
. . J

EXERCISES IN
PARALLEL COMBINATORIAL

COMPUTING

GERARD KINDERVATER

EUR

EXERCISES IN
PARALLEL COMBINATORIAL COMPUTING

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Erasmus Universiteit Rotterdam

op gezag van de Rector Magni.ficus
Prof. dr. A.H. G. Rinnooy Kan

en volgens besluit van het College van Dekanen.
De openbare verdediging za1 plaatsvinden op

donderdag 15 juni 1989 om 13.30 uur
door

GERARDUS ANTONIUS PETRUS KlNDERVATER

geboren te Amsterdam.

1989
Centrum voor Wiskunde en Informatica, Amsterdam

Promotiecommissie

Promotor: Prof. cir. J. K. Lenstra

Overige leden: Dr. A. de Bruin
Prof. cir. J. van Leeuwen
Prof. dr. A.H. G. Rinnooy Kan

CONTENTS

0. Introduction 1

1. Computational models 3
1. 1. Taxonomy of Flynn 3
1.2. Taxonomy of Schwartz 5
1.3. Control-driven, data-driven, and demand-driven architectures 8
1.4. Algorithms 8

2. Parallel complexity 12
2.1. The parallel computation thesis 12
2.2. Polylog parallel algorithms 15
2.3. <3>-completeness 31

3. Experiments with fine-grained parallelism 47
3.1. Architectures 49
3.2. Change making 55
3.3. Shortest paths 61
3.4. Knapsack 65

4. Experiments with coarse-grained parallelism: branch and bound 70
4.1. Architectures 71
4.2. Traveling salesman 73
4.3. Job shop scheduling 75
4.4. Anomalous behavior 77

5. A queueing network model for distributed enumeration 81
5.1. Queueing model description 82
5.2. Mathematical analysis of the node processing mechanism 84
5.3. Numerical examples 91
5.4. The machine repair model 94

6. Perspectives 99
6.1. Computational models 99
6.2. Architectures 100
6.3. Computations 101

References 102

Samenvatting 109

.

0

Introduction

Over the last 40 years, computers have become faster by a steady series of
improvements of their individual components, without fundamental changes in
the concept as a whole. Operating speeds are now approaching their physical
limits. In spite of all advances, however, there are still many problems which
are unsolvable in reasonable time. Hence, more powerful architectures are
required. A way to achieve further speedups is through the use of a collection
of processors that cooperate in the solution process.

The first parallel computers were proposed in the late fifties. As in those
days technological developments continued to improve the performance of
traditional sequential machines enormously, the exploitation of parallelism in
order to obtain faster computation times was generally regarded unnecessary.
With the exception of the Illiac IV [Barnes, Brown, Kato, Kuck, Slotnick &
Stokes 1968], no parallel computers were built. Around 1975, the situation
changed: operating speeds of computers were so high that a much improved
performance could only be expected through the introduction of parallelism.
Since then, a diversity of parallel architectures has become available.

Operations research is one of the areas that are likely to benefit from
advances in parallel computing. With respect to sequential computing, many
operations research problems appear to be practically intractable, and for
other problems a shorter solution time would be preferable. Today's parallel
computers cannot solve all of these problems adequately either, but for future
generations of parallel computers this may be different.

In this thesis, we discuss some aspects of the impact of parallel computing
on combinatorial operations research. In the first place, it is necessary to inves­
tigate what one can and cannot expect from parallelism. The complexity
theory for parallel computations provides the means to achieve this. On the
other hand, there exists a formidable gap between theoretical models for

2 Chapter 0

parallel computing and existing machines, and, in addition, available architec­
tures differ very much from each other. It is therefore of interest to see what
the capabilities of the current generation of parallel computers are. In particu­
lar, we would like to find out what kinds of architecture are most suitable for
the field of combinatorial optimization, and what techniques can be used.

The organization of this thesis follows the structure of two of our survey
papers [Kindervater & Lenstra 1986, 1988]:

Chapter I describes machine models for parallel computations. Machines can
be classified according to processor autonomy, interprocessor communication, and
model of operation. Examples of theoretical as well as realistic models are con­
sidered. The simulation of theoretical models by realistic ones is discussed.

Chapter 2 deals with the complexity theory for parallel computations. Given
the basic distinction between membership of '?J> and completeness for 18'U~P in
sequential computing, we consider the speedups possible due to the introduc­
tion of parallelism. Within the class '?J', this leads to a distinction between 'very
easy' problems, which are solvable in polylogarithmic parallel time, and the 'not
so easy' ones, which are '?J>-complete under log-space transformations. We will
give examples of polylog parallel algorithms and discuss a number of <ff'­
completeness results. In particular, we will concentrate on the construction of
traveling salesman tours by some well-known heuristics [Kindervater, Lenstra
& Shmoys 1989], and on the iterative improvement of such tours by local
search methods [Kindervater, Lenstra & Savelsbergh 1989].

Chapter 3 discusses the implementation of standard algorithms for the
change-making, shortest paths and knapsack problems on parallel computers
that are suited for algorithms that make use of fine-grained parallelism; it is
based on Kindervater & Trienekens [1988].

Chapter 4 analyzes the coarse-grained parallelization of branch and bound
methods at the level of the parallel evaluation of nodes in the search tree. We
describe experiments with branch and bound algorithms for the traveling sales­
man and the job shop scheduling problems. The anomalous behavior that these
methods sometimes exhibit, is discussed in the last section of this chapter.

Chapter 5 gives a first attempt to the design and analysis of a model for the
distribution of a tree search procedure over several parallel processors. A queue­
ing network approach is taken to describe the various processes in a master­
slave environment [Boxma & Kindervater 1987].

Chapter 6, finally, addresses issues that withstand a real breakthrough of
parallel computing: the diversity among existing parallel architectures as well
as the wide gap between theoretical models and available computers. It will
also be necessary to develop formal techniques for the design and implementa­
tion of efficient parallel partitioning and tree search methods [Kindervater,
Lenstra & Rinnooy Kan 1989].

The area of parallel computing is expanding very fast. It could have a
beneficial influence on operations research. The current situation is chaotic,
however, and it is not as yet clear where it will lead to. In this thesis, we dis­
cuss current developments and offer some suggestions of what would be desir­
able from an operations research point of view.

3

1

Computational Models

Many architectures for parallel computations have been proposed in the litera­
ture. Some of these machines actually exist or are being built. Unfortunately,
parallel computers differ very much from each other, and the performance of
algorithms is therefore highly architecture dependent. Accordingly, there exists
no general theoretical model that effectively describes the broad spectrum of
feasible parallel architectures. Some theoretical models are useful for the design
and analysis of parallel algorithms, but their realization is usually not feasible
due to physical limitations.

In the next sections, we will discuss three ways of classifying parallel archi­
tectures. The classifications are more or less orthogonal to each other and are
based on processor autonomy, interprocessor communication, and model of opera­
tion. We end this chapter by describing a number of algorithms that illustrate
the use of some specific architectures. Unless otherwise stated, a brief descrip­
tion of the parallel computers mentioned below can be found in Dongarra &
Duff [1985).

1. 1. TAXONOMY OF FLYNN [1966)
The most widely used classification of parallel computers is due to Flynn.
Flynn distinguishes four classes of machines (cf. Figure 1.1).

(1) SISD (single instruction stream, single data stream). One instruction is
performed at a time, on one set of data. This class contains the traditional
sequential computers.

(2) SIMD (single instruction stream, multiple data stream). One type of
instruction is performed at a time, possibly on different data. An
enable/ disable mask selects the processing elements that are allowed to per­
form the operation on their data. The ICL/DAP (Distributed Array Processor)
(see Section 3.1.1), the Goodyear/MPP (Massively Parallel Processor) and the

4

single instruction stream
single data stream

single instruction stream
multiple data stream

multiple instruction stream
single data stream

multiple instruction stream
multiple data stream

+ga+b a,b SIMD c+d
c,d

~aISD a+b
a-b

a,b

~aIMD a+b
a,b c -d
c,d

FIGURE I. I. The classification of Flynn.

Chapter 1

Connection Machine belong to this class. Also, vector computers such as the
Cray-I and the Cyber-205 (see Section 3.1.2) are often considered as SIMD
machines.

In vector machines, an arithmetic operation is performed by a functional
unit. The operation is split into a chain of small tasks. Each component of the
functional unit performs a specific task and passes the result on to its neigh­
bor. The computation is sped up by the pipelining of independent operations of
the same type: as soon as a component has completed a task, it is ready to
start the same task of the next operation. It turns out that developing algo­
rithms for vector computers and SIMD machines can be done along the same
lines.

(3) MISD (multiple instruction stream, single data stream). Different instruc­
tions on the same data can be performed at a time. This class has received
very little attention so far.

(4) MIMD (multiple instruction stream, multiple data stream). Different
instructions on different data can be performed at a time. There are two types
of MIMD computers: the processors of a synchronized MIMD machine per­
form each successive set of instructions simultaneously; the processors of an
asynchronous MIMD machine run independently and wait only if information
from other processors is needed. The Alliant/FX8, the BBN/Butterfly, the
IBM/LCAP (Loosely Coupled Array of Processors) (see Section 4.1.1) and the
Intel/iPSC (Intel's Personal SuperComputer) are examples of MIMD
machines.

If one considers the many types of algorithms that are suitable for execution
on parallel computers, then both ends of the spectrum can be characterized in
a way that resembles the above distinction between the two types of MIMD
machines. Systolic algorithms lead to highly synchronized computations, where

Computational models 5

the processing elements act rhythmically on regular streams of data passing
through the (SIMD or synchronized MIMD) machine. Typical examples are
the algorithms to be presented in Section 1.4 and the dynamic programming
recursions in Chapter 3. Distributed algorithms lead to asynchronous processes,
in which the processors perform their own local computations and communi­
cate by sending messages every now and then. Branch and bound (see Chapter
4) lends itself to this approach.

1.2. TAXONOMY OF SCHWARTZ [l 980]
Flynn's classification is not concerned with the way in which information is
transmitted between the processors. This is dealt with by Schwartz, who distin­
guishes between paracomputers and ultracomputers.

In a paracomputer, the processors have simultaneous access to a shared
memory, which allows for communication between any two processors in con­
stant time. A further distinction is based on the way in which shared memory
computers handle read and write conflicts, which occur when several processors
try to read from or to write into the same memory location at the same time.
Paracomputers help us in investigating the intrinsic parallelism in problems
and algorithms. They are therefore of great theoretical interest, but current
technology prohibits their realization. In many existing architectures, the pro­
cessors have access to a common memory. As these machines only approxi­
mate a real shared memory by handling read and write instructions sequen­
tially, they cannot be considered as paracomputers.

The most common paracomputer model is the PRAM (Parallel Random
Access Machine). The PRAM is a synchronized MIMD machine with an
unbounded number of processors and a shared memory, which allows simul­
taneous reads from the same memory location but disallows simultaneous
writes into the same memory location. The computation starts with one proces­
sor activated; at any step, an active processor can do a standard operation or
activate another processor; and the computation stops when the initial proces­
sor halts.

In an ultracomputer, each processor has its own memory and the processors
communicate through a fixed interconnection network. Such a network can be
viewed as a graph with vertices corresponding to processors and (undirected)
edges or (directed) arcs to interconnections. Two parameters of the graph are
important in this context: the maximum vertex degree d 1, which should be
bounded by a constant on grounds of practical feasibility, and the maximum
path length d2 (the 'diameter'), which should grow at most logarithmically in
the number p of processors to ensure fast communication.

Of the many interconnection networks that have been proposed, seven are
briefly described below. They are illustrated in Figure 1.2.

(i) Complete network. Each pair of processors is directly connected. In a p­
processor system, d 1 = p - 1 and d 2 = I. An example of this type of
configuration is the MPC (Module Parallel Computer). The MPC is a theoreti­
cal model, in which each processor has its own memory and is connected to all
other processors. By sending messages, a processor can access a variable stored

6 Chapter 1

(i) Complete network,
p = 6.

(ii) Mesh connected
network, q = 4.

(iii) Perfect shuffle
network, d = 3.

(iv) Cube connected
network, d = 3.

(vi) Master-slave
network, s = 8.

(v) Cube connected cycles
network, d = 3.

(vii) Binary trees
network, d = 3.

FIGURE 1.2. Seven interconnection networks.

in the memory of another processor. However, if several processors try to
access a variable stored in the memory of the same processor simultaneously,
only one will succeed and the others receive a message that the access failed.

(ii) Two-dimensional mesh connected network [Unger 1958]. Each processor is
identified with an ordered pair (i,J) (i,j = 1, ... ,q), and processor (i,j) is con­
nected to processors (i + I ,j) and (i,j + 1), provided they exist. Note that
d1 = 4 and d2 = 2(q- l) = 8(Vp). This interconnection network is used in
the ICL/DAP and the Goodyear/MPP.

Computational models 7

(iii) Perfect shuffle network [Stone 1971]. There are p = 2d processors with
interconnections (i, 2i -1), (i +p!2,2i), (2i - l,2i) for i = 1, ... ,p/2. The first
two types of interconnections imitate a perfect shuffle of a deck of cards. We
have d 1 = 3 and d1 = 2d-1 = 0(logp).

(iv) Cube connected network [Squire & Palais 1963]. This can be seen as ad­
dimensional hypercube with 2d processors at the vertices and interconnections
along the edges. Note that d 1 = d2 = d = logp. The Intel/iPSC and the
Connection Machine are organized this way.

(v) Cube connected cycles network [Preparata & Vuillemin 1981]. This is a
cube connected network with each of the 2d processors replaced by a cyclicly
connected set of d processors; each of them has two cycle connections and one
edge connection. This yields d 1 = 3 and d 2 = 0(logp).

(vi) Master-slave network. There are s + 1 processors, organized as a one­
level tree: one 'master' processor is connected to s 'slave' processors. Note that
d 1 =sand d2 = 2. As an example we have the IBM/LCAP.

(vii) Binary trees network [Bentley & Kung 1979]. There are p = 3-2d -2
processors, interconnected by two binary trees with common leaves. The 2d
processors corresponding to these leaves perform the actual computations. The
other 2d -1 processors in the first tree (an out-tree) send the data down to
their descendants, and those in the second tree (an in-tree) combine the results
from their ancestors. An additional master processor controls the network by
providing the input for one root and receiving the output from the other. Note
that d 1 = 3 and d2 = 0(logp).

All these networks can simulate each other quite efficiently; see Siegel [1977,
1979] for details. Still, it appears that the cube connected cycles and perfect
shuffle networks are reasonably flexible, while the mesh connected and binary
trees networks have been designed for more restricted types of computations.

Simulation of the theoretical PRAM model by ultracomputers with a bounded
degree network that allows for fast communication is usually done in two
phases.

First, the use of the shared memory is eliminated. An n-processor MPC can
simulate a computational step of an (n,m)-PRAM (a PRAM with n processors
and a shared memory of size m) with high probability in time O(logn) [Upfal
1984] or in deterministic time O(logm) [Alt, Hagerup, Mehlhom & Preparata
1987]. The proof of the probabilistic bound is constructive, but for the deter­
ministic simulation only an existence proof is given. The problem of finding a
constructive deterministic simulation of a PRAM step in logarithmic time is
still open.

The second phase eliminates the use of the complete interconnection net­
work. One step of an n-processor MPC can be simulated in O(log n) steps by a
bounded degree network with n processors [Alt, Hagerup, Mehlhom &
Preparata 1987].

Combining the two phases, we conclude that a step of an (n,m)-PRAM
requires probabilistic time O(log2 n) or deterministic time O(log m log n) on a
bounded degree network.

8 Chapter 1

Karlin & Upfal [1986) describe a direct simulation of a PRAM. They show
that T steps of an (n,m)-PRAM can be simulated in O(Tiogm) steps by a
bounded degree network, with probability tending to 1 as n or T goes to
infinity. Until today, no deterministic simulation with the same time charac­
teristic is known.

1.3. CONTROL-DRIVEN, DATA-DRIVEN AND DEMAND-DRIVEN ARCHITECTURES

[Treleaven, Brownbridge & Hopkins 1982)
Parallel computers not only differ in the autonomy of the processing elements
and the interprocessor communication, but also in the model of operation they
use.

The main operational models are control-driven, data-driven and demand­
driven. In control-driven architectures, the user specifies through his program
the exact order in which the computations must be performed and also which
operations are to be performed in parallel. In the data-driven model, an opera­
tion can be performed as soon as all its operands are available, and in the
demand-driven model, an operation can be initiated as soon as its outcome is
needed. In these last two models, the order in which operations are performed
is completely determined by the program itself at run time. If we look at paral­
lel processing as a multiple processor scheduling problem with precedence con­
straints where the statements of a program are the jobs and the dependencies
of the statements are the precedence constraints, a data-driven computation
corresponds in it most ideal form to the ordering of the statements according
to the earliest-time scheduling algorithm, whereas a demand-driven architecture
considers the statements according to the latest-time scheduling algorithm; cf.,
for example, Gondran & Minoux [1984).

All sequential computers use the control model of operation and, at present,
most of the existing parallel computers - including the ones mentioned in the
previous sections - also use this method. A number of data-driven computers,
called datafl.ow machines, have been built, but these machines are still in their
infancy; see, for example, Watson [1984). We will discuss the Manchester
datafl.ow machine in Section 3.1.3 in detail. Demand-driven architectures do
not yet exist. Several proposals have been made, such as the ALICE machine
at the Imperial College in London [Darlington & Reeve 1981].

1.4. ALGORITHMS

As an illustration of the concepts defined above, we will end this chapter by
giving some examples of parallel algorithms for elementary problems. They all
use the control-driven model of operation and are developed for a specific type
of interconnection network.

The quality of the parallelization of an algorithm will be judged on the
resulting speedup, which is the running time of the best sequential implementa­
tion of the algorithm divided by the running time of the parallel implementa­
tion using p processors, and the processor utilization, which is the speedup
divided by p. The best one can hope to achieve is a speedup of p and a proces­
sor utilization of 1. Note that these concepts are defined here relative to a

Computational models 9

given algorithm, irrespective of the possible existence of more efficient sequen­
tial algorithms for the problem at hand.

1.4.1. Matrix multiplication
Two n Xn matrices A = (aiJ) and B = (biJ) can be multiplied in O(n) time on
an n X n mesh connected network. The basic idea is the use of the skewed
input scheme illustrated in Figure 1.3. At each step of the computation, matrix
A makes one step to the right, matrix B goes one step down, and each process­
ing element (i,J) multiplies its current values a;k and bkJ and adds the result
into its accumulator (which starts at 0). It is easily verified that after 2n - 1
stages processor (i,J) contains the required value l:.ka;kbkJ and that the pro­
cedure is best possible in terms of speedup and processor utilization. Further­
more, only one copy of each matrix element has to be kept in storage. This is a
typical example of a systolic algorithm performed on an SIMD machine and
suitable for VLSI implementation.

B: b44

b43 b34

b42 b33 b24

b41 b32 b23 b14

b31 b22 bn

b21 b12

b11 !

A: a14 a13 a12 a11

a24 a23 a22 a21 -a34 a33 a32 a31

a44 a43 a42 a41

FIGURE 1.3. Matrix multiplication on a mesh connected network.

1.4.2. Transitive closure [Guibas, Kung & Thompson 1979)
The transitive closure of a directed graph G has an arc (i,J) if and only if G
has a path from i to j. If G has n vertices, the algorithm from Section 1.4.1 can
be applied to find the transitive closure in O(n) time using n2 mesh connected
processors. Starting with A given by the adjacency matrix of G (i.e., aiJ = 1 if
G has an arc (i,J) and aiJ = 0 otherwise) and B =A, one executes the matrix

10 Chapter 1

multiplication algorithm three times, with the modifications that addition is
replaced by maximization and that any element aiJ or biJ that passes through
processor (i,j) is updated with the value of the accumulator. A correctness
proof of this procedure can be found in the above reference.

1.4.3. Membership testing
Given a set S of n elements and an element e, one can test whether e ES in
O(log n) time on a binary trees network with d = flog n 7 . Denote the proces­
sors corresponding to the common leaves by P; (i = l, ... ,2d) and suppose that
P; stores the ith element e; of S (i ~n). It takes d steps for the processors in
the top tree to send e down, one step for the P;'s to check whether e; = e, and
d steps for the processors in the bottom tree to compute the disjunction of the
results.

As an extension, one can test the membership of S for m elements
e(l) , ... ,e<m) in O(m + log n) time by pipelining the flow of information through
the network. As soon as e<1) leaves the first processor, e<2> is sent to it; and, in
general, at each step all data are going down one level.

By asking the processors in the bottom tree to do a bit more than comput­
ing logical disjunctions, one can use the same model to find the minimum of n
elements and to compute the rank of a given element in O(logn) time. We
leave details to the reader.

1.4.4. Minimum spanning tree [Bentley 1980)
Given a complete undirected graph G with vertex set { l, ... ,n} and a length ciJ
for each edge {i,j}, a spanning tree of G of minimum total length can be
found in O(n 2) time by an algorithm from Prim [1957) and Dijkstra [1959).
The algorithm is based on the following principle. Let T(V) be the collexion of
edges in a minimum spanning tree of the subgraph of G induced by the subset
V of vertices. If i* ¢ V and J* E V are such that C;•r = min;~ v,J Ev{ ciJ}, then
T(V LJ {i*}) = T(V) LJ { {i*,j*} }.

The algorithm starts with T({I}) = 0 . At each iteration, a minimum span­
ning tree on a certain vertex set V with edge set T(V) has been constructed
and, for each i ¢ V, a 'closest tree vertex' }; E V and a corresponding distance I;
are known, i.e., I; = ciJ, = min1 Ev { ciJ}. One selects an i* ¢ V for which
I;• = min;~v{l;}, adds i* to V and {i*,J;•} to T(V), and updates the values};
and I; for the remaining vertices i ¢ V. There are n - 1 iterations, each requir­
ing O(n) time.

It is not hard to implement the algorithm on a binary trees network with
d = flog n 7 . The master processor stores the set T of spanning tree edges.
Processor P; keeps track of}; and I; and is able to compute any c;. in constant
time. Each command that is sent down the tree is executed only by those P;'s
that are turned on.

We initialize by setting T = 0 and, for i = 2, ... ,n, turning on P; and set­
ting }; = I and I; = c; 1• In each of the n - 1 iterations, we first apply the
minimum-finding procedure to determine i* and add { i* ,J;•} to T; we next
send i* down in order to turn off P;• forever (since now i* EV) and to tum off

Computational models 11

each P; with I; ,s;,c;;• temporarily for the rest of this iteration (since no update
is necessary); and we finally instruct all remaining P;'s to set }; = i* and
I; = C;;• •

Since each iterat;on takes OQog n) time, this parallel version of the algo­
rithm has a running time of O(nlogn) using O(n) processors and hence a pro­
cessor utilization of only O(1/logn). We cannot improve on this by pipelining
the loop, since each iteration needs information from the previous one. How­
ever, we can use a smaller network with d = f1og(n/logn)l, in which each P;
takes care of f1ogn l vertices and performs all computations for them sequen­
tially. This modified algorithm still runs in O(nlogn) time, but now using
O(nllogn) processors with a processor utilization of 0(1).

12

2

Para11el Complexity

The complexity theory for parallel computations explores the potential power
and the inherent limitations of parallel computers. Section 2.1 presents an
informal introduction to those concepts from the complexity theory for parallel
computations that may have some impact on the field of combinatorial optimi­
zation. It turns out that parallelism introduces a distinction within the class '5':
many problems in '3' are solvable in polylog parallel time, and others can be
shown to be '3'-complete under log space transformations. Examples of polylog
parallel algorithms are given in Section 2.2, and a number of '3'-completeness
results are discussed in Section 2.3.

2.1. THE PARALLEL COMPUTATION THESIS

Complexity theory deals with the classification of problems based on the run­
ning time and the work space required by algorithms for their solution. When
considering parallel algorithms, we can also take the number of processors into
account. Although the complexity theory has been developed for decision prob­
lems (i.e., problems that produce a 'yes' or 'no' answer), this is not a severe
restriction, since most other problems can be reformulated in terms of a lim­
ited series of decision problems. An optimization problem, for example, can be
solved by posing questions on the existence of a feasible solution with at most
or at least a specified value.

In this section, we discuss the complexity theory for parallel computations as
far as it is of importance to the theory of combinatorial optimization. We do
not intend to go into much detail, and refer to Cook [1981) for a more
thorough exposition. First, we review the complexity theory with respect to
sequential computations (cf. Garey & Johnson [1979)).

Sequential computers are reasonably represented by models of computation
such as the Turing machine and the random access machine (RAM). Given

Parallel complexity 13

these models, we can define several complexity classes. The class '3' contains
the problems that are solvable in polynomial time, i.e., the running time is
bounded by a polynomial in the problem size. The problems in '3' are often
called well solved or easy. i?J'sPACE contains the problems that are solvable using
polynomial space, i.e., the work space is bounded by a polynomial in the prob­
lem size. A very well studied class included in i?J'sPACE is '!Jl.,i?J', the class of prob­
lems for which a feasible solution can be recognized as such in polynomial
time. It is obvious that '3' (: '!Jl.,'?J' (: i?J'sPACE, and it is conjectured that both
these inclusions are proper.

Another class contained in i?J'sPACE, which has not attracted much attention
with respect to sequential computations, is POLYLOGSPACE. It consists of the
problems that are solvable in polylog space, i.e., work space that is polynomi­
ally bounded in the logarithm of the problem size. Many problems in '3' belong
to POLYLOGSPACE, but it is generally believed that '3' ll POLYLOGSPACE. We do
know, however, that POLYLOGSPACE * i?J'sPACE.

The classes i?J'sPACE and '!Jl.,'?J' have their complete members. The i?J'sPACE­
complete problems are generalizations of all other problems in i?J'sPACE in terms
of transformations that require polynomial time. More precisely: a problem is
i?J'sPACE-complete under polynomial-time transformations if it belongs to i?J'sPACE
and if any other problem in i?J'sPACE is reducible to it by a transformation that
requires polynomial time. It follows that, if any i?J'sPACE-complete can be
shown to belong to ~. then i?J'sPACE = '3'. Since this equality is not believed to
be true, a polynomial-time algorithm for a i?J'sPACE-complete problem is very
unlikely to exist. For the class '!Jl.,'?J' and its complete members, the same proper­
ties hold.

'3' also has its complete problems. The '3'-complete problems generalize all
other problems in '3' in terms of transformations that require logarithmic work
space. Formally: a problem is log space complete for '3' or, better, '3'-complete
under log-space transformations, if it belongs to '3' and if any other problem in
'3' is reducible to it by a transformation using logarithmic work space. If any
'3'-complete problem would belong to POLYLOGSPACE, then '3' (: POLYLOG­
SPACE. As this inclusion is believed to be false, an algorithm for a '3'-complete
problem that uses only polylogarithmic work space cannot be expected.

Sequential and parallel computations are related by a hypothesis known as
the parallel computation thesis [Chandra, Kozen & Stockmeyer 1981;
Goldschlager 1982): time bounded parallel machines are polynomially related to
space bounded sequential machines. That is, for any function T of the problem
size n, the class of problems solvable by a machine with unbounded parallel­
ism in time T(n)°(I> (i.e., polynomial in T(n)) is equal to the class of problems
solvable by a sequential machine in space T(n)°(I>. This thesis is a theorem for
many 'reasonable' parallel machine models and 'well-behaved' time bounds;
see Van Emde Boas [1985) for a survey. Fortune & Wyllie [1978), for example,
showed that the class of problems solvable in T(n)°<1> time by a PRAM is
equal to the class of problems solvable in T(n)°<1> work space by a Turing
machine, if T(n);;;a,,Iogn.

As a consequence, the class of problems solvable by a PRAM in polynomial

14 Chapter 2

time is equal to '!PsPACE. Since the PRAM is able to solve the apparently
difficult problems in '!PsPACE (such as the '!PsPACE-complete and ~':'J'-complete
ones) in polynomial time, it is obviously an extremely powerful model. The
theorem by Fortune & Wyllie also implies that the problems in P0LYL0GSPACE
are exactly the ones solvable by a PRAM in polylog parallel time, i.e., in time
that is polynomially bounded in the logarithm of the problem size. This leads
to a distinction within the class ':'J'.

The problems in ':'J' belonging to P0LYL0GSPACE are solvable in polylog
parallel time. They can be considered to be among the easiest problems in '?J',
in the sense that the influence of problem size on solution time has been lim­
ited to a minimum. (It should be noted here that a further reduction to sublog­
arithmic solution time is generally impossible. One reason for this is that a
PRAM needs O(log n) time to activate n processors; a similar reason is that in
any realistic model of parallelism a constant upper bound on the maximum
'fan-out' d I implies a logarithmic lower bound on the minimum 'communica­
tion time' d2 .)

