
SlA.\1 .I. C"0\1PL-1

\ nl 17, Sn. ('), De..:t"mt'tcr 19~~

(f'J 1988 Society for Industrial and Applied Mathematics
~ 0%

READIES AND FAILURES IN THE ALGEBRA OF COMMUNICATING
PROCESSES*

J. A. BERGSTRAt, J. W. KLOP:l:, AND E.-R. OLDEROG§

Abstract. Readiness and failure semantics are studied in the setting of Algebra of Communicating

Pro..:esses i ACPI. A model of process graphs modulo readiness equivalence, respectively, failure equivalence,

is constructed, and an equational axiom system is presented which is complete for this graph model. An

explicit representation of the graph model is given, the failure model, whose elements are failure sets.

Furthermore, a characterisation of failure equivalence is obtained as the maximal congruence which is

consistent with trace semantics. By suitably restricting the communication format in ACP, this result is

shown to carrv over to subsets of Hoare's Communicating Sequential Processes (CSP) and Milner's Calculus

of Communi~ating Systems (CCS). Also, the characterisation implies a full abstraction result for the failure

model. In the above we restrict ourselves to finite processes without r-steps. At the end of the paper a

comment is made on the situation for infinite processes with r-steps: notably we obtain that failure semantics

is incompatible with Koomen's fair abstraction rule, a proof principle based on the notion of bisimulation.

This is remarkable because a weaker version of Koomen's fair abstraction rule is consistent with (finite)

failure semantics.

Key words. process algebra, concurrency, readiness semantics, failure semantics, bisimulation semantics

AMS(MOS) subject classifications. 68Q05, 68Q!O, 68Q55, 68Q45

Introduction. This paper is concerned with the failure semantics for communicating

processes as introduced by Brookes, Hoare, and Roscoe [BHR84] (see also Rounds

and Brookes [RB81].) This notion of failure semantics is based on the assumption
that all possible knowledge about a process takes the form of a set of pairs [u, X],
where lT is a linear history of events (actions) in which the process has engaged in

cooperation with its environment, and where X is a set of events which are impossible

after a. Thus failure semantics can be seen as a linear history semantics enriched by
''local branching information."

Two further semantic models of processes will play an auxiliary role in our paper:
Milner's model based on the notion of observational equivalence [Mi80] or bisimulation

(see Park [Pa83)) and the readiness semantics described in [OH83]. Processes which

are equivalent in the sense of bisimulation semantics are also failure equivalent, but

failure semantics identifies more processes. Intermediate between bisimulation and

failure semantics is the readiness semantics; here positive information (CT, Y) is given
about a process: Y is a set of possible actions after the history er.

Related to the study of failure semantics which was done by Brookes, Hoare, and
Roscoe [BHR84] and Brookes [Br83] in the context of Communicating Sequential

Processes (CSP) (see [Ho78], [Ho80]) is the work of De Nicola and Hennessy [DH84],
where some equivalences, based on the notion of test, are introduced, one of which

*Received by the editors February 18, 1986; accepted for publication (in revised form) December 1

1987. This research was partially supported by the European Communities under ESPRIT contract 432 A~
Integrated Formal Approach to Industrial Software Development (Meteor). '

t Computer Science Department, University of Amsterdam, Kruislaan 409 1098 SJ Amsterdam and

the Department of Philosophy, State University of Utrecht, Heidelberglaan 2, 35S4 CS Utrecht, the Nether
lands.

t Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam the Netherlands.

* lnstitut fiir lnformatik und Praktische Mathematik, Christian-Albrechts-Universit~t Kiel 2300 Kiel
I. Federal Republic of Germany. '

1134

READIES AND FAILURES 1135

coincides on a class of simple expressions with failure equivalence. The work of De
Nicola and Hennessy [DH84] takes place in the context of Milner's Calculus of
Communicating Systems (CCS). Connections between CCS and CSP, in regard to
failure semantics, were given by Brookes [Br83].

Most of the work just mentioned was carried out in a context where both recursion
and hiding (abstraction from silent T-steps) were present. This combination has compli
cated matters significantly. The aim of our paper is therefore to investigate the "pure"
failure semantics without recursion and hiding (except for an interesting digression in
its final section where the intricate interplay of these phenomena is highlighted). Our
context will be ACP, the axiomatic system for the Algebra of Communicating Processes
as introduced and studied in the series of papers [BK83], [BK84a], [BK84b], [BK84c],
[BK85], [BBK85], [BK86a], [BK86b]. (For an introductory survey see [BK86b].) As
we shall see, one advantage of this choice is that the different communication concepts
of CSP and CCS can be treated in a uniform way (cf. also Milner [Mi83] and Winskel
[Wi83]). In fact, to achieve this uniformity we will work here with a mild extension
of ACP, where renaming operators are present. This system is called ACP, and is
displayed in Table 1. Note that ACP, is purely equational and, for a finite alphabet
of actions, it is a finite axiom system.

It turns out that in our restricted setting readiness and failure semantics have a
neat axiomatisation, by means of two equations RI,2, which on top of ACP, yield
readiness semantics, and a "saturation" axiom S which, when added to ACP, + Rl,2,
yields failure semantics. ACP, alone corresponds to bisimulation semantics. These
results are established in the first part of the paper. In§§ 1-3 we construct models for
these axiom systems, starting from a domain offinite process graphs on which equivalen
ces tt, == l/1, = g; (bisimulation equivalence, readiness equivalence, failure equivalence,
respectively) are divided out. Next, in § 4, the axiom systems for these quotient
structures are presented and shown to be complete. The extra axioms RI,2 and S are
not new; in a form disguised by many r's they appear already in [Br83], and they are
derivable from the axioms given in [DH84] (see our comparison in Remark 7.3.3).
The definitions of±=±, = >11, =:ii' are also standard. What seems new in our treatment is
the strategy of the completeness proofs by means of a decomposition of ~. =&i. = f?i

on process graphs in a small number of very simple process graph transformations (§ 3).
So we obtain a "graph model" for ACP, satisfying failure semantics. In §5, an

explicit representation of this graph model, called the failure model is constructed
directly from the failure sets. This links our work with that of [BHR84]. The graph
model and the failure model are shown to be isomorphic. In § 6 we restrict the general
communication format of ACP, to one-to-one communication. We show that subsets
of CSP and CCS can be interpreted within this framework. This serves as a preparation
for § 7, where we prove that for ACP, with one-to-one communication failure
equivalence is the maximal trace respecting congruence. Here traces are understood as
complete histories recording all communications up to a final process state. This simple
characterisation of failure equivalence seems new. In the proof we use the readiness
semantics as a "stepping stone" towards failure equivalence. The characterisation is
shown to carry over to the subsets of CSP and CCS introduced in § 6. For CCS we
relate our result to the notion of testing introduced in [DH84]. Further on, the
characterisation implies that for ACP, with one-to-one communication the failure
model is fully abstract with respect to trace equivalence.

The paper concludes in § 8 with a digression in which processes under failure
semantics are considered in the context of recursion and hiding. The main point made
here is that the proof principle Koomen's Fair Abstraction Rule (KFAR), which is

1136 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

TABLE I

ACP,
Algebra of Communicating Processes with

renaming. Here a, b range over the set
A8 (=AU {8}) of atomic proc000es or actions;
0 €A is a constant denoting deadlock; x, y, z
range over the set of all processes which includes
As and is closed under the binary operations
+,·,II. IJ.., I and the unary operations a11 , a11 ,
where H <;; A. See § 1.2 for further explanation.

x+y=y+x Al
x+(y+z)=(x+y)+z A2
x+x=x A3
(x+y)z=xz+yz A4
(xy)z=x(yz) AS
x+o=x A6
ox= 5 A7

alb = bla Cl
(albJlc=al(blcl C2
Sia= o C3

xlLv=x IJ..y+ylJ.. x+x!y CM!
alJ..x=ax CM2
ax lL y = a(xil.v) CM3
(x + y) lL z = x lL z + y 1L z CM4
ax!b =(al b)x CMS
a!bx=(a!b)x CM6
ax I by= (a I b)(xllYl CM7
(x+y)lz=x!z+ylz CMS
xl(y+z)=xly+xlz CM9

aH(a)=a if al' H DI
aH(a)= 15 ifaE H 02
aH(x + y) = aH (xJ +a11(Y) 03
a11(xyJ =a11(x) · aH(y) D4

aH(b) = b if be H RNl
aH(b)=a if bE H RN2
aH(x+ y) = aH(x) + aH(Y) RN3
aH(xy) = aH(x)- aH(y) RN4

important in system verification and which can be justified in bisimulation semantics,
is not valid in any extension of (finite) failure semantics. As far as we know this
observation, which is supported by deriving a formal inconsistency, is new. Remarkably,
a weaker version of KFAR turns out to be both useful for verification and consistent
with finite failure semantics (see [BK086]).

1. The domain IHl 6 of finite acyclic process graphs. In order to build a "graph
model" for the axiomatisation ACP, (see Introduction, Table 1) which also satisfies
failure semantics, we start by introducing a domain of process graphs (1Hl 8) enriched
with a number of operations+,·, II, [l_, I, a1.,, aH(a EA) corresponding to the operators
in ACP,. It should be emphasized that this structure IHl 8 (+,-, II, lL j, aH, aH, a, 8)(a EA)
is not yet a model of ACP,; it becomes so after dividing out by a suitable equivalence
on 1Hl 0 (which, of course, should be a congruence with respect to the operations). For
example, dividing out by bisimulation equivalence (as defined in § 2.3 below) yields
a model of ACP" and in fact one that is isomorphic to the initial model of ACP,. This

READIES AND FAILURES 1137

matter does not, however, concern us in this paper. What we are interested in is the
quotient structure obtained by dividing out by readiness equivalence or failure
equivalence, respectively (defined below in 2.2), that is, what we will call (in analogy
with "term model") the graph model for ACP,, satisfying readiness semantics or failure
semantics, respectively.

1.1. Finite acyclic process graphs in o-normal form. A process graph over a set is
a rooted, directed multigraph whose edges are labeled by elements of this set. Let IHI
be the collection of finite acyclic process graphs over the alphabet A 6 =AU {8} (here
8 ~A) consisting of actions a, b, · · · EA and the constant 8 denoting deadlock. In the
sequel we will work with IHl 8 <;;IHI, the subset of 8-normal process graphs. A process
graph g E IHI is 8-normal if whenever an edge s-4t occurs in g, then the node s has
outdegree 1 and the node t has outdegree 0. In anthropomorphic terminology, let us
say that an edge s ~ t is an ancestor of s' ~ t' if it is possible to move along edges from
t to s'; likewise the latter edge will be called a descendant of the former. Edges having
the same initial node are brothers. So, a process graph g is 8-normal if all its 8-edges
have no brothers and no descendants.

Note that for g E IHI the ancestor relation is a partial order on the set of edges of g.
We will now associate to a process graph g E IHI a unique g' in 8-normal form, by

the following procedure:
(1) nondeterministic 8-removal is the elimination of a o-edge having at least one

brother.
(2) o-shift of a 8-edge s-4t in g consists of deleting this edge, creating a fresh

note t', and adding the edge s-4 t'.

Now it is not hard to see that the procedure of repeatedly applying (in arbitrary order)
(1), (2) in g will lead to a unique graph g' which is 8-normal; this g' is the 8-normal
form of g. It is understood that pieces of the graph which have become inaccessible
from the root, are discarded.

Example 1.1.1. See Fig. 1, where g' is the 8-normal form of g.

1.2. Operations on process graphs. On IHl 8 we define the operations+,·, II, IL, I, aH,
as in [BK85], [BK86a], and moreover rename operators aH. The constants a, 8(a EA)
are represented by graphs consisting of a single arrow labeled by a, o, respectively.
For the sake of completeness we repeat the definitions briefly:

g=
(2)

~-$>-

FIG. I

1138 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

(i) The sum g + h is the graph obtained by identifying the roots of g, h and
taking the 8-normal form (this is necessary if g or h is the graph consisting of a single
step labeled with 8).

(ii) The product g · h is obtained by appending h at all terminal nodes which
are not terminal nodes of a 8-step.

(iii) The merge gllh consists of the 8-normal form of the process graph obtained
as the Cartesian product of g, h augmented with diagonal edges for successful communi
cations.

(iv) The left-merge gll_ h is the subgraph of gllh, where an initial step must be
one from g.

(v) The communication merge gl h is the sub graph of g II h, where an initial step
must be a communication result of an initial step in g and an initial step in h.

(vi) The encapsulation aH(g) is the result of renaming all (labels of) steps in
H £;:;A by 8, and taking the 8-normal form.

(vii) The renaming aH(g) is the result of renaming all (labels of) steps in H s:; A
by a. We have renamings aH for each a EA.

Example 1.2.1. Let g be the process graph in Fig. 2(a) and h the process graph
in Fig. 2(b). Let the communication function I: A 8 x A 8 ~ A 8 be such that a I c = e and
b Id= f, all other communications equal 8. Then g + h is the graph in Fig. 2(c); g · h
is the graph in Fig. 2(d); gllh is the 8-normal form of the graph in Fig. 2(e), which is
the graph in Fig. 2(f); gll_ his the graph in Fig. 2(g); gjh is the graph in Fig. 2(h); a1a,df

(g) is the graph in Fig. 2(i); a1a,d} (h) is the graph in Fig. 2U); and a{b\ (g) is the graph
in Fig. 2(k).

2. Equivalences on process graphs. Though in this paper our main interest is in
the ready equivalence and the failure equivalence, we also will consider trace equivalence
and bisimulation equivalence. In this section these notions are introduced and com
pared. At the end of the section the concept of a convexly saturated process graph is
introduced, which illuminates the relationship between ready and failure equivalence
and which will play an important role in establishing the completeness of the axiom
systems for ready and failure equivalence, respectively, presented in § 4.

2.1. Trace equivalence. Consider a process graph g E Il-11 8 • Every path in g from the
root of g to some node in g determines a word s E At formed by concatenating the
labels in the consecutive steps in the path. Any such word a will be called a history
of (the path in) g. We are particularly interested in complete histories, i.e., words
determined by paths ending in a terminal node. Throughout this paper complete
histories will be called traces. By trace (g) we denote the set of all traces of g. Trace
equivalence - 1r of process graphs g, h E Il-11 8 is defined as follows:

g - irh iff trace (g) =trace (h).

Note that there are two types of traces: successful traces a EA* ending in a successful
termination node (see§ 2.2) and deadlocking traces a· 8 EA*· {8} ending in 8.

2.2. Ready equivalence and failure equivalence. We will distinguish four types of
nodes of g E Il-llB·

(i) End nodes of 8-steps in g are improper.
(ii) Begin nodes of 8-steps are called deadlock nodes.

(iii) Termination nodes of g other than those in (i) are successful termination nodes.
(iv) Nonterminal nodes which are not deadlock nodes.

READIES AND FAILURES

'"' ,, ~ , "', t "'··~- I'\,, ~ ('\ i ;l; I 1 ~
~--·----'---od --L-i..-- 0 ° I t f
(c) (t)

g II h = theo - n.f. of:

b b -l-----...,.,
=~~a

c o--,......-.s:h

0

(g) (h)

glh: ~e--"'-d-•
~ 11>0

('I)
.. J..-.-~--~···········"'f(k)·-.. ···-----~ - ~ -.. _ ... ,

O(a,ct) (g):: I
.............. : ~ :: -....... ~ : .. ~ -.. -.... J
(j)

a (a,d) (h) :
•0>-----111>-~,o

, ~o I

FIG. 2

1139

The successor set of node s as in (ii) is, by definition, 0. The successor set of a node
s as in (iv) is the set of labels EA of edges with begin node s. A node as in (i) or (iii)
has no successor set.

Now (<T, X) where <TE A*, X s A is a ready pair of g if there is a path from root
s0 to some proper node s which is not a successful termination node, with history <T
and X as the successor set of s. The ready set of g is the set of all ready pairs of g
together with all successful traces. Notation: :!Jl[gTI.

The failure set of g, notation: ~[g], is defined as follows. If (<T, X) E :!ll[g], then
[s, Y] is a failure pair of g if Y s Xc, and Y is called a refusal set. Here and in the
sequel we use the following notation: xc =A- X. Now ~[g] is the set of all failure

1140 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

pairs of g, together (again) with the successful traces of g. Thus we have

9lt[g]={O"lcr is a successful trace of g}U{(O", X)i(O", X) is a ready pair of g},

%[g] = {O"IO" is a successful trace of g} U {[O", YJI Y s xc for some (O", X) E ~[g]}.

Note that 8 does not appear anywhere in 97t[g] and %[g].
Example 2.2.l. Consider gas in Fig. 3; at each node its type (i)-(iv) is indicated.

Moreover Table 2 contains the contribution of each node to the failure and ready set
of g.

Example 2.2.2. (i) Let 8 be the graph consisting of one 8-step. Then 97t[o] = { (e, 0)}
and %[8] = {[e, Y] I Y s A}.

(ii) Let a EA. Then 97t[a]={(e,{a}),a} and ~[a]={a}U{[t:, YJI YsA-{a}}.
(iii) Let ao be the graph consisting of a consecutive a- and 8-step. Then 9lt[ao] =

{(t:, {a}), (a, 0)} and ~[ao] = {[e, Y] I Y s A-{a}} U {[a, Z] IZ s A}.
DEFINITION 2.2.3. Let g, h E 1Hi5. Then g = :'llh if ~[g] = ~[h] and g= g;h if ~"[g] =

%[h]. In other words, g, h are ready equivalent, and failure equivalent, respectively.

2.3. Bisimulation equivalence. For the sake of completeness we include the
definition of the well-known notion of a bisimulation.

FIG. 3

TABLE 2

(<,{a, b})
(a,0)

(a, {c})

b

ac

Sl'[gll

[e, Y], Y s;; A - {a, b}
[a, Y], Ys;;A

[a, Y], Ys;; A-{c)
b

ac

READIES AND FAILURES 1141

DEFINITION 2.3.1. Let g, h E IHl 8 • Let ROOT (g), ROOT (h) denote the root of g, h,
respectively, and let NODES (g), NODES (h) denote the set of nodes of g, h, respec
tively.

Then R s; NODES (g) x NODES (h) is a bisimulation from g to h if:
(i) (ROOT(g), ROOT(h))eR;

(ii) If (s, t) ER and s4s' (where u e A8) is an edge in g, then (s', t') e R for some
t' such that t-14 t';

(iii) If (s, t) E R and t-4 t' (where u e A8) is an edge in h, then (s', t') e R for some
s' such that s4s'.

Notation: g'!:±h (g, h are bisimulation equivalent, or bisimilar) if there is a bisimula
tion from g to h (or vice versa).

As we will want to model the axiom {) · x = {) later, we profit here from the fact
that only 8-normal process graphs are considered. Otherwise the definition of bisimula
tion would be more involved.

2.4. Comparing the equivalences. It is not hard to compare the four equivalences
- 1" ="*,=:JO, and '!:::±:for g, h E IHl 6 we have

g~g ~ g=fllh ~ g=:Jih ~ g-,rh

and in general none of these implications can be reversed as some of the following
examples (e.g., Example 2.4.2) show. Lemma 2.5.5 states a sufficient condition for
reversing the second implication.

In the sequel we will prove (Proposition 4.2.3) that g =<'Ah and g = g;;h are congruen
ces with respect to the operations defined above in § 1.2. Also~ is a congruence; see
Theorem 2.5 of [BK85] for the more complicated situation where T-steps are present.
Trace equivalence however is not a congruence with respect to these operations, as
the following example shows.

Example 2.4.1. Let 'i!?[t'] be the context a1b,c}(t' II c), and let a, b, b0 , c, c0 be atoms
with communications b I b = b 0 , c I c = c0 and all other communications resulting in S.
Consider the trace equivalent processes a(b+c) and ab+ac. Then <e[a(b+c)]=
ac0 ttr a8+ac 0 = 'i!i'[ab+ac].

Example 2.4.2. See Fig. 4.

2.5. Convexly saturated process graphs. Following [Br83] and [DH84] we intro-
duce the following notion of convexity.

DEFINITION 2.5.1. f!ts; 9J>(A) is convex if
(i) X, YE f!t ~ X LJ YE f!t;

(ii) X, YE f!t, X £;; Z £;; Y ~ Z E f!t.
(Here 9J>(A) is the power set of A. In particular, 0 s; 9J>(A) is convex.)

DEFINITION 2.5.2. (i) Let ge!Hl 8 and er EA*. Then glcr={Xj(cr,X)EeJl[gil}.
(ii) g is convexly saturated (or just "convex" or "saturated") if g I u is convex,

for all er E A*.
Example 2.5.3. In Fig. 5, g1 , g2 are not convexly saturated, but their "convex

saturations" g;, g~ are.
PROPOSITION 2.5.4. Let f!ts; 9J>(A) be convex, and let Y£ A be afinite set such that

Ye f!t, Y s; LJ f!e. Then for no X E f!t we have ye£ XC.
Proof Consider a finite Y such that Ye f!t, Y £ U f!t. Suppose that there is an

X E f!t such that ye£ X'', or equivalently X s; Y. Clearly, Y is covered by finitely many
members from f!t, hence (since f!t is convex) by some Z E f!t. From X £ Y £ Z it follows
that YE f!t, a contradiction. 0

1142 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

(a)

(b)

(c)

(d)

b b

c

FIG. 4

A
bf le

LEMMA 2.5.5. Let g, h E IHl 8 be convexly saturated. Then

g=:j/h <:::> g=,;;;h.

Proof. Only to prove(<=). So, we suppose g'J"=<Ylh and we want to prove g'!"=g;h.
Furthermore, we may suppose that g, h have the same trace set; otherwise g ¥'= g;h is
immediate. Now there is a ready pair (o-, X) in (say) ~[g] but not in 97i[h]. By
(o-, X) E 97i[g] we have the failure pair [o-, X'"] E SF[g]. Now consider h I o-, which is by
assumption convex. Since g~,rh, we have X~ U (hio-). Furthermore, (o-,X)e97i[h]
entails X eh I a= {X; Ii EI}. So, by Proposition 2.5.4: for no i E I we have X'. ~ Xf.
But then [o-, X'] e BF[h] and we have g ¥'= g;h. D

3. Transformations on process graphs. We now introduce four elementary transfor
mations on process graphs E IHl 0 with the following property: the first two of them
generate, when applied on g E IHl 8 , all process graphs g' bisimilar tog; further, the first
three generate the ready equivalence class of g; and finally, the four together generate
the failure equivalence class of g.

READIES AND FAILURES 1143

~·:

FIG. 5

3.1. The transformations double edge, sharing, cross, and fork.
[i] Double edge. This process graph transformation step removes in a double edge

as in Fig. 6 (where a EA), one of the edges. Notation: g=}LiJh.

[ii] Sharing. Suppose g E IHJ 8 contains two nodes s, t determining isomorphic sub

graphs (g)s, (g),. Then the nodes s, t may be identified. Notation: g=}liilh.

[iii] Cross. Ifs is a node of g E IHl 8 , CJ" is a history of s if there is a path from the

root of g to s yielding the word u. Furthermore, history(s) is the set of all histories

of s. Now let g E IHJ 8 contain a part as in Fig. 7(a), where history(s 1) = history(s2). Then

edges, as in Fig. 7(b), may be inserted. Notation: g=}1ii11 h.
Note that the condition on histories is fulfilled when g is a process tree. Further

more, note that the condition on histories is necessary: it is easy to give an example

where this requirement is violated and such that after insertion of the two new steps

we have new ready pairs or new completed traces.
[iv] Fork. Let g E IHJ 8 contain a part as in Fig. 8(a), where all successor steps

b1 , • • • , bn of the left a-step are displayed. Then a part as indicated in Fig. S(b) may be

inserted. Notation: g =}r1v1 h.
Here it is not required that all steps b1 , • • • , bn, c1 , • • ·, c"' have different end

nodes. If n = 1, b1 may be 8; likewise c1 may be 8. In such a case, after inserting the

fork we have to 8-normalise the resulting graph again. We emphasize that a fork

connects all of the successor steps of the left a-step with some of those of the right a-step.

FIG. 6

1144 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

(a) (b)

FIG. 7

Notation 3 .1.1. (i) => is =>111 U · · · U =>11v1;

(ii) =>* is the transitive reflexive closure of=>;
(iii) <=>* is the equivalence relation generated by=>.
Example 3.1.2. (i) See Fig. 9. Note how =>1m1 enables us to switch subgraphs x, y

at the end of paths with the same history (abc in Fig. 9(b)).
(ii) (See Fig. 10.) Figure IO(a) contains an example of a fork transformation.

Figure lO(b) contains an example of a fork transformation involving a 8-step. Figure
10(c) shows that complete branches can be pruned by successive transformations.

FIG. 8

0

READIES AND FAILURES

d

=l> *
[i] • 0

.................................. _, ___________ ,. ______________________ !

(b)

:::::;) *
[iii]

FIG. 9

1145

DEFINITION 3.1.3. (i) A transformation step g ~(mJ h is called restricted if g is a
process tree (i.e., a process graph without sharing of subgraphs).

(ii) Let~ be the symmetric closure of~. A transformation g ~ · · · ~ h is restricted
if every [iii]-step in the transformation is restricted.

3.2. Connecting process graph equivalences with process graph transformations.
PROPOSITION 3.2.1. Let g, he H8 • Then we have the following:
(i) g ~u-mi h implies g == 91 h;

(ii) g ~li-i•l h implies g == fffe h.
Proof. Item (i) follows at once from the definitions.
(ii) We must only prove that the new node s introduced in a fork does not generate

new failure pairs (see Fig. 8(b)).
Case 1. Let (ua, {b 1 , • • ·, b"}) be the ready pair contributed by node ti. where

n ~ 1 and the b; are not 8. The ready pair of the new node s is
(ua, {bi.···, bn, Ci. ···,cm}). Hence the failure pairs contributed by s are among
those of t 1 •

Case 2. n = 1 and b = 8. Then (ua, 0) is the ready pair of t1 so the failure pairs
of t 1 are [O'a, X], X s; A and again these cover the failure pairs of s.

Case 3. The cases where m = 1, c1 = 8 are trivial.
So in all cases the new failure pairs (of s) were already present as failure pairs

of t1 • The part of .9fo'\[gll that consists of successful traces is invariant. D
We will now prove the reverse implications in Proposition 3.2.1. To this end the

ready normal form @l (g) and the failure normal form f!i(g) will be defined. First we
define a map 'Y from the collection of ready sets {@l[gD I g e II-DB} to IHl8.

DEFINITION 3.2.2. (i) Let g e ll-0 8 have ready set @l[g]. Then 'Y(@l[g]) is the process
graph with @l[g] U {o} as set of nodes, with (e, X) e@l[g] as root, and with edges

1146

(h)

(ci

b

J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

a

~[iv]

............................ _,. --······ .. ·· ~-.... -~--·--...... ·~·-~··--·····-·--··-· ... ·-··~

• ~[i],[ii]

FIG. 10

=

::::) ~],[ii]
a

given by

(er,{a}UX)-4(era, Y),

(er, {a} U X) -4 era,

(er, 0)-4 o

(whenever the left-hand side, right-hand side E !Yl [g] U { o}).
(ii) :?Ji (g) = y(!Yl[gll) is the ready normal form of g.

(iii) The convex closure cl (!Yl[g]) of :?Ji [g] is obtained as the smallest set containing
:?Jl[g] and satisfying

(er, X), (er, YU Z) E cl (!Yl[g]) ~(er, XU Y) E cl (!Yl[g]).

(iv) .'ffe(g) = y(cl (:?ll[g])) is the failure normal form of g.
Example 3.2.3. Let g be as in Fig. ll(a). Then !Yl(g), .'ffe(g) are as in

Fig. ll(b), ll(c), respectively.
PROPOSITION 3.2.4.

(i) g<=>~-m1!Yl (g) via a restricted transformation;
(ii) g<=:>* .'ffe(g) via a restricted transformation;

READIES AND FAILURES

(a)

(b)

(c)

(iii) g ;;;;;!Ji9Jl(g);
(iv) g;;;;; BFfffe(g);

abc

(v) g)l (fffe(g)) = fffe(g);

g:

:f
0

(vi) g ,..r11h ~ 9Jl(g) = 9Jl(h);
(vii) g ;;;;;BFh ~ fffe(g) = fffe(h).

abd

FIG. 11

1147

aef

Proof. (i) (The following proof was kindly provided to us by R. J. van Glabbeek
(personal communication).) Let g E Hl 8 be given. We will transform g via a restricted
transformation to a process graph g* such that g* ~ ~(g). Since tl coincides with
~irnr (see Corollary 3.2.S(i)) this suffices.

1148 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

If each node in g has a unique history, g is called history unambiguous. So in
particular, process trees are history unambiguous. For a history-unambiguous process
graph g, the level of node s in g is the length in symbols of the history of s. The root
of g, therefore, has level 0. We will use the following notation: if s is a node of g,
ready(s) is the ready contribution of s to the ready set of g; so ready(s) = (O", X) or
O" for some O", X. If s, t are nodes of g, we write s ti t to indicate that the subgraphs
with s, t as roots, respectively, are bisimilar.

The transformation of g to g* such that g* ~ g/l, (g) will be done in stages, level
by level, starting from the top level (level O). The induction hypothesis for the
transformation is that after the nth stage g (= g0) is transformed to gn satisfying the
following property IHI n : Suppose p, q are nodes of g" such that p has level n, ready(p) =
(O", X U {a}) and ready(q) = (O"a, Y) or O"a. Then g" contains a node r such that q .ti. r
and p-"? a r.

For g0 we have indeed IHl 0 ; p is then the root and for r we just take q. Now suppose
gn is constructed such that IHI" holds. We will construct gn+i such that 1H1n+i holds. So
consider a node p of level n + 1 in g" admitting an a-step (see Fig. 12) with ready(p) =
(o-b,XU{a}), and a node q with ready(q)=(O"ba, Y). Hence there is a node p' on
level n such that p' ~bp; say ready(p') = (o-, X'). Also there must be a node q' such
that q' -'?a q and, say, ready(q') = (O"b, Z). By ll-lln, therefore, there is a node r' such that
q' ti r' and p'-"? b r'. By the definition of ti, there is a node r such that r' -"?a r and
q ti r. Now we insert a cross (i.e., two a-steps) as in the figure. The result is unshared
by backward application of =?m1 to a process tree. This unsharing does not increase
the number of nodes of level n + 1, and also does not increase the number of nodes
of level n + 2 modulo ti. The procedure is repeated for all p of level n + 1 and
equivalence classes q/ti. As there are only finitely many such pairs p, q/ti the
procedure stops eventually; the resulting tree is gn+i· Clearly gn+i satisfies IH!n+i· The
construction of the sequence g0 , g1' · · ·, g" stops when n is equal to the depth of g.
The result is called g*, and we claim that g* ti i1't (g) via the bisimulation that relates
nodes s, t in g*, i1't (g), respectively, such that ready(s) =ready(t).

Proof of the Claim. Suppose s, tare nodes in g*, iYt(g), respectively, such that
ready(s)=ready(t)=(s,XU{a}). Let s~ 0 s'. Then take the unique node t' in iYl(g)
with ready(t') =ready(s'). This must be (O"a, Y) or O"a. By definition of the edges in
i1't (g) we have t -"?a t'; and indeed s' ti t' because ready(s') =ready(t'). The other side
of the bisimulation requirements: Let s, t be as before, and let t ~a t' with ready(t') =
(O"a, Y) or O"a. Let s* be a node in g* such that ready(s*) =ready(t'). By construction

(crb,Z) q' r~p' (cr,X')p

I !::Z crh, Xu[a))

a a t

!::Z 0
(crba. Y) q r

FIG. 12

READIES AND FAILURES 1149

f * th • d I
0 * "th * I d o g ere 1s a no e s m g WI s ti s an s ~as'. Clearly, readv(s') =ready(s*) =

ready(t'), hence s' ti t'. • ·

(ii) Let _g be given. Ac_cording ~o (i) there is a restricted transformation of g to
9lt(g). We will transform (via a restncted transformation) ;R(g) further into :ffe(g), as
follows. Take nodes (u, X), (u, YU Z) from 9Jt (g) such that (u, X U Y) is not yet a
node of flt(g). (If such nodes do not exist then 9lt(g) is already equal to .~(g).) Now
it is easy to see that there are paths in 9Jt (g) from the root to the nodes (u, X), (u, y U z)
such that these paths coincide in all but their last step, i.e., the paths split up as late
as possible. At the split-up node we now insert a fork into ~(g), with central node
(u, XU Y), which is a new node. Call the result: 9lt(gt. Next, ~(g)+ is transformed
(according to (i)) to 9Jt(qf(gt). Iteration of this procedure, via ~(g't(gt)+,
9lt(f?il(0l(g)+)+), etc., obviously will stop in :ffe(g).

Parts (iii) and (iv) are left to the reader.
(v) By Definition 3.2.2, f?il(%(g)) = %(g) means

-y(qf[y(cl (~[gD)m = -y(cl (f?il[g])),

which is equivalent to

f?ilb(c1 c ~[dJ Jn= cl Cf?il[gD).

So we must check that the set of ready pairs of the graph determined by the set of
ready pairs cl (f?il[gTI) is just cl (qf[gTI); this seems obvious.

(vi) g=fflh by definition means ~[gTI=f?il[h]. Hence 07t(g)=y(g't[g])=
y(flt[hll) = ffl(h).

(vii) Suppose g = 3' h. Then by (iv) g = ~ :ffe(g), h = ~ :ffe(h), so .'ffe(g) ="' .'.f"(h). Since
both .<F(g), .<F(h) are convexly closed, we have :ffe(g)= 911 %(h) (by Lemma 2.5.5). So
(vi) f1ll(%(g)) = g't(%(h)). Hence by (v): :ffe(g) = .:f"(h). D

COROLLARY 3.2.5. