large as possible. This is done by using some independent set heuristic. 
The operations in 0;' are given arbitrary start times. Next, the remaining operations must be 
given start times subject to the start times of the operations in 0;'. If the number of operations 
in 0;- 0;' is small, an enumeration is most appropriate. Otherwise, some constructive or 
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Approximation Algorithm for CPS 
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In the case of CPS we observe the following. If one or more periodic operations are assigned 
to a processor, then the time that the processor remains idle can be expressed as one or more 
periodic intervals, each with a period and a duration. For example, if a periodic operation o; 
with period p(o;) and execution time e(o;) is assigned to an idle processor, then the remaining 
idle time can be expressed as a periodic interval with period p(o;) and a duration p(o;)- e(o;). 
We can thus consider the problem of assigning periodic operations to processors as the problem 
of assigning periodic operations to periodic intervals. For reasons of simplicity we denote a 
periodic operation o; with period p(o;) and execution time e(o;) by the ordered pair (p;, e;) 
and a periodic interval with period Pj and duration dj by the ordered pair [pj, dj]. From 
Theorem 2 we derive that a periodic operation (p;, e;) can be assigned to a periodic interval 
[pj, dj] if and only if gcd(p;,p) ~ e; + (pj - dj). Let g = gcd(p;,P) and ej = pj- dj; then 
by assigning periodic operation (p;, e;) to periodic interval [pj, dj], the remaining idle time 
can be expressed as a set of periodic intervals in a number of alternative ways. We assume 
that a periodic operation is always started at the begin of the periodic interval to which it is 
assigned. Consequently, the remaining idle time can be expressed as one of the following 
three alternatives. 

1. p;/ g - 1 periodic intervals [p;, g - ej], 
pj/ g - 1 periodic intervals [pj, ej], and 

1 periodic interval [p;, g- e;- ej] 
2. p;/ g - 1 periodic intervals [p;, e;], 

Pj/ g - 1 periodic intervals [pj, ej], and 
1 periodic interval [ g, g - e; - ej] 

3. p;/g- 1 periodic intervals [p;, e;], 
Pj/ g - 1 periodic intervals [pj, g - e;], and 

1 periodic interval [pj, g - e; - ej] 

In all three cases the number of periodic intervals is given by 

P;+Pj -1. 
gcd(p;,Pj) 

Note that, if P; = pj, the three alternatives are identical, leading to only one periodic interval. 
Otherwise, if P;!Pj or pj\pi, then the three alternatives reduce to two essentially different ones. 

Based on this observation, we propose the following iterative approximation algorithm. In 
each iteration all possible assignments of periodic operations to periodic intervals are con
sidered and the one that is considered best is selected to be scheduled. The 'goodness' of 
an operation-to-interval assignment is defined by the amount of idle time that remains after 
assigning the periodic operation to the periodic interval. In each iteration the assignment of 
(p;, e;) to [pj, dj] is selected for which djpj- e;/P; is minimal, provided that the assignment 
is feasible. Clearly, the amount of idle time that remains after assigning an operation (p;, e;) 
to an idle processor is given by 1 - e;/P;· Consequently, the algorithm will not assign a 
periodic operation to an idle processor as long as the periodic operation can be assigned to 
a periodic interval of a processor that is already in use. After each iteration, the remaining 
idle time is expressed as one or more periodic intervals using one of the three alternatives 
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mentioned above. Which alternative is selected is determined by considering how well the 
unassigned operations fit in the periodic intervals. This can be considered as a maximum
weight matching problem on a bipartite graph, which can be handled efficiently. 

A detailed analysis of the algorithm is beyond the scope of the paper. We mention that, in 
the case of periodic operations with identical periods, solutions are found that are identical 
to the ones obtained by first fit decreasing for bin packing. 

6 Conclusions 

A number of closely interrelated optimization problems have been discussed from the field of 
nonpreemptive periodic scheduling. The complexity of these problems has been examined. 
We have derived Necessary and sufficient conditions for executing two periodic operations 
on a single processor. Finally, approximation algorithms have been proposed for periodic 
scheduling and periodic assignment problems, for the constrained case as well as the uncon
strained case. 
The material presented in this paper leaves the following open problems: 

- Which constraints do we have to impose on the problems discussed in this paper to 
allow for efficient optimization algorithms? 

- Do approximation algorithms exist for colouring periodic-interval graphs that have a 
constant worst-case performance ratio? 

- Do approximation algorithms exist for colouring circular-arc graphs with a worst-case 
performance ratio smaller than two? 

- Is it possible to give a constant worst-case performance ratio for the approximation 
algorithms for CPS and UPS? 
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