On the other hand, the ':'J'-complete problems are unlikely to admit solution
in polylog parallel time. If any such problem would be solvable in polylog
parallel time, it would belong to P0LYL0GSPACE, and it would follow that ':'J' C
P0LYL0GSPACE. Hence, their solution in polylog parallel time is not expected.
Any solution method for these hardest problems in ':'J' is likely to require super­
logarithmic time and is therefore, loosely speaking, probably 'inherently
sequential' in nature. This does not imply, of course, that parallelism cannot
yield substantial speedups.

We can, therefore, distinguish within ':'J' between the 'very easy' problems,
which are solvable in polylog parallel time, and the 'not so easy' ones, for
which such a speedup due to parallelism is unlikely.

The picture of the PRAM model as sketched above is in need of some
qualification. The model is theoretically very useful, but its unbounded paral­
lelism is hardly realistic. The reader will have no difficulty in verifying that a
PRAM is able to activate a superpolynomial number of processors in subpoly­
nomial time. If a polynomial time bound is considered reasonable, then cer­
tainly a polynomial bound on the number of processors should be imposed. It
is a trivial observation, however, that the class of problems solvable if both
bounds are respected is simply equal to ':'J'. Within this more reasonable model,
~':'J'-complete and '!PsPACE-complete problems remain as hard as they were
without parallelism.

Discussions along these lines have led to the consideration of simultaneous
resource bounds and to the definition of new complexity classes. For example,
Nick (Pippenger)'s Class ~ contains all problems solvable in polylog parallel
time on a polynomial number of processors, and Steve (Cook)'s Class ~ con­
tains all problems solvable in polynomial sequential time and polylog space.
Some sort of extended parallel computation thesis might suggest that ~ =
~e.. This is a major unresolved issue in complexity theory, and outside the
scope of this review. We refer to Johnson [1983] for further details and more
references.

Parallel complexity 15

2.2. POLYLOG PARALLEL ALGORITHMS

The polylog parallel algorithms described below are designed to run on the
PRAM model or on an SIMD machine with a shared memory. Simultaneous
writes into the same memory location are prohibited. The simultaneous reads
that occur are not essential and can be eliminated. We will use the notation

par [B (i)] S (i)

to denote that the statement S (i) is to be executed in parallel for all values of i
satisfying the condition B (i).

In some examples, we will encounter randomized algorithms, i.e., algorithms
that produce the correct answer with probability greater than .5. From the
complexity theory for randomized computations we only mention the class
'!il0U?, i.e., the class of decision problems solvable by a randomized algorithm
in polylog time on a polynomial number of processors.

We note that the (randomized) algorithms to be presented below require a
polynomial number of processors, so that the related decision problems belong
to ('!il)me.

2.2.1. Maximum.finding
Given n numbers, one wishes to find their maximum. We assume, for conveni­
ence, that n = 2m for some integer m and that the numbers are given by
an,an + 1 , ••• ,a2n -t. Consider the following procedure:

for/~ m -1 downto Odo
par [21 o;;;;J ..;;2' + 1 -1) a1~ max{ a21,a21 + 1 }.

The computation is illustrated by means of a binary tree in Figure 2.1. At step
/, the values corresponding to the nodes at level / of the tree are calculated. At
the end, a 1 is equal to the desired maximum.

I= 0

I = 1

I= 2

I= 3
as
2

a1

36

FIGURE 2.1. Maximum finding: an instance with n = 8.

16 Chapter 2

The algorithm requires O(logn) time and n/2 processors. We can improve
on this by applying a device similar to the one used in the last paragraph of
Section 1.4.4. Suppose there are p (p :,;;;;; n /2) processors available, to which we
assign nip data. (For simplicity, we assume that p divides n.) Each processor
first computes the maximum of the data assigned to it sequentially, before the
above procedure is executed. The resulting algorithm has a running time of
O(nlp+logp) with p processors. For p = rn/lognl, this provides an algo­
rithm that runs in O(log n) time, but now using only r n /log n l processors with
a processor utilization of 0(1).

2.2.2. Partial sums [Dekel & Sahni 1983a]
Given n numbers an,an+l•··•,a2n-l with n = 2m, one wishes to find the partial
sums an + ... + an + j for j = O, ... ,n - I. Consider the following procedure:

for 1-m -1 downto Odo
par [21 :s;;;J:s;;;2'+ 1 -1) aj-a2j +a2j+I;

b1-a1;
for 1- I to m do

par [21 :s;;;J:,;;;;;2'+ I -1) bj- if j odd then b(J-I)/2 else bj/2 -aj+I·

The computation is illustrated in Figure 2.2. In the first phase, represented by
the solid arrows, the sum of the a/s is calculated in the same way as their
maximum was calculated in Section 2.2.1. Note that the a-value corresponding
to a non-leaf node is set equal to the sum of all a-values corresponding to the
leaves descending from that node. In the second phase, represented by the dot­
ted arrows, each parent node sends a b-value (starting with b 1 = a 1) to its
children: the right child receives the same value, the left one receives that value
minus the a-value of the right child. The b-value of a certain node is therefore
equal to the sum of all a-values of the nodes of the same generation, except
those with a higher index. This implies, in particular, that at the end we have
bn + j = an + ... + an + j for j = O, ... ,n - 1.

The algorithm requires O(logn) time and n processors. As before, this can
be improved to O(logn) time and O(n/logn) processors.

Remark. In the form given above, the algorithm does not work for opera­
tions such as maximization. The partial sums algorithm uses subtraction, which
has no equivalent in the case of maximization. We therefore present a version
of the partial sums algorithm which is not quite so elegant as the original one,
but which has the desired property since it makes use of addition only. It also
runs in O(logn) time using O(n/logn) processors.

for 1-m -1 downto Odo
par [2' :s;;;J:s;;;2'+ 1 -1) aj-a21 +a2j+I;

for 1-0 tom do
par [21 :s;;;J:,;;;;; 2' + 1 - I]

bj- if j = 2' then aj else if j odd then b(j- I)/2 else bu-2>12 +aj.

Parallel complexity 17

I= 0

I= 1

I = 2

I = 3

FIGURE 2.2. Partial sums: an instance with n = 8.

2.2.3. Sorting [Muller & Preparata 1975; Ajtai, Kom16s & Szemeredi 1983]
Given n numbers a1, ... ,an, one wishes to renumber them such that a 1 :s;;;; ... :s;;;;an .
We assume, for simplicity, that a; =fa aj if i =fa j. Consider the following pro­
cedure:

par [1,s;;;;i,J:s;;;;n] Pij- if a;:s;;;;aj then I else O;
par [I :s;;;;J :s;;;;n] 'ITj- sum{piJ I I :s;;;;i :s;;;;n};
par [I:s;;;;J:s;;;;n] a.,

1
-aj.

The algorithm is based on enumeration sort: the position 'ITj in which aj should
be placed is calculated by counting the a;'s that are no greater than aj. There
are three phases:

(i) computation of the relative ranks P;/ n2 processors, 0(1) time - or
fn 2 /lognl processors, 0(logn) time;

(ii) computation of the positions '/Tj: n r n /log n l processors, 0(log n) time
(by application of the first phase of the algorithm of Section 2.2.2);

(iii) permutation: n processors, 0(1) time.
The algorithm requires 0(logn) time and 0(n 2/Iogn) processors. Simultane­

ous reads occur in the first phase, but there is a way to avoid them within the
same time and processor bounds. As sequential enumeration sort takes 0(n 2)

time, the processor utilization is 8(1).
A substantial improvement over the above algorithm was given by Ajtai,

Koml6s & Szemeredi. They developed a parallel sorting algorithm that had no
sequential counterpart. It also runs in 0(logn) time, but uses only O(n) pro­
cessors, which is best possible.

18 Chapter 2

2.2.4. Shortest paths [Dekel, Nassimi & Sahni 1981)
Given a complete directed graph with vertex set { l , ... ,n} and a length ciJ for
each arc (i,J), one wishes to find the shortest path lengths for all pairs of ver­
tices. Lawler [1976] gives an algorithm which requires O(n 3 logn) time. It is
based on matrix multiplication. Let <f.J denote the length of a shortest path
from vertex i to vertex j, containing no more than / arcs. Since a path from
vertex i to vertex j consisting of at most 2/ arcs can be split into two paths of
no more than / arcs each, we have that tl,f> = mink E { 1, ... ,n} { tl,Q + 41}. Taking
into account that a shortest path, if it exists, contains at most n - 1 arcs, we
obtain the following algorithm:

par [l:s;;;i,J:s;;;nJ ti,J>-ciJ;
form- 1 to flognl do

1-2m,
par [l,s;;;i,Jo;;;;nJ tl,f-min{tl,f2>+afj2> I 1:s;;;ko;;;;n}.

Application of the routine of Section 2.2.1 with maximization replaced by
minimization yields an algorithm which requires O(log2n) time and
O(n 3 /logn) processors, with a processor utilization of 0(1).

Greenberg, Ladner, Paterson and Galil [1982) showed that two n X n
matrices can be multiplied on a PRAM in O{logn) time using O(na/logn)
processors, with a the exponent for matrix multiplication (a.;;;;2.376 [Cop­
persmith & Winograd 1987)). This improves the shortest paths algorithm to
O(log2n) time and O(na/logn) processors, with a processor utilization of 0(1).

2.2.5. Minimum spanning tree [Savage & Ja'Ja' 1981; Chin, Lam & Chen 1982]
The Prim-Dijkstra algorithm for the minimum spanning tree problem was dis­
cussed in Section 1.4.4. A minimum spanning tree of a complete undirected
graph G with vertex set { l , ... ,n} and a length ciJ for each edge {i,j} can also
be found in O(n 2

) time by an algorithm due to Sollin [Berge & Ghouila-Houri
1962). We assume that the edge lengths are all distinct; if not, we number the
edges in some arbitrary way and say that from two edges with the same length
the one with the lowest number is smaller. The algorithm starts with n com­
ponents, each consisting of a different vertex, and with an empty set of edges
belonging to the tree. At each step of the algorithm, each component finds an
edge of minimum length between any of its own vertices and a vertex of a
different component. Since all edge lengths are different, the edges thus
obtained do not form cycles between the components and are added to the
minimum spanning tree. We now merge the components which are connected
by the newly found edges into a new one, and perform a next step of the algo­
rithm as long as there is more than one component left. Because the number of
components is at least halved at each step, the algorithm terminates after at
most flog n l steps.

In the algorithm below, for each component a representative is chosen. Two
vertices belong to the same component if they have the same representative.
Let r; (i = 1, ... ,n) denote the representative of the component to which vertex
i belongs.

Parallel complexity

par (l~i~n] r;+-i;
for I+- 1 to flogn l do

par (l,s;;;;i~n]
find k such that rk=/=r; & c;k = min{ciJ lr/f:=r;, 1,s;;;;J~n},

19

if k does not exist then a minimum spanning tree has been found
& the algorithm is stopped,

t;+-k;
par p,s;;;;;~n]

find k such that rk=r; & ck,, = min{cjt
1

lr1=r;, l~J,s;;;;n},
S;+-k & t;+-tk;

par (1 ,s;;;;; ,s;;;;n] S;+- if t1, =s; & r; <r,, then O else s;;
par [I ~i ~n] if r; = i & s;=/=O then add edge { s;,t;} to the tree;
par [l~i~n) T;+- if s;=O then r; else r,,;
for /* +- 1 to flogn l do par (1 ~i ~n] r;+- r,,.

Each step of the algorithm does the following. First, each component finds the
edge of minimum length between any vertex of itself and one of a different
component. Of the edges found twice at the same step, one copy is eliminated.
The remaining edges are added to the tree. Finally, components are merged by
finding a common representative, using a recursive doubling technique which
will be explained later in an algorithm for scheduling fixed jobs on identical
machines.

One step of the algorithm can be performed in O(logn) time on O(n 2 /logn)
processors by application of the procedure of Section 2.2.1 with maximization
replaced by minimization. The complete algorithm requires O(log2 n) time on
O(n 2 /logn) processors, with a processor utilization of O(1/logn).

By a careful analysis of the above algorithm, Chin, Lam & Chen proved that
it can be implemented such that it runs in O(log2 n) time on O(n 2 /log2 n) pro­
cessors, with a processor utilization of 0(1). Savage [1977] proved that the
edges of a tree can be directed towards a given vertex within the same time
and processor bounds.

2.2.6. Maximum cardinality matching [Karp, Upfal & Wigderson 1986; Mulmu­
ley, Vazirani & Vazirani 1987)
Given an undirected graph with vertex set V and edge set E, one wishes to
find a matching of maximum cardinality. A matching is a set of vertex disjoint
edges. It is perfect if each vertex is incident to an edge.

Lovasz [1979) gave a randomized algorithm for deciding whether a graph
has a perfect matching. It is based on the following theorem of Tutte: a graph
on n vertices has a perfect matching if and only if the determinant of the n X n
matrix B = (biJ), with biJ= xiJ if {i,j} EE and i<j, biJ= -xiJ if {i,j} EE and
i>J, and biJ=O otherwise, is not identically zero in the variables xiJ. Now, we
choose a random number N, substitute for each variable xiJ a random number
from { l, ... ,N} and compute the determinant. If the determinant of B is identi­
cally zero, then we find the value zero. Otherwise, the probability that we get
zero is very small. Csanky [1976) showed that computing a determinant

20 Chapter 2

belongs to qJ(E.. Therefore, the problem of deciding whether a graph has a per­
fect matching belongs to 0l,qJ(E..

The randomized algorithms of Karp, Upfal & Wigderson and Mulmuley,
V azirani & V azirani which actually construct a perfect matching in poly loga­
rithmic time, if it exists, are also based on Tutte's theorem. We refer to their
papers for details. As a result, the problems of constructing a maximum cardi­
nality matching and of constructing a matching of maximum weight in a graph
whose edge weights are given in unary notation also belong to 0tmB; in partic­
ular, the last problem can be solved, with high probability, in O(log2n) time
on n 3+admax processors, where dmax is the maximum edge weight and a is the
exponent for matrix multiplication (see also Section 2.2.4). The complexity of
the maximum cardinality matching problem with respect to deterministic
parallel computations is an open question, even for bipartite graphs.

2.2. 7. Heuristics for the traveling salesman: double minimum spanning tree,
Christofides, and nearest addition [Kindervater, Lenstra & Shmoys 1989]
In the traveling salesman problem (TSP), one is given a complete undirected
graph G with vertex set { l , ... ,n} and a length diJ for each edge {i,j}, and one
wishes to find a Hamiltonian cycle (i.e., a cycle passing through each vertex
exactly once) of minimum total length. This is a well-known 'X<fJ>-hard problem,
and rather than trying to solve it to optimality one might decide to find an
approximate solution in polynomial time. We will consider three such algo­
rithms in this section.
(1) Double minimum spanning tree

(i) Construct a minimum spanning tree and double its edges.
(ii) Construct an Eulerian cycle in the graph obtained in step (i) (i.e., a cycle

passing through each of its edges exactly once).
(iii) Start at a given vertex and traverse the Eulerian cycle, skipping vertices

visited before.
(2) Christofides

(i) Construct a minimum spanning tree and a minimum perfect matching on
the vertices of odd degree in the tree.

(ii) Construct an Eulerian cycle in the graph obtained in step (i) .
(iii) Start at a given vertex and traverse the Eulerian cycle, skipping vertices

visited before.
(3) Nearest addition

(i) Start with a tour consisting of a given vertex and a self-loop.
(ii) Find vertices j and k with k belonging to the tour and j not for which

dJk is minimal, and insert j directly before k. Repeat this step until all vertices
are inserted.

For each of these heuristics, we have a bound on the worst-case performance
on TSP instances that satisfy the triangle inequality, i.e., diJ~d;k +dkJ for all
i,j ,k. On these instances, the double minimum spanning tree and the nearest
addition heuristics produce tours that are guaranteed to be less than twice as
long as the optimum, and the Christofides heuristic always does better than
one-and-a-half times the optimum. The crucial facts in proving these bounds

Parallel complexity 21

are that the minimum spanning tree is strictly shorter than the shortest tour,
that the minimum perfect matching on any subset of vertices is no longer than
half the shortest tour, and that no tour is longer than the Eulerian cycle from
which it is obtained; see Lawler, Lenstra, Rinnooy Kan & Shmoys [1985] for
details.

2.2. 7.1. Double minimum spanning tree
Phase (i) of the double minimum spanning tree algorithm (constructin~ a
minimum spanning tree and doubling its edges) can be performed in O(log" n)
time with O(n 2 /Iog2 n) processors; see Section 2.2.5. Phase (ii) (finding an
Eulerian cycle) can be done within the same time and processor bounds using
the techniques from Awerbuch, Israeli & Shiloach [1984]. For phase (iii), we
first have to find the first occurrence of each vertex and then eliminate all
duplications. Let v 1, ••• ,v;, ... ,v2n-i denote the Eulerian tour obtained in the pre­
vious phase, where v; is the ith vertex of the tour. We proceed as follows.

par [I :,;;;;;i,j ..;;;2n - I] ciJ - if v; = v1 then I else O;
par [IE:;i..;;;2n - I] d; -max{O, 1-sum{ciJ I 1 ..;;;J..;;;i -1} };
par [l:,;;;;;i..;;;2n -1] s; -sum{d1 I 1-.;;;J..;;;i}.

Note that d; = 1 if v; occurs for the first time in the tour, d; = 0 otherwise, and
that s; denotes the number of different vertices in v 1 , ••• ,v;. We obtain the tour
t1 -t2 - ... -tn-t1 by:

par [l :,;;;;;; ..;;;2n -1] if d; = 1 then t,, -v; .

Using the partial sums algorithm from Section 2.2.2, we can implement phase
(iii) within the same resource bounds as the previous phases. Hence, we end
up with an algorithm that runs in O(log2 n) time on O(n 2 /Iog2 n) processors.
Since the sequential algorithm takes O(n 2) time, we have a processor utiliza­
tion of 0(1).

2.2. 7.2. Christofides
The Christofides heuristic also consists of three phases. The second and third
phases are identical to the corresponding phases of the double minimum span­
ning tree heuristic given above. Therefore, we need focus on implementing the
first phase.

It is an open question if the minimum perfect matching problem belongs to
c_;n:e, but it can be solved in randomized polylog time (see Section 2.2.6). We
will give a randomized approximation scheme for the Christofides heuristic, i.e.,
a family of algorithms that asymptotically approach its performance. More
precisely, for each £>0 we give an algorithm that runs in polylogarithmic time
on a polynomial number of processors and, if the distances satisfy the triangle
inequality, has probability of greater than .5 of delivering a tour of length less
than 312+£ times the shortest tour length; the running time is independent of
£ and the number of processors is polynomial in 1/ £. The approach is based on
the idea that an approximate minimum perfect matching will suffice to obtain
an approximate Christofides tour and that an approximate minimum perfect

22 Chapter 2

matching can be obtained by solving a matching problem with weights
bounded by a polynomial in n. It will be useful to let d(G) = "2.(i,J}EEdij for
any graph G = (V,E) and weight function d.

For the first phase of the heuristic we construct two Eulerian graphs and
select the one of smallest total length . The first of these graphs is a double
minimum spanning tree. For the second we proceed as follows.

(i) Find a minimum spanning tree T and identify the set V of vertices of
odd degree in T.

(ii) Set µ=2Ed(T)!IVI and E={{i,J}\:Vld;j'~2d(T)l3}. For all
{i,j} EE, set aij = L dijl µ J.

(iii) Find a minimum perfect matching M on G = (V,E) with edge weights
J and add these edges to the minimum spanning tree.

We first show that this procedure has the claimed performance guarantee.
To do this we show that one of the Eulerian graphs produced has total length
less than (312+t:)d(C), where C is a shortest tour. Let M denote a minimum
perfect matching on V with edge weights dij. If d(T)~3d(M)/2, then the dou­
ble minimum spanning tree has length at most 2d(T)~3d(M)~(312)d(C).

Now assume that d(T)>3d(M)/2. Note that for each {i,j} 'F-E,
dij>2d(T)l3>d(M), so that M\;;;E. Since µJ;1~dij~µJij+µ for {i,j} EE, we
have

d(M)~"l:.(i,j}EM(µJij+µ) = µJ(M)+µI V 112
~µJ(M)+t:d(T)~d(M)+t:d(T)~(112+t:)d(C),

and hence d(T)+d(M)<(312+t:)d(C).
As to the resource bounds, O(log2n) time and (n 2log2(Ih))/log2n processors

suffice for all of the computations except for finding the minimum perfect
matching. This subroutine requires O(log2n) time and nHaJmax processors,
with Jmax the maximum over all values J;1 and a the exponent for matrix mul­
tiplication (cf. Section 2.2.6). By observing that

- ,,;:::: L 2t1<D13 J - LE.LJ -max(i,J}evdij""' 2t:d(T)I IV I - 3t: - O(nlt:),

we conclude that the number of processors required is O(n4+a It:).

2.2. 7.3. Nearest addition
Let v I be the given starting vertex. The order in which the nearest addition
heuristic adds vertices to the tour corresponds to the way in which the algo­
rithm from Prim and Dijkstra builds up a minimum spanning tree, starting
from v 1 ; see Section 1.4.4. Therefore, we first construct a minimum spanning
tree and direct its edges towards v 1 • By means of this tree, we can determine
for each two vertices i and j which one will be visited first. There are two pos­
sible situations (Figure 2.3). In the first situation, one vertex is a descendant of
the other. Since each vertex is inserted immediately before its parent, the des­
cendant will appear earlier in the tour than the ancestor. In the second situa­
tion, no vertex is a descendant of the other. Let k be the first common ances­
tor of i and j and let i' (j') be the last vertex on the path from i (j) to k; i' = i

Parallel complexity 23

~ I ~ I

cp
I

I I

0 0 0
v 1 - ... -i- ...

tour: -1- .. ,-v1

VJ- ... -i- ... -j'- ...
tour: . ., k ...-1-... -1 - ... - - ... -v1

FIGURE 2.3. Nearest addition: the two possible situations for vertices i and j.

(j' = 1) if the path consists of only one arc. If d;'k <dJ'k• then vertex i' will be
inserted before vertex k, and after that vertex j' will be inserted in the tour
immediately before vertex k and thus after vertex i'.

A detailed description of the algorithm is given below. It has a running time
of O(log2 n) on O(n 2 /log2 n) processors. Without loss of generality we assume
that all distances are distinct.

(i) First, we construct a minimum spanning tree and direct it towards vertex
v 1, generating arcs (i,t (i)) for i E { l, ... ,n} \ v 1. For convenience, we assume
t(v 1) = v1• This requires O(log2 n) time and O(n 2 /log2 n) processors (cf. Sec­
tion 2.2.5).

(ii) The next step is to construct an n Xn 0-1 matrix (ciJ), representing the
transitive closure of the tree (ciJ = 1 if there exist a path from vertex i to vertex
j , ciJ = 0 otherwise). Let u(i,/) denote the vertex at distance i1 from vertex i, or
v I if this vertex does not exist. The following statements do the job:

par [l,s;;;;,s;;;n) u(i,0)-t(i);
for 1-1 to [1ognl do

par [I ,s;;;i,s;;;n) u(i,/)- u(u(i,/-1),/-1);

par [I ,s;;;i,J,s;;;n) if i = j then ciJ - 1 else ciJ -o
for 1- flog n 1 downto O do

par [l,s;;;i1·,s;;;n) if C·· = 1 then if c- (JI)= 0 then c- (JI)- 1. ' lj IU , IU ,

(The 'if C;u(J,I} = 0' condition is added to avoid simultaneous writes into c;,, .)
These operations can be performed in logarithmic time with O(n 2) processors.
To reduce the number of processors, we have to observe that in each iteration
of the last for / loop we only have to look at those pairs (i,j) for which ciJ = 1.
The number of these pairs doubles in each iteration. Therefore, we perform the
last iterations of the for loop in a different way. We replace the computation of
the c-matrix by the following, where the parameter x will be chosen later:

24 Chapter 2

for I+- 1 to x do
par [I...;;i...;;n, (/- l)f n!xl + I...;;J...;;min{/f n!xl,n }] ciJ +-0;

par [I...;;i...;;nJ C;; +-1 & assign a processor to (i,i);

for / +- flog n 1 downto L Iog x J do
par [I...;;i,J...;;n & (i,J) has a processor assigned to it]

if C;u(J,l) = 0 then C;u(J,l)+- I & assign a free processor to (i,u(j,I)) ;

for / +- x downto 0 do
par [I...;;i,J...;;n & (i,j) has a processor assigned to it]

if C;u(J,l) = 0 then C;u(J,0) +- I & assign the processor, assigned to
(i,J), to (i,u(j,O)).

By choosing x = flog2 n 1, we achieve a running time of O(Iog2 n) with only
O(n 2 /log2 n) processors.

(iii) Now, we compute the total number s; of vertices in the subtree rooted
by i:

par [I ...;;i ...;;n] s; +- sum{ cJi I 1 ~j ~n }.

Let r; denote the number of descendants of the parent of vertex i which will be
visited after vertex i in the tour:

par [I ...;;i...;;nJ r; +- sum{sj I t(i) = t(j), d;,(i) <djt(J), I ...;;J...;;n }; r,, +-0.

Finally, we compute for each vertex i the total number q; of vertices visited
after i :

par [I ...;;i...;;nJ q; +- sum{cu(l +rj) I 1 ...;;J...;;n }.

(if ciJ = 1, then 1 for j and rj for the descendants of the parent of]), and a
nearest addition traveling salesman tour has been determined. These last steps
require the same time and processor bounds as the previous ones.

2.2.8. Local optimality of time-constrained traveling salesman tours [Kindervater,
Lenstra & Savelsbergh 1989)
Given a traveling salesman tour (cf. Section 2.2.7), one wishes to decide
whether it is k-optimal, i.e., whether it is impossible to obtain a shorter tour by
the replacement of a set of k edges by another set of k edges. In the following,
let the vertex set be { l , ... ,n} , let diJ be the length of edge {i,j} (i,j = l , ... ,n),
and let (v 1, ... ,vn,Vn+I) denote a TSP tour, where vn+I =v 1• We consider the
case k = 2 in detail; for k>2, the same approach can be followed.

A 2-exchange replaces the edges { v;, v; + i} and { vj, vj + i} of the tour
(v1, ... ,vn,Vn+I) by the edges {v;,vj} and {v;+J,Vj+i}, thereby reversing the path
from v; + 1 to vj; see Figure 2.4. Hence, a tour is 2-optimal if it can not be
improved by 2-exchanges. It is an open problem whether there exists a
polynomial-time algorithm that obtains 2-optimality by a sequence of 2-
exchanges [Johnson, Papadimitriou & Yannakakis 1985). We therefore restrict
ourselves to deciding if a tour is 2-optimal.

Consider the following procedure. It verifies whether or not the given tour

Parallel complexity

Pi\
~

I y Pi\
~

FIGURE 2.4. A 2-exchange.

25

(v 1, ... ,vn,Vn+i) is 2-optimal. If not, a 2-exchange that produces a shorter tour is
determined.

par [l~i<J-~n] 8---d., +d., -d., -d., ·
lj 1VJ l+IVJ+I 1l"1+1 /''J+I'

smin-mi.n{Sij I l~i<j~n};
if Smm;;;;.,,O
then the tour (v 1, ... ,vn,Vn+I) is 2-optimal
else let i* and j* be such that S;•i• = 8mm,

(v1, ... ,v;.,v1.,v1._1,•••,v;•+i,v1.+ 1, ... ,vn+I) is a shorter tour.

By adapting the maximum finding algorithm from Section 2.2.1 such that it
computes the minimum of a set of numbers and also delivers an index for
which the minimum is attained, the above procedure can be implemented to
require O(logn) time and O(n 2 /logn) processors, which is optimal with
respect to the 0(n 2

) possible 2-exchanges.
Let from now on the length of edge { i,j} be the travel time between vertex i

and vertex j. Assume that, as an extra condition, each vertex is given a time
window in which it must be visited by the salesman on his tour. Arriving at a
vertex before the opening of its time window introduces a waiting time at that
vertex, but arriving at a vertex after the closing of its time window means
infeasibility of the tour. A 2-exchange influences the arrival times at all vertices
visited after the first change in the route. This may lead to infeasibility or a
change in the waiting time.

The presence of time windows complexifies the problem. First, the problem
of finding a feasible tour is '!JL'?J>-complete. Secondly, processing a single 2-
exchange requires O(n) time, in contrast to 0(1) time in the unconstrained
case. However, Savelsbergh [1988) showed that 2-optimality can still be verified
in O(n 2

) time. We will give a parallel algorithm of verifying 2-optimality
requiring O(logn) time and O(n 2/logn) processors, i.e., with the same
resource requirements as in the unconstrained case.

Let [s;,t;] denote the time window of vertex V; (i = l, ... ,n), and let a feasible
tour (v 1 , ••• ,vn, vn + 1) be given. We start by considering paths along the given
tour. With the use of these paths, we construct the tours that can be obtained

26

from the given tour by a 2-exchange. Our algorithm has five phases.
(i) Compute all partial sums of travel times along the tour:

par [I ..;;i..;;l..;;n + I] ciJ- sum{ d. •.• ,., Ii ..;k<l}-

Chapter 2

By application of the partial sums al3orithm from Section 2.2.2, this phase
requires 0(logn) time and 0(n 2/Iogn) processors.

(ii) We now investigate the effect of the time windows on the paths along
the tour. For each pair of vertices v; and vJ with V; before vJ on the given tour,
we define eiJ as the earliest possible departure time at vJ when traveling along
the tour from v; to vJ, and eiJ as the earliest possible departure time at v; when
traveling from vJ to V; in the reverse direction along the tour. Note that e 1,n +1

is the arrival time at v I of the given tour. Further, let /iJ denote the latest pos­
sible departure time at v; such that the path from v; to vJ remains feasible, and
let liJ denote the latest possible departure time at vJ such that the path from vJ
to v; remains feasible.

par [l ..;i ..;1..;n + I] eiJ- max{s •• +ckJ I i..;k ..;j};
par [l ..;;i ..;;l ..;;n + I] eiJ- max{ s,. +c;k Ii ..;;k ..;;l};
par [l ..;;i..;;l..;n + l] I; •- min{t,. -c;k Ii ..;k..;j};
par [l ..;;i ..;;l ..;n + I] ~- min{t,. -ckJ Ii ..;;k ..;;1}.

Using the partial sums algorithm from Section 2.2.2 with addition replaced by
maximization or minimization, we have the same time and processor require­
ments as in phase (i).

(iii) Given the earliest and latest possible departure times relative to paths
along the given tour, we can compute the earliest departure time depu(k) at
any vertex vk and the earliest arrival time arriJ at the origin after the substitu­
tion of the edges {v;,V;+i} and {vJ,vJ+d by the edges {v;,vJ} and {v;+J,VJ+d·

par [l ..;;i <1..;n] depiJ(i)- max{ eli +d.,
1
,
1

, s,J;
par [l ..;i <1..;n] dep;/i + I)-max{dep;J(i)+c;+1,J, e; +1,J };
par [I ..;i <1..;n] depiJ(j + 1)-max{depu(i + 1)+d.,+ ,,v

1
+, ' s,

1
+, };

par [l ..;;i <l..;n] arriJ-max{dep;J(i + l)+cJ+l,n + 1, eJ+l,n +I}.

For this phase, we need 0(1) time using 0(n 2) processors, or 0(logn) time
using 0(n 2 /log n) processors.

(iv) Under the assumption that the given tour (v 1, ... ,vn,Vn+i) is feasible, we
can check feasibility of the tours obtained by 2-exchanges by:

par [I ..;;i <l..;n] feasiJ-(dep;J(i)..;l; + 1,J)&(depiJ(j +I)..;;/;+ 1,n + 1) .

The first condition checks feasibility at the vertices v; + 1, ... ,vJ and the second
one at the vertices vJ + 1 , ••• ,vn + 1• As in the previous phase, we need 0(1) time
using 0(n 2) processors, or 0(logn) time using 0(n 2 /logn) processors.

(v) Finally, we can determine 2-optimality of the given tour in the same way
as in the case without time windows.

Parallel complexity

arr min - min{ arriJ lfeasiJ, 1,s;;;;;i <J ,s;;;;;n};
if e l,n + 1 ,s;;;;;arr min

then the tour (v 1, ... ,vn,Vn+I) is 2-optimal
else let i* and J* be such that feas;.1• & arr;.1• = arr min,

(v, , ... ,V;•, v1., vr - 1, ... ,V;• + 1, vr + 1, ... ,vn + 1) is a better feasible tour.

27

For this last part of the algorithm, the same time and processor bounds as
before suffice. So, we end up with an algorithm that runs in O(log n) time
using O(n 2 /log n) processors, which is the same as in the case without time
windows.

For each fixed k > 2, we can derive a logarithmic-time algorithm along the
the same lines. One has to take into account that, given k edges, several k­
exchanges are possible. Further, the influence of a k-exchange on a tour is
more complex. However, it is not hard to see that the running time remains
O(logn) using O(nk /logn) processors, which is optimal with respect to the
number 0(nk) of k-exchanges.

2.2.9. Preemptive scheduling of identical machines [Dekel & Sahni 1983b]
Given m identical machines M; (i = l, ... ,m) and n jobs 11, each with a pro­
cessing time p1 (j = 1, ... ,n), one wishes to find a preemptive schedule of
minimum length. A preemptive schedule assigns to each 11 a number of triples
(M; ,s,t), where 1,s;;;;;i:,;;;;m and 0,s;;;;;s:s;;;t, indicating that 11 is to be processed by
M; from time s to time t. A preemptive schedule is feasible if the processing
intervals on M; are nonoverlapping for all i, and the processing intervals of 11
are nonoverlapping and have total length p1 for all j. It is optimal if the max­
imum completion time of the jobs is minimum.

An optimal schedule can be found in O(n) time by the classical wrap around
rule of McNaughton [1959]. The algorithm first computes a value t* which is
an obvious lower bound on the minimum schedule length. It then constructs a
schedule of length t* by considering the jobs in an arbitrary order and
scheduling them in the m periods (0,t*), carrying over the part of a job that
does not fit at the end of the period on M; to the beginning of the period on
M; + 1• More formally:

t*-max{max{p1 I 1:s;;;J:s;;;n},sum{p1 I l,s;;;;;J:s;;;n}/m};
s-o; i-1;
for J- 1 ton do

ifs +p1,s;;;;;t*
then assign (M;,s,s +pj) to j1,

s-s+p1
else assign (M;,s,t*) and (M;+ 1,0,p1-(t*-s)) to 11,

s-p1-(t*-s), i-i+l.

An example is given in Figure 2.5 There are two global parameters that are
updated sequentially as the job index j increases: the starting time s and the
machine index i of 11. We can calculate all starting times and machine indices
simultaneously in logarithmic time, using the parallel procedures for finding

28 Chapter 2

j: 2 3 4 5 J1 J2 I J3

J3 J4

J5

0 2 3 4 5

FIGURE 2.5. Preemptive scheduling: an instance with m = 3 and n = 5.

the maximum and the partial sums from Sections 2.2.1 and 2.2.2 as subrou­
tines:

r•-max{max{p1 I 1,s;;;j,s;;;n },sum{p1 I l,s;;;j,s;;;n }Im};
par [l,s;;;j,s;;;n) q1-sum{pk I l,s;;;k,s;;;j-1};
par p,s;;;j,s;;;n)

s1-q1 mod t*, i1-lq/t* J + I,
if s1+p1,s;;;t*
then assign (M;

1
,s1,s1 +p1) to J1

else assign (M;
1
,s1,t*) and (M;

1
+1,0,p1 -(t* -s1)) to J1.

This algorithm can be implemented to require O(logn) time and O(n/logn)
processors with a processor utilization of 0(1).

2. 2.10. Preemptive scheduling of uniform machines [Martel 1988]
Given are m machines M;, each with a speed s; (i = 1, ... ,m), and n jobs 11,
each with a processing requirement PJ (j = 1, ... ,n). If J1 is completely pro­
cessed on M;, the processing time is p/s; on machine M;. One wishes to find a
preemptive schedule of minimum length.

An optimal schedule can be found in O(n +mlogm) time by an algorithm
due to Gonzalez & Sahni [1978). As in the previous section, the algorithm first
finds an obvious lower bound t* on the minimum schedule length and then
constructs a schedule of length t*. Assume that the machines are ordered
according to nonincreasing speeds and that the m - 1 largest jobs, ordered
according to nonincreasing processing requirements, precede the n - m + 1
remaining jobs. The Gonzalez-Sahni algorithm is as follows:

t* = max{(p1/s1),(p1 +p2)/(s1 +s2), ... ,(p1 + ... +pm-1)/(s1 + ... +sm-1),
(p1 + ... +pn)l(s1 + ... +sm)};

construct a composite machine with speed s; in the interval [(i- l)t*,it*)
(i = 1, ... ,m) and speed O in [mt*,oo);

forj-1 ton do
find the latest possible interval [s,s + t*) such that the composite

machine can process J1,
assign the interval [s,s +t*) to J1,
replace the speed of the composite machine at time s + t by the original

speed of the machine at time s + t* + t, for all t >0.

Parallel complexity 29

After scheduling the m -1 largest jobs, the composite machine has in any
interval of length t* with positive speed a processing capacity that is greater
than the processing requirement of any of the remaining jobs. The parallel
algorithm first schedules the m - 1 largest jobs; after that, the remaining jobs
are scheduled in the same way as in Section 2.2.9. The first phase of Martel's
algorithm is only sketched here; the full story can be found in his paper.

For each of the large jobs, we compute an interval to which we would like
to assign that job. Martel observes that, if the intervals of two consecutive jobs
overlap, we may combine them into one compound job with a processing
requirement equal to the sum of the processing requirements of both jobs and
find an interval of twice the original length on the composite machine. We
group consecutively overlapping jobs together. If a group contains an odd
number of jobs, we schedule the first job in its interval (and revise the compo­
site machine as in the sequential algorithm) and combine the second with the
third job, the fourth with the fifth job and so on, otherwise we combine the
first with the second job, the third with fourth job and so on. We continue this
process until there are at most two compound jobs left. These are scheduled
sequentially. We now call the same procedure for each of the compound jobs,
with the individual jobs of the compound job as job set and with the interval
assigned to the compound job (extended to infinity with speed 0) as composite
machine. Since at each recursive step the number of jobs in a new problem
decreases by a constant factor, the algorithm terminates after a logarithmic
number of such steps.

The entire algorithm can be implemented to run in O(log n + log3 m) time on
O(n) processors.

2.2.11. Schedulingfixedjobs [Dekel & Sahni 1983b]
Given n jobs J1, each with a starting time s1 and a completion time t1
(j = l, ... ,n), one wishes to find a schedule on a minimum number of
machines. A schedule assigns to each J1 a machine M;. It is feasible if the pro­
cessing intervals (s1,t1) on M; are nonoverlapping for all i; it is optimal if the
number of machines that process jobs is minimum. The problem is also known
as the channel assignment problem: n wires are to be laid out between given
points in a minimum number of parallel channels, each of which can carry at
most one wire at any point.

An optimal schedule can be found in O(nlogn) time by the following simple
rule. First, order the jobs according to nondecreasing starting times. Next,
schedule each successive job on a machine, giving priority to a machine that
has completed another job before. It is not hard to see that, at the end, the
number of machines to which jobs have been assigned is equal to the max­
imum number of jobs that require simultaneous processing. This implies
optimality of the resulting schedule.

For a polylog parallel implementation, we need a more detailed sequential
description of the algorithm [Gupta, Lee & Leung 1979]. We introduce an
array u of length 2n containing all starting and completion times in nonde­
creasing order; the informal notation 'uk ~ s/ ('uk ~ t/) will serve to indicate

30

j : 1 2 3 4 5

0 1 3 4 7
28569 ➔

k: 1

Uk: 0
i

ak: 1
"J: 1 2 2 3 2
T/ 22321 - fh: 1

i
w(j) : 1 2 1 4 4

Chapter 2

2 3

1 2

1 - l
2 1

4

3

1
2

5 6 7

4 5 6

1 -1 - 1
3 2 1

8 9 10

7 8 9

1 -1 -1
2 1 0

············· · ·· ··· ··· ········ ········
· · ···· ·· ··· · · ·· ····

.... ······ · ·· · · ··· ·········
· · ···· · ····· ········ · ·· ·· ·· · · · · · · · ············ ·· · ·· ·· ·· ·· · · ··········

0 2 3 4 5 6 7 8 9

FIGURE 2.6 Scheduling fixed jobs: an instance with n = 5.

that the kth element of u corresponds to the starting (completion) time of 11.
We also use a stack S of idle machines; on top of S is always the machine that
has most recently completed a job, if such a machine exists.

sort (s 1,t 1 , ••• ,sn ,tn) in nondecreasing order in (u 1 , ••• ,u2n) whereby,
if t1 = sk for some j & k , then t1 precedes sk ;

S - stack of n machines;
fork- 1 to 2n do

if uk ~ s1 then take machine from top of Sand assign it to 11,
if uk ~ t1 then put machine assigned to 11 on top of S.

Figure 2.6 illustrates the algorithm as well as its parallelization, which is
described below. There are four phases.

(i) First, we calculate the number "J of machines that are busy directly after
the start of 11 and the number -r1 of machines that are busy directly before the
completion of 11, for j = l , .. . ,n:

sort (s 1 ,t 1 , •.• ,sn ,tn) in nondecreasing order in (u 1 , .•• ,u2n) whereby,
if t1 = sk for some j & k , then t1 precedes sk ;

par p:s;;;k:s;;;2n] ak- if uk ~s1 then 1 else -1 ;
par p:s;;;k:s;;;2n] .Bk-sum{a,I 1:s;;;/:s;;;k};
par p:s;;;k:s;;;2n]

if Uk~ SJ then <Jj-/Jk,
if Uk~ tj then Tj -/Jk + 1.

Note that the number of machines we need is equal to max:1 "J·
(ii) For each 11, we determine its immediate predecessor 111()) on the same

machine (if it exists). The stacking mechanism implies that this must be,
among the lk satisfying -rk = "J , the one that is completed last before the start
of 11; if no such job exists, then it is convenient to take 11 as its own

Parallel complexity

predecessor:

sort ((T1,l1), ... ,(Tn,tn)) in ((V1,v 1), ... ,(Vn,vn)) whereby
(T;,t;)<(Tj,tj)) if and only if T; <Tj or T; =Tj & t; <tj;

par (l ..;;J ..;;n]
find k such that Tk = aj & tk = max { tr I tr ..;;sj, Tr= aj} by a

binary search of (V1, v i), ... ,(Vn, vn),
'TT(j) ~ if k exists then k else j.

31

(iii) For each Jj, we now turn J Tl(J) into its first predecessor on the same
machine using recursive doubling. The chains formed by the arcs (j,.,,(j)) are
collapsed simultaneously in a logarithmic number of steps (cf. Figure 2.7):

for/~ 1 to j1ognl do par (l..;;J..;;nJ 'TT(j)~'TT(.,,(j)).

(ii)

(iii), I = 1

(iii), I = 2

(iii), I = 3

FIGURE 2.7. Scheduling fixed jobs: finding the first preceding job
on the same machine.

(iv) Finally, we use the 'TT(j)'s to perform the actual machine assignments:

par [l ..;;J ..;;n] assign M a"'fl to Jj.

Using the partial sums and sorting routines from Sections 2.2.2 and 2.2.3,
we can implement this algorithm to require O(logn) time and O(n) processors,
which improves the result of Dekel & Sahni because of a more economical
sorting routine and an efficient implementation of step (ii).

2.3. '!J>-COMPLETENESS

The first '!P-complete problem was identified by Cook (1974). It involves the so/­
vability of a path system and was proved '!P-complete under log-space transfor­
mations by a 'master reduction' in the same spirit as Cook's 'X'!P-completeness
proof for the satisfiability problem. We will not define the path problem here
and prefer to start from a different point.

After the identification of a first '!P-complete problem P, one can prove that
a problem Q in '!P is '!P-complete by showing that every instance of P can be
mapped to an instance of Q such that 'yes' instances of P are mapped to 'yes'

32 Chapter 2

instances of Q and 'no' instances of P to 'no' instances of Q, where the
transformation requires logarithmic work space [Garey & Johnson 1979]. It is
said that Pis log-space transformable to Q.

2.3.1 Circuit value [Ladner 1975; Goldschlager 1977; Goldschlager, Shaw &
Staples 1982]
Given a logical circuit consisting of input gates, AND gates, OR gates, NOT

gates, and a single output gate, and given a truth value for each input, is the
output TRUE or FALSE? Cf. Figure 2.8.

FIGURE 2.8. A logical circuit.

The circuit value problem is trivially in '3'. Ladner indicated how to simulate
any polynomial time deterministic Turing machine by a combinatorial circuit
with only AND and NOT gates in logarithmic work space. It follows that the
problem is '3'-complete.

Goldschlager extended this result to the cases of monotone circuits, which
have no NOT gates, and planar circuits, which have a cross free planar embed­
ding, by giving log space transformations from the circuit value problem. Cir­
cuits which have in addition to input and output gates, only NAND gates (a
NAND gate is an AND gate followed by a NOT gate) or NOR gates (a NOR gate is
an OR gate followed by a NOT gate) are able to simulate arbitrary circuits; this
not hard to see. Therefore, the circuit value problem is also '3'-complete for cir­
cuits with only NAND gates or only NOR gates. Goldschlager, Shaw & Staples
showed that all these results still hold if each input gate has fan-out one (it
appears once as input to another gate) and each other gate has fan-out at most
two.

Parallel complexity 33

2.3.2. Linear programming [Dobkin, Lipton & Reiss 1979; Valiant 1982a]
Given a finite system of linear equations and inequalities in real variables, does
it have a feasible solution?

Linear programming is known to be in ~ [Khachian 1979). Dobkin, Lipton
& Reiss established ~-completeness of the problem by giving a log space
transformation from the unit resolution problem, a variant of the satisfiability
problem, that was already known to be ~-complete. Valiant gave a more
straightforward transformation, starting from the circuit value problem.

The idea is to associate a variable xj with the jth gate, such that xj = 1 if
the gate produces the value TRUE and xj = 0 otherwise. More explicitly,

if gate j is

· an input gate with value TRUE,

· an input gate with value FALSE,

· an AND gate with inputs from gates h and i,

· a NOT gate with input from gate i,
· the output gate with input from gate i,

then we introduce the
equations and inequalities
· Xj = 1,
· Xj = 0,
. Xj ~ xh, xj ~ X;,

xj ;;;;i. 0, xj ;;;;i. xh+x;-1,
· Xj = 1-x;,
· Xj = X;, Xj = 1.

OR gates may be excluded. We leave it to the reader to verify that each feasi­
ble solution is a 0-1 vector, that there exists a feasible solution if and only if
the circuit value is TRUE, and that the transformation requires logarithmic
work space.

Simple refinements of this transformation show that linear programming
remains ~-complete if all coefficients are equal to -1, 0 or 1, and each row
and column of the constraint matrix contains at most three entries.

2.3.3. Maximum flow [Goldschlager, Shaw & Staples 1982)
Given a directed graph with specified source and sink vertices and with capaci­
ties on the arcs, and given a value v, does the graph have a flow from source to
sink of value at least v?

The maximum flow problem belongs to ~ [Edmonds & Karp 1972). It was
shown to be ~-complete by a transformation from the monotone circuit value
problem. The transformation simulates the implications of boolean inputs
through a circuit with n AND and OR gates by integer flows through a network
with the gates and an additional source and sink as vertices and with arc capa­
cities of O(2n).

We end this section by mentioning two related results of a more positive
nature.

(i) The maximum flow problem is solvable in polylog parallel time in the
case of planar graphs, due to the relation of this case to the shortest path
problem [Johnson 1987).

(ii) The problem is solvable in randomized polylog parallel time in the case
of unit capacities and in the more general case that the capacities are encoded
in unary. This follows, through standard transformations, from the complexity

34 Chapter 2

status of the maximum cardinality matching problem as described in Section
2.2.6.

2.3.4. Heuristics for the traveling salesman: nearest neighbor, nearest merger,
nearest insertion, cheapest insertion, and farthest insertion [Kindervater, Lenstra
& Shmoys 1989)
In Section 2.2.7, we implemented a number of heuristics for the traveling sales­
man problem such that they run in polylog time. We will show in this section
that for the nearest neighbor, nearest merger, nearest insertion, cheapest inser­
tion and farthest insertion heuristics a polylog-time implementation is very
unlikely to exist.

Each of the heuristics can be turned into a decision problem by posing a
question about the result of the algorithm, such as •does the tour obtained by
starting the nearest neighbor heuristic in vertex v I visit vertex v2 as the last
one before returning to vertex v 1 ?' or 'does the tour obtained by the nearest
merger algorithm contain edge {i,j}?'. We will prove that the nearest neighbor,
nearest merger, nearest insertion, cheapest insertion and farthest insertion
problems thus obtained are ~-complete by giving log-space transformations
from the circuit value problem.

As in Section 2.2. 7, let there be n vertices, numbered from 1 up to n, and let
du (i,j = l, ... ,n) denote the length of edge {i,j} We will describe the heuristics
in detail below.
(1) Nearest neighbor

(i) Start at a given vertex.
(ii) Among all vertices not yet visited, choose as the next vertex the one that

is closest to the current vertex. Repeat this step until all vertices have been
visited.

(iii) Return to the starting vertex.
(2) Nearest merger

(i) Start with n partial tours, each consisting of a single city and a self-loop.
(ii) Merge the tours C 1 and C 2 for which min{d;k JiEC 1,kEC2 } is as

small as possible. Let {i,j} be an edge of C 1 and {k,l} an edge of C2 for
which d;k + dp - d;j - dkt is minimal. The merged tour is then constructed by
replacing edges {i,j} and {k,/} by {i,k} and U,l}. Repeat this step until there
is a complete tour.
(3) Nearest insertion

(i) Start with a tour consisting of a given vertex and a self-loop.
(ii) Find a vertex not on the tour which is closest to a vertex already con­

tained in the tour.
(iii) Insert this vertex between two neighboring vertices on the tour in the

cheapest possible way. If the tour is still incomplete go to step (ii) .
(4) Cheapest insertion

(i) Start with a tour consisting of a given vertex and a self-loop.
(ii) Find a vertex not on the tour which can be inserted between two neigh­

boring vertices on the tour in the cheapest possible way.
(iii) Insert this vertex between two neighboring vertices on the tour in the

Parallel complexity

cheapest possible way. If the tour is still incomplete go to step (ii).
(5) Farthest insertion

(i) Start with a tour consisting of a given vertex and a self-loop.

35

(ii) Find a vertex not on the tour for which the minimum distance to a ver­
tex on the tour is maximal.

(iii) Insert this vertex between two neighboring vertices on the tour in the
cheapest possible way. If the tour is still incomplete go to step (ii).

The nearest, cheapest and farthest insertion heuristics differ only in the
second step from each other. They choose the next vertex to be inserted in the
tour on different grounds but the actual insertion is done in the same way.
With respect to the worst-case performance on TSP instances that satisfy the
triangle inequality, we have that the nearest neighbor tour may be arbitrarily
bad in comparison with the optimum, the nearest merger, nearest insertion and
cheapest insertion heuristics produce tours that are no more than twice as long
as the optimum, and the performance of the farthest insertion heuristic is
unknown; cf. Lawler, Lenstra, Rinnooy Kan & Shmoys [1985).

The transformations that we present are partly defined by means of figures.
Edges not shown in the figures are assumed to have a length oo. To assure that
the transformations require only logarithmic work space, we substitute (-)en
for (-)oo, where c = 100 can be seen to be sufficient.

The tours produced by the heuristics described above are the same when a
constant is added to each edge length. If we add lOcn (with c the same as
above) to each edge length in the TSP's constructed by the transformations,
the resulting problems will satisfy the triangle inequality. So, if we show that
the nearest neighbor, nearest merger, nearest insertion, cheapest insertion and
farthest insertion problems are <3'-complete, this is still true for the problems
restricted to distance matrices that satisfy the triangle inequality.

2.3.4.1. Nearest neighbor
For the nearest neighbor heuristic we define the nearest neighbor problem in
the following way: given a distance matrix and two vertices v I and v2 , does
the nearest neighbor tour starting at vertex v I visit vertex v2 as the last one
before returning to vertex v 1? We will show that this decision problem is <3'­
complete. For each instance of the circuit value problem with only input and
NAND gates, we construct a graph in such a way that the circuit value of the
considered instance is TRUE if and only if the nearest neighbor problem returns
a 'yes' answer.

We number the gates such that each NAND gate receives its inputs from
lower numbered gates. Each gate in the circuit is represented by a subgraph.
The nearest neighbor tour will visit the subgraphs in the order in which the
corresponding gates are numbered in the circuit. This ensures that if the tour
visits a subgraph corresponding to a non-input gate, it has traversed the sub­
graphs corresponding to its input gates.

For NAND gate k (k<m) with fan-out two (ak = a; NANO a1), we construct
the subgraph as shown in Figure 2.9. The vertex pairs (j)-(D are used to con­
nect the different subgraphs. If gate i is input to gate k, a <D - (D pair appears

36 Chapter 2

input i
\ I \ I

I \ I \
input j

FIGURE 2.9. Nearest neighbor: the representation of NAND gate k.

as output in the subgraph for gate i and also as input in the subgraph for gate
k. The edge length zero assures that corresponding vertices 1 and 2 are always
neighbors in the obtained tour. If the fan-out is one (zero), we construct the
same subgraph with one arbitrary CD - @ pair of output vertices (without out­
put vertices). The subgraph is constructed in such a way that if the nearest
neighbor tour enters the subgraph at vertex A from subgraph k -1 , it leaves
this subgraph through vertex B to subgraph k + 1. We associate a TRUE (FALSE)

value with this subgraph if the nearest neighbor tour on its way from A to B
passes (does not pass) through the output vertices.

When the tour arrives at vertex A from subgraph k - 1, there are three pos­
sibilities.

from
k - 1

. .

0 ·· 0 0 ··0 B

FIGURE 2.10. Nearest neighbor: TRUE NAND TRUE - FALSE

to
k+I

(i) Inputs i and j have both been visited already. In this case the tour must
go directly to vertex B and then it will choose the edge of length zero to sub­
graph k + 1. This will be the only case where the output vertices are not
immediately visited. Note that as a result either output vertex 2 has its
corresponding vertex 1 left as its only unvisited neighbor within the subgraph.
See Figure 2.10.

(ii) Either input i or input j is still unvisited. The tour will choose vertex 1

Parallel complexity

from
k - 1

FIGURE 2.11. Nearest neighbor: TRUE NANO FALSE - TRUE

to

k + I

37

of this unvisited input as next vertex, since the edge length is less than the dis­
tance to vertex B. From here it goes to the corresponding vertex 2 (edge length
is zero). As noted under (i), this vertex 2 has no unvisited neighbors in the
subgraph where it appears as output. Therefore, the next vertex must belong to
subgraph k, i.e., the tour arrives at the outputs. Because edge lengths in a sub­
graph are proportional to the number of that subgraph and outputs belong to
subgraphs with a higher number, the nearest neighbor algorithm will visit all
output vertices and after that vertex B before leaving subgraph k to subgraph
k + 1. Cf. Figures 2.11 and 2.12.

from
k - 1

FIGURE 2.12. Nearest neighbor: FALSE NANO TRUE - TRUE

to
k+I

(iii) Both inputs are unvisited. The tour will pass through all vertices of sub­
graph k before going to subgraph k + 1 (Figure 2.13).

from

k - 1

FIGURE 2.13. Nearest neighbor: FALSE NANO FALSE - TRUE

to
k + l

Note that in all cases all unvisited input vertices are included in the tour.
To summarize the results, the nearest neighbor tour from A to B passes

38 Chapter 2

through the output vertices if and only if at least one of the input vertices is
not yet visited. In the circuit value problem, this corresponds to the fact that a
NANO gate produces the value TRUE if and only if at least one of the inputs is
FALSE.

from
k - 1

I \ I \
output

(a) The representation of a TRUE input

~
I I / I

output

to
k+l

(b) The representation of a FALSE input

FIGURE 2.14. Nearest neighbor: the representation of input k.

For TRUE and FALSE inputs we construct the subgraphs as shown in Figure
2.14. The subgraph corresponding to input 1 is a special case. Instead of the
edge of length zero, it has two edges of length 3m + 3 which connect it to the
subgraph corresponding to NAND gate m. The representation of this last gate
has a somewhat special structure. The output vertices are replaced by a vertex
C. Both vertex Band Care connected to input 1 (see Figure 2.15). If the tour
arrives at vertex A of this gate and we are in situation (i), the tour will go
directly to vertex B and from there to vertex C before it leaves subgraph m.
Otherwise vertex B will be the last vertex to be visited of this last subgraph.

from
m - 1

input i
\ I \ I

I \ I \
inputj

to

FIGURE 2.15. Nearest neighbor: the representation of NAND gate m.

It should now be clear that a nearest neighbor tour starting at the A-vertex
of input 1 visits the B-vertex of the last gate as the last vertex if and only if the

Parallel complexity 39

circuit computes the value TRUE. Since the transformation can be performed
using work space which is logarithmic in the size of the circuit, the nearest
neighbor problem is ~-complete. So, the construction of a nearest neighbor
traveling salesman tour will probably require superpolylogarithmic work space
or superpolylogarithmic parallel time.

2.3.4.2. Nearest merger
Given a distance matrix and an edge {i,j}, the nearest merger problem is the
problem of deciding whether the tour produced by the nearest merger heuristic
contains {i,j}. We will show that this problem is ~-complete by giving a
transformation from the circuit value problem.

\ I \ I

w <X>

C

I I I I

FIGURE 2.16. Nearest merger: the representation of an arc.

Consider an instance of the circuit value problem. For each arc, we con­
struct a graph as shown in Figure 2.16. Gates with fan-out zero (for example,
the last gate) are assumed to have an arc from itself to a dummy vertex. The
dashed edges have a length greater than zero and will be described later. The
nearest merger heuristic first builds the tours A-D-A and B-C-B, and then
merges them to form the tour A-B-C-D-A.

FIGURE 2.17. Nearest merger: the extra graph.

We also construct the graph of Figure 2.17, where mis the number of gates
of the circuit. The algorithm starts by constructing partial tours of the form
(2k)-(2k + l)-(2k), for k = l, ... ,m. The edge lengths -(m -1), ... , -1,0
assure that the original tour (2m)-(2m + 1)-(2m) is merged with the other
cycles of length two and finally with the self-loop (1)-(1). The result is the
tour (2m + 1)-(1)-(2)- ... -(2k - l)-(2k)- ... -(2m - l) - (2m)-(2m + 1).

We will now describe how the graphs are connected. The edge lengths are

40 Chapter 2

chosen such that the nearest merger heuristic will merge the cycles of Figure
2.16 with the (extended) tour of the extra graph of Figure 2.17 in the order of
the numbers of the gates where the corresponding arcs begin. If a cycle of Fig­
ure 2.16 is added, an edge of length zero or one will remain in the tour. At this
point, we associate a value TRUE (FALSE) with the arc if the edge of length one
(zero) still belongs to the tour.

I I I I I I I I

FIGURE 2.18. Nearest merger: the representation of the input gates;
(a) input gate k is TRUE; (b) input gate k is FALSE.

Each cycle corresponding to an arc from an input gate is connected to the
extra graph as shown in Figure 2.18. If the input is TRUE (FALSE), the edges
{A,B} and {2k - l,2k} ({C,D} and {2k - l,2k}) are replaced by {2k -1,A}
and {2k,B} ({2k -1,D} and {2k,C}).

I I I I I I I I

FIGURE 2.19. Nearest merger: the representation of NAND gate k
(fan-out one).

For NANO gate k with fan-out one, the subgraphs are connected as shown in
Figure 2.19. Let us assume that there are no edges in the tour connecting the
two inputs. We consider the case where one input (left) has the associated
value TRUE and the other one the value FALSE in detail (see Figure 2.20). There
are two candidates for the merge operation: replace the edge { C, D} of the left

Parallel complexity 41

(a) Situation before merging (b) Situation after merging

FIGURE 2.20. Nearest merger: TRUE NAND FALSE - TRUE.

input and the edge { C, D} of the output by the edges between the C and D
vertices, or replace the edge {A,B} of the right input and the edge {A,B} of
the output by the edges between the A and B vertices. The last replacement
will be chosen, since it is cheaper.

I I I I I I I I

4k + 3 4k + 3

4k +3 4k + 3

FIGURE 2.21. Nearest merger: the representation of NAND gate k
(fan-out two).

42 Chapter 2

(a) Situation before merging.

(b) The two merging steps.

FIGURE 2.22. Nearest merger: TRUE NAND FALSE ➔ TRUE.

If NANO gate k has fan-out two, we connect the subgraphs as shown in Fig­
ure 2.21. The case TRUE NAND FALSE ➔ TRUE is illustrated in Figure 2.22.

The other cases are left as exercises to the reader. Note that the output ver­
tices of a subgraph are always inserted between two edges of length - oo of
one of the inputs.

So far, we have assumed that there are no edges in the tour connecting both
inputs of the same gate. Because of the way that output vertices are inserted in

Parallel complexity 43

the tour, connecting edges can only occur when the inputs are outputs from
the same gate. These edges stretch between vertices with the same label (A or
C). It is, however, impossible to remove them from the tour at low cost. There­
fore, the same replacements will be made as in the case where there are no
interconnecting edges between the inputs.

The above arguments imply that the circuit value of an instance of the cir­
cuit value problem is TRUE if and only if the nearest merger heuristic produces
a tour which contains edge { C, D} of the subgraph corresponding to the arc
starting from the last gate of the circuit. The transformation can be done in
logarithmic work space. Hence, the nearest merger problem is '!P-complete.

2. 3.4.3. Nearest insertion, cheapest insertion, and farthest insertion
Given a distance matrix, a starting vertex and an edge {i,j}, the nearest inser­
tion (cheapest insertion, farthest insertion) problem is the problem of deciding
whether the nearest insertion (cheapest insertion, farthest insertion) heuristic
produces a tour which contains edge {i,j}. The transformations from the cir­
cuit value problem showing that these problems are '!P-complete are similar to
the one for the nearest merger problem. We will give only the crucial part of
the transformation, leaving the details and the verification to the reader.

Nearest insertion. For NAND gate k with fan-out zero or one to be simulated,
we construct the graph of Figure 2.23. The output vertices are inserted in the
tour in the order A, D, B and C between vertices A and B or B and C of one
of the inputs. The representation if the fan-out is two is straightforward and
not given here (edges between both outputs get a length - 1). Representing the
inputs to the circuits and starting up the algorithm is similar to the nearest
merger case and also straightforward. The result of the nearest insertion algo­
rithm is a tour which contains the edge of length one of the output arc of gate
m if and only if the circuit produces the value true.

The transformation requires only logarithmic work space and hence the the
nearest insertion problem is '!P-complete.

Cheapest insertion. The same transformation as described for the nearest inser­
tion problem works for the cheapest insertion problem, because in each step
both algorithms will choose the same vertex to be inserted in the graphs simu­
lating the logical circuit. So, the cheapest insertion problem is '!P-complete as
well.

Farthest insertion. We can use almost the same transformation as in the previ­
ous two cases. We construct the same graph as before. Let s; be the number of
the step in which vertex i would be included in the tour by the nearest inser­
tion heuristic; this number is known before the heuristic is actually executed.
We replace the starting vertex by starting vertices v 1, v 2, v 3, v 4 and v 5 , such
that the farthest insertion heuristic, when started in v 1, first builds the tour
v , -v2 - v3-v4 -v5 -v 1. Edges originally incident to the starting vertex are
made incident to v3 and v4 . In this transformation we have to fill in a value

44 Chapter 2

FIGURE 2.23. Nearest insertion: the representation of NAND gate k.
The edges from output vertex A to the vertices A and B
of both inputs have length 2k; all other edges between

input and output vertices have length 2k + 1.

for (-)oo explicitly; we take (-)lOOn. We add edges from all non-starting ver­
tices i to v 1 of length -lOOn-s;, and to v2 and v5 of length 200n. The edges
to v I have the smallest lengths and determine the order in which the vertices
are added to the tour. The edges to v2 and v5 prohibit the exclusion of {v 1,v2 }

and { v 1, v5 } from the tour. Now, the farthest insertion heuristic will add the
vertices in the same order and in the same way to the tour as the nearest inser­
tion heuristic. Herewith, the farthest insertion problem is <!P-complete.

2.3.5. List scheduling [Helmbold & Mayr 1984)
In the multiprocessor scheduling problem, one is given m identical machines
M; (i = l, ... ,m) and n jobs Jj, each with a processing time Pj (j = l, ... ,n), and
one wishes to find a nonpreemptive schedule of minimum length. A
nonpreemptive schedule assigns to each Jj a pair (M; ,s), with 1 ~; ~m and
s ;;;a.o, indicating that Jj is to be processed by M; from time s to time s + Pj· A
nonpreemptive schedule is feasible if the processing intervals on M; are nono­
verlapping for all i. It is optimal if the maximum job completion time is
minimum.

This is an '!JL<!P-hard problem. A popular approximation algorithm is the list
scheduling heuristic, whereby a priority list of the jobs is given and at each
step the earliest available machine is selected to process the first available job
on the list. More formally:

Parallel complexity

j: 1 2 3 4 5

p1: 1 2 3 4 5

0

.

...............

2 3 4 5 6 7

FIGURE 2.24. List scheduling: an instance with m = 3 and n = 5.

for i - 1 to m do s; - O;
forJ-I ton do

i*-min{i js;..;;;sk , },s;;;k,s;;;m},
assign (M;• ,S;•) toJ1,
S;•-S;• +pj.

45

An example is given in Figure 2.24. The sequential algorithm requires
O(nlogm) time. We will show that the associated list scheduling problem of
deciding about the resulting schedule length is <if-complete for m ;;;;i:, 2.

FIGURE 2.25. A circuit with numbered gates and weights assigned to the edges.

Consider an instance of the circuit value problem with only input and NOR

gates. First, we number the gates such that each NOR gate receives its inputs
from higher numbered gates. We then give the incoming arcs to NOR gate i the
weights 42i and 42i+I. The output arc gets weight 4. Cf. Figure 2.25. We con­
struct the list of jobs as follows. The first has a processing time that equals the
sum of the weights of all outgoing arcs of TRUE inputs. In decreasing order of
i, we put seventeen jobs on the list for NOR gate i, one with length 2.42i +I,

46 Chapter 2

fourteen with length 42i /2, and two with length (42i + V;)/2, where V; is the
sum of the weights of the outgoing arcs of gate i. On two machines, the
corresponding list schedule has the property that, after scheduling the first job
or after scheduling all jobs associated with a gate, the difference in the comple­
tion times of both machines is equal t0 the sum of the weights of all arcs that
have been computed to represent a TRUE value and have not yet been con­
sidered as input. In the end, the difference in the completion time is 4 if and
only if the circuit computes the value TRUE. Checking these statements is left
as an exercise to the reader. Since the transformation can be performed in log­
arithmic work space, the list scheduling problem is <3'-complete for m;;.,, 2.

47

3

Experiments with Fine-Grained Parallelism

The unbounded parallelism and the unit-time communication of the PRAM
make it an attractive but unrealistic model. Neither of these properties will be
encountered in practice. In existing parallel computers, the fixed number of
processors bounds the parallelism and the interprocessor network sets a limit
to the communication speed.

When programming parallel computers, one will notice the enormous diver­
sity among them. The processor capabilities and the way data transfers are
taken care of heavily influence the suitability of an architecture for certain
types of algorithms. This situation is completely different from sequential com­
puting, where computers can be considered equivalent and algorithms will
show more or less the same performance when differences in processor speed
are accounted for.

To execute an algorithm on a parallel computer, an adaptation with respect
to the architecture at hand is necessary. This reformulation may increase the
overall complexity of the algorithm or even obscure its essence. Sometimes,
this effect is so severe that a particular parallel computer appears to be com­
pletely unsuited for executing specific types of algorithms.

Most parallel computers seem to be developed for solving problems from
numerical analysis. In this area, remarkable speedups have been obtained.
Algorithms for the solution of combinatorial problems are often of a different
kind. It is, therefore, of interest to experiment with standard techniques, such
as dynamic programming, divide and conquer and branch and bound.

In the dynamic programming approach, the solution to a problem is built
stagewise. First, the problem is solved in a simple form, and then at each stage
a new aspect of the problem is added until the solution to the original problem
is found. The computations to be performed at each stage are usually elemen­
tary and always of the same type.

48 Chapter 3

Divide and conquer solves a problem by splitting it into smaller ones, solv­
ing the smaller problems and combining their solutions into the solution to the
original problem. The smaller problems are solved by recursively applying the
same technique. In many applications, the generated tree is highly regular; it
can most often be predicted which subproblems are to be solved. The work to
be done for the solution of a subproblem can, however, very much depend on
that subproblem.

Branch and bound methods generate search trees in which each r,ode
corresponds to a subset of the feasible solution set. A subproblem associated
with a node is either solved directly, or its solution set is split and for each
subset a new node is added to the tree. The process can be improved by com­
puting a bound on the solution a node can produce. If this bound is worse
than the best solution found so far, the node cannot produce a better solution
and hence it can be excluded from further examination. The shape of the
search tree to be generated by a branch and bound algorithm can, most of the
time, not be described without actually performing the algorithm. Just as in
the divide and conquer case, the computations within a node can be heavily
subproblem dependent.

In this chapter and the next one, we will describe the implementation of a
number of combinatorial algorithms on some of today's parallel computers. In
Chapter 4, we will concentrate on architectures in which the processors are
full-bodied sequential computers and the interprocessor communication is time
consuming. For algorithms to be efficient, they need to have a high
computation/communication ratio: we speak of coarse-grained parallelism. In
the computers considered in the present chapter, the processors have limited
capabilities and only small tasks can be assigned to them at a time. The inter­
processor communication time is usually in the order of an arithmetic opera­
tion. In typical algorithms for these machines, the processors perform a few
arithmetic operations and then communicate with each other. This type of
parallelism is called fine-grained.

This chapter deals with three well-known combinatorial problems and three
parallel computers. The problems are change-making, shortest paths and knap­
sack; the machines are the /CL/ DAP (an SIMD processor array), the
CDC!CYBER-205 (a vector machine that might be classified as an SIMD
machine) and the Manchester dataftow machine (an experimental MIMD
dataflow computer). Details of the problems and the architectures are given in
the next sections.

It will turn out that the SIMD machines are very efficient in executing syn­
chronized algorithms that contain regular computations and regular data
transfers. As soon as the computations or the data transfers become irregular
or asynchronous, the SIMD machines become much less efficient. They are,
therefore, very good for dynamic programming, but less suitable for divide and
conquer and branch and bound.

The concept of dataflow appears to be very promising. The Manchester
dataflow machine seems to capture all sorts of parallelism. Dynamic program­
ming, divide and conquer and branch and bound algorithms give equally good

Experiments with fine-grained parallelism 49

results. The performance of the Manchester dataflow machine is, however, fun­
ited by its experimental character. It has, amongst others, a small memory
capacity and a small overall throughput. Only after an improvement of its per­
formance, it will be clear how a dataflow computer will behave on more realis­
tic problems and whether dataflow will fulfill its promise.

3.1. ARCHITECTURES

In this section we will give a short description of the ICL/DAP, the
CDC/CYBER-205 and the Manchester dataflow machine. We will emphasize
those features that are relevant for the implementation of the combinatorial
algorithms under consideration.

3.1.1. The ICLIDAP [Hockney & Jesshope 1981)
The ICL/DAP (Distributed Array Processor) is a commercially available two­
dimensional mesh connected control-driven SIMD computer with 64X64 pro­
cessors. Each processor is connected to its four neighbors, with wrap around
connections at the boundaries (Figure 3.1), and has its own local memory. Sys­
tem software makes it possible to look at the 4096 processing elements as if
they were located in a one-dimensional array, where each processor is con­
nected to only two neighbors. The processors are capable of simultaneously
performing the same instruction on local data, with the restriction that the
data have to reside at exactly the same place of the respective local memories.
Masking a processor has the effect that the result of the instruction executed is
not stored. It is effectuated by local data and makes the use of conditional
operations possible.

Programs are executed on the DAP through a host computer. The host
translates a program into DAP machine code and stores the machine code pro­
gram and its input data in the DAP. After that, control is given to the DAP,
which actually executes the program. When the DAP has finished, control is
returned to the host and the host extracts the results from the DAP [ICL
1981].

The DAP can be programmed in the high-level language OAP-FORTRAN
[ICL 1979]. This is an extension of standard FORTRAN with vector and
matrix instructions, which can be used to process the elements of vectors and
matrices in parallel. The DAP and the FORTRAN compiler do not detect any
parallelism in a program on their own accord: the programmer has to detect
the parallelism himself. By invoking the vector and matrix instructions of
OAP-FORTRAN, the user can state explicitly which operations are to be per­
formed in parallel. Although the DAP is capable of executing programs writ­
ten in standard FORTRAN, no instructions of these programs are executed in
parallel.

The vector and matrix instructions perform their parallel operations on vec­
tors of dimension 64 or 4096 and on matrices of dimension 64 by 64 respec­
tively. In performing operations on vectors of dimension 64, 64 processing ele­
ments cooperate in handling one vector element. If a particular problem
instance is too big to fit in such a vector or matrix, the programmer has to

50

to
(1,64)

to
(2,64)

to
(64,64)

to (64,1) to (64,2)

(1,1) (1,2)

I I I
I I I
I I I

--l-+-1--
1 I
I I

I I I
I I I
I I I

to (64,64)

(1,64)

(2,1) (2,2) - -:- f -:- - (2,64)
I I I
I I I

I I I I I I
_____ i _____ J ____ ~-1-~----L ____ _

I I I I I I -----•-----~----1-r,----~-----

to
(1,1)

to
(2,1)

-----{-----~----~-LJ----}-----

(~,!) (~,2) -(-~-Er64:64) (6~:l)
I I I
I I I
I I I
I I I

to (1,1) to (1,2) to (1,64)

FIGURE 3.1. The DAP.

Chapter 3

simulate a DAP of bigger dimensions on a DAP of dimension 64 by 64. He
has to organize this himself, unlike, for example, in the Connection Machine,
where the user only has to specify the dimension of the virtual machine to be
simulated [Thinking Machines Corporation 1986].

The performance of a program is measured by counting the number of
instructions executed by the DAP. To get an estimation of the CPU time, the
number of instructions is multiplied by the average time needed for an instruc­
tion. This way of timing neglects the differences between execution times of the
various instructions. There is no way to measure the CPU time used by the
DAP exactly (since the DAP can be used shared with another user, the elapsed
time between the start and the termination of a program does not give a reli­
able indication).

3.1.2. The CDCICYBER-205 [Hockney & Jesshope 1981)
The CDC/CYBER-205 is a commercially available computer able to perform
the same operation on all elements of vectors of variable length in a pipelined
way. In order to do this, the functional units are segmented. Each segment
does a small part of the operation to be performed and sends the results to its
neighboring segment. In this way a pipeline is created; cf. Figure 3.2. The seg­
mentation makes it possible to deliver, after a certain start-up time which is
independent of the size of the vector, a result of such a vector operation at
each clock cycle. When executing vector instructions, it is possible to specify

Experiments with fine-grained parallelism

a ,;

memory

c=a®-C

ai+ 1 a; a;- 1

b;+ 1 b; b; - 1

vector pipe

FIGURE 3.2. The CYBER-205.

51

whether or not a generated result must be stored. This enables the use of con­
ditional operations.

Due to its capability of performing vector operations the CYBER-205 is
very similar to an SIMD computer, although strictly spoken the results are
generated in a sequential way.

The CYBER-205 can be programmed in the high-level language
FORTRAN-200 [CDC 1983]. This extended standard FORTRAN contains
vector instructions, which process vector elements in a pipelined manner. The
FORTRAN-200 compiler is able to detect some parallelism in the program by
trying to vectorize DO-loops, but far from every DO-loop can be vectorized in
this way. By using the vector instructions, the programmer can specify which
operations must be pipelined. However, this means that he has to analyze his
algorithm and detect the parallelism himself. The CYBER-205 is capable of
executing a program written in standard FORTRAN, but unless the compiler
is told to try to vectorize this program and manages to vectorize at least part
of it, no part of the program is executed in a pipelined manner.

The performance of a program on the CYBER-205 is measured by the CPU
time needed to execute the program.

3.1.3. The Manchester dataflow machine [Gurd, Kirkham & Watson 1985]
Dataflow is a technique for representing computations in terms of directed
graphs. The nodes of the graph are instructions to be performed and the arcs
are data routes. The data transmitted over the data routes are represented as
tokens. A node accepts the tokens from its incoming arcs, performs an opera­
tion on them and sends the results away on its outgoing arcs. Whether or not
two nodes can be executed concurrently depends on whether or not one of the
two nodes needs the output of the other as input. Arcs not starting at a node
receive the input data and arcs not ending at a node produce the output.

A node is enabled (can start its execution) as soon as the required tokens
have arrived on the incoming arcs. The execution of a node may not be
immediate, but will happen eventually. The time needed to execute instructions

52 Chapter 3

or to transport tokens from one node to another may vary. It is assumed, how­
ever, that all these times are finite. The computation is completely asynchro­
nous. Therefore, it can happen that tokens have to wait for others on incident
input arcs. A second consequence is that a dataflow graph in general allows for
different execution sequences.

FIGURE 3.3. A dataflow graph.

Figure 3.3 shows a dataflow graph calculating x 2 - xy using primitive boxes
DUP (which duplicates its input), t2 (which produces the square of its input),
X (which multiplies its inputs with each other) and - (which subtracts the
right input from the left input). A possible execution sequence is shown in Fig­
ure 3.4; stars(*) represent the generated tokens moving through the graph.

FIGURE 3.4. An execution sequence.

Exploiting the parallelism contained in the dataflow model requires an
unconventional hardware organization. A general purpose dataflow machine
needs a data structure of some sort to represent the dataflow graph of a partic­
ular problem. On the Manchester dataflow machine, this data structure con­
sists of labeled nodes containing the instruction to be performed and the desti­
nation of the results.

The Manchester dataflow machine is an experimental computer, which con­
sists of a ring of elements each performing a special task (see Figure 3.5). A

Experiments with fine-grained parallelism

output

switch

input

token
queue

matching
unit

processing unit

node
store

r--------------------------------,

network

processing
element

processing
element

I .__ ___ __, I
L ________________________________ J

FIGURE 3.5. The Manchester dataflow machine.

53

token consists of a value and a destination node. The token queue buffers the
incoming tokens and sends them, one at a time, to the matching unit. This is
an associative memory, which groups tokens with the same destination node
into packages and presents them to the node store. The matching unit stores
tokens until their partners have arrived. For efficiency reasons, only packages
of one or two tokens are allowed. The node store contains the dataflow graph
to be executed; each node in the graph consists of the instruction to be per­
formed, where an instruction is an elementary one such as in Figure 3.3, and
the destination of the results. The node store adds this information to the
package that arrives and sends the whole as an executable package to the pro­
cessing unit. The processing unit sends the package via a distribution network
to an idle processing element. After processing, the results arrive via a arbitra­
tion network at the switch. The switch inserts input tokens into the ring and
removes output tokens; non-output tokens are sent along to the token queue.

The processing unit makes use of fine-grained MIMD-type parallelism (each
processing element is able to take care of an executable package indepen­
dently). The degree of parallelism depends on the number of processing ele­
ments. On a higher level, the units in the ring continuously perform operations
on the flow of packages, which gives a parallelism as in an assembly line.

The critical part of the system is the matching unit. All units can be tailored
to meet its maximum throughput capacity; for example, the speed of the pro­
cessing unit can be adapted by adding or removing processing elements. A way
to overcome this bottleneck is to construct several rings and connect them
through the switch, which then becomes a full interconnection network. The
Manchester dataflow machine consists of a single ring with twenty processing
elements.

54 Chapter 3

The Manchester dataflow machine can be programmed in the high-level
language SISAL (Streams and Iteration in a Single Assignment Language)
[McGraw, Skedzielewski, Allan, Grit, Oldehoeft, Glauert, Kirkham & Noyce
1984). SISAL has no concept of sequential execution and no direct control
statements such as GOTO. To avoid the ambiguities that might arise from
reassigning values to variables, the language allows each variable to be
assigned only once in a program; in loops, a construct is provided to overcome
the single assignment restriction. Further, SISAL has strict type and scope
rules and prohibits all forms of side effects. More about single assignment
languages can be found in Ackerman (1982). The nature of a single assignment
language makes it, in comparison with FORTRAN or PASCAL, easy to com­
pile a program into a dataflow graph.

Due to the model of operation used, the parallelism in a program is detected
by the dataflow machine itself. The only thing a programmer can do is trying
to specify his program in such a way that the dataflow graph constructed is as
broad as possible.

The Manchester dataflow machine is operated in the same way as the
ICL/DAP. Program development and compilation is done on a host computer.
The host first stores the generated dataflow graph in the node store and then
inserts the input data via the switch into the ring. The data activate the
dataflow machine. Output tokens leave the ring via the switch and are col­
lected on the host.

To measure the performance of a program, the only information the
dataflow machine provides is the execution time until the arrival of the first
output token at the host. Therefore, a program has to be reorganized in such a
way that it produces a single output token at the end of its execution, if a
correct timing is needed.

In order to gain a better insight into the performance of programs, the Man­
chester Dataflow Group developed an emulator, which runs on a sequential
computer. To keep this emulator manageable, some simplifying assumptions
about the system architecture had to be made. The principal assumptions are
the following:

(i) An unlimited number of processing elements is available and the
throughput capacity of the ring is infinite.

(ii) The time needed to execute an instruction is equal for all instructions.
(iii) Output from an instruction can be transmitted to a successor instruction

within the execution time period.
(iv) Enabled nodes are executed without delay.

As a consequence of these assumptions, the emulator considers the dataflow
machine as a synchronized MIMD computer with an unbounded number of
processors. Although the model created in this way is unrealistic, it is helpful
in analyzing a program with respect to the parallelism detected by the dataflow
concept and the expected running time on more mature dataflow computers.

The two fundamental time measurements are S 1, the number of time steps if
only one processing element is available (i.e., the total number of instructions
executed) and S 00 , the number of time steps with an unlimited number of

Experiments with fine-grained parallelism 55

processing elements (i.e., the critical path length of the underlying dataflow
graph). The ratio .,, = S 1 / S 00 gives a measure of the average parallelism in a
program. A more detailed trace of the behavior of a program can be obtained
if desired.

3.2. CHANGE MAKING [Kindervater & Trienekens 1988)
Given a coinage system with n types of coins, where coins of type i have value
v; (i = 1, ... ,n), one wishes to determine the number of different combinations
of coins with which amount Z can be paid without change.

Let P(z,i) (z ;;;i,, 0, i = 1, ... ,n) denote the number of different combinations
amount z can be paid when coins of type 1 up to i may be used. In the change
making problem, one wants to compute P(Z,n). The following recursive equa­
tion holds:

Lz lv,J
P(z,i)= ~P(z-kv;,i-1) (z;;;i,,0,i=2, ... ,n),

k=O

with initial condition

{

l if z = 0 mod v 1,

P(z, 1) =
0 otherwise.

The change-making problem can also be seen as a network problem. Let
G = (V,A) be a directed graph. The set of vertices V consists of pairs (z,i)
(z = 0, ... ,Z, i = 0, ... ,n). There is an arc from vertex (z 1, i) to vertex (z 2 , i + 1) if
and only if z 2 = z 1 + kv; + 1 for some nonnegative integer k (i = O, ... ,n - l). The
change-making problem is equivalent to the problem of determining the
number of different paths in G from (0,0) to (Z,n). (A path a is different from
a path /3 if a contains an arc not in /3 or /3 contains an arc not in a.)

The change-making problem can be solved by divide and conquer and by
dynamic programming. Both techniques use the above recursion, but they use
them in reverse directions. If the change-making problem is viewed as a graph
problem, divide and conquer reduces to explicit enumeration of all paths in the
graph whereas dynamic programming is a form of implicit enumeration of all
paths.

3.2.1. Implementing divide and conquer
Divide and conquer boils down to a direct evaluation of P(Z,n) through the
recursion given above. In an SIMD machine, all processors must perform the
same instructions. The number of subproblems in which a particular
(sub)problem is split depends, however, entirely on the data of that instance.
Fortunately, there exists an upper bound on this number and by adding
dummy subproblems one can arrange that each subproblem is split in the
same number as the others, i.e., a number equal to this upper bound. In this
way, the processors can always execute the same instructions at a time.

On an SIMD machine, the obvious implementation is that each processor
takes care of one subproblem. The number of subproblems created is exponen­
tial. Therefore, only very small-size problems can be solved using this strategy.

56 Chapter3

It is also possible to use different processors for solving the change-making
problem for different amounts - where the coinage system remains the same -
at the same time. Each processor then solves a problem sequentially and the
time needed to do this equals the time needed to solve the largest problem. In
our investigations, we only wanted to solve one instance of the change-making
problem at a time. For this case, the SIMD machines are not well suited and
we therefore implemented the divide and conquer approach only on the Man­
chester dataflow machine.

Recursion is a natural technique for programming divide and conquer. This
technique results in a straightforward and elegant implementation on the Man­
chester dataflow machine. Due to the fine-grained parallelism of this machine,
computations are performed asynchronously and in parallel wherever possible.
The computations have to be synchronized for combining the solutions of the
subproblems. The exact order in which the computations are performed is non­
deterministic. The synchronization before combining the solutions of the sub­
problems ensures that this order is a feasible one.

3.2.2. Implementing dynamic programming
The dynamic programming algorithm can be stated as follows :

for z+-0 to Z do P(z, 1)- if z = 0 mod v 1 then 1 else O;
for i-2 ton do

for z-o to Z do
P(z,i)-0,
fork-Oto Lz!v;J doP(z,i)-P(z,i)+P(z-kv;,i-1).

Note that if the change-making problem is solved for amount Z, it is solved
for all smaller amounts as well.

The above algorithm can be implemented in a direct way on the Manchester
dataflow machine. The computations are performed in some asynchronous
feasible order. The parallelism is bounded by the synchronizations that occur
because of the dependencies of consecutive iterations.

To implement the dynamic programming algorithm on the DAP and the
CYBER-205, one has to analyze the parallelism in the program and state the
detected parallelism explicitly using the tools the respective languages provide.
The parallelism easiest to exploit in the dynamic programming algorithm
resides in the for z loops. But to make this parallelism explicit, we must rewrite
part of the algorithm.

We interchange the last for z loop with the fork loop. In the program thus
obtained, it is immediately clear that the operations in the for z loops are
independent and can be performed in parallel. In this way, we obtain the
modified program:

Experiments with fine-grained parallelism

for H-0 to Z do P(z, 1)- if z = 0 mod v1 then l else O;
for i - 2 to n do

for z-o to Z do P(z,i)-o,
for k-o to lZ!v;J do

for z-kv; to Z do P(z,i)-P(z,i)+P(z-kv; ,i-l).

57

The rewritten algorithm can be implemented straightforwardly on the DAP.
In doing this, we have to view the DAP as a one-dimensional array of proces­
sors. Processor z computes the values P(z,i) (i = l, ... ,n). The operations in a
for z loop are executed in parallel. To compute the sum of the possible combi­
nations, a processor needs the P-values of its kv;-th neighbor of the previous
iteration fork= l, ... ,lZ!v;J. This can be accomplished in parallel by using a
OAP-FORTRAN shift routine. Such a routine has the nice property that is
shifts in zeros for nonexisting values. Therefore, we can perform the last for z
loop from z is zero up to Z, without using masks for the processors that com­
pute the P-values for z = O, ... ,kv; - 1

Due to the fact that the DAP has only 4096 processors, the amount Z to be
paid is limited to 4095.

For the CYBER-205 the same procedure can be applied, but instead of
being processed in parallel, the operations in the for z loops are now processed
in a pipelined (and strictly speaking sequential) manner.

3.2.3. Improving divide and conquer and dynamic programming
Divide and conquer as well as dynamic programming have their pros and cons
for solving the change-making problem. Divide and conquer is very easy to
program, but the subproblems generated are not mutually exclusive. So, it may
happen that solutions to certain subproblems are recomputed. The computa­
tion could be sped up if these recomputations could be prevented. Dynamic
programming solves all problems P(z,i) (z = O, ... ,Z, i = l, ... ,n) regardless
whether or not the solution of a particular problem is needed to construct the
solution of problem P(Z,n). The computation could be sped up if there is a
way to eliminate subproblems not needed in constructing the solution to
P(Z,n).

It is possible to combine the good sides of both methods. The idea is to use
divide and conquer to construct the set of subproblems needed and thereafter
dynamic programming to solve the problem using only this set of subproblems
[Polya, Tarjan & Woods 1983]. This can be realized by adding a mechanism to
the divide and conquer approach, which upon request for the solution of a
particular subproblem takes the following steps:

- If the subproblem has already been solved, it returns the solution of this
subproblem.

- If the subproblem is being solved at the moment, it queues the request for
the solution of the subproblem and returns the solution as soon as it is avail­
able.

- If the subproblem has not been considered before, it solves this subprob­
lem and stores the solution.

58 Chapter 3

As in the case of the original divide and conquer algorithm, we implemented
the improved algorithm only on the Manchester data.flow machine. The
mechanism could not be written in SISAL due to the fact that its behavior is
nonfunctional: given a certain input, the outcome is not completely determined
by this input, but also by certain 'environmental' factors. The mechanism was
written in TASS, an assembler language, and linked to the SISAL program.

3.2.4. Computational results
The ordering of the coins has consequences for the number of operations to be
performed by the divide and conquer algorithm. Since the divide and conquer
approach solves a subproblem by decomposition regardless whether or not this
subproblem has been solved before, the approach is in essence a tree traversal,
in which each leaf of the tree (a subproblem which can be solved without
decomposition) must be visited exactly once. So, the work to be done is pro­
portional to the number of edges in the tree. An optimal tree has the least
number of edges. For such a tree, no node has more children than each of its
children has. This is realized by splitting each subproblem using the remaining
coin with the highest value. The coins should, therefore, be ordered by decreas­
ing value.

The ordering of the coins has no consequences for the dynamic program­
ming algorithm as long as the coin with the smallest value is used for the ini­
tializations. The first coin can be dealt with in 0(1) time, whereas the others
need O(Zlv;) iterations for the combination of previous results (i = 2, ... ,n).

In all computational results shown, the ordering of the coins is optimal with
respect to the method of solution used. The coinage system used is part of the
Dutch system, made up of coins and bank notes of I, 5, 10, 25, 100, 250, 500
and 1000 cents.

running time (seconds)
1. 0 • dynamic programming

+ divide and conquer

0.8 0 improved algorithm

0.6

0.4

0.2 0

0

0

200 250
amount

FIGURE 3.6. Change making: execution times
on the Manchester data.flow machine with 20 processors.

Figure 3.6 shows some results of the dynamic programming, divide and con­
quer, and improved algorithms on the Manchester data.flow machine. Due to a
limited memory capacity of the hardware, only small size problems could be

Experiments with fine-grained parallelism 59

solved. The behavior of the programs on the Manchester dataflow machine can
be explained from simulations on a sequential computer. These results are
shown in Figures 3.7, 3.8 and 3.9. Due to memory restrictions, it was impossi­
ble to simulate bigg<'r problems.

S 1 (total number of instructions)
600,000 • dynamic programming

+ divide and conquer
500,000 0 improved algorithm

400,000

300,000

200,000

100,000

+ 0
*

0

0

0 *
*

*

150 200 250 300 350 400 450 500
amount

FIGURE 3.7. Change making: total number of instructions
on the dataflow machine.

Figure 3.7 shows S 1 (the total number of instructions executed) versus the
amount to be paid for the various programs. As expected, for small problems
the divide and conquer program executes less instructions than the other two
programs. But this reverses when the problem size increases. With increasing
problem size, the improved algorithm executes less steps than divide and con­
quer but more steps than dynamic programming. The first is easily explained
by the elimination of duplications. The second can only be explained if deter­
mining the state of a subproblem is more expensive than computing every­
thing, needed or not.

S 00 (critical path length)
1,250 • dynamic programming

+ divide and conquer
1,000 0 improved algorithm

750

500

250

0

t

0

t

0

t

0
0

t t

0
0

0

0
0

* t * * *

50 100 150 200 250 300 350 400 450 500
amount

FIGURE 3.8. Change making: critical path length on the dataflow machine.

Figure 3.8 shows S 00 (the total number of time steps needed if there was an
unlimited number of processing elements) versus the amount to be paid. The
S 00 of divide and conquer and of dynamic programming behave in the same

60 Chapter 3

way and differ by a constant. Both programs compute the solution by combin­
ing the solutions of subproblems. Since both use the same recursive formula,
their S 00 's have the same behavior. The difference is due to the work involved
in the recursion. Since the recursion has always the same depth, the difference
is a constant. The S 00 of the improved program is larger. Determining the
state of a subproblem appears to be a time consuming affair. Besides that,
requests for the same subproblem have to be handled sequentially.

S 1 / S 00 (average parallelism)
1,200 • dynamic programming

1,000
+ divide and conquer
0 improved algorithm

800 + * *
600 * *

t * 0
400 0

* 0 0
* + 0 200 * (!) 0 0

©
50 100 150 200 250 300 350 400 450 500

amount

FIGURE 3.9. Change making: average parallelism on the dataflow machine.

Figure 3.9 shows the average parallelism 7T versus the amount to be paid.
Divide and conquer shows an explosion in the parallelism with increasing
problem size. This is because the subproblems generated are not mutually
exclusive. If problem size increases, computing power is lost in solving an
ever-increasing number of copies of the same subproblems in parallel. As
expected, the average parallelism of the improved program is less than the
average parallelism of dynamic programming. This is due to the sequential
part of the mechanism which determines the state of a subproblem and to the
fact that the solution of a problem must temporarily halt if one of its subprob­
lems is being solved at the moment.

We conclude that, in the test environment under consideration, it is not
worthwhile to be clever. It is much cheaper to compute everything.

Figure 3.10 shows our results on the execution of dynamic programming on
the DAP and CYBER-205. For the problem sizes considered, the execution
time on the DAP is linear. This execution time depends only on the number of
subproblems to be combined. Taking the combinations can be performed in
parallel and thus in constant time. The execution time on the DAP behaves in
the same way as the critical path length of dynamic programming on the
dataflow machine (Figure 3.8), because in the dataflow simulator we assume an
unlimited number of processing elements for taking the combinations. As can
be seen, the execution time on the CYBER-205 increases more than linear.
This curve corresponds to the total number of instructions performed by the
dataflow implementation (Figure 3.7).

Experiments with fine-grained parallelism

runing time (seconds)
0.30 • OAP

+ CYBER-205
0.25

0.20

0.15

0.10
*

*
0.05

* + +

*
* +

*
* +

* +
+

+

500 1000 1500 2000 2500 3000 3500 4000
amount

FIGURE 3.10. Change making: dynamic programming
on the OAP and CYBER-205.

3.3. SHORTEST PATHS [Kindervater & Trienekens 1988)

61

Given a complete directed graph with vertex set { l , ... ,n} and a length ciJ for
each arc (i,j), one wishes to find the shortest path lengths for all pairs of ver­
tices. We already came across the shortest paths problem in Section 2.2.4.
There, we gave a polylog implementation of an algorithm from Lawler [1976).
In this section, we describe the implementation of algorithms due to Dijkstra
[1959) and Floyd [1962] & Warshall [1962).

3.3.1. Dijkstra
Dijkstra's algorithm solves the one-to-all shortest paths problem in the case of
nonnegative arc lengths. The nonnegativity of the lengths ensures that the total
length of a path, when it is extended, cannot decrease. Therefore, it is possible
to determine in the /th iteration of the algorithm the vertex /th closest to the
origin. Denoting the origin by i*, we have the algorithm:

N- {l, ... ,n} \ {i* };
for allj EN do d1-c;.1; d;.-0;
for 1-2 ton do

j*-minU I di= min{dk lk EN},j EN},
N-N \ U*},
for allj EN do d1-min{d1,d1• +ci*J}·

In order to find all shortest paths, all vertices have to be considered as origin
in tum. This can obviously be done in parallel.

On the OAP, this algorithm is implemented using vector instructions, where
64 processors take care of one vertex. Without considering the possibility of
assigning more than one vertex to a set of 64 processors, this implementation
restricts the problem size to 64. If a single processor would do the computa­
tions for one vertex, it would be possible to solve problems of size up to 4096.
The memory capacity of a processor is, however, limited; only relatively small
size problems fit into the OAP. Hence, to prevent processors from being idle,

62 Chapter 3

they have to cooperate in the computations for a single vertex. Vector instruc­
tions then give about the best performance. The stages of the for / iteration are
treated sequentially and the steps within a stage are performed in parallel.
OAP-FORTRAN provides an (assembler) function which can compute the
minimum of a vector using parallelisrr:. The processors have to communicate
with each other for finding the vertex with the next shortest distance from the
origin. The number of this vertex and its corresponding distance have to be
broadcast to all other processors. The 'for all j EN' instructions are executed
for all j E {l , ... ,n} in parallel; with the use of a mask, which keeps track of the
set N, only the relevant updates are performed. Since the computations are
done in parallel and idle processors cannot do any useful work meanwhile, this
is not a waste of computing power.

The CYBER-205 implementation is straightforward. The initialization and
the instructions within the iterative loop can be pipelined. The language pro­
vides an (assembler) routine able to compute the minimum of a vector using
the pipeline, and the conditional instructions are performed using masks.

We implemented Dijkstra's algorithm in two different ways on the Manches­
ter dataflow machine. The first implementation closely resembles the SIMD
implementation: a mask indicates the vertices of the set N to which the shor­
test distance still has to be computed; the operations are performed on all ver­
tices and the obtained results are stored depending on the value of the mask.
In the second implementation, a list of vertices belonging to the set N is main­
tained. The operations are performed on elements of this list; only values that
are needed are computed. The first way is very easy to implement but has the
disadvantage that computing power is wasted on vertices to which the shortest
path is already known; the second way is harder to implement but does not
waste computing power. Since the Manchester dataflow machine is an MIMD
computer, processors that do unnecessary work could perform other available
tasks, thus achieving a better overall performance. This is in contrast to an
SIMD machine, where the overall performance is not influenced if some of the
processors are silenced by a mask. Computations are performed asynchro­
nously and in parallel wherever possible. In each iteration, however, the com­
putations are synchronized on the point where the minimum value has to be
computed. Updating the distances cannot be started unless the next shortest
distance is known.

Both DAP and CYBER-205 FORTRAN provide an instruction for finding
the index of an array element with minimum value. The SISAL language has a
serious drawback in this respect: first the minimum value must be obtained
and only then the corresponding index can be found.

3.3.2. Floyd-Warshall
The algorithm due to Floyd and Warshall computes the shortest path lengths
for all pairs of vertices simultaneously. The arc lengths do not have to be non­
negative and the occurrence of negative length cycles is detected. At the /th
iteration, the shortest paths for all pairs of vertices are computed with inter­
mediate vertices from the set { 1, ... ,/}. The algorithm is as follows:

Experiments with fine-grained parallelism

for J- 1 ton do for;- 1 ton do diJ-ciJ;
for 1- 1 to n do

for J- 1 ton do for i- 1 ton do diJ-min{ diJ,dil +dlj }.

63

On the DAP proc.!Ssor (i,J) computes the length of a shortest path from ver­
tex i to vertex j. At the /th iteration, processor (i,j) needs the current shortest
distances computed by processor (i,l) and processor {/,)). This is achieved by
broadcasting the /th column of the distance matrix rowwise and the /th row
columnwise. This implementation restricts the problem size to 64. Bigger prob­
lems can be solved in this way by assigning more pairs of vertices to one pro­
cessor.

On the CYBER-205, the initializing loops and the last for i loop of the algo­
rithm are pipelined.

The Manchester dataflow machine will perform the algorithm in some arbi­
trary feasible order. Therefore, it might happen that values of different itera­
tions are computed at the same time.

3.3.3. Computational results
On all machines we solved problems of size n up to 60, with distances drawn
uniformly from [1,1000). For each size, we generated three instances. The
entries in the figures represent mean values. Dijkstra's algorithm is applied
with all vertices as origin to make the results comparable to those of the
Floyd-Warshall algorithm. On the DAP and CYBER-205 this has to be done
sequentially, but on the Manchester dataflow machine simultaneous computa­
tion is possible.

number
vertices

IO
20
30
40
50
60

Floyd-W arshall Dijkstra

DAP
CYBER CYBER

DAP
CYBER

205 170-175 205
0.0025 0.001 0.002 0.021 0.001
0.0049 0.003 0.Q18 0.059 0.004
0.0073 0.007 0.057 0.124 0.010
0.0097 0.013 0.114 0.201 0.020
0.0121 0.022 0.215 0.311 0.034
0.0145 0.035 0.363 0.444 0.052

FIGURE 3.11. Shortest paths: running times (in seconds)
on the DAP, CYBER-205 and CYBER-170-750.

CYBER
170-750
0.002
0.019
0.058
0.147
0.271
0.478

On the DAP, Floyd-W arshall shows a linear behavior and Dijkstra a qua­
dratic one due to the fact that the basic routine has to be applied n times in
sequence. At problem sizes which are a multiple of 64, a jump in the comput­
ing times will occur, after which the linear and quadratic behavior will con­
tinue. At those discontinuities, vectors and matrices outgrow their maximum
size 64 and have to be split at the expense of longer computing times. On the
CYBER-205, both algorithms have a cubic behavior, as on any sequential

64 Chapter 3

S 1 (number of instructions) S 1 (number of instructions)
40(),()()() • Aoyd-Warshall * • Dijkstra with masks +

15,000,000 + Dijkstra with list

300,000 12,500,000

10,000,000 +
200,000 *

*
7,500,000

5,000,000 + * 100,000

* 2,500,000 + *
*

5 IO 15 20 10 20 30 40 50 60
vertices vertices

(a) Total number of instructions.

S 00 (critical path length) S 00 (critical path length)
600 • Aoyd-Warshall * 20,000 • Dijkstra with masks

+ Dijkstra with list * 500
* 15,000

400 *
300 * 10,000 +

* +
200 * +

5000 i
100 + +

5 IO 15 20 10 20 30 40 50 60
vertices vertices

(b) Critical path length.

S 1 / S 00 (average parallelism) S 1 / S 00 (average parallelism)
750 • Aoyd-Warshall 1,500 • Dijkstra with masks

* + Dijkstra with list +
1,250

500 1,000 +

* 750 +
250 500 +

*
* + * 250 * *

* -t *
5 IO 15 20 10 20 30 40 50 60

vertices vertices

(c) Average parallelism.

FIGURE 3.12. Shortest paths: performance on the dataflow machine.

Experiments with fine-grained parallelism 65

computer, but the solution times for these small problems are about IO times
shorter than on a CYBER-170-750. Dijkstra's algorithm has a worse perfor­
mance than Floyd-Warshall's. See Figure 3.11.

Toe simulator of the Manchester dataflow machine gives a linear behavior of
S 00 for the Floyd-W arshall algorithm. Due to the limited capacity of the
matching store, the biggest problem we could handle with this algorithm was
of size 20. Both versions of Dijkstra's algorithm have a nonlinear critical path
length. This is because at each iteration a minimum has to be computed which
takes OQog n) time in parallel. S 00 is larger for the version using masks than
for the one doing no useless work. For the total number of instructions per­
formed and the overall parallelism it is the other way around. On a machine
with a limited number of processors the former version will perform better,
and on a powerful machine (or the simulator) the latter is to be preferred. Cf.
Figure 3.12.

3.4. KNAPSACK [Kindervater & Trienekens 1988)
Given n items j , each with a profit cJ and a nonnegative weight aJ (j = l, ... ,n),
and given a knapsack with capacity b, one wishes to find a subset of the items
of maximum total profit and of total weight no more than b. This can be for­
mulated as an integer linear programming model of the following form:

n

maximize L cJxJ
J = I

subject to
n

LaJxJ,s;;;,_b,
J=I

xJE{0,l} (j = 1, ... ,n).

Toe problem is '!Jt<!J>-hard [Garey & Johnson 1979). We consider two types of
implicit enumeration: dynamic programming and branch and bound.

3.4.1. Dynamic programming
We introduce the notation C(j,z) = maxs <;; p , ... J}{~kESck l~kESak,s;;;,_z}. Using
the optimality principle of dynamic programming, one attains the maximum
profit C(j,z) either by excluding item j and taking the profit C(j-1 ,z) or by
including item j and adding cJ to the profit C(j-1,z -aj). By recursively
applying this idea, we get the following algorithm [Bellman 1957):

for H-0 to b do C(0,z)-0;
for J- 1 to n do

for z-o to aJ-l do C(j,z)-C(j-1,z),
for z-aJ to b do C(j,z)-max{C(j- 1,z),C(j-1 ,z-aj)+cJ}-

On the DAP, the obvious implementation is to compute the values C(j,z)
for z = 0, ... ,b in parallel and for j = 1, ... ,n in sequence, where processor z com­
putes the values C(l,z), C(2,z), ... ,C(n,z). Here, the DAP is considered as an
one-dimensional array of processors. In iteration j, a processor needs its own

66 Chapter 3

C-value, that of its a1th neighbor, and c1. Using a OAP-FORTRAN shift rou­
tine, the data transfer of the C-values is accomplished for all processors in
parallel. Because the shift routines fill in zeros for non-existing values, all states
z can be dealt with in the same way. In this way, we get an O(n) algorithm
and a speedup of O(b), provided b is nu greater than 4095.

For the CYBER-205 basically the same procedure can be applied, although
the parallel instructions are performed sequentially and a data shift is unneces­
sary. In the jth iteration, not all values C(j,z) have to be evaluated explicitly.
For all z with ~kE{I , ... J}ak~z~b, all considered items fit together in the knap­
sack and hence C(j,z) = ~k E (l, ... J } ck . In terms of the algorithm: in each itera­
tion it is sufficient to compute the C-values up to the sum of the weights of the
items considered. On a truly parallel computer (with enough processors), this
observation would make no difference, but depending on the problem at hand
it can lead to substantial savings on the sequential CYBER-205.

A SISAL version of Bellman's algorithm has been run on the Manchester
dataflow machine. Since the computation is completely asynchronous, it might
be possible that values of different iterations are evaluated at the same time,
but a speedup of O(b) remains best achievable.

3.4.2. Branch and bound
In the description of the branch and bound algorithm, we assume that the
items have been ordered according to nonincreasing c/a1.

An upper bound for the knapsack problem can be obtained by relaxing the
integrality constraints x1 E {O, 1} to O~x1 ~ 1 (j = l, ... ,n). This linear-program­
ming relaxation can be solved efficiently in O(n) time, and in the solution at
most one variable will be fractional. Setting the fractional variable to zero pro­
vides a feasible {O, 1 }-solution, which can be used for bounding the search tree.
A node will be split by fixing variables to O or 1. Suppose a node has the first
k variables fixed (denoted by i 1, ... ,ik), then we generate the subproblems
{ X) ,···•Xk, 1,free , ... ,free }, { X 1, •.. ,xk,o, 1,free , ... ,free}, { X 1, .. • ,xk ,O,O, 1,free, ... ,free },
... , {.x1 , ... ,Xk ,0,0,0,0, ... ,0} .

Since the evaluation of a node can hardly be parallelized efficiently on an
SIMD-type computer, the parallelism has to be exploited on the DAP at the
level of parallel evaluation of various nodes. By assigning each node to a
different processor, at most 4096 nodes can be handled at the same time. In
cases of branch and bound where the work to be done within a node very
much depends on that node, the SIMD-restriction becomes a severe problem.
Since the LP-relaxation of the knapsack problem can be solved in a regular
way in linear time, all nodes can be dealt with concurrently. However, all pro­
cessors of the DAP have to perform the same operation on data residing in the
same place of their local memories. Therefore, specific information on a partic­
ular node cannot be taken into account satisfactorily. For example, fixed vari­
ables at one node may be free variables at another and the only way an SIMD
machine can take care of this is by letting all processors look at all variables.
Each time the nodes are split, the work has to be redistributed over the proces­
sors. If at any time more than 4096 nodes exist, only the 'best' 4096 nodes can

Experiments with fine-grained parallelism 67

be evaluated concurrently. In our situation, we chose for a lexicographical
enumeration scheme, i.e., a parallel depth first process. To achieve this, a prior­
ity queue is needed. This priority queue is maintained by all processors con­
currently, but involves a lot of work.

On the CYBER-205, the same implemi..:ntation will work. Here, the newly
generated nodes have to be composed to a vector in order to use the pipeline
and a priority queue is necessary if the vector length exceeds the maximum
vector length 65535.

On the Manchester dataflow machine, we would like to have a completely
asynchronous implementation of the algorithm. The MIMD-type parallelism
allows for efficient implementation of the computation of upper and lower
bounds. To kill subproblems that cannot yield the optimal solution, however,
at each time the best feasible solution found so far has to be known by all sub­
problems under consideration. Since in SISAL, because of the single assign­
ment rule, no global updatable variables exist, the only way to accomplish this
within the language is by synchronizing the subproblem examinations after the
computation of the lower bounds. But, synchronization means waste of com­
puting power as processes have to wait for each other. Therefore we used the
same assembler routine as in the improved divide and conquer algorithm (cf.
Section 3.2.3) for simulating a global memory that contains the best overall
feasible solution.

3.4.3. Computational results
For the DAP and CYBER-205, we generated three types of problems. In type
l the profits and weights are drawn uniformly from [1,64). To get types 2 and
3, we added 512 and 1024 to both the profits and the weights. For all three
types we considered an instance with n = 100, 200 and 300; for dynamic pro­
gramming b equals 4095, which is the largest problem size we can solve on the
DAP without partitioning, and for branch and bound b equals 4200. From
type 1 to 3, the knapsack problems are harder to solve by means of branch
and bound methods. This comes from the empirical fact that, in general, knap­
sack problems are more difficult if the number of items that fit into the knap­
sack is smaller and the profit/weight-values are varying less.

Dynamic programming gives more or less the expected results on the DAP.
The estimated CPU time grows linear with n, but there is no distinction for the
different types. Since the distance which data have to travel increases with
increasing type numbers, one expects an increasing computing time. The only
information which can be retrieved · from the DAP, however, is the number of
instructions performed and that number is the same for all types of problems.
The CYBER-205 computing times display the sequential nature of this
machine. The running times are 20 times better than on the CYBER-170-750.
Cf. Figure 3. 13.

Branch and bound turns out to be inefficient on both the DAP and
CYBER-205 (see Figure 3.14). The search trees for the type 1 problems are
narrow. This implies for the DAP that only a small part of the processors is
doing useful work and for the CYBER-205 that the vector lengths are small.

68 Chapter 3

n type DAP CYBER-205 CYBER-170-750
100 1 0.019 0.011 0.257
100 2 0.019 0.022 0.420
100 3 0.019 0.019 0.359
200 1 0.038 0.036 0.832
200 2 0.038 0.045 0.828
200 3 0.038 0.039 0.704
300 1 0.058 0.062 1.373
300 2 0.058 0.067 1.238
300 3 0.058 0.059 1.047

FIGURE 3.13. Knapsack: running times (in seconds) of dynamic programming
on the DAP, CYBER-205 and CYBER-170-750 (b = 4095).

For the type 2 and 3 problems, the search trees are very broad. This ensures
an economic use of the DAP processors and the CYBER-205 pipeline. But
here the amount of work to redistribute the subproblems over the processors
on the DAP and to rearrange the subproblems into a vector on the CYBER-
205 is enormous. This part of the program completely dominates the computa­
tion of lower and upper bounds. For these reasons the traditional CYBER-
170-750 performs better than the DAP and CYBER-205.

n type DAP CYBER-205 CYBER-170-750
100 1 0.2 0.01 0.01
100 2 3.0 0.07 0.01
100 3 5.0 1.78 0.25
200 1 5.0 0.12 0.03
200 2 18.0 3.51 0.10
200 3 38.0 35.54 2.16
300 1 11.0 0.36 0.06
300 2 - - -
300 3 - - -

FIGURE 3.14. Knapsack: running times (in seconds) of branch and bound
on the DAP, CYBER-205 and CYBER-170-750 (b = 4200).

On the Manchester dataflow machine, we only could run some very small
problem instances. The profits and weights are drawn from (1 , 100]. We gen­
erated problems with n = 10, 20, 30 and 40 and b = 100, 200 and 300.

Dynamic programming shows an S 00 linear in the problem size n and a
parallelism growing with b. With growing b more elements fit into the knap­
sack. This explains an increasing S 00 for constant n. Cf. Figure 3.15.

For the problem instances considered, the hardware results are comparable:
for less than IO processors the speedup increases almost linear in the number

Experiments with fine-grained parallelism 69

n b = 100 b = 200 b = 300 n b = 100 b = 200 b = 300

10 418 431 437 10 30 70 106
20 756 765 784 20 37 85 128
30 1091 1109 1122 30 39 89 135
40 1443 1466 1479 40 41 89 133

(a) Critical path length. (b) Average parallelism.

FIGURE 3.15. Knapsack: dynamic programming on the dataflow machine.

of processors, after that hardly any gain is made (Figure 3.16). Apparently, the
average parallelism is not enough to keep the processor elements busy.

speedup
10

8

6

4

2 *
*

*
*

* * *

* *

* * * * * * * *
* * *

2 4 6 8 10 12 14 16 18 20
processors

FIGURE 3.16. Knapsack: typical speedup curve for dynamic programming
on the dataflow machine; n = 40 and b = 300.

Branch and bound results look promising. The S 00 and w correspond to the
depth and the width of the search tree; see Figure 3.17. Because communica-

n b = 100 b = 200 b = 300 n b = 100 b =200 b = 300

10 892 1226 750 10 9 8 9
20 1219 2300 1394 20 14 21 12
30 1287 2735 1767 30 19 21 15
40 4518 3407 5468 40 48 24 77

. .
(a) Cntical path length . (b) Average parallelism.

FIGURE 3.17. Knapsack: branch and bound on the dataflow machine.

tion is cheap and the parallelism is fine-grained, no time is lost in the assign­
ment of tasks to processors. Therefore, it can be expected that problem
instances for which broad search trees are needed can be solved efficiently on
this sort of machines.

70

4

Experiments with Coarse-Grained Parallelism:
Branch and Bound

In contrast to the computers considered in the previous chapter, many parallel
architectures consist of a set of powerful processors interconnected by a net­
work that is relatively slow compared to the individual processor speeds. To
obtain a good performance of algorithms, the number of data transfers must
be kept to a minimum; in many cases, it is even worthwhile to let several pro­
cessors do the same work instead of assigning the job to one processor and
then broadcast the results. In this chapter, we investigate this type of architec­
tures with respect to their suitability for branch and bound algorithms.

The nodes in search trees generated by branch and bound methods each
deal with a subset of the solution set (cf. Chapter 3). The observation that any
two nodes, neither of which is an ancestor of the other, can be solved indepen­
dently, provides a natural basis for the parallelization of branch and bound
algorithms: an idle processor searches for an available but not yet expanded
node, evaluates this node, thereby possibly creating new nodes, and informs
the other processors on newly found better solutions. Except for the broadcast­
ing of these feasible solutions, interprocessor communications may be neces­
sary for finding an expandable node and for the storage of generated nodes.
There are several possibilities for the storage of the nodes of the search tree.

(i) One central queue. The nodes are kept in a queue which is shared by all
processors. Communication is always necessary for the selection of an expand­
able node and for the storage of generated nodes. This implementation has the
advantage that all information of the generated tree is available at one place
and that the processors can work on the most promising nodes.

(ii) Local queues. Each processor maintains a queue of nodes. When search­
ing for a node to be evaluated, a processor first looks in its own queue and, if
this queue is empty, in the queues of the other processors. New nodes are
stored in the processor's own queue. In this situation, the number of

Experiments with coarse-grained parallelism: branch and bound 71

communications is limited, but the possibility exists that a processor's queue
may contain only uninteresting nodes and that the processor is doing what
turns out to be useless work.

For most multiprocessor systems, a hybrid variant of a central queue, queues
shared by only part of the processors 2nd local queues will give the best
results. Which combination is to be preferred is highly architecture dependent.

The last issue of branch and bound to be cleared is the order in which nodes
are considered for evaluation. In sequential computers, one usually makes a
choice between two selection rules: depth first search, i.e., the nodes are con­
sidered in a lexicographical order (last in first out), and best bound search, i.e.,
the nodes are considered according to increasing lower bounds in the case of
minimization (decreasing upper bounds in the case of maximization). In gen­
eral, best bound search generates less nodes than depth first search (conditions
can be found in [Fox, Lenstra, Rinnooy Kan & Schrage 1978]), but has higher
changeover costs between the evaluation of two nodes. The selection rules used
in parallel algorithms are mostly extensions of the two selection rules discussed
here.

The behavior of branch and bound algorithms is sometimes unexpected:
there exist examples of anomalous behavior in which p + I processors are
slower than p processors or more than proportionally faster. The reason for
this lies in the fact that the point in time at which a node becomes available
depends on the number of processors and that this influences how the tree is
searched. Another way to express this is that, for each number of processors,
we essentially have a different underlying sequential algorithm. We will return
to this later on.

This chapter is organized as follows. Section 4.1 describes the IBM I LCAP
and and a local area network of workstations, architectures in which the proces­
sors are powerful computers of their own accord. Section 4.2 considers the
implementation of two branch and bound algorithms for the traveling salesman
problem and Section 4.3 deals with the Job shop scheduling problem. The anom­
alous behavior of branch and bound algorithms is discussed in Section 4.4.

4.1. ARCHITECTURES

In this section we will briefly describe the IBM/LCAP and a multiprocessor
consisting of workstations connected on an ethernet.

4.1.1. The IBM/ LCAP [Di Chio & Zecca 1985)
The IBM/LCAP (Loosely Coupled Array of Processors) consists of a master
processor (IBM/4381-3) which is connected to ten slave processors (FPS/164);
cf. Figure 4.1. On the master processor, at most ten processes run in parallel in
a time sharing mode. To each of these, a slave processor can be assigned. A
process can pass part of its work on to the slave processor, thereby creating
true parallelism. As long as the slave is running, it cannot be influenced from
outside and the invoking process on the master has to wait. Communicating
with a slave processor is time consuming. Therefore, it does not pay to send
very small tasks.

72 Chapter4

IBM/4381-3

FIGURE 4.1. The IBM/LCAP.

For the communication between the processes on the master, one has basi­
cally to choose between two systems:

(i) The processes are considered as equivalent. They share part of the
memory of the master processor.

(ii) The processes are considered as slave processes, and a master process is
created. The master process is able to communicate with the slave processes;
messages between slave processes have to be sent through the master process.

The LCAP is programmable in FORTRAN. For the implementation of the
shared memory model, an extension of the language is provided; the master­
slave principle is effectuated by a set of communication routines that are acces­
sible from standard FORTRAN programs.

The limited control over the slave processors together with the restrictions
on the interprocess communication makes the LCAP a rather rigid MIMD
computer. In its present state, it is not well fit for algorithms in which the need
for communication arises at run time.

4.1.2. Local area network of workstations [Gardner, Gerard, Mowers, Nemeth &
Schnabel 1986]
The Boulder Distributed Processing Utilities Package (DPUP) has been
developed to facilitate the use of a local area network of the University of
Colorado at Boulder. The network consists of a small number of Pyramid and
Sun work stations, which run the Berkeley Unix 4.2 operating system and are
connected on an ethemet (see Figure 4.2). The ethemet makes it possible to
send messages between processes on any two machines. The configuration can
therefore be considered as an asynchronous MIMD computer.

work
station

work
station

ethemet

work
station

work
station

FIGURE 4.2. Work stations connected on an ethemet.

Experiments with coarse-grained parallelism: branch and bound 73

DPUP can be used from programs written in C and enables a process to
create remote processes on any desired machines and to establish communica­
tion links with them. In this way, a tree of processes can be created. In princi­
ple, it is possible to implement any communication network. Communication
between processes is completely asynchronous. The sending process stores the
message in a buffer and may continue immediately after that. The receiving
process empties the buffer as it is ready to do so. A process can be interrupted,
for example to force important messages to be read at once. This software
makes the system very flexible.

An ethemet allows for only one message to be sent at a time: communica­
tions are handled subsequently. In case of heavy traffic, the ethemet becomes
the bottleneck of the system.

4.2. 1'RA YEUNG SALESMAN

Recall that the traveling salesman problem (TSP) is the problem of finding a
Hamiltonian cycle of minimum length in a complete undirected graph with
given edge lengths (see Chapter 2). Since the TSP is a famous hard problem, it
is an appealing object for parallel branch and bound. We describe two
approaches in detail. Others can be found in, for example, Finkel & Manber
[1987) and Pekny & Miller [1988). (The last reference contains an algorithm for
the asymmetric TSP.)

4.2.1. An assignment based algorithm on a shared memory computer [Pruul 1975;
Pruul, Nemhauser & Rushmeier 1988]
A traditional branch and bound method for the TSP uses a bounding mechan­
ism based on the linear assignment relaxation, a branching rule based on sub­
tour elimination, and a strategy for selecting new nodes for examination based
on depth first tree search. The details are of no concern here and can be found
in the book edited by Lawler, Lenstra, Rinnooy Kan & Shmoys [1985). Figure
4.3(a) shows a search tree in which the nodes have been labeled in order of
examination.

Pruul designed a parallel version of this method for an asynchronous MIMD
machine. Each processor performs its own depth first search; when it
encounters a node that has already been selected by another processor, it
selects in the subtree rooted by that node an unexamined node at the highest
level. Figure 4.3(b) illustrates the process.

The lack of parallel hardware forced Pruul to simulate the algorithm on a
sequential computer. An empirical analysis for ten 25-vertex problems yielded
average speedups that were greater than the number of processors. This may
be confusing at first sight, but the explanation is simple and lies outside the
area of parallel computing. The simulated parallel algorithm is nothing but a
sequential algorithm that is based on a mixture of depth first and breadth first
tree search. Such complex strategies have not yet been explored in any detail
and might be quite powerful.

74

(a) Sequential search; node t is selected at time t.

(b) Parallel search by three processors;
node t Ip is selected at time t by processor p.

FIGURE 4.3. Depth first tree search.

Chapter4

4.2.2. A I -tree based algorithm on a local area network of workstations [Trienek­
ens 1989b]
The branch and bound algorithm considered by Trienekens combines a lower
bound based on I-trees and a branching scheme of Jonker & Volgenant (cf.
Lawler, Lenstra, Rinnooy Kan & Shmoys [1985]).

The implementation using the Boulder DPUP software is based on the
master-slave principle. The master process keeps track of the nodes that are to
be considered for branching. An idle slave process receives a node with the
least lower bound from the master, branches this node, performs the lower
bound computations, and sends the results back to the master. In this strategy,
the master has full knowledge of the search tree generated so far. The number
of communications is, however, high. Since a lot of work is involved in the
lower bound computations, the time for node evaluation will dominate the

Experiments with coarse-grained parallelism: branch and bound 75

time for interprocessor communication.
The algorithm was run on a set of five Pyramid work stations, which have

unequal processing power. Each work station executes a slave process; the
most powerful work station also takes care of the master process.

For small search trees, with 30 to 60 noJes branched, a processor utilization
(which is corrected for the different processor speeds) of more than 60 percent
is achieved. The largest search tree, with 260 nodes branched for the solution
of a Euclidean 75-city instance, gave a processor utilization of 93 percent.

4.3. JOB SHOP SCHEDULING

Given are n jobs and m machines. A machine can handle at most one job at a
time. A job consists of a chain of operations, each of which requires an unin­
terrupted given processing time on a given machine. The purpose is to find a
schedule of minimum length. This 0JL~-hard problem [Garey & Johnson 1979]
appears to be very difficult. Already small instances are hard to solve. The
branch and bound algorithm from Lageweg, Lenstra & Rinnooy Kan [1977]
computes lower bounds by relaxing the capacity constraints on all machines
but one, creates subproblems by scheduling operations all of whose predeces­
sors have been scheduled, uses depth first search, and obtains approximate
solutions on a few equidistant levels of the search tree. A parallel version of
the algorithm was implemented on the IBM/LCAP and the Boulder local area
network of workstations.

4.3.1. Implementation on the IBM! LCAP
The implementation on the IBM/LCAP uses the second interprocess commun­
ication system. The master process generates the search tree up to a certain
depth. Nodes neither branched from nor eliminated are ordered according to
increasing lower bounds and put in a queue. The master process sends nodes
from the front of this queue to idle slave processes. A slave performs a com­
plete depth first search starting from the node it receives. If a better overall
solution is found, it is sent to the master, which in tum informs the other
slaves. If there are idle slaves and the queue of nodes of the master is empty,
the master asks the busy slaves to pass on some of their work so as to refill its
queue. The master process is run on the IBM machine and the slave processes
pass the evaluation of the search tree on to the FPS systems. Since the
software does not allow slaves to be interrupted by the master, it is necessary
that they regularly report to the master. The report period has to be carefully
chosen such that important news is quickly distributed and not too many
unnecessary communications occur.

The algorithm shows a nondeterministic behavior. When the algorithm is
run on the same instance several times, the distribution of the work over the
processors varies, different search trees may be generated and different optimal
solutions may be found.

The performance of the algorithm is illustrated on an instance with twenty
jobs, each consisting of five operations, and five machines [Muth & Thompson
1963]. Reported are the maximum number of nodes branched by a slave,

76 Chapter4

number maximum number of nodes total number
of slaves branched by a slave of nodes

1 11358 11423
2 2300 4609
3 1455 3320
4 900 2268
5 900 2667
6 900 3397
7 978 5143
8 700 3364
9 800 3457

IO 800 3646

FIGURE 4.4. The job shop algorithm on the LCAP:
an instance with twenty jobs and five machines.

which indicates the parallel computing time, and the number of nodes
branched by the master and slaves together, which represents the total amount
of work. The master branches 65 nodes, resulting in an initial queue of 269
nodes. The slaves report to the master every 100 nodes. The results of a single
run for each number of slaves are given in Figure 4.4. When the number of
slaves increases from one to four, the maximum number of nodes branched by
a slave decreases more than proportionally; this expresses a speedup anomaly.
For higher numbers of processors, the maximum remains about the same. This
is because the master gets into trouble. It is too slow for serving the communi­
cation requests of the slaves properly. A small number of slaves is served fre­
quently, the others are waiting most of the time.

4.3.2. Implementation on a local area network of workstations
On the Boulder network of workstations, the algorithm is implemented using
the master-slave principle in the same way as in Section 4.2.2, i.e., a master
process keeps track of the nodes to be evaluated and idle slave processes
receive a node with the least lower bound from the master process, evaluate
this node and send the results back to the master process. The most powerful
workstation (SUN 3/180) executes the master process and the other worksta­
tions (SUN 3/75) each perform a slave process.

The performance of the algorithm is illustrated on an instance with six jobs,
each consisting of six operations, and six machines [Muth & Thompson 1963].
For each number of slave processes, the algorithm was run four times. The
computing times fluctuated up to 10%, but the generated search tree was the
same (in all test runs the algorithm branched 466 nodes). The results presented
in Figure 4.5 are mean values.

Since in all cases the same search tree is generated, the master process has to
perform an amount of work which is more or less independent of the number
of slave processes. The time needed for this is a lower bound on the

Experiments with coarse-grained parallelism: branch and bound 77

time (seconds) processor utilization

*
1.00 *

20.0 *
0.75 *

15.0

* * 0.50
* 10.0

* + + + + + + + *
*

5.0 0.25
• total running time

+ cpu time used by the master

2 3 4 5 6 7 2 3 4 5 6 7
slave processes slave processes

FIGURE 4.5. The job shop algorithm on a local area network of workstations.

computation time. As long as the number of slave processes is low, the master
process succeeds in keeping the slaves busy. For a high number of processors,
the work to be done by the master dominates and the slaves are waiting most
of the time.

Although the instance considered is small, it clearly shows the weakness of
the master-slave principle with only one central queue. The bottleneck of the
master will show up for any instance as the number of processors increases. In
that case, an approach in the same direction as described in the previous sec­
tion has to be preferred.

4.4. ANOMALOUS BEHAVIOR (Burton, Huntbach, McKeown & Rayward-Smith
1983; Lai & Sahni 1984; Lai & Sprague 1985, 1986; Li & Wah 1986]
The branch and bound algorithms of the previous sections sometimes showed
a pleasant behavior: adding a processor decreases the running time more than
proportionally. Unfortunately, it is also possible that the addition of a proces­
sor slows down the computation. In this section, we discuss the conditions
under which such anomalous behavior may occur. Branch and bound closely
resembles the model described by Graham [1969], who considers a list schedul­
ing algorithm for the multiprocessor scheduling problem (see Section 2.3.5)
subject to precedence constraints between the jobs. It is not surprising that a
number of Graham's observations apply here.

For simplicity, we consider a synchronized multiprocessor system in which
the evaluation of a node in a branch and bound tree takes constant time and
after the evaluation of the current set of nodes the processors collectively
decide which set of nodes is to be evaluated next on the basis of a priority of
each node. The running time of the algorithm is measured by the number of
iterations needed. These restrictions are not essential; Trienekens (1989a]

78 Chapter4

showed that the results can be extended to asynchronous models. We first
analyze the running times for one and p (> 1) processors and then consider the
case where we have p 1 and p 2 processors with 1 <p 1 <p2 •

Burton, Huntbach, McKeown & Rayward-Smith give examples in which two
processors are more than twice as fast as a single processor, or slower than a
single one. In Figures 4.6 and 4.7 both cases are illustrated. The numbers
represent the priorities of the nodes; the node indicated by the box contains
enough information to cause termination of the algorithm.

, ' , ' , ' , ' L--------~
large tree with priorities greater than one

FIGURE 4.6. Anomalous behavior: best case for two processors.

In the tree of Figure 4.6, a single processor first evaluates the root, creating
two children. Since the right node has the lower priority of the two, the left
node is evaluated first and the nodes of the large subtree follow. Only after the
entire subtree is exhausted, the right node is evaluated, and one step later the
optimal solution is found. A two-processor machine first evaluates the root.
Then either processor takes a node, and the same happens at the next step. At
that point the algorithm terminates. Hence, the two-processor system needs
only three steps, while the number of nodes in the large subtree determines the
running time for a single-processor computer.

, ,
, ' L---------- - --- - ---~

large tree with priorities greater than two

FIGURE 4.7. Anomalous behavior: worst case for two processors.

Experiments with coarse-grained parallelism: branch and bound 79

In the tree of Figure 4.7, a single processor first evaluates the root, creating
two children. Since the right node has the higher priority of the two, it is
evaluated first. The box node is generated, and evaluated immediately, since it
has a higher priority than the only other available node, the left son of the
root. The algorithm terminates in three s-:eps. A two-processor system evalu­
ates the root at the first step, its two children at the second step and after that
the nodes of the subtree, since they have a higher priority than the box node.
In this case, the algorithm runs longer with two processors than with only one.

,+p,+4 p, -2 p,-p,+2

(a) Lower bounds.

4/5

(b) Node t 1/t 2 is evaluated at time t; withp; processors (i = 1,2).

FIGURE 4.8. Best bound search: deceleration when increasing
the number of processors fromp 1 to p 2 , withp 1 <p2 <2(p 1 -1).

80 Chapter4

The slow down anomaly of Figure 4. 7 is easy to explain. The children of a
node P I are more attractive than some other node P 2 in the tree, while father
node P I is less attractive than node P 2 • This situation can be prevented by
requiring that the priority function is monotone in the sense that the priority of
the children is always no greater than the priority of the father. However, Lai
& Sahni show that this is not sufficient. It is also necessary that all priorities
are distinct. Under these two conditions, it can be shown that a multiprocessor
system at each iteration evaluates at least one node that must be expanded by
the sequential algorithm. If there are no such nodes left, the multiprocessor
system has all the information necessary to deliver the optimal solution of the
problem. Hence, the multiprocessor system needs no more iterations than the
single processor machine. These requirements for the priority function are not
severe. For example, for depth first search the conditions are already fulfilled,
and best bound search can be adapted by using the place of the node in the
tree as an extra criterion.

In Figure 4.6, the enormous speedup is achieved because the two processors
do not have to evaluate all the nodes expanded by the sequential algorithm.
Indeed, it is easy to see that a speedup anomaly cannot occur unless a mul­
tiprocessor system does not consider the complete search tree which is treated
by the sequential algorithm. This can only happen when the sequential algo­
rithm evaluates nodes that have a lower bound which is no less than the
optimal solution value. It is clear that this situation may appear in depth first
search. For best bound search it is necessary that several nodes have a lower
bound equal to the optimal solution value.

The case for p I and p 2 processors (I <p 1 <p2) is not so easy. As an exam­
ple given by Lai & Sahni shows (see Figure 4.8), deceleration anomalies may
occur in very natural situations. The conditions of the previous case are not
sufficient to prevent a slowdown. To be sure that deceleration does not hap­
pen, additional information on the branch and bound tree to be generated is
needed. Most of the time, this knowledge is not available before the branch
and bound algorithm has finished. The good news is, however, that the (lim­
ited) experiments with branch and bound show that in practice one does not
have to worry about this sort of anomalous behavior.

5

A Queueing Network Model for
Distributed Enumeration

81

As we have seen in the previous chapter, the master-slave principle is very
appealing for parallel branch and bound methods. In particular, the following
implementation is attractive. The master process keeps track of the search tree
generated so far, orders the nodes according to their priorities, and sends the
node with the highest priority to a slave process as soon as one becomes idle.
The slave processes evaluate the nodes they receive and send the results back
to the master process. In this implementation, the master process has full
knowledge of the search tree generated so far and can ensure that the most
promising part of the search tree is examined by the slave processes. However,
the processing speed of the master process must be high enough to handle the
communication requests of the slave processes adequately, and to maintain the
priority queue of available nodes. Otherwise, the benefits of this implementa­
tion are likely to disappear: valuable information may not reach the master
process in time and the slave processes may be forced to do what turns out to
be useless work, or the slave processes may become idle.

In Sections 4.2.2 and 4.3.2, we described two experiments with the master­
slave principle with one central queue of nodes. One experiment was rather
successful, the other was not. In this chapter, we want to obtain insight into
the performance of this particular type of implementation via a queueing
theoretic approach. We are interested in the effect of changing the speed of the
master or the slaves and of changing the number of slave processes.

We consider two variants. In the next section, we will describe a queueing
network which models the master-slave variant, where a slave process evaluates
a node, puts the results in a queue at the master process, and immediately con­
tinues with a new node, already processed by the master process. The benefits
of this variant are clear: the slave processes are only idle if there are no nodes
available for evaluation. However, if the number of nodes available for

82 Chapter 5

evaluation grows, the master process becomes slower and, as a result, a long
queue of nodes waiting to be processed by the master process may form. This
has the effect that valuable information may not reach the master process in
time and that the slave processes may be forced to do what turns out to be
useless work. In Section 5.2, the queueing model is analyzed by means of a
fluid flow approximation, and the techniques developed are illustrated by some
numerical examples in Section 5.3.

Section 5.4 studies the variant where a slave process receives a new node
only after the master process has consumed the slave's latest results. This
second variant avoids the possibility of a long queue in front of the master
process. The disadvantage is that a slow master process causes idleness of the
slave processes. Here, the appropriate queueing system turns out to be a so­
called machine repair model.

Throughout this chapter, we assume that at any point in time there are
enough nodes available for evaluation by the slaves. This is not a serious res­
triction since parallel computers are particularly useful for solving problem
instances that require large search trees for finding the optimal solution.

5.1. QUEUEING MODEL DESCRIPTION

In the queueing network representation of the parallel processing of branch
and bound nodes, the master process is represented by a single server M, and
the P slave processes are represented by P parallel servers S 1, ••• ,Sp, gathered
in a service station S; cf. Figure 5.1. The nodes are represented by customers.
The splitting of a node is performed by the birth and death process B&D. To
further specify the queueing network, we have to describe the routing of custo­
mers and the service processes at M and S.

The routing of customers. When a customer arrives at M, he may have to wait
in a queue until his service starts. After having obtained his service require­
ment, the customer leaves and immediately arrives at S, where he usually has
to wait in a queue. In this queue, each customer has a priority which deter­
mines the order in which the customers are served by S. In the branch and
bound algorithms under consideration, the priority queue is maintained by the
master process. In the queueing network model, however, it is more natural to
identify the priority queue with the queue at service center S. Now there are
two possibilities:

(i) Before the customer is taken into service, the service center M receives
information on which ground it decides to throw away a part of the queue at
S, to which this customer belongs: the customer is instantaneously removed
from the queueing network. This corresponds to the situation that the master
obtains information from a node which makes the analysis of the nodes in a
part of the priority queue obsolete. Customers who are thrown out of the
queue at S are not replaced by other customers.

(ii) After a (possibly zero-length) waiting period, the customer is taken into
service by one of the P servers; after having obtained his required service, he
leaves S.

A queueing network model for distributed enumeration 83

M

FIGURE 5.1. The queueing network model.

A customer who has successfully completed a service in S arrives at the
birth and death process B&D. There, he leaves the queueing network, but he is
immediately replaced by 0, I or 2 new customers, with probabilities p 0,p 1,p2

respectively; p 0 + p 1 + p 2 = 1 (we assume that a branch and bound node has at
most two descendants; the analysis to be presented in Section 5.2 remains
valid when this assumption is relaxed). These new customers immediately
arrive at M. The probabilities p; may vary with time; we denote them by p;(t).
The mean increase of the number of customers in the network after a service
completion in S at time t will be denoted by

q>(t) = Pl (t)+2p2(t)- l. (5.1.l)

In approximation, q>(t) will be a decreasing function of t, with q>(O)= 1 and
q>(oo) = - I. In the branch and bound setting, this corresponds to the observa­
tion that the number of nodes generated by a node usually equals two in the
beginning of a tree search, and that this number decreases to · zero in the
course of time. For most of the subsequent calculations, the exact form of <f> is
irrelevant.

84 Chapter 5

The service process at M. The single server M serves customers in order of
arrival ('first-come first-served'). M's service of a customer consists of two
parts:

(i) a constant part of length a, which reflects the master's processing of the
information contained in a node;

(ii) a part of length b ln(l +y), which reflects the master's putting a node in
a priority queue of size y. Note that insertion in a priority queue requires
O(lny) time units when its size is y.

Hence the total service time of a customer in M, in the case that this custo­
mer has to be inserted in a priority queue of size y, equals

a+ b ln(l +y).

Instead of constants, a and b may also be stochastic variables; in the analysis,
that will turn out to be of minor importance.

In the following, the queue length of waiting customers in M at time t will
be denoted by YM(t).

The service process at S. When a server in S becomes idle, the customer at the
front of the queue (if any) is immediately taken into service. When a newly
arriving customer finds several servers idle, he chooses an arbitrary idle server.
We assume that the P slave processes - and hence the P servers - are identical.

The service times of customers at S are independent, identically distributed
stochastic variables with mean 1/ a. Generally it will not be necessary to
specify the service time distribution at S further, but at a few places in the text
we will consider the case of a negative exponential distribution.

Apparently the 'capacity' of Sis Pa: Sis able to handle Pa customers per
unit of time, on the average. We assume that 1/a >> Pa, i.e., M's maximum
speed of handling customers is much higher than that of S. Of course a large
queue at S will slow down M considerably.

The length of the queue at Sat time twill be denoted by Ys(t).

Remark. In parallel computers, communication takes a certain amount of time.
We assume that the time to send messages between the master and the slaves
has been taken into account in the service times.

5.2. MATHEMATICAL ANALYSIS OF THE NODE PROCESSING MECHANISM

In the previous section, a queueing network model was introduced to describe
the node processing mechanism in parallel branch and bound in a master-slave
environment. In this section, we present a mathematical analysis of the queue
length processes in that queueing network. This analysis is basically of a non­
stochastic nature. Of course YM(t) and Ys(t) are stochastic processes, which
may exhibit considerable fluctuations. Information concerning the (random)
behavior of Ys(t) and YM(t) requires a detailed queueing analysis. The problem
of analyzing the transient behavior of queues is notoriously difficult, even when
arrival and service rates are constant. In our case, a detailed mathematical

A queueing network model for distributed enumeration 85

analysis of the evolution of, say, YM(t) requires analysis of the transient
behavior of a single server queue with complex time dependent arrival and ser­
vice rates. Hardly any results are available in the literature concerning such
problems. Massey [1985] studies the asymptotic queue length behavior of an
MIMI 1 queue (i.e., a single server queue with Poisson arrival process and
negative exponentially distributed service times) with time dependent arrival
and service rates. Rider [1976] and Rothkopf & Oren (1979] derive approxima­
tions for the mean queue length at time t in this MIMI 1 queue; their approxi­
mations are fairly complicated. These models are considerably less complex
than the model under consideration, with its interaction between M and S. As
there seems to be little hope of obtaining useful exact results, we have taken
recourse to a standard type of approximation. The approximation, simple as it
may be, will tum out to yield much insight into the behavior of both queue
length processes. In queueing literature it is called a fluid flow approximation
(cf. Newell [19711).

Fluid flow approximations are based on the following observations: (i) In a
system with a large queue, many customers must arrive and depart before the
queue changes much (in a relative sense). (ii) In a period of time sufficiently
long for many arrivals and departures to occur, the effect of random fluctua­
tions - due to the stochastic nature of the arrival and service processes - will be
relatively small. The latter observation can be theoretically supported by Laws
of Large Numbers and Central Limit Theorems. As an example, consider the
departure process from the saturated service station S. Assume that successive
service times in S are independent, negative exponentially distributed stochas­
tic variables with mean 1 I a. Then successive departure intervals are indepen­
dent, negative exponentially distributed stochastic variables with mean 1 IP a.
The number of departures, D(t), in an interval of length t is Poisson distri­
buted with mean Pat and variance Pat. According to the Strong Law of Large
Numbers,

D(t)-E[D(t)] = D(t)-Pat ➔ O
E[D(t)] Pat '

(5.2.1)

with probability one. Supplementary information is provided by the Central
Limit Theorem, which shows that for large t,

D(t)-Pat 1 y
Pr{ -y <.jp;;; <y} ~ . r,:.- f exp(-x2 /2)dx. (5.2.2)

Pat V2'1T -y

Based on the above observations, we can replace the discrete and random
arrivals and departures at M and S by nonrandom continua (cf. Newell
(19711): we can view Mand Sas reservoirs, with fluids flowing in and out. In
this setting, a reservoir can be considered to be empty for a lengthy period of
time, without really being completely empty; it is empty only on a scale of
measurement in which fluctuations in cumulative flows are negligible.

In our fluid flow analysis of the node processing mechanism, we distinguish
two possible states in which the system can be, namely:

86

ME: M is empty;
MNE: Mis not empty.

Chapters

Once more, at a time t 0 at which the system is in state ME, JM(to) is not
necessarily zero, but it is negligible. Note that y is not printed boldface, as the
queue length process is no longer assumed to be stochastic.

Throughout the analysis, S will be considered to be nonempty, with all P
servers being occupied. When Ys(t) would become zero, M would serve so fast
that S would very soon saturate again. 1bis is no longer true when there are
hardly any customers in the system, but that situation is of not much interest.

For arbitrary functions cp, the system state can switch back and forth
between ME and MNE several times. In Subsection 5.2.1 we describe, in
detail, the behavior of the queue length processes in each of these two states.
In Subsection 5.2.2 we follow the evolution of YM(t) and Ys(t) from beginning
to end, in the case of a non-increasing function cp with <f,(O) = 1 and
<f,(oo)= - 1.

In Section 5.1 we have mentioned an important feature of branch and
bound: the master obtains information from a node which makes the analysis
of the nodes in a part of the priority queue obsolete. In the queueing network
setting, this corresponds to the situation that, upon departure of a customer
from M , the tail of the queue at S is removed from the network: Ys(t) instan­
taneously is reduced by a certain number. In describing the queue length
processes in states ME and MNE, we first ignore such sudden reductions of the
queue at S. In Subsection 5.2.3 we point out which simple changes are required
to take reductions of the queue at S into account.

5.2.1. Queue length behavior in the states ME and MNE
We shall mainly concentrate on the queue length process Ys(t) ; Y M(t) follows
from the relation

I

Ys(t) + YM(t) = Pa j <f,(u)du, t;;;;.O. (5.2.3)
0

1bis relation holds for general ct,, ignoring the possibility of a sudden reduction
of the queue at S.

The state ME. In state ME, M is clearly nonsaturated: its input rate is lower
than its maximum possible processing rate. The output rate of S is Pa (all P
servers are occupied); so the input rate to M, and accordingly the input rate to
S, is Pa(l +<f,(t)). Hence, with t 0 the entrance time of the system in state ME,

I t

Ys(t) = Js(to) + Pa f <f,(u)du = Pa f <f,(u)du. (5.2.4)
' • 0

The last equality follows from (5.2.3) because, by definition,

YM(t) = 0,

when the system is in state ME.

A queueing network model for distributed enumeration 87

If the function ct, is such that Ys grows, this may slow down M so much that
M becomes saturated; the system will switch to state MNE. The epoch at
which the system changes from state ME to state MNE, t 1, is determined by
the condition

,,
Pa(l +c/>(t1)) = [a +b ln(l +ys(t1))r 1 = [a +b ln(l + Pa j c/>(u)du)r 1, (5.2.5)

0

with t I the smallest solution larger than t O•

The state MNE. Suppose that, at a time t 1, the system enters state MNE. The
server in Mis now continuously busy; the input rate at M still is Pa(l +c/>(t)),
but its output rate - and the input rate to S - equals [a +b ln(l +ys(t))r 1. The
queue length process Ys(t) (or rather its fluid flow approximation) evolves
according to the following differential equation:

d 1
dtYs(t)= -Pa+ a+bln(l+ys(t))' t';i!:t1. (5.2.6)

The initial condition is determined by (5.2.5): ,,
f 1 a

Ys(t 1) = Pa
O

c/>(u)du = exp[bPa(l +c/>(ti)) - bl - 1. (5.2.7)

The differential equation (5.2.6) plays a central role in our analysis of the
queueing effects of the parallel processing mechanism. Rewrite (5.2.6) into

a+bln(1+ys)
f dt = f 1 - Paa - Pab ln(l +ys) dys,

or, with C I some yet unknown constant,

I 1 j 1
t + Ci = - PaYs + Pa 1 - Paa - Pab ln(l +ys) dys. (5-2·8)

Introduce

1 1
C := b[Pa - a], (5.2.9)

and the exponential integral (cf. Abramowitz & Stegun [1965])
00

E 1(z) : = f exp(-v) dv, z>O. (5.2.10)
z V

Substitution of v = C - In (1 + y) in (5.2.10) shows that (5.2.8) can be rewritten
into

1 1
t + C1 = --p Ys(t) + 2 ec E 1(C - ln(l +ys(t))). (5.2.11)

a (Pa) b

The initial condition determines the constant C 1 :

1 1
t1 + C1 = --p Ys(t 1) + 2 ec E1(C - ln(l +ys(t 1))). (5.2.12)

a (Pa) b

88 Chapter 5

Subtraction of the relations (5.2.11) and (5.2.12) finally gives us a relation
between Ys(t) and t:

1
t - t, = - Pa lYs(t) - Ys(t 1)] + (5.2.13)

l
2

ec [E 1(C - ln(l +ys(t)))- E 1(C - ln(l +ys(ti)))).
(Pa) b

It seems impossible to find an explicit expression for Ys(t) as a function of t,
t ~t 1, but (5.2.13) is already very useful. Firstly, for each given value of Ys(t) it
is easy to explicitly calculate the corresponding t-value (the exponential
integral E I is extensively tabulated [Abramowitz & Stegun 1965)). Secondly,
standard knowledge about E I allows us to obtain useful insight into the
behavior of Ys(t).

It is clear from the differential equation (5.2.6) that, independently of the
choice of q,, Ys(t), t~t,, increases as long as this differential equation holds,
tending to the limit exp(C) - 1. Let us now study the following question: at
what time t, willys(t) + 1 reach the level exp(C(l-E))? According to (5.2.13),

1
t, - t, = - Pa [exp(C(l-E)) - 1 - ys(t 1)] + (5.2.14)

1
2 ec[E 1(EC)-E1(C-ln(l+ys(t1)))].

(Pa) b

Now we use the fact that (Abramowitz & Stegun [1965))

00 (-l)"z"
E1(z)=-y-lnz-~- 1 , z>O,

n=I nn.

with y=0.57721... denoting Euler's constant. Hence

I
E1(EC) = -y + 1n f.C + O(E), f.-o,

so

(5.2.15)

(5.2.16)

(5.2.17)

These calculations enable us to estimate the behavior of Ys(t) close to its limit­
ing value. In particular one can show that an 0(£) increase of Ys(t) in this time
region requires 0(1) time (one can, in fact, also derive this directly from the
differential equation (5.2.6)). If 'P(t)= 1 in close approximation in a large time
span in state MNE, Ys(t) + YM(t) grows linearly with Pa customers per unit of
time. Therefore, when Ys(t) is close to its limiting value, the queue at M grows
linearly with time in the time region under consideration.

The queue length process YM(t) follows from (5.2.3) once Ys(t) has been
determined. It depends on the choice of q, and of the various parameters
whether a situation as sketched above (with the bulk of the growth of the cus­
tomer population contributing to YM(t)) actually occurs. See also the numerical

A queueing network model for distributed enumeration 89

examples in Section 5.3.
For the system to switch back to state ME, it is required that M's input rate

Pa(l+q,(t)) is less than its output rate [a+bln(l+ys(t)))- 1 for some period
of time. Let us suppose that q, and the various parameters are such that the
system switches back to state ME. The epoch at which the system switches
from state MNE to state ME, t2, is determined by the condition YM(t2)=0, or
equivalently: ,,

Ys(t2) = Pa f q,(u)du.
0

Substitution in (5.2.13) yields: ,,
t2 - 11 = - f q,(u)du + (5.2.18) ,, ,, ,,

1
--2-ec [E 1 (C - ln(l + Pa j4>(u)du)) - E 1(C - ln(l + Pa j4>(u)du))J,
(Pa) b o o

with t 2 the smallest solution, larger than t 1, of this equation. It has to be
determined numerically.

5.2.2. Evolution of the queue length processes
We now restrict ourselves to the case of a non-increasing function q, with
q,(O)= 1 and q,(oo)= -1. We follow the evolution of YM(t) and Ys(t) from
beginning to end.

Initially there is only one customer in the system (the root of the search
tree). This customer is served in M, and subsequently in S; it is replaced by 2
new customers, who arrive at M; shortly thereafter there are 3 customers, etc.
Very soon all processes of S are continuously busy. If, e.g., all service times at
S are negative exponentially distributed with mean 1 / a and M is much faster
than the P processes, the length of the initial period is approximately

.!.+_1_+ + 1
a 2a ··· (P - l)a

(indeed, when j servers are active in S, the time until the first departure from S
is negative exponentially distributed with mean 1/Ja; the departing customer
is almost certainly replaced by two other customers, who - after a very short
visit to M - increase the number of active servers in S to j + 1). After the ini­
tial period, Pa customers leave S per unit of time (on the average), and
Pa(l +q,(t)) customers arrive at M per unit of time. M is extremely fast as long
as the queue length at S, Ys(t), is not too large: M has at first no difficulty
handling its input stream, so its output stream also has intensity Pa(l +q,(t)).
In the fluid flow approach, Mis still considered to be empty: the system is in
state ME. Ys(t) grows at a rate Paq,(t), cf. (5.2.4). There are now two possibili­
ties:

(i) M slows down so much that its maximal output rate equals its input rate:
M starts to saturate, and the system enters state MNE;

90 Chapter 5

(ii) M's speed is not reduced enough to reach the saturation point, and all
customers are being processed without the system ever entering state MNE.

Case (i) obviously is the more interesting one. The system enters state MNE.
The queue leng11 process Ys(t) now evolves according to the differential equa­
tion (5.2.6). M's queue length initially grows but, as a counteracting force, q,(t)
decreases; finally, the input rate Pa(l +q,(t)) in M becomes lower than the out­
put rate and M's queue length starts to decrease. This process continues until
M becomes empty again: the system switches back to state ME.

At this epoch, the input rate at S switches to Pa(l +q,(t)). If cf, has already
become negative, the queue length at S immediately starts to decrease, and
continues to do so {cf, being a non-increasing function). Consequently M speeds
up, and the system stays in state ME until there are no customers left. How­
ever, if cf, still is positive, then in principle both possibilities (i) and (ii) dis­
cussed above again exist, and the system may switch back to MN E, etc. Such
an alternating series of states ME and MNE may, for example, occur if shortly
after entering state MNE the function cf, drops from almost one to a small
positive value and keeps this value for a substantial period. The system will
react by a change from state MNE to state ME, and since the number of cus­
tomers is still growing M will get saturated once more.

Number of nodes
per time unit

500

400

300

200 +- Pz

100

0

0 50 100 150 200
Time

FIGURE 5.2. M's input rate P1 and service speed Pz
(P1 =Pa(l+q,{t))andv2 =[a+bln(l+ys(t))r 1

);

Pa= 50, a= b = 0.0020, and cf, is linearly decreasing.

Figure 5.2 depicts the typical behavior of M's input rate Pa(l +q,(t)) and its
service speed [a +b ln(l +ys(t))r 1

•

A queueing network model for distributed enumeration 91

5.2.3. Reductions of the queue at S
Neither Figure 5.2, nor the global description of the queue length processes,
considers the phenomenon that instantaneously part of the queue at S is
thrown out of the system. This phenomenon, which also implies a sudden
increase of M's speed, can easily be captured in the mathematical analysis.
Suppose that a reduction of the queue at S occurs at an epoch td, and that x
customers are removed from the network. If this happens while the system is
in state ME, the output rate, Pa(l +cp(td)), of Mis not affected. Much more
interesting is the situation in which the sudden drop in the queue length of S
occurs while the system is in state MNE. Instantaneously the output rate of M
increases to

The queue length at S still behaves according to the differential equation
(5.2.6), but with a new initial value Ys(td +). The speedup of M may soon lead
to an empty queue at M, so that the system enters state ME. Of course, it is
possible that several considerable reductions of the queue at S occur. Not
much is known about the frequency with which this phenomenon occurs, nor
about the sizes (x) of the corresponding jumps. Therefore we do not discuss
the issue in much detail here. It suffices to observe that our model is able to
determine the influence of sudden reductions of the queue at S on the speed of
the master, and on the subsequent behavior of the queue sizes.

In Section 5.3 we present some numerical examples which, for various choices
of the function cf, and the parameters P, a, a and b, exhibit the global behavior
of Ys(t) and YM(t). In one example, the phenomenon of a reduction of the
queue at S is also taken into account.

Remark. The function cf, has so far been considered as a process independent
function. In reality, cf, may depend on the queue length process; it might in
particular be realistic to decrease cf, after the occurrence of a sudden reduction
of the queue at S as described above (and this decrease should be related to
the size of the reduction). Such process dependent behavior of cf, can be incor­
porated in the model. The behavior of Ys(t) would initially be still determined
by the differential equation (5.2.6), but the input rate in M would suddenly
decrease.

5.3. NUMERICAL EXAMPLES

To give a global idea of the behavior of Ys(t) and YM(t), we will now present
the results of some numerical computations. In all cases, we have considered a
linearly decreasing function cf,, with </>(O) = I. The process stops at a time T
with </>(T) = - 1. The total number of customers served by the slaves at time T
is PaT. In all examples, we chose this number to be 10.000.

In Figure 5.3, the case Pa =50 and a= b = 0.0020 is shown (see also Fig­
ure 5.2, and note that Panda are occurring as a product in all formulas). In

92

Queue length
2000

1500
Ys ➔

150 200
Time

FIGURE 5.3. Ys and YM for Pa = 50 and a = b = 0.0020.

Chapter 5

the beginning, y5 is increasing very fast and M is getting saturated almost
immediately. At that moment, the queue length YM starts to grow. Since q, is a
decreasing function, the number of customers arriving at M is decreasing.
Therefore, M will eventually become empty and the system changes from state
MNE to state ME. At this point in time, Ys starts to decrease since q, is
already negative.

Queue length
2500

2000

1500

1000

500

100 200

iYM~o

Queue length
2500

2000

1500

1000

500

300 400 500 25
Time

iYs

50 75

FIGURE 5.4. The effect of changing Pa; a= b = 0.0020,
Pa = 20 {left), Pa = 80 (right).

100 125
Time

A queueing network model for distributed enumeration 93

Figure 5.4 shows the effect of changing Pa, which corresponds to altering
the number of slaves or the processing speed of the slaves. For Pa= 20, the
master is fast enough to serve the incoming customers and YM ~ 0. If Pa= 80,
the master gets into serious trouble. The speed of the master is much too slow
compared with the number of incoming customers. Here, we can observe the
fact that Ys is approaching an asymptotic value if the system is in state MNE
for a long enough period.

There appears to be a delicate interaction between the processing capacities
of the master and the slaves. Increasing the processing capacity of the slaves
may change an almost continuously idle master into a saturated master with a
very long queue. The beneficial effect of increasing the processing capacity of
the slaves may now be reduced; for example, a node with information that
would make a large part of the priority queue obsolete (i.e., a part of the
queue at S would be thrown away), is delayed for a long time, thus possibly
causing a deterioration of the running time of the algorithm.

Queue length Queue length
2500 2000

2000

1500

1000

500

0 .__,::;;__i.;::,... _ ___..__ _ ___, __ __.

0 100 150 200
Time

1500

1000

500

50 100

FIGURE 5.5. The effect of changing a and b; Pa = 50,
a = b = 0.0015 (left), and a = b = 0.0025 (right).

150 200
Time

In Figure 5.5, we consider different speeds of the master. The effects are
about the same as when changing Pa.

Sudden reductions of the queue at S may cause an alternating sequence of
the states ME and MNE. An example is given in Figure 5.6. In state MNE, a
part of the queue at S is thrown away. As a consequence, M's speed increases
so much that YM becomes zero. Since the total number of customers in the sys­
tem is still increasing rapidly, M gets saturated again, and the system enters
state MN E again.

94

Queue length
160

!40

120

100

80

60

40

20

2 3 4 5 6
Time

FIGURE 5.6. An example with a reduction of the queue at S;
Pa= 50 and a= b = 0.0020.

5.4. THE MACHINE REPAIR MODEL

Chapter 5

For the class of branch and bound algorithms considered in this chapter, it
can be advantageous that the master has full knowledge of the search tree
developed so far. An enormous queue length at the master can cause a slow­
down of the computation. Therefore, we consider in this section branch and
bound algorithms where a slave does not start with the evaluation of a new
node until the master has processed the latest information the slave has sent.

This gives rise to the queueing model of Figure 5.7, with exactly P custo­
mers, each customer corresponding to one particular slave. This is a well
known queueing model, often referred to as the machine repair model (the P
customers being P machines which after breakdown have to be repaired in
repair facility M). In a computer context, the model also represents a multi­
access system [Kobayashi 1978). In such a case, the P slaves correspond to P
terminal users. Each of these terminal users alternates between an active
(think) phase and a passive phase; after a think phase, a job is sent to the cen­
tral process M.

The machine repair model has been extensively studied in the queueing
literature (see, for example, Gross & Harris [1985), Kobayashi [1978) and
Tijms [1986)). Hardly any time-dependent results are known; however, under
some distributional assumptions, quite simple explicit formulas for the steady­
state queue length distribution at the repair facility, mean number of busy
machines, etc., have been derived.

As in the previous model, it is assumed that the service times at the P
servers S 1 , ... ,Sp of service station S are independent, identically distributed

A queueing network model for distributed enumeration 95

M

FIGURE 5.7. The machine repair model:

with mean 1/ a. The assumptions concerning the service process in M differ
from those in the previous model. For reasons of mathematical tractability, it
is assumed that the service times at M are independent, negative exponentially
distributed stochastic variables, with mean 1/ p. Note that the fluid flow
approximation of Section 5.2 allowed us to leave the service time distribution
at M unspecified. We return to this issue in the remark at the end of this sec­
tion. The rate of the service times at the master is further assumed to be con­
stant in time. However, the steady-state analysis for the case of constant mas­
ter speed that we are about to present will already yield insight into the effect
that a change in speed of the master has (see Figure 5.8 below).

It is easily seen that, under the assumption of negative exponentially distri­
buted service times at M, S is equivalent - with respect to the number of busy
servers - to the so-called M/G/P loss model. This is an open queueing model
with a Poisson arrival process, P servers with generally distributed service
times, and no waiting room; an arriving customer who finds all servers occu­
pied is lost. Indeed, as long as the loss model and S contain less than P custo­
mers, their numbers of customers evolve in exactly the same way. When the
loss model contains P customers, no more arrival is accepted until a customer
has left; after an exponential period of time, a new arrival takes place. But
exactly the same situation occurs in S, when it contains all P customers.

We restrict ourselves to the consideration of the limiting probability distri­
bution of the number of busy servers, B, at S (which number equals P minus
the number of customers in M). This amounts to studying the limiting distri­
bution of the number of busy servers in the M/G/P loss model. This limiting

96 Chapter 5

distribution, and hence the distribution of B, is given by (see, for example,
Kelly (1979) or Tijms [1986)):

with

rn In I
Pn:=Pr{B=n}= P • , n=O,l, ... ,P,

r := /Jla.

~ ri lj!
j=O

(5.4. l)

The probability that an arriving customer in the MIGIP loss model is lost,
Ep(r), is given by Erlang's loss formula:

rP IP!
Ep(r) = pP = P _ . (5.4.2)

~ rllj!
j=O

The mean number of busy servers at S, N, follows from (5.4.1):

N: = E [B] = r[l - Ep(r)]. (5.4.3)

The relation between N and Ep(r) is easily interpreted. Indeed, with r the
amount of traffic offered to the MIGIP loss system per unit of time, N equals
the mean amount of traffic handled per unit of time - and this should equal
the mean number of busy servers. In this connection, note that aN represents
the throughput of S, and hence also of M; so the mean cycle time of a job in
the closed system is given by PI aN.

In principle, (5.4.3) can be numerically evaluated. However, this evaluation
may be cumbersome when P or r is large while, moreover, (5.4.2) does not
yield much insight. Therefore, the behavior of N and Ep(r) for large values of
P and r has been extensively investigated. See Whitt [1984) for an interesting
exposition and several early references, and see Newell [1984] for various
asymptotic expansions. In particular, Newell presents a simple first-order
approximation for Ep(r) for r➔ oo, leading to

N~r, r~P,

N~P, r>P. (5.4.4)

Newell's second-order approximation (see also Whitt [1984)) leads to the fol­
lowing approximation for N. Introduce

r p
IC : = . ~ (- - 1),

vP r

and the standard normal distribution function

X 1
~(x) := f . ~ exp(-z212)dz, -oo<x<oo.

-co V2'1T

A queueing network model for distributed enumeration 97

The mean number of busy servers in S is for large values of r approximated
by:

(/p)P-1 P-r
N~r[l -r e], r~P,

Yhl ~(,cP Ir)
(5.4.5)

N~r[l-(..!.._)112 exp(-,c2/2)] r>P.
2w r~(,c) '

This approximation is based on Stirling's approximation for factorials, and the
normal approximation to the Poisson distribution.

Fraction of
busy servers

1.0

0.8

0.6

0.4

0.2

0.0 ----~----~----~---~
0 50 100 150 200

/3 I a

FIGURE 5.8. Fraction of busy servers as function of /31 a
for P = 1, 2, 4, 8, 16, 32, 64, 128.

Figure 5.8 displays the exact fraction of busy servers in S, NIP, as a func­
tion of r = /3/a for P = 1, 2, 4, 8, 16, 32, 64, and 128. The figure clearly
shows the usefulness of the simple first-order approximation (5.4.4). N grows
linearly with /3/a until the speed of the master M , /3, almost equals Pa, the
maximal speed of S; further increasing /3 has hardly any effect. The speed of
the master varies with the number of generated but not yet examined nodes.
The effect of such fluctuations in the speed of the master process on the frac­
tion of busy servers can also be derived from Figure 5.8.

Figure 5.9 displays the fraction NIP as a function of r IP = /31 Pa, for the
same parameter choices as in Figure 5.8. The figure shows that, for P > r
(/31 Pa< 1), the fraction of busy servers decreases rapidly, when /31 Pa

decreases. For fixed speeds of the master and the slaves, it is, therefore, only
worthwhile to add slave processes as long as P < r (/31 Pa> 1).

So far, we have been mainly concerned with the mean of the number of busy
servers in S. Newell [1984] also presents approximations for the distribution of
the number of busy servers in S. He states that, for P large and fixed, and

98

Fraction of
busy servers

1.0

0.8

0.6

0.4

0.2

~P= 1

0.0 -~~~~~-~
0.0 0.5 1.0 1.5 2.0

/3 I Pa

FIGURE 5.9. Fraction of busy servers as function of /31 Pa
for P = 1, 2, 4, 8, 16, 32, 64, 128.

Chapter 5

r > P and in particular 1 - PI r >> r - 112 , the distribution of idle servers in S
is approximately geometric:

Pr{nidleservers} =pP-n =(1-Plr')(P/r)n, n =0,1, ... ,P, (5.4.6)

with the mean number of idle servers in S approximately equal to P l(r - P).

Remarks.
In this section the service times at S are generally distributed, whereas the

service times at M are exponentially distributed. It is an interesting, and well­
known, fact for the machine repair model (and the M/G/P loss model) that
Formula (5.4.1) for the number of customers at S holds regardless of the form
of the service time distribution at S. When M uses a processor-sharing discip­
line, (5.4.1) even holds when also the service times at M have a general distri­
bution with mean 1/ /3 (cf. Tijms [1986)). For the first-come-first-serve discip­
line at M under consideration, this insensitivity for the service time distribution
at M is not true.

Formula (5.4.1) can be easily generalized to the case that the mean service time
in M depends on the number of customers waiting in M , or equivalently, that
the arrival rate at the M/G/P loss system depends on the number of busy
servers. Let Pn denote the service speed in M when n customers are present in
M. Then (5.4.1) should be replaced by

n
IT <PP-k+ 1 I ka)

Pn:=Pr{B=n}= ;= 1
. , n=0,l, ... ,P.

L Il<PP-k+1/ka)
j =O k = I

(5.4.7)

99

6

Perspectives

In the previous chapters, we have discussed the influence of parallel computing
on combinatorial operations research. Parallel computers enable us to solve
problem instances much faster than before, and make it possible to find the
solution to instances which are beyond the capabilities of traditional sequential
machines. The diversity in available architectures, however, forms a barrier for
a broad use of the potential of parallelism.

From a theoretical point of view, the existing models for parallel computa­
tion lead to the identification of new complexity classes, but they do not pro­
vide a practical understanding of what can and what cannot be achieved, since
the gap between theoretical models and available architectures is considerable.

In the following, we try to sketch the conditions that have to be met before
parallelism can fu1fill its promise and substantially expand the range of
effectiveness of operations research methods.

6.1. COMPUTATIONAL MODELS

Traditional sequential computers are reasonably represented by models of
computation such as the Turing machine. They are exchangeable to the extent
that the relative efficiency of algorithms is largely machine independent. These
observations form the basis of a meaningful complexity theory and a prosper­
ing computational practice.

In parallel computing, realistic models are lacking and existing machines are
by no means equivalent. We have seen that there exist many different parallel
architectures, which are suitable for very different types of algorithms. Not
surprisingly, then, there is no single model of parallel computation that serves
to represent reality. Indeed, a model that adequately reflects the actual burden
of parallel computation and communication has to incorporate physical
features of the computational environment that can be ignored in the

100 Chapter 6

sequential case. Although a model like the PRAM, with its ability to create
unbounded parallelism and to communicate in unit time, is not very realistic,
it tells us a lot about the intrinsic parallelism in problems and algorithms.

One may try to cope with the idealistic nature of theoretical models of
parallel computation by designing transformations to models that are closer to
what we can expect in practice. Examples are the simulations of the PRAM by
a network in which each processor has some constant number of connections
[Alt, Hagerup, Mehlhorn & Preparata 1987; Karlin & Upfal 1986) (see also
Section 1.2), and of big networks by smaller ones [Bodlaender 1987).

What is actually needed, however, is the investigation of severe restrictions
on parallelism and communication. As a notable example, a robust theory for
models with at most a linear number of processors that communicate over a
bounded degree network would serve a very practical purpose.

6.2. ARCHITECTURES

The main obstacle for the breakthrough of parallel computing is not the lack
of reasonable models but the chaos in the real world of architectures. There is
a broad variety of vastly different machines, each having its individual
strengths and weaknesses. This has two important consequences. For a given
algorithm, its implementation in parallel is highly dependent on the architec­
ture in question. And for a given problem, the suitability of an algorithm is a
function of the machine to be used.

As to the first point, a consensus will hopefully emerge on a single concept
of a flexible MIMD computer. Given such a machine, the user should be able
to define the type of parallelism he desires, by specifying the hierarchy and
communication among his computational processes. The best way to develop
this machine is by first building it in software and analyzing its performance
(see, for example, De Bruin, Rinnooy, Kan & Trienekens [1988)); its hardware
realization should be considered at a later stage. Such a unified architecture
requires a flexible set of tools and, in particular, a versatile programming
language which (unlike present practice in parallel programming) does not
bother the user with the internal structure of the machine. While vector and
SIMD computers will probably lose ground as independent machines, they will
always be useful as processors that speed up the individual processes in an
MIMD configuration.

As long as this ideal has not yet been reached, the second point deserves
further investigation. Instead of considering the existing types of algorithms as
given and designing a machine that is suitable for all of them, one might
accept an existing machine as given and try to design algorithms for which it is
particularly efficient. This may lead to new types of algorithms, but also to
valuable insights into desirable properties of parallel architectures.

Perspectives 101

6.3. COMPUTATIONS

Parallel computers have provided a new playground for computational opera­
tions research. All kinds of algorithms have been implemented and tested on
the parallel devices that happened to be available. The potential power of
parallel computers is huge, but the effort required to harness this power should
not be underestimated either. One will have to master new programming tech­
niques, and one will have to get used to new algorithmic concepts that may
fundamentally change the way problems are solved. For a simple problem like
sorting, for example, there exist parallel algorithms that are drastically different
from the traditional sequential sorting routines [Ajtai, Koml6s & Szemeredi
1983) (see also Section 2.2.3).

A striking phenomenon in this respect is the use of randomization in combi­
nation with parallelism. Parallel algorithms that are able to toss a coin in order
to decide how to proceed appear to be successful on an ever-increasing list of
problems. This list includes a standard problem like matching [Karp, Upfal &
Wigderson 1986; Mulmuley, Vazirani & Vazirani 1987) (see also Section 2.2.6),
questions concerning parallel architectures themselves such as the communica­
tion between processing elements [Valiant 1982b; Valiant & Brebner 1981), but
also problems in operations research such as the design of search strategies in
branch and bound [Karp & Zhang 1988). It seems safe to predict that this line
of investigation will have a great impact on computational operations research.

Parallelism will enable us to solve problems faster and to solve larger prob­
lems than before (Beasley [1987), Mangasarian & Meyer [1988), Meyer &
Zenios [1988) and Zenios [1989) mention some of the pioneering contributions
in this field). This is especially promising for the development of real-time sys­
tems, that occur, for example, in the context of flexible manufacturing and
interactive planning.

However, a healthy computational practice needs a sound theoretical basis.
There is, in particular, a need for a theoretical approach towards the design
and analysis of parallel algorithms for the broad class of hard combinatorial
and nonlinear optimization problems. Among the few things that have been
done in this respect are the investigation of anomalies in parallel branch and
bound (cf. Chapter 4) and the analysis of parallel tree search in a master-slave
environment (cf. Chapter 5).

For all the various kinds of search methods, the fundamental question is
how the computational effort has to be distributed over the processors and
how the communication has to be arranged so as to obtain a maximum
speedup. Operations researchers are well positioned to model and solve this
complicated design problem. Initial steps in this direction are being made; we
mention the investigation of randomized search strategies as an example. In
the words of Richard M. Karp [Frenkel 1986): 'Even though you may never be
able to go from exponential to polynomial, it's also clear that there is a
tremendous scope for parallelism on those hard problems, and parallelism may
really help us curb combinatorial explosions.'

102

References

M. ABRAMOWITZ, I.A. STEGUN (1965). Handbook of Mathematical Functions,
Dover, New York.

W.B. ACKERMAN (1982). Data flow languages. IEEE Computer 15(2), 15-25.
M. AJTAI, J. KOMLOS, E. SzEMEREDI (1983). Sorting in clogn parallel steps.

Combinatorica 3, 1-19.
H. ALT, T. HAGERUP, K. MEHLHORN, F.P. PREPARATA (1987). Deterministic

simulation of idealized parallel computers on more realistic ones. SIAM J.
Comput. 16, 808-835.

B. AWERBUCH, A. ISRAELI, Y. SHILOACH (1984). Finding Euler circuits in loga­
rithmic parallel time. Proc. 16th Annual ACM Symp. Theory of Computing,
249-257.

G.H. BARNES, R.M. BROWN, M. KATO, D.J. KUCK, D.L. SLOTNICK, R.A.
STOKES (1968). The Illiac IV computer. IEEE Trans. Comput. C-17, 746-757.

J .E. BEASLEY (1987). Supercomputers and OR. J. Oper. Res. Soc. 38, 1085-
1089.

R.E. BELLMAN (1957). Dynamic Programming, Princeton University Press,
Princeton, NJ.

J .L. BENTLEY (1980). A parallel algorithm for constructing minimum spanning
trees. J. Algorithms 1, 51-59.

J.L. BENTLEY, H.T. KUNG (1979). A tree machine for searching problems.
Proc. 1979 Internat. Conj. Parallel Processing, 257-266. ·

C. BERGE, A. GHOUILA-HOURI (1962). Programmes, Jeux et Reseaux de Tran­
sports, Dunod, Paris.

H.A. BoDLAENDER (1987). Distributed Computing: Structure and Complexity,
CWI Tract 43, Centre for Mathematics and Computer Science, Amsterdam.

0.J. BoXMA, G.A.P. KINDERVATER (1987). A Queueing Network Model for
Analyzing a Class of Branch and Bound Algorithms on a Master-Slave

References 103

Architecture, Report OS-R8717, Centre for Mathematics and Computer Sci­
ence, Amsterdam.

F .W. BURTON, M.M. HUNTBACH, G.P. MCKEOWN, V.J. RAYWARD-SMITH
(1983). Parallelism in Branch-and-Bound Algorithms, Report CSA/3/1983,
University of East Anglia, Norwich.

CDC (1983). FORTRAN 200 Version 1, Reference Manual 60480200, CDC
Sunnyvale, CA.

A.K. CHANDRA, D.C. KOZEN, L.J. STOCK.MEYER (1981). Alternation. J. Assoc.
Comput. Mach. 28, 114-133.

F.Y. CHIN, J. LAM, I-N. CHEN (1982). Efficient parallel algorithms for some
graph problems. Comm. ACM 25, 659-665.

S.A. CooK (1974). An observation on time-storage trade off. J. Comput. System
Sci. 9, 308-316.

S.A. COOK (1981). Towards a complexity theory of synchronous parallel com­
putation. Enseign. Math. (2) 27, 99-124.

D. COPPERSMITH, s. WINOGRAD (1987). Matrix multiplication via arithmetic
progressions. Proc. 19th Annual A CM Symp. Theory of Computing, 1-6.

L. CsANKY (1976). Fast parallel matrix inversion algorithms. SIAM J. Comput.
5, 616-623.

J. DARLINGTON, M . REEVE (1981). ALICE - a multi-processor reduction
machine for the parallel evaluation of applicative languages. A CM Proc.
1981 Conf Funct. Progr. Lang. and Comput. Architecture, 65-75.

A. DE BRUIN, A.H.G. RINNOOY KAN, H.W.J.M. TRIBNEKENS (1988). A simula­
tion tool for the performance evaluation of parallel branch and bound algo­
rithms. Math. Programming Ser. B 42, 245-271.

E. DEKEL, D. NASSIMI, s. SAHNI (1981). Parallel matrix and graph algorithms.
SIAM J. Comput. 10, 657-675.

E. DEKEL, S. SAHNI (1983a). Binary trees and parallel scheduling algorithms.
IEEE Trans. Comput. C-32, 307-315.

E. DEKEL, S. SAHNI (1983b). Parallel scheduling algorithms. Oper. Res. 31 , 24-
49.

P. DI CHIO, V. ZECCA (1985). IBM ECSEC Facilities: User's Guide, Report
G513-4080, IBM European Center for Scientific and Engineering Comput­
ing, Rome.

E.W. DIJKSTRA (1959). A note on two problems in connexion with graphs.
Numer. Math. 1, 269-271.

D. DOBKIN, R.J. LIPTON, s. REISS (1979). Linear programming is log-space
hard for P. Inform. Process. Lett. 8, 96-97.

J.J. DONGARRA, I.S. DUFF (1985). Advanced Architecture Computers, Technical
memorandum 57, Mathematics and Computer Science Division, Argonne
National Laboratory.

J. EDMONDS, R.M. KARP (1972). Theoretical improvements in algorithmic
efficiency for network flow problems. J. Assoc. Comput. Mach. 19, 248-264.

R. FINKEL, U. MANBER (1987). DIB - a distributed implementation of back­
tracking. ACM Trans. Programming Languages and Systems 9, 235-256.

R.W. FLOYD (1962). Algorithm 97: shortest path. Comm. ACM 5, 345.

104 References

M.J. FLYNN (1966). Very high-speed computing systems. Proc. IEEE 54,
1901-1909.

S. FORTUNE, J. WYLLIE (1978). Parallelism in random access machines. Proc.
10th Annual A CM Symp. Theory of Computing, 114-118.

B.L. Fox, J.K. LENSTRA, A.H.G. R!NNOOY KAN, L.E. SCHRAGE (1978).
Branching from the largest upper bound: folklore and facts. European J.
Oper. Res. 2, 191-194.

K.A. FRENKEL (1986). Complexity and parallel processing: an interview with
Richard Karp. Comm. ACM 19, 112-117.

T.J. GARDNER, I.M. GERARD, C.R. MOWERS, E. NEMETH, R.B. SCHNABEL
(1986). DPUP: a Distributed Processing Utilities Package, Report CU-CS-
337-86, University of Colorado, Boulder.

M.R. GAREY, D.S. JOHNSON (1979). Computers and Intractability: a Guide to
the Theory of NP-Completeness, Freeman, San Francisco.

L.M. GOLDSCHLAGER (1977). The monotone and planar circuit value problems
are log space complete for P. SIGACT News 9.2, 25-29.

L.M. GoLDSCIIl.AGER (1982). A universal connection pattern for parallel com­
puters. J. Assoc. Comput. Mach. 29, 1073-1086.

L.M. GOLDSCIIl.AGER, R.A. SHAW, J. STAPLES (1982). The maximum flow
problem is log space complete for P. Theoret. Comput. Sci. 21, 105-111.

M. GONDRAN, M. MINOUX (1984). Graphs and Algorithms, Wiley, Chichester.
T. GONZALEZ, S. SAHNI (1978). Preemptive scheduling of uniform processor

systems. J. Assoc. Comput. Mach. 25, 92-101.
R.L. GRAHAM (1969). Bounds on multiprocessing timing anomalies. SIAM J.

Appl. Math. 17, 418-429.
A.C. GREENBERG, R.E. LADNER, M.S. PATERSON, z. GAUL (1982). Efficient

parallel algorithms for linear recurrence computation. Inform. Process. Lett.
15, 31-35.

D. GROSS, C.M. HARR.Is (1985). Fundamentals of Queueing Theory, Wiley,
New York (2nd ed.).

L.J. GUIBAS, H.T. KUNG, C.D. THOMPSON (1979). Direct VLSI implementa­
tion of combinatorial algorithms. Caltech Conj VLSI, 509-525.

U.1. GUPTA, D.T. LEE, J.Y.-T. LEUNG (1979). An optimal solution for the
channel-assignment problem. IEEE Trans. Comput. C-28, 807-810.

J.R. GURD, C.C. KIRKHAM, I. WATSON (1985). The Manchester prototype
dataflow computer. Comm. ACM 28, 34-52.

D. HELMBOLD, E. MAYR (1984). Fast Scheduling Algorithms on Parallel Com­
puters, Report CS-84-1025, Stanford University, CA.

R.W. HOCKNEY, C.R. JESSHOPE (1981). Parallel Computers: Architecture, Pro­
gramming and Algorithms, Hilger, Bristol.

ICL (1979). DAP: FORTRAN Language, Technical Publication 6918, ICL,
London.

ICL (1981). DAP: Developing DAP Programs, Technical Publication 6920, ICL,
London.

D.B. JOHNSON (1987). Parallel algorithms for minimum cuts and maximum
flows in planar networks. J. Assoc. Comput. Mach. 34, 950-967.

References 105

D.S. JOHNSON (1983). The NP-completeness column: an ongoing guide;
seventh edition. J. Algorithms 4, 189-203.

D.S. JOHNSON, C.H. PAPADIMITRIOU, M. YANNAKAKIS (1985). How easy is
local search? (extended abstract). Proc. 26th Annual IEEE Symp. Founda­
tions of Computer Science, 39-42.

A.R. KARLIN, E. UPFAL (1986). Parallel hashing - an efficient implementation
of shared memory (preliminary version). Proc. 18th Annual ACM Symp.
Theory of Computing, 160-168.

R.M. KARP, E. UPFAL, A. WIGDERSON (1986). Constructing a perfect matching
is in Random NC. Combinatorica 6, 35-48.

R.M. KARP, Y. ZHANG (1988). A randomized parallel branch-and-bound pro­
cedure. Proc. 20th Annual ACM Symp. Theory of Computing, 290-301.

F.P. KELLY (1979). Reversibility and Stochastic Networks, Wiley, Chichester.
L.G. KHACHIAN (1979). A polynomial algorithm in linear programming. Soviet

Math. Dok/. 20, 191-194.
G.A.P. KINDERVATER, J.K. LENSTRA (1986). An introduction to parallelism in

combinatorial optimization. Discrete Appl. Math. 14, 135-156.
G .A.P. KINDERVATER, J.K. LENSTRA (1988). Parallel computing in combina­

torial optimization. Ann. Oper. Res. 14, 245-289.
G.A.P. KINDERVATER, J.K. LENSTRA, A.H.G. R.lNNOOY KAN (1989). Perspec­

tives on parallel computing. Oper. Res., to appear.
G .A.P. KINDERVATER, J.K. LENSTRA, M.W.P. SAVELSBERGH (1989). Complex­

ity, Parallelism, and Interaction: the Traveling Salesman Revisited, in prepara­
tion.

G.A.P. KINDERVATER, J.K. LENSTRA, D.B. SHMOYS (1989). The parallel com­
plexity of TSP heuristics. J. Algorithms, to appear.

G.A.P. KINDERVATER, H.W.J.M. TRlENEKENS (1988). Experiments with parallel
algorithms for combinatorial problems. European J. Oper. Res. 33, 65-81.

H. KOBAYASHI (1978). Modeling and Analysis, Addison-Wesley, Reading, MA.
R.E. LADNER (1975). The circuit value problem is log space complete for P.

SIGACT News 7.1, 18-20.
B.J. LAGEWEG, J.K . LENSTRA, A.H.G. RINNOOY KAN (1977). Job-shop

scheduling by implicit enumeration. Management Sci. 24, 441-450.
T.-H. LAI, S. SAHNI (1984). Anomalies in parallel branch-and-bound algo­

rithms. Comm. ACM 27, 594-602.
T.-H. LAI, A. SPRAGUE (1985). Performance of parallel branch-and-bound

algorithms. IEEE Trans. Comput. C-34, 962-964.
T.-H. LAI, A. SPRAGUE (1986). A note on anomalies in parallel branch-and­

bound algorithms with one-to-one bounding functions. Inform. Process. Lett.
23, 119-122.

E.L. LAWLER (1976). Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart and Winston, New York.

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, D.B. SHMOYS (eds.)
(1985). The Traveling Salesman Problem: a Guided Tour of Combinatorial
Optimization, Wiley, Chichester.

G.-J. LI, B.W. WAH (1986). Coping with anomalies in parallel branch-and-

106 References

bound algorithms. IEEE Trans. Comput. C-35, 568-573.
L. LovAsz (1979). Determinants, matchings and random algorithms. L.

BUDACH (ed.). Fundamentals of Computing theory, FCT '79, Akademie Ver­
lag, Berlin, 565-574.

O.L. MANGASARIAN, R.R. MEYER (eds.) (1988). Parallel Methods in Mathemati­
cal Programming; Math. Programming Ser. B 42.

C.U. MARTEL (1988). A parallel algorithm for preemptive scheduling of uni­
form machines. J. Parallel Distributed Comput. 5, 700-715.

W.A. MASSEY (1985). Asymptotic analysis of the time dependent M/M/1
queue. Math. Oper. Res. 10, 305-327.

J. McGRAW, s. SKEDZIELEWSKI, s. ALLAN, D. GRIT, R. OLDEHOEFT, J.
GLAUERT, C. KnurnAM, B. NOYCE (1984). SISAL: Streams and Iteration in a
Single Assignment Language, Language Reference Manual Version 1.2,
Lawrence Livermore National Laboratory, Livermore, CA.

R. McNAUGHTON (1959). Scheduling with deadlines and loss functions.
Management Sci. 6, 1-12.

R.R. MEYER, S.A. ZENIOS (eds.) (1988). Parallel Optimization on Novel Com­
puter Architectures; Ann. Oper. Res. 14.

D.E. MULLER, F.P. PREPARATA (1975). Bounds to complexities of networks for
sorting and for switching. J. Assoc. Comput. Mach. 22, 195-201.

K. MULMULEY, U.V. VAZIRANI, v.v. VAZIRANI (1987). Matching is as easy as
matrix inversion. Combinatorica 7, 105-113.

J.F. MUTH, G.L. THOMPSON (eds.) (1963). Industrial Scheduling, Prentice Hall,
Englewood Cliffs, NJ, 237.

G.F. NEWELL (1971). Applications of Queueing Theory, Chapman and Hall,
London.

G .F. NEWELL (1984). The M/Mloo Service System with Ranked Servers in
Heavy Traffic, Springer, Berlin.

J.F. PEKNY, D.L. MILLER (1988). A Parallel Branch and Bound Algorithm for
Solving Large Asymmetric Traveling Salesman Problems, Working paper, Car­
negie Mellon University, Pittsburgh.

G . POLYA, R.E. TARJAN, D.R. WOODS (1983). Notes on Introductory Combina­
torics, Birkhauser, Boston.

F .P. PREPARATA, J. VUILLEMIN (1981). The cube-connected cycles: a versatile
network for parallel computation. Comm. ACM 24, 300-309.

R.C. PRIM (1957). Shortest connection networks and some generalizations. Bell
System Tech. J. 36, 1389-1401.

E.A. PRUUL (1975). Parallel Processing and a Branch-and-Bound Algorithm,
M.Sc. thesis, Cornell University, Ithaca, NY.

E.A. PRUUL, G.L. NEMHAUSER, R.A. RUSHMEIER (1988). Branch-and-bound
and parallel computation: a historical note. Oper. Res. Lett. 7, 65-69.

K.L. RIDER (1976). A simple approximation to the average queue size in the
time-dependent M/M/1 queue. J. Assoc. Comput. Mach. 23, 361-367.

M.H. RoTHKOPF, S.S. OREN (1979). A closure approximation for the nonsta­
tionary M/M/s queue. Management Sci. 25, 522-534.

C. SAVAGE (1977). Parallel Algorithms for Graph Theoretical Problems, Ph.D.

References 107

Thesis, University of Illinois, Urbana-Champaign.
C. SAVAGE, J. JA'JA' (1981). Fast, efficient parallel algorithms for some graph

problems. SIAM J. Comput. 10, 682-691.
M.W.P. SAVELSBERGH (1988). Computer Aided Routing, Ph.D. Thesis, Centre

for Mathematics and Computer Science, Amsterdam.
J.T. SCHWARTZ (1980). Ultracomputers. ACM Trans. Programming Languages

and Systems 2, 484-521.
H.J. SIEGEL (1977). Analysis techniques for SIMD machine interconnection

networks and the effects of processor address masks. IEEE Trans. Comput.
C-26, 153-161.

H.J. SIEGEL (1979). A model of SIMD machines and a comparison of various
interconnection networks. IEEE Trans. Comput. C-28, 907-917.

J.S. SQUIRE, S.M. PALAIS (1963). Programming and design considerations of a
highly parallel computer. Proc. AF/PS Spring Joint Computer Conj 23, 395-
400.

H.S. STONE (1971). Parallel processing with the perfect shuffle. IEEE Trans.
Comput. C-20, 153-161.

THINKING MACHINES CORPORATION {1986). Parallel Instruction Set (PARIS),
Document Number 1-0002-2-7, Thinking Machines Corporation, Cambridge.

H.C. TIJMS (1986). Stochastic Modeling and Analysis: a Computational
Approach, Wiley, Chichester.

P.C. TRELEAVEN, D .R. BROWNBRIDGE, R.P. HOPKINS (1982). Data-driven and
demand-driven computer architecture. Comput. Surveys 14, 93-143.

H.W.J.M. TRIENE.KENS (1989a). Parallel Branch and Bound and Anomalies,
Report EUR-CS-89-1, Department of Computer Science, Erasmus Univer­
sity, Rotterdam.

H.W.J.M. TRIENEKENS (1989b). Computational Experiments with an Asynchro­
nous Parallel Branch and Bound Algorithm, Report EUR-CS-89-2, Depart­
ment of Computer Science, Erasmus University, Rotterdam.

S.H. UNGER (1958). A computer oriented toward spatial problems. Proc. IRE
46, 1744-1750.

E. UPFAL (1984). A probabilistic relation between desirable and feasible
models of parallel computation (preliminary version). Proc. 16th annual
ACM Symp. Theory of Computing, 258-265.

L.G. VALIANT (1982a). Reducibility by algebraic projections. Enseign. Math.
(2) 28, 253-268.

L.G. VALIANT (1982b). A scheme for fast parallel communication. SIAM J.
Comput. 11, 350-361.

L.G. VALIANT, G.J. BREBNER (1981). Universal schemes for parallel communi­
cation. Proc. 13th Annual ACM Symp. Theory of Computing, 263-277.

P. VAN EMDE BOAS (1985). The second machine class: models of parallelism. J.
VAN LEEUWEN, J.K. LENSTRA (eds.). Parallel Computers and Computations,
CWI Syllabus 9, Centre for Mathematics and Computer Science, Amster­
dam, 133-161.

S. WARSHALL (1962). A theorem on boolean matrices. J. Assoc. Comput. Mach.
9, 11-12.

108 References

I. WATSON (1984). The dataflow approach - architecture and performance. F.B.
CHAMBERS, D.A. DUCE, G.P. JONES (eds.). Distributed Computing, Academic
Press, London, Ch. 2.

W. WHITT (1984). Heavy-traffic approximations for service systems with block­
ing. AT&T Bell Labs. Techn. J. 63, 689-708.

S.A. ZENIOS (1989). Parallel numerical optimization: current status and an
annotated bibliography. ORSA J. Comput. 1, 20-43.

Samenvatti ng

Parallellisme en combinatoriek

109

In het overgrote deel van de huidige generatie computers is er een centrale
processor die het rekenwerk stap voor stap uitvoert. Ondanks de soms enorme
verwerkingssnelheid van deze sequentiele computers zijn er nog veel problemen
die in de praktijk niet of niet snel genoeg kunnen warden opgelost. V oor deze
problemen zijn vaak aanzienlijk snellere computers nodig. Aangezien de
rekensnelheid van een processor niet onbeperkt te vergroten is, warden er com­
puters ontwikkeld waarin verscheidene processoren tegelijkertijd aan de oplos­
sing van een probleem werken. In theorie kunnen op deze manier willekeurig
hoge verwerkingssnelheden warden gerealiseerd.

Parallelle computers zijn heden ten dage nog niet in staat veel grotere pro­
blemen op te lossen dan we met behulp van traditionele sequentiele machines
al kunnen, maar verwacht mag warden dat daar langzaam verandering in
komt. Dit proefschrift gaat in op een aantal aspecten van parallel rekenen die
van invloed kunnen zijn op de theorie en de praktijk van de combinatorische
optimalisering in de nabije toekomst.

Sequentiele computers zijn ruwweg equivalent als we bun rekensnelheden
verdisconteren. Bij parallelle computers is dit helaas niet bet geval. In
hoofdstuk I warden drie veel gebruikte c/assificatiemethoden voor para/le/le
computers besproken. De classificaties zijn gebaseerd op de mate van
zelfstandigheid van de processoren, de wijze waarop de processoren gegevens
met elkaar uitwisselen, en de manier waarop een berekening uitgevoerd wordt.
Tevens wordt een aantal theoretische modellen voor parallelle computers
beschreven.

Wat we met parallellisme kunnen bereiken, hangt niet alleen van de
hardware af. Het is ook van belang dat bet op te lossen probleem in een
voldoende aantal onafhankelijke stukken kan warden verdeeld. In hoofdstuk 2
komt daarom de complexiteitstheorie voor parallelle berekeningen aan de orde.

110 Samenvatting

Centraal staat het parallelle-berekeningstheorema, dat zegt dat de benodigde
werkruimte op een sequentiele computer ongeveer hetzelfde is als de benodigde
tijd op een parallelle machine. V oor het theoretische 'Parallelle Random Access
Machine' (PRAM) model houdt dit het volgende in. De problemen in '8>-SPACE

(de ldasse van problemen die door een sequentiele machine in polynomiale
werkruimte kunnen worden opgelost) zijn op een PRAM in polynomiale tijd
oplosbaar. Binnen de ldasse '8> van problemen die door een sequentiele com­
puter in polynomiale tijd kunnen worden opgelost, ontstaat een tweedeling.
Veel problemen blijken oplosbaar in polylogaritmische werkruimte door een
sequentiele machine en daarmee in polylogaritmische tijd op een parallelle com­
puter. Van andere problemen kunnen we aantonen dat ze '8>-volledig zijn, en
hun sequentiele oplosbaarheid in polylogaritmische ruimte (d.w.z. bun
parallelle oplosbaarheid m polylogaritmische tijd) is daarmee zeer
onwaarschijnlijk.

Het PRAM model is aantrekkelijk omdat bet precies de grenzen aangeeft
van wat met parallellisme mogelijk is. In de praktijk is het echter niet realiseer­
baar. Algoritmen ontworpen voor de PRAM zullen voor ze op een parallelle
architectuur uitgevoerd kunnen worden meestal behoorlijk aangepast moeten
worden. De hoofstukken 3 en 4 gaan over de implementatie van een aantal
standaardtechnieken uit de combinatorische optimalisering, wals dynamische
programmering, 'divide and conquer' en 'branch and bound', op bestaande
architecturen. In hoofdstuk 3 komen fijnkorrelige architecturen aan de orde
waarin de processoren zeer begrensde rekenmogelijkheden hebben maar snel
met elkaar kunnen communiceren. Hoofdstuk 4 behandelt de implementatie
van branch and bound op grofkorrelige architecturen waarin de processoren
volwaardige sequentiele computers zijn en communicatie relatief duur is. Bij
branch and bound blijkt zich bet verschijnsel voor te doen waarbij bet toevoe­
gen van een processor de berekening vertraagt of meer dan proportioneel
versnelt. Hierop wordt nader ingegaan.

Aangezien branch and bound een veel gebruikte methode is, wordt in
hoofdstuk 5 een eerste aanzet gegeven voor een theoretische beschrijving en
analyse van ro'n algoritme in een master-slave omgeving. Het model is geba­
seerd op een netwerk van wachtrijen.

Een echte doorbraak van parallel rekenen is er nog niet. Oorzaken hiervoor
zijn ondermeer de grote verscheidenheid in beschikbare architecturen en de
ldoof tussen theoretische modellen en praktisch realiseerbare machines. Boven­
dien is er duidelijk behoefte aan een realistisch formeel model voor de ontwik­
keling en de implementatie van parallelle algoritmen voor 'lastige' com­
binatorische problemen. Dit soort vragen komt aan de orde in hoofdstuk 6.

Parallel rekenen kan in de toekomst van grote betekenis worden. Op dit
moment is de situatie echter nogal chaotisch. In dit proefschrift beschrijven we
de huidige situatie en geven enige aanbevelingen voor wat vanuit een com­
binatorisch oogpunt wenselijk wu zijn.

STELLING EN

behorende bij bet proefschrift van

GERARDUS ANTONIUS PETRUS KINDERVATER

EXERCISES IN
PARALLEL COMBINATORIAL COMPUTING

I

IO .X IO = 930.

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, D.B. SHMOYS (1990). Sequencing and scheduling:
algorithms and complexity. S.C. GRAVES, A.H.G. RINNOOY KAN, P. ZIPKIN (eds.). Handbooks in
Operations Research and Computer Science, Vol. 4: Logistics of Production and Inventory, North­
Holland, Amsterdam.

II

Polynomiale equivalentie van problemen betekent niet dat ze in de praktijk even
snel oplosbaar zijn.

III

Gegeven zijn een instantie van bet lineaire-toewijzingsprobleem en een optimale
oplossing hiervoor. Dan zijn de problemen die ontstaan door als extra voor­
waarde toe te voegen dat een bepaalde kant tot de oplossing moet behoren
tegelijkertijd met een kortste-padalgoritme op te lossen.

G. KINDERVATER, A. Y OLGENANT, G . DE LEVE, V. VAN GIJLSWIJK (1985). 0n dual solutions of the lin­
ear assignment problem. European Journal of Operational Research 19, 76-8 I.

IV

Handelsreizigersalgoritmen die ondergrenzen met behulp van polyhedrale metho­
den berekenen zijn superieur aan alle andere tot nu toe ontworpen optima­
liseringsalgoritmen voor dit probleem.

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, D.B. SHMOYS (eds.) (1985). The Traveling Sales­
man Problem: a Guided Tour of Combinatorial Optimization, Wiley, Chichester.

V

'Simplexmethode' is een passende naam voor Karmarkars algoritme voor lineaire
prograrnmering.

N. luRM.ARKAR (1984). A new polynomial-time algorithm for linear programming. Combinatorica 4,
373-395.

VI

Voor De Bono's L-spel geldt dat de beginstand remise is en dat de langst mogelij­
ke gedwongen winstvoering vanuit een willekeurige stand vijf zetten van de win­
nende partij vergt.

v.w. VAN GIJLSWUK, G.A.P. KINDERVATER, G.J. VAN TuBERGEN, J .J.0.0. WIEGERINCK (1976). Com­
puter Analysis of E. de Bono's L-game, Rapport 76-18, Mathematisch Instituut, Universiteit van
Amsterdam.

VII

Het optreden van anomalieen bij parallelle implementaties van branch and
bound methoden heeft implicaties voor het ontwerpen van zoekstrategieen bij
sequentiele implementaties voor dergelijke methoden.

E.A. PRUUL, G.L. NEMHAUSER, R.A. RuSHMEIER (1988). Branch-and-bound and parallel com­
putation: a historical note. Oper. Res. Lett. 7, 65-69.
G.A.P. KINDERVATER (I 989). Dit proefschrift, Hoofdstuk 4.

VIII

De meeste parallelle algoritmen vertonen op een systeem met p processoren een
versnelling kleiner dan p maar groter dan een. Di t is geen anomaal verse hi jnsel.

G .-J. LI, B.W. WAH (1986). Coping with anomalies in parallel branch-and-bound algorithms. IEEE
Trans. Comput. C-35, 568-573.

IX

De baten van parallelle computers wegen op tegen de kosten.

X

Hardware-ontwikkelingen maken bet zoeken naar betere algoritmen niet over­
bodig.

