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Abstract

We present an equational framework for term graph rewriting with cycles� The usual notion of homomorphism

is phrased in terms of the notion of bisimulation� which is well�known in process algebra and concurrency

theory� Speci�cally� a homomorphism is a functional bisimulation� We prove that the bisimilarity class of a

term graph� partially ordered by functional bisimulation� is a complete lattice� It is shown how Equational

Logic induces a notion of copying and substitution on term graphs� or systems of recursion equations� and also

suggests the introduction of hidden or nameless nodes in a term graph� Hidden nodes can be used only once�

The general framework of term graphs with copying is compared with the more restricted copying facilities

embodied in the ��rule� and translations are given between term graphs and ��expressions� Using these� a

proof system is given for ��expressions that is complete for the semantics given by in�nite tree unwinding�

Next� orthogonal term graph rewrite systems� also in the presence of copying and hidden nodes� are shown to

be con�uent�
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�� Introduction �

�� Introduction

Term rewriting can be divided roughly in �rst�order term rewriting �DJ�
 Klo��
 where
�rst�order terms are replaced �reduced
 rewritten� according to a �xed set of rewrite rules

and higher�order term rewriting
 of which the paradigm is lambda calculus �Bar�	�� The
distinctive feature of the latter is the presence of bound variables� Term rewriting has become
in the last decade a �rmly established discipline
 with applications in many areas �BE��
such as abstract data types
 functional programming
 automated theorem proving
 and proof
theory�
Term graph rewriting originates with the observation that rewrite rules often ask for du�

plications of subterms� E�g�� the Combinatory Logic rewrite rule Sxyz ��� xz�yz�
 where

the variables x� y� z stand for arbitrary terms
 duplicates the term instantiated for z� To
save space and time
 actual implementations do not perform such a duplication literally
 but
work instead with pointers to shared subterms� Thus we arrive at rewriting of dags �directed
acyclic graphs� rather than terms ��nite trees�� Recent years have seen the development of
the basic theory for acyclic term graph rewriting �BvEG���
 HP��
 Plu�
 SPvE��� Typi�
cal results are con�uence
 when an orthogonality restraint is imposed �rules cannot interfere
badly with each other� �Sme��
 modularity for properties such as con�uence and termination
�the properties stay preserved in combinations of systems� �Plu��
 and adequacy �in what
sense is term graph rewriting adequate for ordinary term rewriting� �Ari�
 KKSdV	��
Term graph rewriting with cycles goes one step further by admitting cyclic term graphs�

These arise naturally when dealing with recursive structures� Classical is the implementation
by D� Turner �Tur�� of the �xed point combinator Y by means of a cyclic graph �Figure ���
Only in the last few years a �rm foundation of cyclic term graph rewriting has been given
 with
as a main theorem the con�uence property for orthogonal term graph rewriting� Establishing
con�uence was not altogether trivial since it faced the need for solving the problem of cyclic
collapsing terms �Ari�
 Ari�
 FW���

α
@

γ

@
α

Yβ γ

Figure ��

Previous de�nitions of term graph rewriting tend to use one of two ways� ��� category�
theory oriented �Ken��
 Ken��
 Ken�
 Rao�	�
 ��� implementation�oriented �PvE��� The
�rst describes graph rewrite steps as push�outs in a category
 and some papers have been
devoted to analyzing whether this can be done by single or double push�out constructions
�L�o��� The second uses notions like pointers
 redirections
 indirections� We would like to
�nd an approach that is less �abstract� than the �rst
 and less �concrete� than the second�
So
 the aim of the present paper is to provide a smooth framework for term graph rewriting


for the general case where cycles are admitted� The starting point is that a cyclic term graph
is nothing else than a system of recursion equations� This is an obvious view
 however
 it
seems that the possibilities generated by this point of view have not yet been exploited fully�
Some papers indeed describe term graphs as systems of equations
 but do not consider the
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equational transformations that then are possible� As a typical example of the bene�ts of an

I
α

{α = Ι(α)} → {α = α} → {α = ●}

μα. Ι(α) → μα. α   = ●

α

cyclic I         black hole

Figure ��

equational treatment of term graph rewriting
 we mention the problem of �cyclic�I�
 or more
general of cyclic collapsing graphs� See Figure �� This matter has been called �a persistent
technical problem� �KKSdV	�
 and indeed several proposals concerning the way that cyclic�
I �i�e�� the graph f� � I���g
 where I has the �collapsing� rewrite rule I�x� ��� x� should

be rewritten to
 occur in the literature� One possibility is that cyclic�I rewrites to itself�
An equational treatment
 however
 leaves in our opinion no doubt about the proper way of
rewriting cyclic�I� it should be rewritten to a new constant that we like to call �black hole�

written as �� For graph rewriting
 it is as it were a point of singularity� we need a new constant
for it to ensure con�uence of orthogonal term graph rewriting
 even though there is no proper
term graph corresponding to it� Interestingly the same observation was made by Corradini in
�Cor�� using the cpo approach� This view is also supported by a comparison with the related
system of ��expressions� the new constant � is present there as ����
 an expression rewriting
only to itself� ���� ��� ����� In terms of systems of recursion equations
 � is the system

f� � �g� The same �singularity� shows up in the theory of orthogonal in�nitary rewriting
�KKSdV��� without more
 in�nitary con�uence fails
 but equating all in�nite collapsing trees
such as I�
 the in�nite unwinding I�I�I�I�I�� � �� � � �� of either the graph f� � I���g or the ��term
���I���
 in�nitary con�uence holds� �It should be mentioned that the �collapse problem� not
only is present with the unary collapse operator I
 but also e�g�� in the in�nitary version or
the cyclic graph version of Combinatory Logic with its collapsing rule Kxy ��� x��

As another example of the ease that Equational Logic introduces for term graph rewrit�
ing
 we mention� checking bisimilarity of two term graphs in an equational way
 somewhat
reminiscent to the elegant uni�cation algorithm of Martelli�Montanari �MM����
An interesting consequence of treating term graphs as systems of recursion equations
 is

that we are naturally invited to perform the operation of substitution on them� E�g�� the
graph �or recursion system� f� � F���� � � G���g
 where the �rst equation always is taken
as the leading root equation
 can be transformed by substitution to f� � F�G����g� Here
the node � is �hidden� or nameless� Thus
 allowing the operation of substitution on recursion
equations
 we get for free a notion of hidden or nameless nodes
 a notion that has a certain
Linear Logic �avor since it says that some nodes can be used only once
 in contrast with
ordinary nodes that can be re�used �shared� inde�nitely� �But we note that this feature of
hidden nodes is not forced upon us� if desired we can avoid it altogether� It is an �add�on�
feature��



�� Term rewriting with ��recursion �

Lambda graph rewriting attempts to do the same as above for lambda calculus� �It is not
treated in the present paper�� Acyclic lambda graphs were already considered in the well�
known thesis of Wadsworth �Wad���� and recently there has been a lot of activity concerning
them �GAL��
 following a solution of Levy�s optimality problem for lambda rewriting �L�e���

by Lamping and Kathail �Lam�
 Kat��� As yet
 no systematic study has been made of
lambda graph rewriting with cycles� but work in progress by the authors �AK	� intends
to provide a �rst step
 revealing that there is a remarkable contrast with orthogonal term
graph rewriting� The latter is con�uent
 but lambda graph rewriting with cycles is in full
generality inherently non�con�uent� However
 suitable restrictions can be formulated that
ensure con�uence�
The paper is organized as follows� we start �in Section �� with a discussion of rewriting

with ��recursion
 a related but less expressive framework� ��expressions describe cyclic term
graphs
 but are not able to express sharing of common subterms� Our discussion of ��recursion
will provide an intuition why introducing the �cycle�breaking� constant � is necessary� The
next section �Section �� presents our notational framework for systems of recursion equations�
We establish that the bisimilarity class of a term graph �possibly with cycles
 as all graphs in
this paper� is a complete lattice
 partially ordered by functional bisimulation� In the follow�
ing section �Section 	�
 using Equational Logic reasoning
 we characterize the fundamental
notions of copying
 substitution
 �attening
 and hiding� In Section �
 a translation between
��expressions and recursion systems is discussed� Using this translation in Section � a sound
and complete proof system with respect to the semantics given by in�nite tree unwinding is
given� In Section �
 the notions of redex
 reduction and a characterization of rules are intro�
duced� the concept of orthogonality for term graph rewriting is presented� A system without
ambiguous rules is shown to be con�uent� Moreover
 if non�left�linear rules are also discarded
�i�e�� for orthogonal term graph rewriting� it is shown that con�uence holds even if copying
is admitted� The observation that copying does not destroy con�uence was already shown
in �Sme�� for acyclic terms� In Section �
 a translation of a term rewriting system into its
corresponding term graph rewriting system is presented� We end the paper with directions
for future work�

�� Term rewriting with ��recursion

Although we will deal mostly with rewriting of systems of recursion equations
 we start with
the related format of ��expressions and the ��rule� This is done for two reasons� �rst
 to
appreciate the extra expressive power that recursion equations have above ��expressions
 and
second
 because the ��formalism will provide us with a good intuition on how to solve the
problem of cyclic collapsing contexts that constitute a problem for con�uence�

��	 Orthogonal TRSs with the ��rule

De�nition ��� Let R be a ��rst�order� TRS� Then R� results from R by adding the ��rule�

�x�Z�x� ��� Z��x�Z�x���

Usually this rewriting rule is rendered as �x�Z ��� Z�xn�x�Z�
 where � n � is the substitution

operator� Here we use the notation as used for �higher�order term rewriting� by means of
Combinatory Reduction Systems �CRSs�
 as in �Klo
 KvOvR�
 vR���



�

Proposition ��� Let R be an orthogonal TRS� Then R� is an orthogonal CRS� and hence

conuent�

Proof� It is simple to check that R� is an orthogonal CRS
 hence the general con�uence
theorem for orthogonal CRSs applies� See e�g�� �vR��� �

Remark ���

�i� Orthogonality is not necessary to guarantee con�uence� In fact�
Let R be a left�linear� conuent TRS� Then R� is a conuent CRS�

�ii� In �i� left�linearity is necessary� Otherwise there is the following counterexample�

S�x��S�y� ��� x�y

��x ��� �

x�� ��� x

x�x ��� �

S�x��x ��� S���

This a con�uent TRS de�ning cut�o� subtraction on natural numbers� However
 R� is
not con�uent� let � be �x�S�x�
 then � ��� S���
 and

��� ��� �

�
S����� ��� S���

Example ��� Let R be the orthogonal TRS with the two collapsing rules� A�Z� ���

Z�B�Z� ��� Z
 then R� is the orthogonal CRS with rules�

A�Z� ��� Z

B�Z� ��� Z

�x�Z�x� ��� Z��x�Z�x��

Now we have the reductions�

�x�A�B�x�� ��� �x�A�x� ��� �x�x

�x�A�B�x�� ��� �x�B�x� ��� �x�x

The expression �x�x plays an important role
 and we will abbreviate it by �� Note that the
term �x�A�B�x�� corresponds to the in�nite term �AB��
 and the reduction �x�A�B�x�� ���

�x�A�x� corresponds to the in�nite reduction �AB�� ���� A�� Analogously
 we have �AB�� ���

� B�� However
 note that the ��calculus is able to perform the reduction �x�A�x� ��� �
 while

the in�nitary calculus can only reduce A� to itself
 and likewise B�
 thus violating con�uence�



�� Term rewriting with ��recursion �

Example ��	 Let CL be �Combinatory Logic�
 with the rules�

SZ�Z�Z� ��� Z�Z��Z�Z��

KZ�Z� ��� Z�

IZ ��� Z

Then CL� ��Combinatory Logic with ��recursion�� is the orthogonal CRS obtained by adding
the ��rule� CL� is con�uent�

��� Connection with term graphs

Anticipating a more precise treatment of term graphs in the next section
 and a precise
translation of ��terms into recursion systems �i�e�� term graph� in Section �
 we now describe
the assignment of a term graph to a ��term� To that end
 let us review the formation of
��terms over a signature ��

De�nition ��
 Let � be a �rst�order signature� Then Term����
 the set of ��terms over �

is given by�
�i� �� �� �� � � � � Term���� �variables��
�ii� t�� � � � � tn � Term���� �� F�t�� � � � � tn� � Term����
 for an n�ary function symbol in ��
�iii� t � Term���� �� ���t � Term�����

De�nition ��� Let t � Term����� Then the term graph ��t� is de�ned as follows�
�i� ���� is�

α

�ii� ��F�t�� � � � � tn�� is �

F

1γ(t  ) nγ(t  ).....

