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Abstract

In this note� we prove that having unique head�normal forms is a su�cient condition on partial combinatory

algebras to be completable� As application� we show that the pca of strongly normalizing CL�terms as well as

the pca of natural numbers with partial recursive function application can be extended to total combinatory

algebras�

AMS Subject Classi�cation ������� ��A		� �
B��� �S�	�

CR Subject Classi�cation ������� F�����

Keywords � Phrases� Partial algebras� combinatory logic� ��calculus� term rewriting�

�� Introduction

A partial combinatory algebra �pca� is a structure A ��A� s� k� �� where A is a set� � is a
partial binary operation �application� on A� and k� s are two elements of A such that

�� �a� a� � A �k � a� � a� � a�

�� �a� a� � A �s � a� � a� ��

	� �a� a�� a�� � A ��s � a� � a�� � a�� �

�
�a � a��� � �a� � a��� if �a � a��� � �a� � a��� ��
unde
ned otherwise�

�� k �� s�

HereM � means the expressionM is de
ned� andM � N means both expressions are de
ned
and equal� It is common to omit � and associate unparenthesized expressions to the left� In
working with expressions that may or may not be de
ned� it is useful to write M � N to
mean that if either M or N is de
ned� then both are de
ned and equal� These notational
conventions allow us to replace clause 	 by



�

�a� a�� a�� � A saa�a�� � aa���a�a����

Total pca�s� where application is a total operation on the carrier set� will be called ca�s� and
nontotal pca�s� where application is not de
ned everywhere� will be called nca�s�

In this paper� we are interested in the possibility of embedding a given nca A into a ca�
We shall call such an embedding a completion of A� More precisely let A ��A� s� k� �� and
B ��B� s�� k�� ��� be pca�s�

�� A homomorphism of A into B is a mapping �  A� B such that

�a� ��s� � s�� ��k� � k�� and

�b� if a � a� � then ��a � a�� � ��a� �� ��a�� for all a� a� � A�

If � is injective� then � is an embedding�

�� � is a completion of A if � is an embedding of A into some ca B�

We say that A has a completion or is completable if there exists some completion of A� Not
every nca is completable� Examples of these incompletable nca�s can be found in e�g� �Klo����
�Bet��� and �BK����

Given a pca A ��A� s� k� ��� we call elements of A of the forms s� k� ka� sa� saa� head�
normal forms �hnf�� Each of the 
ve types of hnf is called dissimilar from the other four�
Moreover� we say that a pca A has unique hnf�s if

�� no two dissimilar hnf�s can be equal in A�

�� Barendregt�s axiom �cf� �Bar���� holds in A

�BA� sa�a� � sa�a� � a� � a� 	 a� � a��

In �Klo���� the second author advanced the theorem that having unique hnf�s is a su�cient
condition on pca�s to be completable� In this paper� we shall prove this theorem in detail�

�� How to complete pca�s with unique hnf�s

In order to prove the theorem� we employ a free�algebra construction induced by a term
rewrite system� The construction is based on fundamental de
nitions and notions of term
rewrite systems� Extensive surveys of term rewriting can be found in �Klo��� and �DJ����

Let A ��A� s� k� �� be a pca� The term rewrite system over A� T �A�� consists of

�� T �A 
 V �� the set of terms built from A� a countably in
nite set V of variables� and a
binary function symbol � �written in
x�� and

�� R� the set of the following rewrite rules

�a� a � a� � aa� provided aa� ��




� How to complete pca�s with unique hnf�s �

�b� k � x � y � x�

�c� ka � x� a�

�d� s � x � y � z � �x � z� � �y � z��

�e� sa � x � y � �a � y� � �x � y�� and

�f� saa� � x� �a � x� � �a� � x��

with a� a� � A� Here we employ the convention of association to the left�

Identity of terms is denoted �� A substitution � is a mapping from V to T �A
V �� Substitu�
tions are extended to homomorphisms from T �A 
 V � to T �A 
 V �� The set of contexts over
T �A 
 V �� C� is de
ned as follows�

�� � � C� and

�� if C � C and t � T �A 
 V �� then t � C � C and C � t � C�

If C is a context� then C�t� denotes the term obtained from C by replacing � by t� The
rewrite relation � associated with T �A� is de
ned as follows t� t� if there exists a rewrite
rule l � r in R� a substitution � and a context C such that t � C���l�� and t� � C���r���
The transitive�re�exive closure of � is denoted by ��� If t�� t� we say that t reduces to t��
We write t  t� if t� � t� likewise for t  t�� The equivalence relation generated by � is
called convertibility and written as �� T �A� is con�uent if

�t� t� � T �A 
 V � � t � t� � �t�� � T �A 
 V � t�� t��  t� ��

In order to prove that T �A� is con�uent� we shall subdivide T �A� into the two separate rewrite
systems T��A� � �T �A
V ��R�� and T��A� � �T �A
V ��R�� where R� consists of the rewrite
schema �a�� and R� consists of the remaining schemas �b���f��

A pattern of a rewrite rule t� t� is the part of t�s construction tree that does not contain
any variables� Observe that T��A� and T��A� have the following patterns

�

a
�� ��

a�

�a�
k
��

�

�

��

�� ��

�b�

�

ka
�� ��

�c�

s
��

�

�

�
����

��

�� ��

�d�
sa
��

�

�

��

�� ��

�e�

�

saa�
�� ��

�f�



�

A term rewrite system is orthogonal if it is left�linear� i�e� no variable occurs twice or more
in the left�hand term of any rule� and non�ambiguous� i�e� has the property that in no term
patterns can overlap� Orthogonal term rewrite systems have the con�uence property as well
as various other desirable properties concerned with reduction strategies�

T��A� is clearly orthogonal� As for T��A�� we can only state with certainty that it is
left�linear� overlap of patterns� however� can occur if and only if

�� two dissimilar hnf�s are equal in A� or

�� there are a� �� a�� a� �� a� such that ka� � ka�� sa� � sa�� or sa�a� � sa�a��

It follows that T��A� is orthogonal too provided A has unique hnf�s� For� if A has unique
hnf�s� then

�� no two dissimilar hnf�s are equal in A�

�� �a� if ka� � ka�� then a� � ka�k � ka�k � a��

�b� if sa� � sa�� then sa�k � sa�k and hence a� � a� by �BA��

�c� if sa�a� � sa�a�� then a� � a� and a� � a� again by �BA��

Proposition ���� Let A ��A� s� k� �� be a pca with unique hnf�s� Then both T��A� and

T��A� are orthogonal and� a fortiori� con�uent� �

We shall use con�uence of its subsystems to prove that T �A� is con�uent� For this� we
invoke a proposition that is sometimes referred to as the Lemma of Hindley�Rosen ��Hin����
�Bar���� For i � �� �� let us write �i for the rewrite relation associated with Ti�A�� The

re�exive closure of �i is denoted by
�

�i� its transitive�re�exive closure by ��i� Moreover� we
say that ��� and ��� commute� if

�t� t�� t�� � T �A 
 V ��t��� � T �A 
 V � � t��� t
� 	 t��� t

�� � t� ��� t
��� 	 t�� ��� t

��� ��

Now� given the con�uence of T��A� and T��A�� the Lemma of Hindley�Rosen states that T �A�
is con�uent� if ��� and ��� commute� However� as observed in �Hin���� commutativity of
��� and ��� already follows if the following diagram commutes

t��

t

��� t
���

�� t
�

� � � �

�

We shall use this strengthened version of the Lemma of Hindley�Rosen in the proposition
below�




� How to complete pca�s with unique hnf�s �

Proposition ���� Let A ��A� s� k� �� be a pca with unique hnf�s� Then T �A� is con�uent�

Proof� We have to check all possible diagrams of the sort depicted above� To this end� let
us call a substitution instance of the left�hand term of rewrite rule �i� �i � fa�b� c�d� e� fg� an
�i��redex� Moreover� let us write t�i t

� for the reduction of t to t� obtained by an application

of rewrite rule �i�� likewise for t ��i t
� and t

�

�i t
�� Observe that� if the left�hand upper

expression t contains an �a��redex a � a� disjoint from an �i��redex l �i � fb� c�d� e� fg�� in the
upper horizontal reduction step the �a��redex is contracted� and in the left vertical reduction
step the �i��redex is contracted� then the diagram commutes trivially

t�� � C�l�� a � a��

t � C�l� a � a��

�a t
��� � C�l�� aa��

�a t
� � C�l� aa��

i � i �

here C is a context containing two holes �� and the common reduct t��� is obtained by contract�
ing the �i��redex l in t� and the �a��redex a � a� in t��� It remains to consider the cases where
the redexes are not disjoint� i�e� where one redex is a subexpression of the other� In these
cases we can actually forget about the surrounding context C and can focus on the positions
of the redexes relative to each other� Since an �i��redex can never be a proper subexpression
of an �a��redex� it remains to consider the cases where the �a��redex is a subexpression of
the �i��redex for i � fb� c�d� e� fg� There are in fact �� such cases which we have arranged in
groups depending on i� To obtain a more compact notation� we abbreviate expressions of the
form C�t� to Ct and let a� b� c range over elements of A� We believe that the diagrams are
self�explanatory and do not require any further comment�

Case i�b

a

k � a � t

��a a

�a ka � t

b � c �
Ca�b

k � Ca�b � t

�a Cab

�a k � Cab � t

b � b �

t

k � t � Ca�b

��a t

�a k � t � Cab

b � b �



�

Case i�c

a

ka � b

��a a

�a kab � a

c � c �

�

a

ka � Cb�c

��a a

�a ka � Cbc

c � c �

Case i�d

a � t� � �t � t��

s � a � t � t�

��a a � t
� � �t � t��

�a sa � t � t
�

d � e �
Ca�b � t

� � �t � t��

s � Ca�b � t � t
�

�a Cab � t
� � �t � t��

�a s � Cab � t � t
�

d � d �

t � t� � �Ca�b � t
��

s � t � Ca�b � t
�

�a t � t
� � �Cab � t

��

�a s � t � Cab � t
�

d � d �
t � Ca�b � �t

� � Ca�b�

s � t � t� � Ca�b

��a t � Cab � �t
� � Cab�

�a s � t � t
� � Cab

d � d �

Case i�e

a � t � �b � t�

sa � b � t

��a a � t � �b � t�

�a sab � t

e � f �
a � t � �Cb�c � t�

sa � Cb�c � t

�a a � t � �Cbc � t�

�a sa � Cbc � t

e � e �

a � Cb�c � �t � Cb�c�

sa � t � Cb�c

��a a � Cbc � �t � Cbc�

�a sa � t � Cbc

e � e �




� How to complete pca�s with unique hnf�s �

Case i�f

a � c � �b � c�

sab � c

��a ac�bc�

�a sabc � ac�bc�

f � f �

�

a � Cc�d � �b � Cc�d�

sab � Cc�d

��a a � Ccd � �b � Ccd�

�a sab � Ccd

f � f �

�

If T �A� is con�uent� then the following quotient construction provides a completion of A�

Definition ���� Let A ��A� s� k� �� be a pca�

�� Let T �A� � T �A 
 V � be the set of all closed terms� i�e� terms without any variable�
We form the quotient

��A� ��T �A�� �� �s�� �k�� ��

by taking the collection

T �A�� �� f�t� j t � T �A�g

of equivalence classes

�t� � ft� � T �A� j t � t�g

equipped with the total application operation

�t� � �t�� � �t � t���

�� De
ne �A  A� T �A�� � by

�A�a� � �a�

for all a � A�

Theorem ���� Let A ��A� s� k� �� be a pca with unique hnf�s� Then �A is a completion of

A�

Proof� We have to prove that



�

�� ��A� is a ca� and

�� �A is an embedding of A into ��A��

First observe that

�y� �a� � �a��� a � a�

for all a� a� � A For� if �a� � �a��� then a � a�� Hence a and a� have a common reduct� since
T �A� is con�uent� Therefore� as a� a� cannot be reduced any further� a � a��
���� Since s �� k� �s� �� �k�� Hence ��A� meets the fourth condition on pca�s� It clearly meets
the second condition� since application is total� Satisfaction of condition �� and �� follows
from the rewrite rules �b� and �d�� respectively�
���� Clearly� �A preserves the constants� For preservation of application� let a� a� � A be such
that aa� �� Then a � a� � aa� by rewrite rule �a�� Thus

�A�aa
�� � �aa�� � �a � a�� � �a� � �a�� � �A�a� � �A�a

���

So �A is an homomorphism and is injective by �y�� �

In the next section� we shall discuss two examples�

�� Examples

For nca�s� we can reduce the property of having unique head�normal forms to a more handsome
set of 
ve axioms�

Proposition ���� Let A ��A� s� k� �� be a nca� A has unique head�normal forms if and only

if A satis	es Barendregt�s axiom as well as the following four axioms
 for all a� a�� a�� � A�

�� s �� saa��

�� k �� saa��

� sa �� sa�a��� and

�� ka �� sa�a���

Proof� The if�part is obvious� For the only�if�part� we have to show that the remaining
dissimilar hnf�s are unequal in A� That is� we have to show that for all a� a� � A�

�� s �� ka Suppose s � ka� Then ss � kas � a � kak � sk� Hence s � k by �BA��
Contradiction�

�� s �� sa Suppose s � sa and pick a�� a�� � A such that a�a�� is unde
ned� Then
sa�a�� � saa�a�� � aa���a�a���� Hence a�a�� is de
ned� Contradiction�



�� Examples �

�� k �� ka Suppose k � ka� Then ks � kas � a � kak � kk� Hence s � kss � kks � k�
Contradiction�

�� k �� sa Suppose k � sa and pick a�� a�� � A such that a�a�� is unde
ned� Then
a� � ka�a�� � saa�a�� � aa���a�a���� Hence a�a�� is de
ned� Contradiction�

�� ka �� sa� Suppose ka � sa�� Then sa�k � kak � a � kas � sa�s� Hence s � k by
�BA�� Contradiction�

�

We shall use this shorter characterization in the two examples to follow�

Example ���� The term rewrite system CL of combinatory logic consists of

�� T �fS�Kg 
 V �� the set of terms built from the two constants S�K� a countably in
nite
set V of variables� and a binary application operator � which we do not write� and

�� the following two rewrite rules

�a� Sxyz � xz�yz�

�b� Kxy � x�

The rewrite relation associated with CL is de
ned as usually� i�e� as in the case of T �A�� As
is well�known� CL is con�uent�

A term of the form SLMN or KLM is a redex� A term not containing such redexes is a
normal form �nf� and has a nf if it reduces to one� A reduction of L is a sequence of terms
L � L� � L� � L� � � � �� Reductions may be in
nite� If every reduction of L terminates
eventually �in a normal form�� then L is said to be strongly normalizing� We let SN be the
set of all closed� strongly normalizing CL�terms�

Closed� strongly normalizing terms modulo convertibility form a pca in the following way
�cf� also �BK���� We let

ASN �� f�M �SN jM � SNg� �S�SN � �K�SN � � �

where

�M �SN � fN � SN jM � Ng

and

�M �SN � �N �SN �

�
�MN �SN if MN � SN�
unde
ned otherwise�



	


The structure ASN is in fact an nca 	 � S�SKK��SKK� � SN and hence �	�SN exists in
ASN � However� 		 �� SN � �	�SN � �	�SN is therefore unde
ned�

We shall not prove in detail that ASN has unique head�normal forms� but merely consider
Barendregt�s axiom� The argument for the satisfaction of the remaining axioms is similar�
Thus assume �S�SN �M �SN �N �SN � �S�SN �M

��SN �N
��SN � i�e� SMN � SM �N �� Since CL is

con�uent� it follows that SMN and SM �N � have a common reduct� say L� Moreover� since
neither SMN nor SM �N � is a redex� L must be of the form SM ��N �� with M ��M �� M �

and N �� N ��  N �� So M �M � and N � N �� i�e� �M �SN � �M ��SN and �N �SN � �N ��SN �

The completability of ASN does not come as a surprise� In fact� the codomain of its canonical
completion� ��ASN �� is isomorphic to the paradigmatic ca ACL obtained from CL by taking
as carrier the set of all closed CL�terms modulo convertibility�

Example ���� As second example we consider the nca of natural numbers with partial
recursive function application� More speci
cally� we de
ne a nontotal application operation
on the natural numbers IN by

n �m � fng�m�

where fng is the partial recursive function with G�odel number n� It is not di�cult to see
that �IN� �� can be made into an nca by choosing appropriate G�odel numbers s and k� In
fact� one can �e�ectively� generate in
nitely many other indices which do the job� In what
follows� we consider a particular nca on �IN� �� where the constants s and k are chosen in a
way such that Theorem ��� applies�

If we 
x a certain number of variables in a partial recursive function f � we still get a partial
recursive function g of the remaining variables� Moreover� this can be done uniformly in the

xed variables� This is Kleene�s famous Sm

n �Theorem �see also �Kle���� which more precisely
stated reads Given m�n � IN� there is a primitive recursive injection Sm

n  INm�� � IN such
that

fSm
n �x� y�� � � � � ym�g�z�� � � � � zn� � fxg�y�� � � � � ym� z�� � � � � zn�

for all x� y�� � � � � ym� z�� � � � � zn � IN�

We now 
x pairwise distinct n�� n�� n�� n� � IN such that for all x� y� z � IN

�� fn�g�x� y� z� � S�
��x� y� z��

�� fn�g�x� y� z� � S�
��x� y� z��

	� fn�g�x� y� z� � y� and

�� fn�g�x� y� z� � ffxg�z�g�fyg�z���

and de
ne

�k� k � S�
��n�� n�� n��� and



References 		

�s� s � S�
��n�� n�� n���

Observe that k and s are chosen properly

�� k � n �m � ffkg�n�g�m�
� ffS�

� �n�� n�� n��g�n�g�m�
� ffn�g�n�� n�� n�g�m�
� fS�

��n�� n�� n�g�m�
� fn�g�n�� n�m� � n�

�� s � n �m � ffsg�n�g�m�
� ffS�

� �n�� n�� n��g�n�g�m�
� ffn�g�n�� n�� n�g�m�
� fS�

��n�� n�� n�g�m�
� fn�g�n�� n�m� � S�

��n�� n�m� and hence s � n �m ��

	� s � n �m � o � fS�
��n�� n�m�g�o� by ��

� fn�g�n�m� o�
� ffng�o�g�fmg�o�� � n � o � �m � o��

�� clearly s �� k� since S�
� is injective�

So AIN ��IN� s� k� �� is an nca� To prove that it has unique head�normal forms we invoke
Proposition 	��� That is� we have to prove

�BA� Suppose s � n �m � s � n� �m�� Then S�
��n�� n�m� � s � n �m � s � n� �m� � S�

��n�� n
��m��

and hence n � n� and m � m��

	���� s � S�
��n�� n�� n�� �� S�

��n�� n� n
�� � s � n � n� for all n� n� � IN�

	���� k � S�
��n�� n�� n�� �� S�

��n�� n� n
�� � s � n � n� for all n� n� � IN�

	���	 s �n � fS�
��n�� n�� n��g�n� � fn�g�n�� n�� n� � S�

��n�� n�� n� �� S�
��n�� n

�� n��� � s �n� �n��

for all n� n�� n�� � IN�

	���� k �n � fS�
��n�� n�� n��g�n� � fn�g�n�� n�� n� � S�

��n�� n�� n� �� S�
��n�� n

�� n��� � s �n� �n��

for all n� n�� n�� � IN�

So AIN has unique head�normal forms and is therefore completable by Theorem ���� It remains
the question whether ��AIN� is �isomorphic to� a well�known ca� or whether it is a latent model
which deserves closer inspection�
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