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Abstract. Lattice signature schemes generally require particular care
when it comes to preventing secret information from leaking through sig-
nature transcript. For example, the Goldreich-Goldwasser-Halevi (GGH)
signature scheme and the NTRUSign scheme were completely broken
by the parallelepiped-learning attack of Nguyen and Regev (Eurocrypt
2006). Several heuristic countermeasures were also shown vulnerable to
similar statistical attacks.

At PKC 2008, Plantard, Susilo and Win proposed a new variant of
GGH, informally arguing resistance to such attacks. Based on this vari-
ant, Plantard, Sipasseuth, Dumondelle and Susilo proposed a concrete
signature scheme, called DRS, that has been accepted in the round 1 of
the NIST post-quantum cryptography project.

In this work, we propose yet another statistical attack and demon-
strate a weakness of the DRS scheme: one can recover some partial infor-
mation of the secret key from sufficiently many signatures. One difficulty
is that, due to the DRS reduction algorithm, the relation between the
statistical leak and the secret seems more intricate. We work around this
difficulty by training a statistical model, using a few features that we
designed according to a simple heuristic analysis.

While we only recover partial information on the secret key, this infor-
mation is easily exploited by lattice attacks, significantly decreasing their
complexity. Concretely, we claim that, provided that 100 000 signatures
are available, the secret key may be recovered using BKZ-138 for the
first set of DRS parameters submitted to the NIST. This puts the secu-
rity level of this parameter set below 80-bits (maybe even 70-bits), to be
compared to an original claim of 128-bits.

Keywords: Cryptanalysis · Lattice based signature
Statistical attack · Learning · BDD

1 Introduction

At Crypto’97, Goldreich, Goldwasser and Halevi proposed the encryption and
signature schemes [16] whose security relies on the hardness of lattice problems.
Concurrently, a practical scheme, NTRUEncrypt was proposed, and adapted
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for signatures a few years later (NTRUSign [18]). In 2006, Nguyen and Regev
presented a celebrated statistical attack [23] and completely broke GGH and
NTRUSign in practice. The starting point of NR attack is a basic observation
that any difference between signature and message always lies in the paral-
lelepiped spanned by secret key. Thus each signature leaks partial information
about the secret key, which allows to fully recover the secret key from sufficiently
many signatures. In 2012, Ducas and Nguyen revisited NR attack [13] and showed
that it could be generalized to defeat several heuristic countermeasures [18,19].

Designing secure and efficient lattice based signatures remains a challenging
problem. To get rid of information leaks, the now standard method is to use
a delicate sampling algorithm for trapdoor inversion [15,25].1 Following such
setting, it can be proved that signatures are independent of the secret key. Yet
this provable guarantee doesn’t come cheap in terms of efficiency and simplicity:
it remains very tempting to make more aggressive design choices.

Such a design was proposed by Plantard, Susilo and Win [27]. It is very
close to the original GGH scheme, with a modified reduction algorithm that
produces signatures falling in a known hypercube, independent of the secret key.
According to the authors, such property should prevent the NR attack. The
main idea of [27] is to reduce vectors under �∞-norm instead of Euclidean norm.
Recently, Plantard, Sipasseuth, Dumondelle and Susilo updated this scheme, and
submitted it to the NIST post-quantum cryptography project, under the name of
DRS [26], standing for Diagonal-dominant Reduction Signature. Currently DRS
is in the list of round 1 submissions to the NIST post-quantum cryptography
project.

Our results. In this work, we present a statistical attack against the DRS
scheme [26,27]. We first notice that while the support of the transcript dis-
tribution is indeed fixed and known, the distribution itself is not, and is related
to the secret key. More concretely, in the DRS signature, the reduction algorithm
will introduce some correlations among coordinates wi’s of the signature, and
these correlations are strongly related to certain coefficients of the secret key S.

In more details, we assume that the coefficient Si,j can be well approximated
by some function of the distribution of (wi, wj) and proceed to profile such a
function according to known instances (the training phase). Once we have the
function, we can measure over sufficient signatures and obtain the guess for an
unknown secret S.

With a few extra amplification tricks, we show this attack to be rather effec-
tive: for the first set of parameters, 100 000 signatures suffice to locate all the
large coefficients of the secret matrix S and to determine most of their signs as
well. Finally, we can feed this leaked information back into lattice attacks (BDD-
uSVP attack), significantly decreasing their cost. Concretely, we claim that the
first set of parameters offers at most 80-bits of security, significantly less than
the original claim of 128-bits.

1 Alternatively, one may resort to the (trapdoorless) Fiat-Shamir with aborts approach
such as done in [12,21], yet for simplicity, we focus our discussion on the Hash-then-
Sign approach.



Learning Strikes Again: The Case of the DRS Signature Scheme 527

As a by-product, we formalize how to accelerate BDD attack when given some
known coefficients of the solution. More specifically, we are able to construct a
lattice of the same volume but smaller dimension for this kind of BDD instances.

Our scripts are open source for checking, reproduction or extension purposes,
available at https://github.com/yuyang-Tsinghua/DRS Cryptanalysis.

Related work. Very recently, Li, Liu, Nitaj and Pan proposed a chosen message
attack [17] against the randomized version of Plantard-Susilo-Win GGH signa-
ture variant [27]. Their starting observation is that the difference between two
signatures of a same message is a relatively short lattice vector in the randomized
Plantard-Susilo-Win scheme, then from enough such short lattice vectors one
may recover some short vectors of the secret matrix by lattice reduction. The
randomized modification is a crucial weakness of Plantard-Susilo-Win scheme
exploited by the attack in [17]. To fix such weakness, the authors mentioned two
strategies: storing previous messages and padding a random nonce in the hash
function. In comparison, our targeted scheme and technical idea are different
from those in [17]. More importantly, the weakness of the DRS scheme that we
demonstrate does not seem to be easily fixed.

Roadmap. In Sect. 2, we introduce notations and background on lattices. In
Sect. 3, we provide a brief description of DRS signature scheme. Then we explain
how to learn large coefficients of the secret matrix in Sect. 4, and how to com-
bine partial information and lattice techniques to recover the full key in Sect. 5.
Finally, we conclude and discuss potential countermeasure in Sect. 6.

2 Preliminaries

We use bold lowercase letters for vectors and denote by vi the i-th entry of the
vector v. We denote by ‖v‖ (resp. ‖v‖∞) the Euclidean norm (resp. �∞-norm)
of v. For simplicity and matching programming, we assume the script of each
entry of v ∈ R

n is an element of Zn = {0, · · · , n − 1}.
Let roti(v) = (v−i, · · · , v−i+n−1) be a rotation of v ∈ R

n. We denote by
sroti(v) the vector generated by roti(v) with each entry changing the sign
independently with probability 1/2. We define the set

T (n, b,Nb, N1) =

⎧
⎪⎨

⎪⎩
v ∈ Z

n
∣
∣
∣

Nb entries equal b;

v is a vector with exactly N1 entries equal 1;

and the rest of entries equal 0.

⎫
⎪⎬

⎪⎭
.

We use bold capital letters for matrices and denote by vi the i-th row of the
matrix V, i.e. V = (v0, · · · ,vn−1). We use Vi,j to represent the entry in the
i-th row and j-th column of V. Let In be the n-dimensional identity matrix.
We denote by ROT(v) (resp. SROT(v)) the matrix (rot0(v), · · · , rotn−1(v))
(resp. (srot0(v), · · · , srotn−1(v))). Note that all sroti(v)’s in SROT(v) are
generated independently. A matrix V is diagonal dominant if Vi,i >

∑
j �=i |Vi,j |

for all i.

https://github.com/yuyang-Tsinghua/DRS_Cryptanalysis
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For a distribution D, we write X ← D when the random variable X is
sampled from D. Given a finite set S, let U(S) be the uniform distribution over
S. We denote by E(X) the expectation of random variable X.

A (full-rank) n-dimensional lattice L is the set of all integer combinations of
linearly independent vectors b0, · · · ,bn−1 ∈ R

n, i.e. L = {
∑n−1

i=0 xibi | xi ∈ Z}.
We call B = (b0, · · · ,bn−1) a basis of L and write L = L(B). For a unimodular
matrix U ∈ Z

n×n, we have UB is also a basis of L(B), i.e. L(B) = L(UB). Let
(b∗

0, · · · ,b∗
n−1) be the Gram-Schmidt vectors of B. The volume of the lattice

L(B) is vol(L(B)) =
∏

i ‖b∗
i ‖ that is an invariant of the lattice. Given L ⊆ R

n

and t ∈ R
n, the distance between t and L is dist(t,L) = minv∈L ‖t − v‖.

Lattice reduction is an important tool for solving lattice problems and esti-
mating the security of lattice-based cryptosystems. The goal of lattice reduction
is to find a basis of high quality. The quality of a basis B is related to its root

Hermite factor rhf(B) =
(

‖b0‖
vol(L(B))1/n

)1/n

. Currently, the most practical lattice
reduction algorithms are BKZ [28] and BKZ 2.0 [10]. We denote by BKZ-β the
BKZ/BKZ 2.0 with blocksize β. In general, we assume the root Hermite factor
of a BKZ-β basis is bounded by

δβ ≈
(

(πβ)
1
β β

2πe

) 1
2(β−1)

when n � β > 50.

3 The DRS Signature Scheme

In this section, we are to make a brief description of the DRS scheme. We may
omit some details that are unnecessary for understanding our attack. For more
details on the algorithms and implementations we refer to [26].

To start with, we introduce several public parameters of DRS:

– n : the dimension
– D : the diagonal coefficient of the secret key
– b : the magnitude of the large coefficients (i.e. {±b}) in the secret key
– Nb : the number of large coefficients per vector in the secret key
– N1 : the number of small coefficients (i.e. {±1}) per vector in the secret key

Following the setting provided in [26], the parameter D is chosen to be n and
satisfies that D > b · Nb + N1.

The secret key of DRS is a matrix

S = D · In − M

where M = SROT(v) with v ← U (T (n, b,Nb, N1)
⋂

{v ∈ Z
n | v0 = 0}) is the

noise matrix. It is easily verified that S is diagonal dominant. The public key is
a matrix P such that L(P) = L(S) and the vectors in P are much longer than
those in S.
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Hash space. The specification submitted to the NIST [26] is rather unclear
about the message space. Namely, only a bound of 228 is mentioned, which
suggests a hash space M = (−228, 228)n, following the original scheme [27].
Yet, we noted that the implementation seems to instead use the message space
M = (0, 228)n: the sign randomization is present, but commented out. Discus-
sion with the designers2 led us to consider this as an implementation bug, and
we therefore focus on the analysis with M = (−228, 228)n, following both the
original scheme [27] and the intention of [26].

We strongly suspect that taking M = (0, 228)n would not be an effective
countermeasure against the kind attack analyzed in this paper. Preliminaries
experiments on this variant suggested that leak was stronger, but its relation to
the secret key seemed more intricate.

For our experiments, we generated directly uniform points in that space
rather than hashing messages to this space; according to the Random Oracle
Model, this should make no difference.

Signature. The signature algorithm of DRS follows the one in [27] and its main
component is a message reduction procedure in �∞-norm. It is summarized below
as Algorithm 1.

Algorithm 1. Message reduction in DRS signature algorithm
Input: a message m ∈ Z

n, the secret matrix S
Output: a reduced message w ∈ Z

n such that w − m ∈ L(S)
1: w ← m, i ← 0, k ← 0
2: repeat
3: q ← �wi/D�→0, (Rounding toward 0)
4: if q �= 0 then
5: w ← w − qsi

6: k = 0
7: end if
8: k ← k + 1, i ← (i + 1) mod n
9: until k = n

10: return w

In brief, the message reduction is reducing successively each large coefficient
mi of the message m by qD such that |mi − qD| < D but adding ±q,±qb to
mj with j �= i according to the entries of M, until all coefficients of the reduced
message are within (−D,D). Since S is diagonal dominant, the message can be
reduced within bounded steps as proved in [26,27].

Besides the reduced message w, an auxiliary vector k is also included in the
signature and used to accelerate the verification. To verify the signature, one
would first check whether ‖w‖∞ < D and then check whether m − w = kP.
In later discussions, we shall ignore the auxiliary vector, because it can be cal-
culated in polynomial time from w,m and the public key P.
2 https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/round-1/official-comments/DRS-official-comment.pdf.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/DRS-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/DRS-official-comment.pdf
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4 Learning Coefficients of the Secret Matrix

All DRS signatures w lie in and fill the region (−D,D)n. Unlike the GGH
scheme, the signature region is a known hypercube and independent of the secret
matrix, thus the DRS scheme was deemed to resist statistical attacks. However,
the distribution of random signature in (−D,D)n may be still related to the
secret key, which would leak some key information.

In later discussion, we aim at a concrete parameter set

(n,D, b,Nb, N1) = (912, 912, 28, 16, 432)

that is submitted to the NIST and claimed to provide at least 128-bits of security
in [26].

4.1 Intuition on a Potential Leak

Our approach is to try to recover Si,j by studying the distribution Wi,j of
(wi, wj). Indeed, when a reduction happens at index i: w ← w − qsi, and when
Si,j �= 0 some correlation is introduced between wi and wj . Symmetrically,
correlation is also introduced when Sj,i �= 0. Another source of correlations is
created by other reductions at index k �∈ {i, j} when both Sk,i and Sk,j are non-
zero; these events create much less correlations since the diagonal coefficients are
much larger, but those correlations accumulate over many k’s. One is tempted to
model the accumulated correlations as those of some bi-variate Gaussians with
a certain covariance.

Of course, there are complicated “cascading” phenomena: by modifying a
coefficient, a reduction may trigger another reduction at an other index. But let
us ignore such phenomena, and just assume that several reductions at indices
k �= i, j occur, followed by one reduction at index i with q = ±1, before the
algorithm terminates. We depict our intuition as Fig. 1.

In this simple model, we note that there are 4 degrees of liberty, 3 for the
shape of the ellipsoid, and 1 for Si,j = −b, 0, b.3 Therefore, one may expect to be
able to recover all the parameters using 4 statistical measures. One natural choice
is the following. First, measure the covariance matrix of the whole distribution,
which gives 3 parameters. Assuming the clipped caps have small weights, this
would roughly give the shape of the ellipsoid. For the last measure, one would
select only sample for which |wi| is small, so as to focus on the superimposed
displaced caps. With a bit of effort one would find an appropriate measurement.

Unfortunately, it seems rather hard to determine mathematically what will
precisely happen in the full reduction algorithm, and to construct by hand a
measurement on the distribution of (wi, wj) directly giving Si,j , i.e. a function
f such that f(Wi,j) = Si,j .

3 In fact, two of those degrees are fixed by the shape of the secret matrix: each rows
of S has fixed Euclidean length, fixing the variance of wi and wj .
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Fig. 1. Figures in the second row show the regions to which (wi, wj) in two cap regions
will be moved by reduction at index i when Si,j = −b, 0, b respectively from left to
right.

4.2 Training

While constructing such a function f by a mathematical analysis may be hard,
our hope is that such function may be easy to learn using standard techniques,
ranging from least-square method to convolutional neural networks. Indeed,
going back to Fig. 1, recovering Si,j from Wi,j can essentially be viewed as a
grey-scale image classification problem (the lightness of the pixel (x, y) corre-
sponding to the density of Wi,j at (x, y)).

Features. We therefore proceed to design a few features, according to the intu-
ition built above. The average of each wi is supposed to be 0, thus we do not
treat it as a feature. Certainly, the covariance information is helpful, but we
also introduce extra similar statistics to allow the learning algorithm to han-
dle extra perturbations not captured by our simple intuition. We restrict our
features to being symmetric: a sample (x, y) should have the same impact as
(−x,−y). Indeed, while quite involved, the whole reduction process preserves
this symmetry.

More specifically, by scaling a factor of D, consider the distribution W
to have support (−1, 1)2. For a function f over (−1, 1)2, we write f(W ) =
E(x,y)←W (f(x)). The features mentioned before are listed below4:

– f1(W ) = D · E(x,y)←W (x · y);
– f2(W ) = D · E(x,y)←W (x · |x|1/2 · y);
– f3(W ) = D · E(x,y)←W (x · |x| · y);

4 We introduced a re-normalization factor D in our experiments. We keep it in this
paper for consistency.
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We could go on with higher degrees, but this would cause some trouble.
First, higher degree moments converge much slower. Secondly, taking too many
features would lead to over-fitting.

Then, following our intuition, we want to also consider features that focus
on the central region. Still, we do not want to give too much weight to samples
with x very close to 0. Indeed, there will be some extra perturbation after the
reduction at index i, which could flip the sign of x. A natural function to take
this into account is the following.

– f4(W ) = D · E(x,y)←W (x(x − 1)(x + 1) · y). 5

The most contributing sample will be the one for which x = ±1/
√

3, and it is not
clear that this is the optimal range to select. We therefore offer to the learning
algorithm a few variants of the above that select samples with smaller values of
x, hoping that it can find a good selection by combining all of them:

– f5(W ) = D · E(x,y)←W (2x(2x − 1)(2x + 1) · y | |2x| ≤ 1);
– f6(W ) = D · E(x,y)←W (4x(4x − 1)(4x + 1) · y | |4x| ≤ 1);
– f7(W ) = D · E(x,y)←W (8x(8x − 1)(8x + 1) · y | |8x| ≤ 1);

For any function f over R2, we call f t : (x, y) �→ f(y, x) the transpose of f . So
far, we have introduced 13 different features, i.e. f1, · · · , f7 and their transposes
f8 = f t

2, · · · , f13 = f t
7.

6 We plot these functions in Fig. 2.

Fig. 2. The color matrices for f1, · · · , f7. For any pixel at (x, y), its color is red (full-line
contour), blue (dashed-line contour) when fi(x, y) > 0, ≤ 0 respectively. The deeper
the color is, the larger |fi(x, y)| is. (Color figure online)

5 As we are only going to consider linear models in our features, we could equivalently
replace this feature by E(x,y)←W (x3 · y) because of the presence of f1.

6 Since f1 is a symmetric function of (wi, wj), we did not count its transpose.
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Generating data. Then, we proceed to measure each Wi,j for known values of
Si,j , say, using 400 000 samples for each key S, and using 30 different keys S. This
is implemented by our script gen training.py. This took about 38 core-hours.

Training. We naturally considered using advanced machine learning techniques
(support vector regression [7], random forest regression [20] and artificial neural
networks) to construct a model, with the precious support of Han Zhao. Despite
some effort, he was unable to find a method that outperforms what we achieved
with a linear model f =

∑13
�=1 x�f� trained using the least-square fit method.

Yet his exploration was certainly far from exhaustive, and we do not conclude
that least-square fit is the best method.

Evaluating and refining our model. After preliminary experiments, we noted that,
depending on their position i− j, some coefficients Si,j seem easier to learn than
others. In this light, it is not clear that one should use the same function f for all
indices i, j. Instead, we constructed two functions f+ =

∑
x+

� f�, f− =
∑

x−
� f�

respectively for indices such that i− j mod n ≥ n/2 and i− j mod n < n/2. The
model obtained by the least-square fit method is provided in Table 1 and plotted
in Fig. 3. Moreover, the distributions of f+(Wi,j), f−(Wi,j) for Si,j = ±b,±1, 0
are illustrated in Figs. 4 and 5.

Table 1. The model trained from 30 keys and 400 000 signatures per key. This is
implemented by our script gen model.py.

i 1 2 3 4 5 6 7

x−
i −48.3640 354.9788 −289.1598 58.7149 −3.7709 −2.9138 2.3777

i 8 9 10 11 12 13

x−
i −21.2574 6.6581 3.5598 1.0255 0.4835 −0.3637

i 1 2 3 4 5 6 7

x+
i −67.9781 324.8442 −248.7882 44.6268 −4.1116 −2.6163 2.8288

i 8 9 10 11 12 13

x+
i −9.0923 3.1639 −0.8145 0.5204 0.3486 0.4920

Fig. 3. The left graph is the color matrix for f−, and the right one is for f+. (Color
figure online)
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Fig. 4. The distributions of f−(Wi,j), f+(Wi,j) for Si,j = ±b, ±1, 0. The upper one
corresponds to f− and the lower one corresponds to f+. Experimental values measure
over 20 instances and 400 000 samples per instance.
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Fig. 5. The impact from sample sizes on the measured distributions of f−(Wi,j),
f+(Wi,j). The left graphs correspond to f− and the right graphs correspond to f+.
The upper graphs measure over 20 instances and 400 000 samples per instance, and the
lower graphs measure over 20 instances and 50 000 samples per instance.

Remark 1. For other set of parameters, or even to refine our attack and recover
more secret information, it is of course possible to cut our modeling in more than
2 pieces, but this requires more training data, and therefore more computational
resources.

Remark 2. As shown in Figs. 4 and 5, predicted values f(Wi,j) for large coef-
ficients are usually of larger size than those for −1, 0, 1. Compared with large
coefficients far from the main diagonal, those near the main diagonal tend to
be predicted as a number of larger size. Furthermore, the variances of f(Wi,j)
decrease with sample size growing, which provides a sanity check for our models.

4.3 Learning

Following the previous method, we obtain a matrix S′ consisting of all guesses
of Si,j ’s.7 While clear correlations between the guess S′ and S were observed,
the guess was not good enough by itself for the limited number of samples that

7 We ignore diagonal elements because they are public.
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we used. In the following, we exploit the “absolute-circulant” structure of the
secret key to improve our guess. The experimental results described below are
based on our script attack.py.

Determining the locations. Notice that all Si,j ’s in a same diagonal are of the
same absolute value, hence we used a simple trick to enhance the contrast
between large and small coefficients. It consists in calculating

Wk =
n−1∑

i=0

S′2
i,(i+k) mod n

as the weight of the k-th diagonal. Since we used two different features for
coefficients near/far from the main diagonal, for better comparison, the first
n/2−1 weights were scaled by their maximum and so were the last n/2 weights.
We denote by W−

k the first n/2−1 scaled weights and by W+
k the last n/2 ones.

As illustrated in Fig. 6, the scaled weights of those diagonals consisting of
large coefficients are significantly larger than others. A straightforward method
to locate large coefficients is to pick the Nb largest scaled weights.

Fig. 6. Large coefficients and scaled weights. Experimental values measure over 400 000
samples.

Verified by experimental results, we were able to perfectly locate all large
coefficients, provided we collected sufficient signatures. For different sample size,
i.e. the number of signatures, we respectively tested 20 instances and checked the
accuracy of locations for large coefficients. All experimental data is illustrated
in Table 2.

Determining the signs. We straightforward assumed the sign of measured feature
f(Wi,j) is the same as that of Si,j , when Si,j = ±b. Unlike guessing locations,
we could not recover all signs of large coefficients exactly, but as the sample
size grows, we were still able to get a high accuracy, denoted by p. Then, we
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Table 2. Experimental measure of location accuracy. The column, labeled by K/16,
shows the number of tested instances in which the largest Nb scaled weights corre-
sponded to exactly K large coefficient diagonals.

#signs 13/16 14/16 15/16 16/16

50 000 5 3 6 6

100 000 - - - 20

200 000 - - - 20

400 000 - - - 20

Table 3. Experimental measures for pl, pu, p and prow. All values measure over 20
instances.

#signs pl pu p prow

400 000 0.9975 0.9939 0.9956 0.9323

200 000 0.9920 0.9731 0.9826 0.7546

100 000 0.9722 0.9330 0.9536 0.4675

50 000 0.9273 0.8589 0.8921 0.1608

may expect to recover all signs of large coefficients in each row exactly with a
probability prow = pNb (in our case Nb = 16).

Moreover, we noticed that the accuracy of guessing signs for large coefficients
in the lower triangle, i.e. Si,j with i > j, is higher than that for large coefficients
in the upper triangle, thus we denote by pl and pu the accuracy corresponding
to the lower and upper triangle. That may suggest us to guess the signs of large
coefficients from the last row to the first row. Table 3 exhibits the experimental
data for pl, pu, p and prow.

Comparing guessing locations, guessing signs is much more sensitive to the
number of signatures. That is because the sign information of Si,j only comes
from f(Wi,j) rather than all features in the same diagonal so that it requires a
more precise measurement. Furthermore, we tried a modified model for guessing
signs: in training phase, we mapped Si,j to �Si,j/b� and then find x�’s determin-
ing the global feature. Intuitively, the modified model further emphasizes large
coefficients, but it performed almost the same as the current model in practice.

5 Exploiting Partial Secret Key Knowledge in Lattice
Attacks

Using the technique described in last section, we are able to recover exactly all
off-diagonal large coefficients in a row, with high probability (in addition to the
diagonal coefficient D). First, we show how to adapt the BDD-uSVP attack, by
exploiting the known coefficients of a row sk to decrease the distance of the BDD
target to the lattice, making the problem easier. Then, we show a more involved
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version, where we also decrease the dimension of the lattice while maintaining its
volume. While not much is gained to recover a first secret row sk, this technique
makes guessing the rest of the key much faster.

In later discussion, assume that we have already successfully determined all
−b, b and D coefficients in sk. Let M = {m0, · · · ,mNb

} be the set of all m’s such
that Sk,m ∈ {−b, b,D} where m0 < · · · < mNb

. We still focus on the concrete
parameter set (n,D, b,Nb, N1) = (912, 912, 28, 16, 432).

5.1 Direct BDD-uSVP Attack

Let t ∈ Z
n such that, if |Sk,i| > 1, ti = Sk,i, otherwise ti = 0, then dist(t,L) =√

N1. We construct a new lattice L′ with a basis

P′ =
(

t 1
P 0

)

∈ Z
(n+1)×(n+1),

we have vol(L′) = vol(L) ≈ Dn and L′ contains a vector of Euclidean norm√
N1 + 1 � D. Thus, to recover sk, it suffices to solve uSVP on L′.

New estimations of the blocksize required by BKZ to solve uSVP were given
in [4] and have been confirmed by theoretical analysis and experiments in [2].
Following these results, we claim that sk could be recovered by BKZ-β when β
satisfies: √

β

n + 1
·
√

N1 + 1 ≤ δ2β−n−1
β · D

n
n+1 .

We conclude that running BKZ-β with β = 146 should be sufficient to break
the scheme. Typically [1,8], it is estimated that BKZ-β converges after about 16
tours, therefore making 16(n + 1) calls to SVP-β:

CBKZ-β = 16(n + 1) · CSVP-β .

Though the factor 16 may shrink by increasing the blocksize β′ progressively
from 2 to β. Estimation of the cost of CSVP-β varies a bit in the literature,
also depending on the algorithm used. The standard reference for estimating the
cost enumeration is [10], which gives a cost of 20.270β lnβ−1.019β+16.10 [3,9] clock-
cycles. Alternatively, the Gauss-Sieve algorithm [22] with dimension for free and
other tricks showed a running time of 20.396β+8.4 clock cycles [11].

Those two methods lead respectively to estimates of 278 and 280 clock-cycles
to recover one secret row. One could of course repeat the attack over each row,
but below, we present a strategy that slightly reduces the cost of guessing a first
row, and greatly reduces the cost of guessing all the other rows.

Remark 3. These numbers are likely to be over-estimates. Indeed, while cost
predictions have not been provided, the enumeration algorithms have been sped
up in practice recently with the discrete-pruning technique [5,14,29]. Unfortu-
nately, the record timing on SVP challenges up to SVP-150 are difficult to use, as
they only solve SVP up to an approximation factor of 1.05, which is significantly
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easier than the exact SVP typically used in BKZ. Similarly, avenues for improve-
ments are discussed in [11], such as using a faster sieve, or amortizing certain
costs inside the BKZ loop. Moreover, a long-standing question remains open:
could it be more efficient to use an approx-SVP oracle with a larger blocksize in
BKZ to achieve similar reduction faster.

5.2 BDD-uSVP Attack with Dimension Reduction

Next we detail how to also reduce the dimension of L′ but maintain its volume,
when exploiting known coefficients of a BDD solution.

Let H = (hi,j)i,j be the HNF (Hermite Normal Form) of P satisfying:

– hi,i > 0;
– hj,i ∈ Zhi,i

for any j > i.
– hj,i = 0 for any j < i.

Let I = {i | hi,i > 1}. In general, |I| is very small (say ≤ 5), for example |I| = 1
if det(H) is square-free. Thus we have, with a high probability, that I ∩ M = ∅,
i.e. hm,m = 1 for any m ∈ M . If not so, we choose another row sk′ of S. Let
{l0, · · · , ln−2−Nb

} = Zn \ M where l0 < · · · < ln−2−Nb
.

Let H′ = (h′
i,j)i,j be a matrix of size (n − Nb − 1) × (n − Nb − 1), in which

h′
i,j = hli,lj . Let a = (a0, · · · , an−Nb−2) where ai =

∑
m∈M Sk,mhm,li . Let L′ be

the lattice generated by

B =
(
H′

a 1

)

∈ Z
(n−Nb)×(n−Nb).

We first have that

vol(L′) = det(H′) =
det(H)

∏
m∈M hm,m

= det(H) = vol(L).

Secondly, we can prove that L′ has an unusually short vector corresponding to
all small coefficients of sk. Indeed, let c ∈ Z

n such that cH = sk, then cm = Sk,m

for any m ∈ M thanks to hm,m = 1. Let c′ = (cl0 , · · · , cln−2−Nb
), then

(c′, 1)B = (c′H′ + a, 1) = (sl0 , · · · , sln−2−Nb
, 1) := v′.

Notice that ‖v′‖ =
√

N1 + 1 � vol(L′)
1

n−Nb ≈ D
n

n−Nb , we may use uSVP oracle
to find v′.

Using the same argument as in the previous subsection, we could recover v′,
namely sk, by BKZ-β when β satisfies:

√
β

n − Nb
·
√

N1 + 1 ≤ δ2β−n+Nb

β · D
n

n−Nb .

This condition is satisfied for β = 138. Based respectively on [10] and [11],
this gives attack in 273 and 277 clock-cycles. Again, these numbers should be
taken with a grain of salt (see Remark 3).
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5.3 Cheaply Recovering All the Other Rows

Once a vector sk has been fully recovered, we have much more information on
all the other secret rows. In particular, we know all the positions of the 0, and
this allows to decrease the dimension from n to Nb + N1 + 1.

As in previous section we are able to construct a (Nb + N1 + 1)-dimensional
lattice L′ of the same volume as L and containing a vector of length√

Nb · b2 + N1 + 1. Then, using BKZ-50 is enough8 to recover the target vec-
tor and the cost is negligible compared to the cost of the first step.

6 Conclusion

We have shown that the DRS scheme is in principle susceptible to a statistical
attack: signatures do leak information about the secret key. More concretely,
for the first set of parameters submitted to the NIST [26], we have shown its
security should be considered below 80-bits after 100 000 ≈ 217 signatures have
been released, contradicting the original claim of 128-bits of security. While
such a large number of signatures may not be released in many applications, it
remains much lower than the bound of 264 signatures given by the NIST call for
proposal [24, Sect. 4.A.4].

We also warn the reader that for demonstrating the principle of our attack,
we have only focused on the easiest secret coefficients. But from Fig. 4, it seems
also possible to deduce more information on the key. We strongly suspect that,
focusing on the very near-diagonal coefficients, it could be possible to get the
locations of a few 0’s and ±1’s as well, using more signatures, a more focused
statistical model, and the diagonal amplification trick. This may lead to a full
break in practice of this parameter set. Moreover, our estimates do not take
account of the recent discrete pruning technique for enumeration [5,14,29], that
has unfortunately not yet been the object of easily usable predictions.

While we view it likely that the attack can be pushed further, it is not clear
how much effort this question deserves. In our view, our current attack suffices
to demonstrate the need to fix the leak of the DRS scheme [26], and maybe to
re-parametrize it.

In addition, we would like to clarify our views on lattice-based crypto security
estimates. While we did stick to the best known attack methodology in this
paper so as to not overclaim our cryptanalytic result, we do not recommend this
approach for design and security claims, considering that the state of the art in
lattice reduction is still making significant progress [5,11,14,29].

6.1 Viability of the DRS Design, and Potential Countermeasure

We note nevertheless that this statistical attack seems much less powerful than
the statistical attacks presented in [13,23] against the original schemes GGH [16]

8 The required blocksize can be much smaller, but we should use a different estimation
for δβ for small β [10,30].
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and NTRUSign [18]. Indeed, our attack requires much more signatures, and still
only recovers partial secret key information. In this light, we do not conclude that
the approach of [26] is to be discarded at once, at least if it shows competitive
performances. We therefore suggest several directions to improve the security of
the scheme.
Disclaimer. These suggestions should however not be understood as a pledge
for the DRS scheme [26]. We believe a much more thorough analysis of the
statistical properties of the scheme should be provided to sustain its security.
We think that a statistical argument would be much more reassuring than the
experimental failure of the type of attack described in this paper.

Randomization. In [26,27], it is suggested that the orders of the indices j for
the reductions w ← w − qsj could be randomized. As claimed in [17], this
modification should not be applied directly. For our attack, such randomization
does not affect the intuition developed in Sect. 4.1. We suspect it might make
the attack somewhat simpler. Indeed, in the current deterministic version, the
coefficients far from the diagonal seemed harder to learn, forcing us to use two
different models f− and f+. We believe that this complication could be removed
against the randomized variant.

Set of secret coefficients. Rather than a sparse yet wide set {0,±1,±b} for the
coefficients of S, we recommend an interval of integers {−u, . . . , u}, where u is
chosen such that the Euclidean length of the rows is maintained (say, on average).
As we saw (Fig. 4), larger coefficients are easier to detect, and the gap between
1 and b allows one to make a guess with much more confidence. Note that this
could only mitigate the attack, but would not fully seal the leak.

Structure of the secret matrix. Secondly, the “absolute-circulant” structure could
be removed without affecting the size of the secret key; indeed, the whole matrix,
could be streamed by a PRG, only keeping the seed as the new secret key.9 Again,
this may only mitigate the attack, but would not fully seal the leak.

Perturbation/drowning. Depending on the situation, adding well-designed per-
turbation may [25] or may not [13,18] be an effective countermeasure against
statistical attacks. Given the track record of heuristic countermeasures, we find
the formal approach preferable. Drowning is a similar idea in spirit, but the
added noise has a fixed distribution, typically much larger than what is to be
hidden.

We note that the problem of directly trying to forge a signature seems harder
than recovering the secret key with the current parameters of DRS [26]. This
means that allowing larger vectors for signatures (up to a certain cross-over
point) should not affect security. This gives a lot of room for perturbation or
drowning, for which ad-hoc concrete statistical statements could plausibly be
made, maybe exploiting Rényi divergence as in [4,6].
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