�iii� �����t� � if � does not occur free in t
 then �����t� � ��t��
Suppose t contains a free � and t �� �� Let ��t� be e�g��

α
α α

F

H
G

�where all the free ��s are displayed� then �����t� is�



�

α

H

F

G

In case the root node has already a name
 say �
 we will replace it by ��

�iv� ������� is �

Working in R� is already a form of term graph rewriting� The reductions in Example ��	
and Example ��� are shown pictorially in Figure � and Figure 	
 respectively�

μα.A(α)
α

A μα.B(α)Βα

μα.αα

μα.A(B(α))A

B

α

Figure ��

μα.αα
α

(μα.αα)(μα.αα)@ @

@@

α

Figure 	�

Example ��� Let SKIM be as in Table �� Let SKIM� be SKIM minus the rule Yx ���

x�Yx� and extended with the ��rule and the following the new version of the Y rule�

YZ ��� �x�Zx



�� Term rewriting with ��recursion 	

Sxyz ��� xz�yz�

Kxy ��� x

Ix ��� x

Cxyz ��� xzy

Bxyz ��� x�yz�

Yx ��� x�Yx�

UzP�xy� ��� zxy

P��Pxy� ��� x

P��Pxy� ��� y

cond true x y ��� x

cond false x y ��� y

plus n m ��� n�m

times n m ��� n 	m

eq n n ��� true

eq n m ��� false if n �� m

Table �� SKIM

which pictorially looks as in Figure �� SKIM� is an orthogonal CRS
 hence con�uent�
Actually
 this is the way that SKIM was implemented�

The shortcoming of ��expressions as in R� is that while some cyclic graphs can be rep�
resented as such
 many cannot
 e�g�� the graphs in Figure � cannot be represented by a
��expression� Roughly said
 ��expressions only describe �vertical sharing� �see Figure �� and
not �horizontal sharing�� We say that a graph has only vertical sharing if the graph can be
partitioned into a tree and a set of edges with the property that either begin and end nodes
are identical
 or the end node is an ancestor �in the tree� of the begin node� �We will come
back to this distinction in Section ��	�� Equivalently
 a graph has only vertical sharing if
there are no two di�erent acyclic paths starting from the root to the same node�

F

G H

F

0

Figure �� Horizontal sharing

Example �� The ��term corresponding to the graph in Figure � is

���F����G�G��� ���H�����H�H�H������ ���G���G���H�������




�

0

0

H GG

H

F

G

H
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β γ

G H

H

Figure �� Vertical sharing

�� Systems of recursion equations

In this section we will consider systems of recursion equations
 establish a notational frame�
work for them
 and study some of their properties� Speci�cally we introduce the notion of
bisimilarity of systems of recursion equations� This notion is well�known from the theory
of processes �or �concurrency� or �communicating processes� or �process algebra�� � see Mil�
ner �Mil��
 Baeten  Weijland �BW��� We establish lattice properties of the bisimilarity
equivalence class
 and show that checking whether two graphs are bisimilar can be done in
an equational way�

��	 Syntax of systems of recursion equations

Our notation for graphs comes from the intuition that a natural way of linearly representing a
graph is by associating a unique name to each node and by writing down the interconnections
through a set of recursion equations� For example
 we will represent the graph depicted in
Figure � as follows�

f� � F��� ��� � � G���� � � H��� ��g

where we assume that the �rst recursion variable represents the root of the graph� Alterna�
tively
 we sometimes write the above as�

f� j � � F��� ��� � � G���� � � H��� ��g�

Systems of recursion equations are considered modulo renaming of the �bound� recursion
variables� E�g�� f� � F�	� 
�� 	 � G���� 
 � H��� ��g is equivalent to the above system�
Similar notations appear in the literature �GKS�
 Far��� E�g�� fu � F�u� v�� v � G�u�g in
the language DACTL �GKS��� However
 we insist on an equational notation
 not just for
the sake of style
 but because Equational Logic reasoning can fruitfully support our thinking
about common term graph operations
 as will become clear shortly�

De�nition ��� Let � be a �rst�order signature�
�i� The set of TRS terms over � �Term���� is given by�
�i��� �� �� �� � � � � Term��� �variables��
�i��� if t�� � � � � tn � Term��� then F�t�� � � � � tn� � Term����

�ii� A system of recursion equations over � is of the form

f�� � t�� � � � � �n � tng
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with t�� � � � � tn � Term���
 ��� � � � � �n recursion variables such that 
i� j� � � i � j � n

�i �� �j � The variables �i are bound� other variables occurring in the system are free� A
system without free variables is closed�

We do not have nesting of recursion equations as in �Ari��
 see however Section � Moreover

multiple de�nitions of a variable are not allowed� E�g�� f� � �� � � �� � � �g is not a well�
formed system� Unless otherwise stated we only consider systems without useless equations�
an equation is useless if its leading recursion variable is not reachable from the root of the
system
 in the obvious sense� We automatically perform this removal �garbage collection��
We call a system of recursion equations in attened form if the right�hand side of each

equation is of the form F���� � � � � �n�
 where the �i are recursion variables
 not necessarily
distinct from each other� E�g�� f� � F���� � � G���g is in �attened form
 while f� �
F�G����g is not� The distinction between the two terms above will become clear after having
introduced �in Section 	� the substitution operation� A �attened system is in canonical form
if it does not contain trivial equations of the form � � �� such equations also if not present
in the original term can arise as a result of a reduction step� We perform the substitution
of each occurrence of � by � and the removal of the corresponding equation as part of a
canonicalization step� An equation of the form � � � will be replaced by � � ��

Notation� we denote by M j � the subsystem rooted at �� E�g�� let M be
f� � F���� � � G���g
 then M j � is f� � G���g� the equation � � F��� gets removed�

��� Correspondence with terms graphs

Term graphs can be described in many ways� The usual way is to equip a set of nodes and a
set of edges with several functions� E�g��

De�nition ��� Let � be a �rst�order signature
 with Fun��� the set of functions and con�
stant symbols� Then a term graph over �
 is a structure

hN�Lab� Succ� rooti

with�
�i� N a set of nodes�
�ii� Lab � N � Fun��� � �
�iii� Succ � N � N�
 such that for all s � N 
 if n is the arity of Lab�s�
 then Succ�s� must
be a n�tuple of nodes�

�iv� root � N �




�

An important point of this paper is that such de�nitions can be avoided and that we can do
everything with systems of recursion equations� However
 for an intuitive and quick grasp
of such a system
 it is for human consumption often convenient to draw the corresponding
graph
 as we will do many times in this paper�
We will now give a de�nition of term graph independent of a system of recursion equations


slightly di�erent from the one given above
 using the concept of a structure in model theory�
Our notion of term graph is more complicated than the usual one
 since we employ names of
nodes �to be distinguished from the label of a node�
 and also admit a partial naming �some
nodes named
 others nameless�� Actually
 we employ equivalence classes of such objects

identifying objects that can be obtained from each other by ��� renaming �cf� ��conversion
in lambda calculus��
First we de�ne a pseudo�term graph� This is a �rst�order structure �in the sense of model

theory� of the form
G � hNODES� ROOT� ��� ���� �k� a�� ���� ami

Here NODES is some set of elements s� t� � � � called nodes
 ROOT is a unary predicate
 �i �i �
�� � � � � k� are binary predicates
 and a�� � � � � am are constants� Elements satisfying the ROOT
predicate are called roots
 and constants are also called node names� Now let � be a �rst�order
signature
 with set of function symbols Fun���� We de�ne� a ��term graph is a pseudo�term
graph as above together with a partial map

content � NODES� Fun���

such that if content�s� is an n�ary function symbol
 s has an ith�successor for every i � �� � � � n
and no more
 and if content�s� is unde�ned
 s has no i�successor� In the last case
 s is called
an empty node�
In fact
 we are interested in ��term graphs modulo renaming� We de�ne �G� content� and

�G�� content�� to be ��equivalent
 if G and G� are isomorphic in the model�theoretic sense

and the content mappings commute with this isomorphism� Now the objects of interest are
the ��equivalence classes�
This de�nition is still too general for our purpose� it admits multiple roots
 or none at all


it admits totally unnamed graphs
 and empty nodes without a name� it does not require the
graph to be connected� but it is easy to formulate some extra requirements so that we have
an exact match with systems of recursion equations� We will not do so
 as we will not need
this de�nition of graph� However
 it should be noted that this de�nition �or similar variants
like the one above� is an unnecessary circumlocution� a system of recursion equations is much
easier de�ned
 leaving notions as i�successor implicit� Explicit de�nitions like the one above
do not seem to help the intuition much�
There is another way of introducing term graphs that we �nd much more helpful for an

intuitive grasp
 even though it may seem a bit too fancy at �rst sight� This is by perceiving
the �underlying space� in which a term is written
 as Baire space
 and then considering the
homomorphic images of this space obtained by identifying nodes� Terms written in such a
homomorphic image are then just term graphs� We will give the precise de�nitions in Section
��	�
Hereafter we allow ourselves to interchangeably use the words� system of recursion equa�

tions or �term� graph�
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We now introduce some notation that will be needed in the next section� given a graph g
we will denote by ROOT�g� and NODES�g� the root and the set of nodes in g� if s is a node in
a term graph g and s� is its ith�successor
 then we will write s�i s

��

De�nition ��� An access path of a node s of a term graph g is a possibly empty �nite
sequence of positive natural numbers hi�� i�� � � � � iji such that there exist nodes s�� � � � � sj��
in g with ROOT�g��i� s� �i� � � � �ij��

sj�� �ij s�

In general a node s may have several access paths� we will denode by Acc�s� the set of the
access paths of s �the empty access path h i denotes one of the access paths to the root�� We
will call a term graph g connected if the access set of each node in g is not empty� Notation�
given access paths �� and ��
 �� 	 �� denotes the concatenation of �� and ���

Remark ��� The access sets express various properties of graphs�
�i� if every node s in g has a singleton as Acc�s� then g is a tree�
�ii� if for all nodes s in g
 Acc�s� is �nite then g is a dag�
�iii� if there exists a node s in g
 with Acc�s� in�nite then g is a cyclic graph
 provided g is a
�nite graph�

��� Bisimulations

In this section
 we will restrict our attention to closed systems of recursion equations in
�attened form only� At the end of this section we will discuss how to cover the non��at case�

De�nition ��	 Let g � f�� � t�� � � � � �n � tng
 and let h � f��� � t��� � � � � �
�
m � t�mg� Then

R is a bisimulation from g to h if
�i� R is a binary relation with domain f��� � � � � �ng and codomain f�

�
�� � � � � �

�
mg�

�ii� �� R ��� �the roots are related��
�iii� if �i R ��j


�i � Fi��i�� � � � � �ik� �k � ��
��j � Fj��

�
j�� � � � � �

�
jk�� �k

� � �� then Fi � Fj 
 k � k�
 and �i� R ��j�� � � � � �ik R ��jk�
So
 related nodes have the same label
 and their successor nodes are again related� �Notation�
we will interchangeably use the notation � R �� or ��� ��� � R��

De�nition ��


�i� Graphs g
h are bisimilar if there is a bisimulation from g to h� We will write� g�h�
�ii� g�h if there is a functional bisimulation from g to h
 i�e�� a bisimulation that is a function�

Remark ��� Bisimilarity is an equivalence relation�

A functional bisimulation is what in the literature �BvEG���
 Sme�� is called a rooted
homomorphism� it collapses �compresses� the graph to a smaller one� Vice versa we say
that the graph is �expanded�
 and this is the �copying� or �unsharing� or �unwinding� partial
order appearing in �Ari�
 Ari�
 AA��� See Figure �
 where some unwindings of the graph
f� � F���g are considered� We use the notation �n�m� to indicate the unwinding of this
graph starting with n �acyclic steps� followed by a cycle of m steps �n � ��m � ���
The importance of the notion of bisimilarity stems from the fact that bisimilarity corre�

sponds to having the same tree unwinding �i�e�� same semantics�� We need a proposition
�rst�




�
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Proposition ���

�i� Let g be a graph� ��g�� its tree unwinding� Then� g� ��g���
�ii� Let g� h be trees ��nite or in�nite�� Then� g�h�� g � h�

Proof�

�i� It is easy to see that ��g�� can be obtained as follows�

ROOT���g��� � h i
NODES���g��� �

S
fAcc�s� j s � NODES�g�g

i�successor � if s�i s
� in g� and � � Acc�s�� then � �i � 	 i�

�Note that � 	 i � Acc�s����
The content of each node in ��g�� contributed by Acc�s� is the content of s�

Now de�ne  � NODES���g���� NODES�g� by�

if � � Acc�s�� then ��� � s�

Checking that this yields  � ��g���g
 i�e��  is a functional bisimulation from ��g�� to g
 is
routine�

�ii� If g is a tree
 let �g�n be the �nite tree truncated at depth n �appending some constant

e�g�� !
 at the cut�points�� Now it is easy to prove from g�h that �g�n � �h�n for all n�
Hence g � h �More precisely
 g and h are isomorphic���

�

Corollary �� Let g� h be graphs� Then � g�h �� ��g�� � ��h���

Proof�

���� Suppose g�h� By Proposition ����i��

��g�� � g � h� ��h�� �

By transitivity of �
 ��g�� � ��h��� By Proposition ����ii�� ��g�� � ��h���
���� Suppose ��g�� � ��h��� By Proposition ����

g � ��g�� � ��h�� � h�

By transitivity of �
 g � h�



�� Systems of recursion equations 
�

�

We will show next that the equivalence class of a graph g with respect to the equivalence
relation of bisimilarity
 partially ordered by functional bisimilarity
 is a complete lattice �i�e��
a partial order where every subset has a least upper bound �lub� and a greatest lower bound
�glb��� For the acyclic case
 the lattice property is proved in Smetsers �Sme��� We expect
that in maybe slightly di�erent but related settings this is a well�known fact
 but we include
the following proof for completeness sake and also to demonstrate the use of the notion of
bisimilarity�

Remark ����

�i� Let R�� R� be two bisimulations from g to h� Then R� �R� is again a bisimulation from
g to h�

�ii� Let g�h� Then there exists a unique minimal bisimulation from g to h� Notation� Rg�h�
Clearly
 the inverse relation �Rg�h�

�� is Rh�g�
�iii� Let g�h� Then Rg�h is functional�

Proof� Directly from the de�nition of bisimulation� �

Notation� instead of R
 we will denote a functional bisimulation also by �

Proposition ���� Functional bisimilarity is a partial order�

Proof� � is clearly re�exive and transitive �because functional bisimulations are closed under
composition�� Now suppose g�h�g� Then
 by Remark ����
 the minimal bisimulations from
g to h
 and from h to g
 respectively
 are each other�s inverse and moreover functional� It
follows that they are bijections� In other words
 g and h are rooted isomorphic� �

De�nition ���� Let R � g�h be a bisimulation� Then the associated graph �R is de�ned as
follows�
�i� NODES��R� � R

ROOT��R� � �ROOT�g�� ROOT�h��
the label of each node �s� t� is that of s �or
 what is the same
 of t� �

�ii� Let s � NODES�g�
 t � NODES�h�
 �s� t� � R
 s�i s
�� t�i t

��
Then in �R � �s� t��i �s

�� t���

Proposition ����

�i� Let R � g�h� Then R is minimal �� �s� t� � R implies Acc�s� � Acc�t� �� ��
�ii� Let Rg�h � g�h� and �s� t� � NODES��Rg�h

�� Then Acc��s� t�� � Acc�s� � Acc�t��

Proof�

�i� Let R � g�h� By the de�nition of minimal bisimulation
 it follows that whenever
s � NODES�g�
 t � NODES�h� have a common access path
 we have �s� t� � R�
Reversely
 a pair �s� t� with common access path must be in every bisimulation
from g to h� Hence it is in the minimal bisimulation
 being the intersection of all
bisimulations�

�ii� Let �s� t� � Rg�h� A common access path of s� t obviously is an access path of
�s� t� in �Rg�h


 and vice versa�




�

�

Corollary ���� Let R � g�h be a bisimulation� Then� R is minimal �� �R is connected�

Proof� R is minimal i� whenever �s� t� � R we have Acc�s��Acc�t� �� � �Proposition �����i��
i� whenever �s� t� � R we have Acc��s� t�� �� � �Proposition �����ii�� i� �R is connected� �
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(3, 3) (2, 6)↔ ↔ (3, 3)

Figure ���

Remark ���	 Let R� � g�h and R� � h�r be two minimal bisimulations� Then the com�
position R� �R� � g�r is again a bisimulation
 but it needs not be minimal �see Figure �a���
As an example
 let g be ��� ��
 h be ��� �� and r � g� See Figure ��� here the middle �gure is
the composition of the two bisimulations in the left �gure� The right �gure is the associated
graph
 which is not connected� �An example with r di�erent from g� h is also easy to give��
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Proposition ���
 Let R � g��g� be a minimal bisimulation� and likewise

R� � g��h� R� � g��h�

Let �s�� s�� � R� Then there exists a t � h such that �s�� t� � R�� �s�� t� � R��

Proof� By Proposition �����i� there exists a common access path � to s� and to s�� Let t
be the node in h reached after the same access path �
 then by applying again Proposition
�����i� we have that t must be related to s� via R� and to s� via R�� �See Figure �b��� �

Proposition ���� Let R � g��g� be a minimal bisimulation and let � � g��h and � �
g��h be minimal functional bisimulations� Suppose �s�� s�� � R and ��s�� � t� Then� also
��s�� � t� �See Figure ��c���

Proof� Suppose
 in addition to the assumptions of Proposition ����
 that R� and R� are
functional� Then t is unique� Hence the proposition follows� �

Before stating the main theorem of this section we introduce the following de�nition�

De�nition ���� Let G be a set of bisimilar graphs� An accessible �bre through G is a choice
function " on G �i�e�� a function selecting an element of each g � G�

" � G�
�

g�G

NODES�g�

with "�g� � NODES�g�
 such that�
�

g�G

Acc�"�g�� �� ��

In other words
 " can be obtained as end stage of a march in lock�step
 simultaneously in all
graphs g � G�

Theorem ��� The bisimilarity class of graph g� partially ordered by functional bisimulation�

is a complete lattice�

Proof� The proof will be given in four parts�
�i� Given g��g�
 we show the existence of g� � g� �i�e�� the join��
�ii� Given g��g�
 we show the existence of g� � g� �i�e�� the meet��
�iii� Given a set G of bisimilar graphs
 we show the existence of

W
G�

�iv� Likewise for
V
G�

�i� Let R � g��g� be a minimal bisimulation� Then the associated graph �R is in fact g�� g��
To see that �R�g� and �R�g�
 take the projection maps�

p� � �s�� s�� �� s�
p� � �s�� s�� �� s�

It is easy to see that these are functional bisimulations as required� Moreover
 if h�g�
and h�g�
 then h��R� Namely
 if t � h
 t �� s� � g� and t �� s� � g�
 we de�ne�
t �� �s�� s�� and this is the required functional bisimulation from h to �R� �See Figure
����
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�ii� Let g��g�� Again the minimal bisimulationR from g� to g� enables a simple construction
of g�� g�� Let � be the equivalence relation induced by R on NODES�g���NODES�g��� The
equivalence classes

�
s� �s� � NODES�g��� will be the nodes of a graph called �R� If s� is

ROOT�g��
 then
�
s� is ROOT��R�� For i�successor we de�ne� if s �i s

�
 then
�
s�i

�

s�� We
claim that �R is g� � g�� To show g���R and g���R
 take s� ��

�
s� and s� ��

�
s�� It is easy

to show that these are functional bisimulations �� �
 as required�
Moreover to show � if g��h and g��h
 then �R�h� So take

�
s� � �R� Let � � g��h

be the minimal bisimulation� Let ��s�� � t� Then de�ne ��
�
s�� � t� Well�de�nedness

follows from Proposition ����
 which entails that all elements in
�
s� are sent to t� �See

Figure �� and �d���
�iii�

W
G is the graph with as nodes the accessible �bres through G� It is clear how to de�ne

the root of
W
G
 and how to de�ne the successor relations�

�iv� On V �
S
g�G NODES�g� we de�ne� for s� � NODES�g��
 s� � NODES�g��� s� �m s� if s�� s�

are related by the minimal bisimulation between g�� g�� As noted before �Remark �����

�m is not yet an equivalence relation on V 
 by the failure of transitivity� Let � be the
equivalence relation on V generated by �m� Then the graph

V
G will have as nodes� the

��equivalence classes� Root and successor relations are de�ned as before
 and verifying
that the graph is indeed

V
G is as in �ii��

�

Figure ���

Example ���� �i� Already the simplest cyclic graph
 f� � F���g
 has a non�trivial complete
lattice of expansions �see Figure ���� In fact
 this lattice is isomorphic to the lattice�

�N� � f�g� j�

where N� is the set of positive natural numbers
 and the partial order j is de�ned by�

n j m if n divides m
n j �
� j �



��

This can be seen as follows� As said before
 let �n�m� 
 for n � ��m � �
 be the graph
starting with n �acyclic steps� followed by a cycle of m steps� Let � be the in�nite
unwinding of f� � F���g� Now we have �see Figure ���

�n�m� � �n��m�� i� n� � n� and m� j m
� � �
� � �n�m� for all n � ��m � �

It is not hard to see that the �rst component n of �n�m� does not make the lattice more
complicated than the one of positive natural numbers with divisor relation
 as follows�
Let p�� p�� p�� � � � be the sequence of prime numbers �� �� �� � � �� Let m have the prime
decomposition�

m � pe�� �p
e�
� �p

e�
� � � � �

�An in�nite product� all but �nitely many ei are ���
De�ne shift�m� � pe�� �p

e�
� �p

e�
� � � � �� Now de�ne �

�n�m� � �n�shift�m��

Then
 �n�m� � �n��m�� i� �n��m�� j �n�m�� This proves the isomorphism with �N� �
f�g� j�� Finally
 note that � and � are given by�

�n�m� � �n��m�� � �max�n� n��� lcm�m�m���
�n�m� � �n��m�� � �min�n� n��� gcd�m�m���

�ii� The complete lattice of f� � F��� ��� � � Cg is even more complicated� it contains a
sublattice of in�nite elements of cardinality continuum� In fact
 the sublattice of in�nite
elements is isomorphic to the lattice of partitions of N 
 the set of natural numbers� Figure
�	
 displaying from left to right respectively
 the bottom
 an intermediate element
 the
top of this lattice
 suggests why this is so�
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Remark ���� Note the generality of the copying mechanism
 in contrast with the restricted
copying mechanism embodied in the ��rule �the notion of copying will be de�ned precisely be�
low�� The example above with instead of f� � F���g the ��term ���F���
 would yield a sub�
lattice isomorphic with �N �f�g� ��� ���F��� ��� F����F���� ��� � � � ��� Fn����F���� ���
� � �



�� Systems of recursion equations �


Remark ���� Our notation g�h �g expands to h� g is a homomorphic image of h� intends to
be reminiscent of the usual partial order symbol �
 so that � information of g � information
of h� �It also suggests that h has more nodes than g�� The question is what �information� is
meant here� The answer is that h contains more history information than g� �Here a �history�
is the same as an access path�� Namely� suppose s� t are nodes in g� h respectively
 such that
s� t are related in a minimal bisimulation R � g�h� Then we have� Acc�t� � Acc�s�� �In fact

if t�� � � � � tn are all the nodes related to s
 we have Acc�t��� � � � � Acc�tn� � Acc�s��� That is

we have sharper information about how we came to arrive
 from the root
 in t� Indeed
 this
is the reason why �in the setting of concurrency theory� a functional bisimulation is called a
history relation in Lynch  Vaandrager �LV��� The tree unwinding of a graph has maximum
information� it is the top of the lattice� Each node in the tree has a singleton as history set�

Intermezzo ���� Our use of the notion of bisimulation in the present setting was suggested
by process algebra �or �concurrency��� Having established that functional bisimilarity is a
partial order on term graphs
 the question arises whether the same holds for process graphs�
The situation there is more complicated
 because of the laws x � y � y � x and x � x � x
that process graphs modulo bisimilarity satisfy� That is
 edges leaving a node are unordered

and bisimilar nodes need not have the same out�degree �i�e�� number of edges departing from
them�� Another di�erence with term graphs is that in process graphs the nodes are unlabeled

but the edges are� This di�erence is not essential for the present question
 however� Figure ��

g

a

h

aa

a

Figure ���

displays a functional bisimulation between two process graphs g and h� Somewhat surprising

the situation for process graphs is now that for �nitely branching process graphs
 functional
bisimilarity is also a partial order� The proof is more complicated than the easy one for term
graphs� For in�nitely branching process graphs
 functional bisimilarity is only a pre�order�
Figure �� displays two in�nitely branching process graphs
 functionally bisimulating each

g

a

f

aaa

a a a

a a

a a a

a

aa

Figure ���

other
 yet di�erent� The functional bisimulations are given by replacing the underlined parts



��

as follows�

f � aa� aa � a�a� a� � a�a� a� � a�a� a� � � � �
g � aa � a�a� a� � a�a� a� � a�a� a� � � � �
f � aa � aa � a�a� a� � a�a� a� � � � �

Another important di�erence with process graphs is that there minimal bisimulations are in
general not unique �e�g�� the term a� a admits two minimal bisimulations with itself��

So far we have restricted our attention to �at systems only� We extend the notion of bisim�
ulation to non��at systems in two ways�

Weak bisimulation� Let us �rst introduce the notion of �attening
 which is properly de�ned
in Section 	� For now it su#ces to say that flat is a function that rewrites an equation of the
form � � Fn�t�� � � � � tn�� n � �
 to � � F���� � � � � �n�
 and adds to the system the equations
�i � ti� i � �� � � � � n
 where ��� � � � � �n are new names� E�g�� flat�f� � F�G����H����g� �
f� � F��� 
�� � � G���� � � �� � � H���� � � �g�

De�nition ���� Graphs g and h are weakly bisimilar if flat�g��flat�h��

Strong bisimulation� We introduce a stronger notion of bisimulation
 written as �s
 on
non��at systems by using a di�erent mechanism to �atten a term
 consisting in introducing
new function symbols which memorize the structure of a term� Given for example the term
g � f� � F�H�B�����G����g
 instead of �attening g as f� � F���� ����� �� � H������� ��� �
G���� ���� � B���g
 we introduce a new function symbol H�B
 coding the fact that the �rst
successor of the function symbol H is B� We thus obtain f� � F�H�B����G����� All the
proper subterms of g are now in a simple form
 that is
 of the form F����
 for a function
symbol F� We then introduce the new function symbol F�H

�B�G which codes the fact that the

�rst successor and the second successor of the function symbol F are H�H and G
 respectively�
Thus
 we will obtain the corresponding �at system f� � F�H

�H�G��� ��g� We call this new

�attening procedure flat��

De�nition ���	 Graphs g and h are strongly bisimilar if flat��g��flat
��h��

The notion of strong bisimulation corresponds to saying� recursion variables map to recur�
sion variables
 while unnamed terms correspond to unnamed terms�

Proposition ���
 g�sh �� g�h�

Example ����

�i� E�g�� the terms f� � F��� ��g and f� � F�F��� ��� ��g are weakly bisimilar
 but not
strongly bisimilar
 because it entails mapping the recursion variable � to F��� ���

�ii� Consider g� � f� � F���G����g and g� � f� � F�F���G�����G����g
 where flat��g�� �
f� � F�G��� ��g and flat

��g�� � f� � F�F�G�G��� �� ��g� Then
 g� and g� are not
strongly bisimilar even though they have the same tree unwinding
 i�e�� they are weakly
bisimilar�

The notion of functional bisimulation is similarly extended to non��at terms� Moreover
 it
is easy to show that the class of strongly bisimilar terms still enjoys lattice properties�
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��� Another view of term graphs

Instead of starting with a recursion system �term graph� and next introducing the access
paths
 we can also start from a general space of access paths and �build� a term graph out of
this� The general space of access paths �i�e�� Acc� is an object much studied in Mathematical
Logic under the name Baire space �when equipped with a topological structure�� It consists
of all access paths
 i�e�� �nite sequences
 �� �� � � �
 of natural numbers
 and can be pictured as
the �universal tree� in Figure ���

<>

<0> <1> <2> <3>

<00> <01> <02> <10> <11> <20> <21>

<010>

<0102>

Figure ���

De�nition ���� A tree T is a subset of Acc satisfying�
�i� �i � T �� � � T �
�ii� �i � T �� ��� ��� � � � ��i� �� � T �
�Here �i is short for � 	 i
 the concatenation of the sequence � and the natural number i��

De�nition ��� A ��tree is a tree T with a map  � T � Fun��� such that

��� � F n �� ��� � � � � ��n� �� � T� �n �� T

�Here F n is an n�ary function symbol in the signature ���

De�nition ���� A ��term graph G is a ��tree T together with a set H of equations between
nodes such that
�i� � � � � H
�ii� � � � � H �� � � � � H
�iii� � � � � H� � � � � H �� � � � � H
�iv� � � � � H �� �� � �� � H for all � with �� � H
�v� � � � � H �� ��� � ���
We will refer to G as �T�H��

Example ���� The term graph in Figure �� is in this representation given by�

�hi� � F�

�h�i� � G�

�h�i� � H�

H is generated by fh�i � h��i� h�i � h��ig



��

F

G H

Figure ���

�The rest of  and H is deducible from the requirements in De�nition ����� E�g�� h�i �
h���i� h�i � h���i � H��

The following facts can be routinely proved�

Proposition ����

�i� G��G� i� G� � �T�H��� G� � �T�H���
�ii� G��G� i� G� � �T�H��� G� � �T�H�� and H� � H��

�iii� �T�H�� � �T�H�� � �T�H� �H���
�iv� �T�H�� � �T�H�� � �T�H� �H��� with H� �H� denoting the closure with respect to the

rules in De�nition �����

��iii� and �iv� in fact generalize analogously to meet and join of in�nite sets f�T�Hi� j i � Ig�
�

An interesting feature of this representation is that the di�erence between ���like� graphs
and others comes out easily�

De�nition ���� G � �T�H� is ��like or has only vertical sharing if H is generated by a
�basis� H � � H containing only equations of the form � � �� �or �� � ��
 called cyclic

equations�

Example ���� Let �T�H� be as in Example ����� Then the corresponding C is generated
by h�i � h���i� h�i � h���i� This yields the term graph in Figure ���b��
It is easy to determine the minimal ��like expansion
 as follows� Write the graph as a

�at system of recursion equations
 and then form the corresponding dependency tree of the
recursion variables
 stopping when an earlier variable is reached� Then identify nodes in that
tree having the same recursion variables as label� Thus the graph in Figure �� with recursion
system

f� � F��� ��� � � G���� � � H���g

yields the tree �written as a term�

���������� ��������

yielding the node equations h�i � h���i� h�i � h���i found above�

Remark ���	 Remarkably
 the ��like graphs are not closed under expansion� E�g�� the meet
of the graphs given by

���F�F��� ��� ��
���F���F��� ���



�� Systems of recursion equations ��

Reexivity� t � t

Symmetry�
t� � t�
t� � t�

Transitivity�
t� � t� t� � t�

t� � t�

Substitution�
t � s

t� � s�
for every substitution �

Congruence�
t� � s� � � � tn � sn

F�t�� � � � � tn� � F�s�� � � � � sn�

Table �� Equational Logic

is a graph with horizontal sharing
 namely

f� j � � F��� ��� � � F��� ��� � � F��� ��g

�See Figure ���
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β γ
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Figure ��

Remark ���
 Lat�T�H� can have at most ��� elements� This follows at once since there
are at most ��� subsets of H�

For some purposes this view of term graphs as �terms written in homomorphic images of
Baire space� is very convenient
 as it yields immediately the complete lattice structure of
� and the existence of a minimal ��like expansion� However
 for the purpose of performing
actual rewrite steps on term graphs this view seems less suitable than recursion systems�

��� Equationally testing for bisimilarity



��

Reexivity� t � t

Symmetry�
t� � t�
t� � t�

Transitivity�
t� � t� t� � t�

t� � t�

Term decomposition�
F�t�� � � � � tn� � F�s�� � � � � sn�

t� � s�� � � � � tn � sn

Table �� Syntactic matching

In this section we show how bisimilarity of term graphs can be tested in an equational manner
using the proof system of Table � ��syntactic matching��� Instead of the congruence rule of
Equational Logic �see Table �� we use �as in some algorithms for syntactic uni�cation of
�rst�order terms �Klo��� its reverse
 the term decomposition rule� This rule says that from
F�t�� � � � � tn� � F�s�� � � � � sn� we may infer ti � si �i � �� � � � � n�� An equation F��t� � G��s�
with di�erent F
G will be considered a contradiction�

Proposition ���� Let A � f�� � t������ � � � � �n � tn����g and B � f�� � s������ � � � � �m �
sm����g be two term graphs in canonical form� Then A�B i� the equational theory A �B �
f�� � ��g does not derive a contradiction� using the proof system of Table ��

Proof� Let A and B be as described in the hypothesis� We employ the following notation� If
�p � F�� � � � �q� � � ��
 where �q is the i

th argument of Fp
 we write �p �i �q� For �p and �p� 
 in
di�erent graphs
 we write ��p� �p���i ��q� �q�� as abbreviation for �p �i �q and �p� �i �q� �
If �q � Fq�� � ��
 �q� � Fq��� � �� and Fq � Fq� 
 we write�

��p� �p��
match
i ��q� �q��

Otherwise
 i�e�� if Fq �� Fq� 
 we write

��p� �p��
failure
i ��q� �q��

Suppose A and B are not bisimilar� Then clearly there must be a sequence �re�ecting
an unsuccessful attempt to construct a minimal bisimulation starting at relating the roots
���� ���� as follows�

���� ��� �matchi�

��f���� �g���� �matchi�

��f���� �g���� �matchi�
���

��f�k�� �g�k�� �failureik

��f�k���� �g�k����
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such that the last step is the �rst failure step� So

�f�k��� � F�� � ��� �g�k��� � G�� � �� with F �� G

Obviously this failing attempt corresponds to the derivation of the contradictory equation
F�� � �� � G�� � ��
 starting from the equational theory�

T � A �B � f�� � ��g�

So we have proved that if there does not exist a bisimulation between A and B
 the theory
T will derive a �contradiction�� The proof of the reverse statement is equally simple and
omitted� �

Example ���� We want to test the bisimilarity of�

A � f� � F��� ��� � � Cg and B � f� � F��� 	�� � � F��� 	�� 	 � Cg�

�See the corresponding graphs in Figure ����
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Figure ���

So consider the theory�

T � f� � �� � � F��� ��� � � C� � � F��� 	�� � � F��� 	�� 	 � Cg�

All we can derive from T is� T � � T � fF��� �� � F��� 	�� � � �� � � 	� � � ��F��� 	� �
F��� 	�g �apart from equations obtained by re�exivity
 symmetry and transitivity�� As T �

is consistent �i�e�� does not contain a contradiction�
 we conclude A�B� Figure ��
 with
the bisimulation explicitly indicated
 con�rms this �nding� The bisimulation
 in the form of
equations
 is found as a subset of T � � f� � �� � � �� � � �g�

Remark ��� Evidently
 the property of bisimilarity for �nite graphs is decidable
 since the
deductive closure T � of T with respect to the proof system of Table � �see previous example�
is �nite for �nite T � or
 since there are only �nitely many relations on a pair of �nite graphs�

�� Copying� substitution and flattening

In this section we characterize the fundamental notions of copying� substitution
 and attening
using the simple deductive system of Equational Logic� The notion of copying is also well�
known in �general� graph theory �SS�� under the name �graph coverings��



��

��	 Copying

De�nition ��� A variable substitution � is a function from variables to variables� We ex�
tend � to terms and systems of recursion equations
 respectively
 as follows� ��F�t�� � � � � tn�� �
F���t��� � � � � ��tn�� and ��f�� � t�� � � � � �n � tng� � f����� � ��t��� � � � � ���n� � ��tn�g�
We will also write t� instead of ��t�� A one�to�one variable substitution is also called renam�
ing�

De�nition ��� g ���c h i� there exists a variable substitution � such that h
� � g
 leaving

the free variables of h unchanged� We say that h collapses to g or that g copies to h�

E�g�� g � f� � F���� � � G���g ���c

h � f� � F����� �� � G����� �� � F���� � � G������ ��� � F����g
where the variable substitution � is� �� ��� ��� are mapped to �
 and �� �� are mapped to �
�See Figure ����

α

β

F F

F

c

β'

α'

α"

G

G

F

α

β

G

Figure ���

Proposition ��� g ���c h�� h�s g�

Proof� It is easy to check that the variable substitution � de�ning the copy operation de�nes
a functional bisimulation from h to g� �

Remark ��� In general h�g ��� g ��� c h
 if h and g are not in �attened form� In fact


there is a functional bisimulation from g � f� � F�F��� ��� ��g to h � f� � F��� ��g

however
 h ����c g�

Corollary ��	 g� �s g� �� �g�� g� ���c g� and g� ���c g��

Proof� Follow from the fact that the strong bisimilarity class is a lattice and from Proposition
	��� �

Proposition ��
 ���c is conuent�

Proof� Follow from Proposition 	�� and the above corollary� �
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Remark ��� In the de�nition of copying we allow several variable substitutions to occur at
once� The question arises whether it su#ces to substitute one variable at the time� We will
call this restricted version� sequential copying
 and denote it by g ����c g

�� Note that for

�nite graphs�
g ����c g

� �� g ���c g
� and j g� j�j g j ��

where j g j is the number of nodes of g�
The following example shows that iterated sequential copying is not as powerful as general

copying� �I�e�� the transitive re�exive closure of ��� �c is strictly contained in ��� c ��

Consider M � f� � F��� ��g ��� c M� � f� � F���� ����� �� � F���� ��� ��� � F��� ����g�

We claim that M ���� �c M�� Suppose otherwise
 then for some M� we must have M ���

�c M� ����c M�� Reasoning backwards
 we have four possibilities for M��

f� � F���� ��� �� � F���� ��g
f� � F���� ���� �� � F���� ��g
f� � F��� ����� ��� � F��� ����g
f� � F����� ����� ��� � F��� ����g

However
 in none of these cases we have M� ����c M��

This example is due to Stefan Blom �personal communication�
 who also proved that
sequential copying is su#cient to reach �in the limit� the �in�nite� unwinding of a system�
Also
 for the acyclic case
 ����c and ���c coincide�

��� Substitution

Substitution is the operation of substituting the right�hand side of some recursion variable
for some occurrences of that variable in the system� E�g� from

f� � F���� � � G���g �	�

we obtain by substitution�

f� � F���� � � G�F����g ���

and also
f� � F�G����g ���

Such systems are �not��at�� We use the notation ���s for the substitution transformation


in fact for the transitive closure� The union of ���c and ��� s is ���cs � While copying

corresponds to strong bisimilarity
 substitution corresponds to weak bisimilarity� �Note that
��� and ��� are not strongly bisimilar��

Proposition ��� ���s and ���cs are not conuent�

Proof� Consider system �	� above
 and the transformations �	� ���s ��� and �	� ���s ����

Now ��� and ��� have no common���cs reduct� In fact
 every s or cs reduct of ��� starts with

� � F�GF��n��
 while every reduct of ��� starts with � � �FG��n��� While ��� and ��� have



��

the same tree unwinding
 they are on the way to that unwinding
 irreversibly �out�of�synch��
�

This non�con�uence fact puts a restriction on future developments� we cannot hope to
have con�uence when combining orthogonal term graph rewrite rules �as in Section �� with
copying and substitution� �However
 see Proposition 	����ii� below��
The graphs corresponding to �	� and ��� above are as in Figure ��� Unnamed nodes

can be seen as hidden or inaccessible nodes� Substitution
 as in f� � F���� � � G���g to
yield f� � F�G����g is communication between the two ��s
 which subsequently are hidden

nameless�

Remark �� �i� Already �self�substitution� may be non�con�uent� e�g�� consider

f� � F��� ��g ���s f� � F�F��� ��� ��g

f� � F��� ��g ���s f� � F���F��� ���g

No further substitutions or copying can make the systems on the right�hand�sides converge
again�
�ii� It is easy to see that the presence of cycles is essential to these non�con�uence phenomena�
Indeed
 for acyclic �nite systems ���cs is con�uent�

��� Flattening

Flattening is the operation that takes a non��at system
 and reverts it into a �at system by
introducing new recursion variables ��nodes�� in a way as general as possible� The e�ect of
�attening on a graph is� naming unnamed nodes� In contrast to the two previous operations

the result of �attening is unique �modulo renaming of recursion variables�� Notation� ���f �

For example


f� � F�G�C��G�C��g ���f f� � F��� ��� � � G���� � � G�	�� � � C� 	 � Cg�

Note that we do not obtain� f� � F��� ��� � � G���� � � Cg� The union of ���s and ���f

is ���sf 
 and of ���cs and ���f is ���csf �

Substitution and �attening
 ��� s and ��� f 
 are roughly each other�s inverse� but not

quite
 the di�erence is a copying step ���c � This is expressed in �i� of the next proposition

and in Figure ��
 where the dashed arrow has the usual existential meaning�

s f

c

Figure ���
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Proposition ����

�i� ���s � ���f ����c �

�ii� ���csf is conuent�

Proof� Routine
 using Proposition 	���

An example of the strict inclusion in �i� is �

g � f� � F��� ��g ���c g� � f� � F���� ����� �� � F���� ��� ��� � F��� ���g

but g ����sf g�� �

Example ���� �i�
� � F���
� � G���

���s � � F�G����

�f

�s
� � F���
� � G���
�c

� � F���
� � G�F����

���f

� � F���
� � G���
� � F���

�ii� by adding a �attening step also the example in Remark 	� can be made to commute
through a copy step� In fact
 both the terms reduce to f� � F���� ����� �� � F��� ����� ��� �
F���� ��g� Note that in order to �nd a term h such that g� ���c h and g� ���c h
 with

g��g� is enough �by Proposition 	��� to �nd the term corresponding to g� � g��

G
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β = G(α)

α = F(β)
β = G(α) s

Substitution step with garbage collection

Figure ���

��� Hiding

Nodes that are used only once �that is
 with in�degree �� may be �hidden�� This means that
their name ��� �� � � �� is removed� Notation� g ���h h� Hidden or unnamed nodes are �frozen�


and cannot directly be accessed for sharing� Actually
 hiding is also the result of substitution�
We have the following characterization of ���s �



��

Proposition ���� ���cs ����c � ���h �

Proof� First prove that ��� s ���� c � ��� h 
 next prove that in a reduction involving

c�steps and h�steps
 the h�steps can be postponed to the end� �

Proposition ���� g ���h h �� h ���f g�

Note that hiding comes in naturally once we admit the Equational Logic treatment
 hence
substitution
 and that it has an intuitively plausible interpretation� In fact
 it may be seen
to be in the spirit of recent proof systems in Linear Logic
 where a �resource�conscious�
distinction is made between items �assumptions� that may be used only once and items that
may be re�used inde�nitely as in classical logic� Barendsen and Smetsers �BS�� introduce
explicit notations to introduce �unique types� for some node graphs
 meaning that these are
to be used only one
 like our hidden nodes�
Essentially
 hiding makes it possible to mix terms �tree�like parts� and graphs� For an

application exploiting this feature
 see the section in the sequel on weakly orthogonality�
without hiding there is no natural notion�
Note that copying of a hidden part of a graph requires explicit duplication of that part
 as

in Figure �	� there is no �handle� in the hidden part to keep the e�ect of copying �local��
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Remark ���� The study of recursion equations of course goes back a long way and several
notions discussed above occur already e�g�� �CKV�	
 Gue��
 dB
 Vui��
 Vui�	
 Cou��
 CV��

dB��
 Cou��� We will discuss �CKV�	� in some detail
 also to compare some terminology�
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The paper studies �systems of recursive equations�
 also called there �systems of �xed�point
equations�� An example is

X� �� F�X��G�X��X���
X� �� H�F�X��X���
�principal variable X��

where we would write�
� � F���G��� ���
� � H�F��� ���

Our notion of ��at� is called �uniform� in �CKV�	�
 where also the procedure of �attening
a non��at system is introduced� Other than in our paper
 a general notion of semantics is
introduced
 using cpo�s� Systems are called �equivalent� if they have the same solution in
every model� However
 this generality is at once eliminated� systems are equivalent i� they
are equivalent with respect to the �canonical representation�
 which is nothing else than the
semantics of tree unwinding discussed also in this paper�
The paper �CKV�	� next discusses procedures to minimize the number of equations in

a system
 while retaining equivalence� In the course of this it is shown that equivalence of
systems �bisimilarity
 in our terminology � see Proposition ��� is decidable� From a historical
point of view
 it is interesting that in this proof the notion of bisimilarity �which so to say
was lurking around the corner� has not been introduced and used� Instead
 the proof is given
by constructing the complement of a bisimulation
 as follows�
Let a �at recursion system E � f�i � ti���� j i � �� � � � � ng be given� We want to decide

whether �k and �l �or rather the subgraphs determined by them� are equivalent� �This is the
same problem as deciding whether two recursion systems are equivalent�� Now we construct
a sequence of relations D� � D� � D� � � � �
 which will be constant eventually
 as follows�
With Fi we denote the function symbol at the head of ti
 and ki is the arity of Fi�

D� � f��i� �j� j Fi �� Fjg
Dn�� � Dn � f��i� �j� j Fi � Fj and for some m with � � m � ki� ��im � �jm� � Dng
Here �i �m �imetc��

It is clear that for some N 
 DN � DN��� Now �CKV�	� states� �i is equivalent with �j i�
��i� �j� �� DN � In fact the complement of DN 
 i�e�� �NODES�E�� NODES�E���DN 
 is just the
maximal �auto�bisimulation� of E�
Note however that the work cited above does not relate systems of equations to term graph

rewriting as we do in this paper� Their notion of equivalence corresponds to our notion of
bisimilarity but not to the strong version of it� E�g�� the systems X �� F�X�G�X�� and
X �� F�F�Y�G�Y ���G�Y �� are equivalent in �CKV�	�
 whereas we do not consider them
to be strongly bisimilar� Moreover
 di�erently from �CKV�	�
 in this paper we devise a
computation rule
 i�e�� copying
 which yields equivalent systems �in the strong sense� and
still maintains con�uence�

��� Acyclic substitution

We next de�ne a notion of substitution which avoids the non�con�uence trap� The new
substitution is called acyclic substitution
 written as ���as 
 and consists in de�ning an order

on the nodes in a graph as in Figure ��
 and then allowing substitution upwards only� More



��
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precisely� call two nodes cyclically equivalent if they are lying on a common cycle� A plane

is a cyclic equivalence class� If there is a path from node s to node t
 and s� t are not in the
same plane
 we de�ne s � t� Now suppose � � �� Then

f� � � � � � t���� � � � � � � s� � � �g ���as f� � � � � � t�s�� � � � � � � s� � � �g�

Here in t��� just one occurrence of � is displayed and replaced by s� So in Figure ��

displaying the system

f� � F��� �� ��� � � H�G���� ��� � � H�C� ��� � � G���g

the only ���as �steps are from � in �
 from � in �
 from � in ��

Proposition ���	 ���as is conuent�

Proof� We �rst show that ��� as is weakly�con�uent� Consider two diverging acyclic

substitutions
 the �rst for � in �
 the second for � in �� So we have the system equations as
follows�

� � � � � � � � �
� � ���
� � 	 	 	� 	 		
� � ���

Here �
 �
 �
 � need not be all di�erent� Clearly
 � �� � and � �� � since the substitutions
are acyclic� Now distinguish�

�� Case �� �
 � and �� � have empty intersection� Then the two substitutions are
trivially commuting�



�� Copying� substitution and �attening ��

�� Case �� The two sets as in case � have one element in common�

���� Case ���� � � �� Then the situation is

� � � � � � � � � � � � �
� � ���
� � ���

and the commuting property of the two substitutions is again trivial�

���� Case ���� � � �� Then we have

� � 	 	 	� 	 		
� � � � � � � � �
� � ���

Again the substitutions commute� However
 in this case we need to
perform two substitutions step
 one for � in � and one for � in ��

���� Case ���� � � �� Easy�

�� Case �� �� � � �� �

���� Case ���� � � �
 � � �� We have

� � � � � � � � � � � � �
� � ���

and commutation is trivial�

���� Case ���� � � �� � � �� This case is ruled out by acyclicity of the
substitutions�

From the above case analysis it is easy to see that ���as satis�es the parallel move lemma


and thus is con�uent� �

As before
 the notion of ���as is not primitive and can be analyzed in terms of copying

and acyclic hiding ����ah �� This is hiding of a node not on a cycle�

Proposition ���
 ���as ����c � ���ah

As an example of the strict inclusion in the above proposition consider�

M � f� � F�� � � G�g ���c f� � F�� � � G��� �� � F��� �� � G��g ���ah

f� � FG��� �� � F��� �� � G��g

but M ����as M��

Theorem ���� ���c � ���ah is conuent�



��

Remark ���� Copying
 however
 does not commute with acyclic hiding�

� � F��� ��
� � G���
� � �

���ah � � F��� ��
� � G���

�c �c

� � F���� ��
� � G���
�� � G���
� � �

���c ���ah � � F���� ��
� � G���
�� � G���

Before doing the hiding an extra copy step is required�

Remark ��� Another easy way of avoiding the out�of�synch phenomenon is by performing
a parallel substitution
 which consists in substituting at once for all the recursion variables�
Notation� ���ps �

f�� � t�� � � � � �n � tng ���ps f�� � t�� ��n��tn�� � � � � �n � tn� ��n��tn�g

For example
 we have

f� � F���� � � G���� � � H���g ���ps f� � F�G����� � � G�H����� � � H�F����g

We expect that ���ps � ���c is con�uent
 but refrain from proving this as this notion of

substitution is less interesting to us �we always have references to the original nodes
 which
seems not to be a proper form of unwinding��

	� Translations between ��terms and recursion systems

��	 Translation of a ��term into a recursion system

We will transform a ��term in a number of steps into a recursion system� During the pro�
cedure
 named �
 we have a recursion system in which also ��terms may appear on the
right�hand side of the equations� Let M be a ��term� Suppose M has been ��converted
�renamed� such that all variables bound by � are distinct� Moreover
 rename those variables
in greek letters �� �� � � ��
�i� If M does not start with �
 or if M is �
 we write � �M �
�ii� if M is ���N 
 we write � � N �
�iii� let one of the right�hand sides of the equations contain a subterm ���P � Then add the
equation � � P to the system
 and replace ���P by ��

�iv� if no � appears in the system
 remove equations of the form � � � after substituting �
for all �other� occurrences of ��

�v� replace an equation � � � by � ���

Remark 	�� The translation � is not injective� In fact
 precisely the ��terms that are
provably equal by means of the following identities �all provable from EL�� are identi�ed by
��

���t � t if � does not occur free in t
������t � ������t
������t��� �� � ���t��� ���



	� Translations between ��terms and recursion systems ��

Example 	��

�i� ������F��� �� ���

� � ���F��� �� ���

� � �� � � F��� �� ���

� � F��� ��

�ii� ���F�G�H����� ���

� � F�G�H�����

The second example indicates that the translation may result in a non��at system�

We claim that � as de�ned here
 yields the same graph as � in De�nition ���� We omit the
tedious routine proof of this claim� Also� � is non�deterministic
 but yields a unique result�

��� Translation of a recursion system into a ��term

We will now de�ne a translation�

� � Graph���� Term����

We will do so by using an auxiliary function � and a notion of �environments��

mu � Term���� Env���� Term����

Thus�
��f�jEg� � muE���

where E � Env��� is a set of recursion equations� �So E is a system of recursion equations
as before
 but without indication of a root equation��

muE��� � � if � does not occur in the left�hand side of any equation in E

muf�	tg�E��� � ���muE�t�
muE�Fn�t�� � � � � tn�� � Fn�muE�t��� � � � �muE�tn��

Now de�ne for a system of recursion equations f� j Eg�

��f� j Eg� �muE���

Remark 	�� Let E be f�� j �� � t������ � � � � �n � tn����g� Then�

��f�� j Eg� � ����t����� ��f�� j E � ��g�� � � � � ��f�n j E � ��g�g�

where E � �� is the set of equations f�� � t������ � � � � �n � tn����g�

Example 	�� f� j Eg � f� j � � F��� 
�� � � G�
�� 
 � H���g� Then�

���f� j Eg � muE��� �

���muf�	G���� �	H���g�F��� 
�� �

���F�muf�	G���� �	H���g����muf�	G���� �	H���g�
�� �

���F����muf�	H���g�G�
��� �
�muf�	G���g�H����� �

���F����G�muf�	H���g�
��� �
�H�muf�	G���g����� �

���F����G��
�mu	�H������ �
�H����mu	�G�
���� �
���F����G��
�H����� �
�H����G�
����



��

Note that the binder �� turns out to be super�uous
 and likewise the �rst �
 and the second
��� Removing these we obtain

F����G�H����� �
�H�G�
����

Remark 	�	 It is interesting to compare the translation � with the following non�
deterministic translation procedure ��
 which roughly seems to be the procedure that is
the inverse of � in the previous section�
�i� Replace the root equation � �M by ���M �
�ii� let the system contain an equation � � N � Then� omit this equation
 and replace each
occurrence of � by ���N �

�iii� repeat until no more equations are present�
�Optimization� if in �i�
M does not contain � �directly or indirectly
 via other equations�

then ���M �M and we can replace just by M � Likewise for �ii���

As before the translation is performed in a number of steps
 during which we have a hybrid
��term�
Note that the result of the above procedure is not unique� In fact
 let M be f� j Eg as in

Example ��	� Then applying �� on M may yield both

F�G��
�H�G�
���� �
��H�G�
����

or
F����G�H�����H����G�H�������

However
 we do not obtain the minimal term containing vertical sharing only
 which was
found in Example ��	� The above terms and the minimal one are displayed in Figure ���
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The following proposition states that the translation � indeed is �best possible�� it only
removes the horizontal sharing
 but preserves all the vertical sharing�

Proposition 	�
 Let M a term graph� Then�

�i� M ���c ����M���

�ii� ����M�� has only vertical sharing�

�iii� if M ���c M
� and M � has only vertical sharing� then ����M�� ���c M

��




� A complete proof system for ��terms �	

Reexivity� t � t

Symmetry�
t� � t�
t� � t�

Transitivity�
t� � t� t� � t�

t� � t�

Substitution�
t� � s� t � t�

t��x �� t� � s��x �� t��

Unwinding� ���t��� � t����t����

Renaming� ���t��� � ���t���

Folding�
t� � t�t��

t� � ���t���
� guarded in t���

Table 	� EL�

Proof� Sketch� We use the representation of a term graph as G � �T�H� of Section ��	�
Suppose the term graph G exhibits a cyclic node equation � � �� � For convenience
 suppose
the recursion system corresponding to G is �at� The cyclic equation is visible as a cyclic
dependence of the recursion variables� An inspection of the translation procedure � readily
shows that the cyclic dependence stays preserved� Hence the result of the translation yields
the �minimally horizontally�unshared� term graph� �


� A complete proof system for ��terms

As an application of the theory for term graphs discussed in Sections � and 	
 and the
translations given in the previous section
 we present a simple proof of completeness of the
proof system EL� shown in Table 	� Completeness is with respect to the semantics of in�
�nite unwinding� The theorem is undoubtedly well�known to many people
 also because it
is analogous to the completeness theorem in Milner �Mil�	� for ��terms in process algebra
��regular behaviors��� At present we do not know references to proofs in the literature �actu�
ally
 this question for references including the proof system in Table 	 was mentioned to us
in correspondence by T� Nipkow�� anyway we include the proof below because it shows the
convenience of reasoning with the concepts of bisimulation and copying�

De�nition 
�� A recursion variable � is guarded in t��� if � is preceded by a function
symbol other than � �equivalently
 if t��� contains a function symbol other than ���



��

Example 
�� The following derivation shows that EL� � ���F��� �� � ������F��� ���

���F��� �� � F����F��� ��� ���F��� ��� by unwinding
���F��� �� � ���F����F��� ��� �� by folding
���F��� �� � ����F��� �� by folding

Remark 
�� Note that the proviso in the folding rule is necessary� without it we could
derive�

M �M

M � ����

N � N

N � ����

���� � N

M � N

The addition in De�nition ��� �other than �� is necessary too� otherwise we would have for
M not containing ��

���M �M

M � ���M
M � �������

M � ����

Let Term���� be the set of ��terms over the signature �
 let Graph��� be the set of �at
recursion systems over �
 and let Term
��� be the set of possibly in�nite terms �trees� over
�� As de�ned before
 we have a semantic mapping �� ��
 denoting in�nite unwinding�

�� �� � Term���� � Term
���

�� �� � Graph��� � Term
���

�Actually
 we should use �� ��� and �� ���
 but our ambiguous notation will not cause confusion��
Let � � Term���� � Graph��� and � � Graph��� � Term���� be the translations as in the
previous section�

Proposition 
�� Let M � Term����� E � Graph���� Then�

�i���E�� � ����E��� and �ii���M �� � ����M����

That is� � and � are sound with respect to �� ���

Proof� �i�� easy induction on the number of recursive equations�
�ii�� by structural induction on M � �

De�nition 
�	 Let M� � Term����� Then�

M� j� E �M� solves E�

if E � f�� � t������ � � � � �n � tn����g and there are M�� � � � �Mn � Term���� such that

EL� �Mi � ti� �M � for all i � �� � � � � n�




� A complete proof system for ��terms �


Example 
�
 �i� Let E be f� � F���g
 we have ���F��� j� E
 because ���F��� �
F����F���� by applying the unwinding rule�
�ii� If E is f� � F���� � � G���g then ���F�G���� j� E
 because

��� EL� � ���F�G���� � F����G�F�����

by the application of the unwinding
 folding and transitive rule�

��� EL� � ���G�F���� � G����F�G������

Proposition 
�� Let M � Term����� E � Graph���� Then�

M j� E �� EL� �M � ��E��

Proof� We must prove a stronger statement in order to let the following induction argument
go through� To that end
 let N�M�� � � � �Mk � Term����� We de�ne N j� E for systems

E � f�� � t����� �M�� � � � � �n � tn���� �M �g as before
 but with the di�erence that the right�
hand sides of the equations in E now are allowed to contain occurrences of �M �M�� � � � �Mk

as indicated� Notation� E������� �� �M � denotes the substitution of M�� � � � �Mk for ��� � � � � �k

respectively�

We aim to prove�
Let E���� be the system of recursion equations f�� � t����� ���� � � � � �n � tn���� ���g� �Here
�� � ��� � � � � �k are free recursion variables�� Then�

M� j� E������� �� �N � �� EL� �M� � ��E�������� �� �N ��

�Henceforth we will write just � for EL� ���
The proof is by induction on the number of equations in E�

�� Base case� easy�

�� Induction step� suppose proved for n� Now consider M�
 E����
 �N as in the
statement to prove� Let M�� � � � �Mn be the auxiliary solutions
 i�e��

�Mi � ti�M��M�� � � � �Mn� �N � �i � �� � � � � n�

So Mi j� f�i j E � ��g���� �� �� M�� �N � �i � �� � � � � n�� By induction hypothesis
� � Mi � ��f�i j E � ��g����� �� �� M�� �N � �i � �� � � � � n�� We know� � M� �
t��M��M�� � � � �Mn� �N�� So�

�M� � t��M�� ��f�� j E���g���� ��M��� � � � � ��f�n j E���g���� ��M��� ������ �� �N �

But then by folding�

�M� � ����t����� ��f�� j E � ��g�� � � � � ��f�n j E � ��g�� ������ �� �N �

By Remark ����
�M� � ��f�� j E����g���� �� �N �

which ends the proof�



��

�

Proposition 
�� Let M � Term����� E � Graph���� Then�

M j� E and E ���c E
� ��M j� E��

Proof� To avoid cumbersome notation we consider an example� Let E be f� � F��� ��� � �
G���g� Suppose M j� E� so there is an N such that EL� � M � F�M�N� and EL� � N �
G�M�� Now suppose E ��� c E� via addition of equations �� � �� ��� � �� �� � �
 next

deriving a canonical system E�� Then it is clear that M j� E�
 by substituting for �� ��� ���

respectively �� �� the ��terms M�M�M respectively N�N � �

Proposition 
� For M � Term����� M j� flat���M���

Proof� The translation procedure � yields starting from M 
 a sequence of hybrid recursion
systems �i�e�� where right�hand sides may contain ��terms�� The relation j� is extended to
such systems as in the proof of Proposition ���� Let this sequence be E�� E�� � � � � Ek � ��M��
We prove M j� Ei �i � �� � � � � k��

�� Base case� If E� was obtained by applying clause �i� of the de�nition of �
 then
trivially M j� f� � Mg� If E� was obtained by clause �ii�
 then M � ���N j�
f� � Ng by applying the unwinding axiom of EL��

�� Induction step� Suppose M j� Em� Let Em�� be obtained by lifting out an
occurrence of ���P��� ��� from a right�hand side
 replacing it by �
 and adding
� � P��� ��� to the system� Now it is clear that adding ���P��� ��� as a solution
for � does the job� Here �� denotes the tuple of solutions for �� that are already
present�

�

Theorem 
��� Let M��M� � Term����� Then�

��M��� � ��M����� EL� �M� �M��

Proof� Soundness ����� clear� Completeness ����� By soundness of � we have�

��M��� � ��M��� � ����M���� � ����M�����

Since �attening does not a�ect the basic structure of a term
 we have that ��flat���M����� �
��flat���M������ This means that flat���M����sflat���M���
 and by Corollary 	�� there
exists an E such that flat���Mi�� ��� c E �i � �� ��� By Proposition �� we have Mi j�

flat���Mi��� i � �� �� Hence
 by Proposition ���
 Mi j� E� i � �� �� By Proposition ����
EL� �Mi � ��E�� So EL� �M� �M�� �

Example 
��� We want to show that the following two terms M� and M� are provably
equal�

���F���F��� ��� and ���F�F��� ��� ���



�� Orthogonal term graph rewriting with copying ��

Following the steps of the proof we derive that we need to show them both equal to

���F����F���F��� ���� ���F�F��� ��� ����

In fact
�M� � F�M��F�M��M��� unwinding rule
�M� � ���F�M��F���M��� folding rule
� F�M��M�� � F�F�M��F�M��M����M�� unwinding rule
� F�M��M�� � ���F�F�M�� ���M�� folding rule
�M� � F����F�M��F���M���� ���F�F�M�� ���M��� transitivity rule
�M� � ���F����F���F��� ���� ���F�F��� ��� ��� folding rule

Similarly for M��

�� Orthogonal term graph rewriting with copying

Analogous to term graphs
 graph rewrite rules are also expressed in equational format� For
example
 the cyclic Y�rule depicted in Figure �
 is expressed as�

f� � Ap��� ��� � � Yg ��� f� � Ap��� ��g

De�nition ��� Let l and r be term graphs with the same root� Then� l� r is a term graph

rule�

As is customary in TRSs two conditions are imposed on rules� Namely
 ��� the left�hand
side cannot be of the form f� � �g
 ��� the free variables occurring in the right�hand side
are a subset of those occurring in the left�hand side� However
 rules are not restricted to �at
systems only� For example
 f� � F�G����g ��� f� � �g is a legitimate rule�

De�nition ��� Let � � l � r� The rule � is said to be left�linear if for all variables �
occurring in l
 Acc��� is a singleton�

In other words
 the rules f� � F���g ��� f� � �g and f� � F��� ��g � f� � �g are

non�left�linear� For example
 the left�hand side of a left�linear rule has to be a tree�

Before stating the de�nition of overlapping rules we need some more de�nitions�

De�nition ��� A substitution � is a map from Term��� to Term��� such that

��F�t�� � � � � tn�� � F���t��� � � � � ��tn���

We extend � to system of recursion equations as follows �we will require that � only acts
non trivially on the free variables of the system�� ��f�� � t�� � � � � �n � tng� � f����� �
��t��� � � � � ���n� � ��tn�g� We will also write t

� instead of ��t��

De�nition ��� Let g�� g� be term graphs� g� and g� are called compatible �written as g� � g��
if there exists a term graph g�
 substitutions �� and ��
 such that
�i� g��� � g� and g

��
� � g�

�ii� ROOT�g��� � � ROOT�g��� � � ROOT�g���



��

De�nition ��	 Let �� � l� � r�� �� � l� � r�� We say that �� overlaps with �� i� �� occurring
in l�
 such that

�l� j �� � l�

If �� � ��
 then it must be the case that � is distinct from the root of l��

Example ��
 Rule � � l � f� � L���� � � L���g ��� f� � �g overlaps with itself because

�l j �� � l� The rule f� � L�L���g ��� f� � �g is not overlapping� Likewise the rules�

f� � F���� � � G���g ��� f� � �g and f� � H���� � � G���g ��� f� � �g are not

overlapping�

In the following
 TGRS stands for Term Graph Rewriting System�

De�nition ��� A TGRS is said to be orthogonal if all the rules are left�linear and non�
overlapping�

De�nition ��� Let � � l� r
 � a bound variable occurring in g� Then ��� �� �� is a redex if
l� � g and ROOT�l�� � ��

Thus
 detection of a redex boils down to matching parts of a system of recursion equations�
If � is the root of a redex in g we also write g � C�� � t�
 where C��� is the usual notation
for a context�

De�nition �� Let ��� �� �� be a redex occurring in g� Let � � l � r
 g � C�� � t�� Then
g ��� h � C�� � �r����
 with �r��� denoting the renaming of all bound variables �using fresh

variables�
 except the root
 of r��

Note that only the root equation gets rewritten
 and that it may be replaced by several
equations� Renaming is necessary to avoid collision with the variables in a system�

Example ����
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�� Orthogonal term graph rewriting with copying ��

�i� Consider the rule�

f� � F��� ��� � � G��� �� ��� � � H��� �� 
� ��g ��� f� � G��� �� 
�g

and the system�

f� � P��� ��� � � F��� ��� � � G��� �� ��� � � G��� �� ��� � � H��� �� �� ��� � � Cg

Both rule and system are displayed from left to right
 respectively
 in Figure ��� After
��� renaming the rule we obtain�

f� � F��� ��� � � G��� �� ��� � � H��� �� �� ��g ��� f� � G��� �� ��g

We recognize the left�hand�side of the rule as a subset of the system under consideration
�underlined part��

f� � P��� ��� � � F��� ��� � � G��� �� ��� � � G��� �� ��� � � H��� �� �� ��� � � Cg

and rewrite accordingly
 replacing only the �rst line �the root equation� � � F��� �� of the
redex by the right�hand side � � G��� �� �� of the rule �which in this example happens to
be just one equation��

f� � P��� ��� � � G��� �� ��� � � G��� �� ��� � � G��� �� ��� � � H��� �� �� ��� � � Cg

In this case
 no garbage collection
 i�e�� 
 removal of super�uous equations
 is necessary�
�ii� In the previous example
 matching was done on the basis of ��� matching �renaming� of
variables
 but we want to be able to rewrite also e�g�� f� � F��� �� ��� � � G���g with
the rewrite rule�

f� � F��� �� 
�� � � G���� � � G���g ��� f� � G��� ��� � � H�
� �� ��g

This is possible
 with the matching �variable substitution� � � �� � � �� � � �� 
 �
�� � � �� � � �
 which this time is not ���
 we get the result

f� � G��� ��� � � H��� �� ��� � � G���g

�iii� To allow for reduction of non��at systems
 a term �i�e�� TRS term� can be substituted
for the free variables of a rule� Thus
 the rule�

f� � F���g � f� � �g

is applicable to g � f� � F�G����g
 with substitution� �� �� � � G���� After reduction
we will obtain� f� � G���g�

�iv� Consider the following rules�

�� � f� � F���� � � G���g ��� f� � H���g and �� � f� � F�G����g ��� f� � �g

and the following systems�

g� � f� � F�
�� 
 � G���  � �g g� � f� � F�G����g g� � f� � F�G����  � �g

Rule �� is applicable to g� but not to g� and g� because it involves matching � with either
F�G���� or �G���� On the other hand
 rule �� is applicable to both g� and g�
 but not to
g��



��

Theorem ���� A TGRS without overlapping rules is conuent up to renaming�

Proof� Let ��� ��� ��� and ��� ��� ��� be two redexes occurring in g ��i � li ��� ri�i � �� ����

Let g
�
��� g� and g

�
��� g�� Since all rules are non overlapping it must be the case that

� �� �� Moreover
 the descendant of � in g� is still a redex
 likewise
 for � in g�� Therefore

the following diagram trivially commutes�

g � C�� � t� � � s� ��� g� � C�� � t� � � �r�
�����

� �
g� � C�� � �r�

����� � � s����g� � C�� � �r�
����� � � �r�

�����

�

The restriction of non�left�linearity is not necessary to guarantee con�uence� However

we do need to restrict our attention to orthogonal TGRSs if also copying is considered
 as
observed in �Sme�� for the acyclic case�

Example ���� Consider the non�left�linear rule � � f� � F��� ��g ��� f� � �g and the

system g � f
 � F��� ��� � � �g� Rule � is applicable to g� However
 if we perform one copy
step obtaining g��

g���c g� � f
 � F��� ���� � � �� �� � �g

then rule � is no longer applicable to g��

The proof of the following proposition is routine�

Proposition ���� Given an orthogonal TGRS� then�

g ��� g� and g ���c g� �� �g�� g� ��� g� and g� ���c g��

Pictorially�
g ��� g�

�
c

�
c

g� ��� g�

�Here ��� is the transitive reexive closure of �����

Remark ���� Reduction ��� does not commute with���
c

�or �
 functional bisimulation��

Counterexample� consider the rule

f� � Cg ��� f� � Dg

Then g� � f� � F��� ��� � � C� � � Cg ��� f� � F��� ��� � � C� � � Dg � g�� Also

g� ���c f� � F��� ��� � � Cg � g�� Now g� can be rewritten to g� � f� � F��� ��� � � Dg


but that is not a ���
c

�result of g�� �See Figure ���� So
 reduction ��� does not commute

with bisimilarity�� Yet
 many interesting facts can be established for this union ��� � ���
c

� this has been established in work of Plump and Hofmann ��collapsed tree rewriting��
�HP��
 Plu��� There
 after each rewriting the graph can be maximally collapsed� this yields
a gain in e#ciency�



�� Orthogonal term graph rewriting with copying ��
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Corollary ���	 Orthogonal TGRSs are conuent with respect to ��� � ���c �

Proof� At once from Theorem ���� and Proposition ����� �

Proposition ���
 Orthogonal TGRSs are conuent with respect to ��� � ���csf �

��	 Weakly orthogonal term graph rewriting

It is well�known that for �rst�order term rewriting one can release the orthogonality condi�
tion somewhat while still retaining con�uence� Speci�cally
 all weakly orthogonal TRS are
con�uent� A TRS is called weakly orthogonal if all critical pairs are trivial
 i�e�� of the form
ht� ti� This is a useful result
 since it admits also rewrite rules such as�

or�x� true� ��� true

or�true� x� ��� true

�Recently
 this has also been shown to be the case for higher�order term rewriting in the
framework of Combinatory Reduction Systems or CRSs� all weakly orthogonal CRSs are
con�uent� The prime example of a weakly orthogonal CRS is ��
�calculus� This result is
due to van Oostrom and van Raamsdonk��
The question arises whether analogously we can upgrade the con�uence theorem for or�

thogonal TGRSs to allow for rules that are only weakly orthogonal� To that end
 we note
that the notion does not carry over directly to TGRSs�

Example ���� Consider the TGRS system R with rules�

�� � f� � F���� � � G�
�g ��� f� � F���� � � �g

�� � f� � G���g ��� f� � �g

If we apply naively the familiar notion of weakly orthogonality we erroneously deduce that the
above rules are weakly orthogonal and thus deriving that R is con�uent� However
 consider
the term�

M � f� � H��� 
�� � � F�
�� 
 � G���� � � �g



��

Then we have the following reductions�

M ���
��

M� � f� � H��� 
�� � � F���� � � �� 
 � G���� � � �g ���
��

M �
� � f� � H��� 
�� � � F���� � � �� 
 � �g

M ���
��

M� � f� � H��� 
�� � � F�
�� 
 � �g

Note that M� and M� are not equivalent up to renaming� note however that M� ���c M
�
��

From this example we conclude that in analyzing the critical pairs we cannot discard
the garbage in a term� That is
 let M be the common instance of rules �� and ��
 i�e��
M � ��� j �� � ��
 with M � f� � F���� � � G���� � � �g� We consider the critical pair
hf� � F���� � � �� � � G���� � � �g� f� � F���� � � �� � � �gi
 not trivial because the
two terms are not equivalent up to renaming�
Interestingly enough the rules�

f� � F�G����g ��� f� � F���g

f� � G���g ��� f� � �g

are not even overlapping�

De�nition ���� Given two rules �� and ��
 we say that �� overlaps weakly with �� �� if ��
overlaps with �� then if we let M be the common instance of �� and ��
 we have M ���

��
M�

and M ���
��

M�
 with M� and M� equivalent up to renaming without removing the garbage�

Proposition ��� A TGRS with weakly overlapping rules is conuent�

Note that if we apply the naive version of weakly orthogonality then the system is con�uent
up to copying�

De�nition ���� A TGRS is said to be weakly orthogonal i� all the rules are left�linear and
weakly overlapping�

�� Translation of a TRS into a TGRS


�	 Flat translation

In this section we will not study the relation between �ordinary� term rewriting and term graph
rewriting� we only brie�y indicate the straightforward way in which TRSs can be translated
into TGRSs
 thereby preserving orthogonality� This translation yields an acyclic TGRS �i�e��
left�hand side
 right�hand side of all rules are acyclic�� For a comparison between TRSs and
TGRSs with respect to obtaining normal forms
 in the acyclic setting
 see �BvEG����� For
general notions of adequacy of graph rewriting versus term rewriting
 see �KKSdV	
 Ari���

De�nition ��� Let R be a TRS
 � � l��x� ��� r��x� a rule in R� Then � will be translated as

follows�
�i� replace �x � x�� � � � � xn by recursion variables �� � ��� � � � � �n�



�� Translation of a TRS into a TGRS �	

�ii� consider the so obtained TRS rule

f�� � l����g ��� f�� � r����g

Now the intended graph rewriting rule is obtained by �attening left�and�right hand side
of the last rule�

�at�f�� � l����g� ��� �at�f�� � r����g��

It should be pointed out that with the resulting TGRS
 we are also able to rewrite cyclic
graphs� That is
 we not only pro�t from the �horizontal� sharing of subterms as in acyclic
graphs
 but also from being able to rewrite cyclic terms� Now we have a link with trans�
�nite orthogonal term rewriting
 as developed in �KKSdV��� Without the routine proofs
we mention the following �soundness� property of graph rewriting with respect to in�nitary
rewriting�

Let R be an orthogonal TRS� Let R	 be its graph version as de�ned above� Let R

 be the

in�nitary version of R� �Actually
 the rules of R
 are as for R
 but the instantiations may
involve in�nite terms��

Let �� �� be the possibly in�nite unwinding of a graph in R	 
 yielding a tree in R

�

Then�
�i� g ���csf g� �� ��g�� � ��g���

�ii� g ���R� g� �� ��g�� ����� ��g
����

Here
 in �ii�
 the left�hand side is a graph rewriting step
 while the right�hand side is a
possibly in�nite rewriting sequence in R
� Soundness with respect to in�nitary rewriting is
also proved in �FW���
Note that every orthogonal acyclic �at TGRS
 is the image under this translation of an

�orthogonal� TRS�

Example ��� �i� Consider the rules of Combinatory Logic�

Ap�Ap�Ap�S� x�� y� z�� ��� Ap�Ap�x� z��Ap�y� z��

Ap�Ap�K� x�� y� ��� x

Pictorially the S�rule is drawn in Figure �� in Figure �� we show which nodes are shared�
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These will be translated into a TGRS in the following way�

f� � Ap��� ��� � � Ap��� ��� � � Ap�� ���  � Sg ��� f� � Ap��� 
�� � � Ap��� ��� 
 � Ap��� ��g

f� � Ap��� ��� � � Ap�� ���  � Kg ��� f� � �g

�ii� Consider Combinatory Logic with the rule Dxx ��� x� This TRS is not con�uent �Klo�


but its TGRS translation is� The translation consists of the TGRS in the preceding examples

plus

f� � Ap��� ��� � � Ap��� ��� � � Dg ��� f� � �g�

Con�uence follows from Theorem ����� the rules do not overlap�

Example ��� Consider the TRS rules�

C ��� A�B�C��

A�x� ��� x

B�x� ��� x

then by applying the translation we obtain�

f� � Cg ��� f� � A���� � � B���� � � Cg

f� � A���g ��� f� � �g

f� � B���g ��� f� � �g

Remark ��� Note that we could apply a more optimized translation
 thus avoiding the
creation of a new redex each time the �rst rule is applied� That is
 we can translate the �rst
rule as�

f� � Cg ��� f� � A���� � � B���g

This translation exhibits the �redex capturing � phenomenon discussed in Farmer and Watro
�FW���
We will consider this optimization not as part of the basic graph rewriting mechanism
 but

rather as an �add�on feature� whose e�ect will not be studied in the present paper�



� Concluding remarks and future work �


Proposition ��	 The translation of an orthogonal TRS is an orthogonal TGRS�

Proof� Clear� �

As mentioned in the previous section the translation of a weakly orthogonal TRS is not
necessarily a weakly orthogonal TGRS�

Example ��
 Let R be a TRS with rules�

F�G�x�� ��� F���

G�x� ��� �

R is weakly orthogonal because the critical pair hF�G�x���G�x�i has a common reduct
 namely
the term F���� While the translated system R��

f� � F���� � � G�
�� 
 � xg ��� f� � F���� � � �g

f� � G���� � � xg ��� f� � �g

is not weakly orthogonal �as already pointed out in the previous section��


�� Non�at translation

Proposition ��� The non�at translation of a weakly orthogonal TRS is a weakly orthogonal

TGRS�

� Concluding remarks and future work

Some of the simplicity of term rewriting is lost in dealing with term graphs due to the match�
ing of sets of equations instead of matching of terms� Furthermore
 the natural operation
of substitution introduces non�con�uence� This loss of con�uence is the more surprising in
a comparison with the con�uent R��calculus
 where also a form of substitution is present in
order to create redexes� This raises the desire of �nding a calculus for term graph rewriting
that combines the simplicity of term rewriting with the ability to express the di�erent forms
of sharing that arise in common implementations of functional languages �i�e�� horizontal
and vertical sharing�� Presently we are elaborating a framework employing nested systems
of recursion equations that seems promising in this respect� To design and understand such
a framework
 an analysis of fundamental operations on term graphs such as copying
 substi�
tution
 �attening and hiding as in Section 	 of this paper is indispensable�
We are also interested in extending the framework to accommodate cyclic ��graphs
 an

endeavor that can be seen as an extension of the work on the ���calculi ���calculi with explicit
substitution� �ACCL�
 Cur�
 HL�
 Les	
 Ros��� However
 the latter concern acyclic
substitutions only
 while we aim at a calculus allowing cyclic substitutions� A preliminary
study appears in �AK	��
Furthermore
 we intend to study the suitability of equational graph rewriting for expressing

side�e�ect operations� To that end
 an extension is needed to include both rules and terms
with multiple roots�
We expect that a �nal system obtained along these lines
 can be used to express the

operational semantics of current functional languages extended with a notion of state
�HPJW��
 Nik���
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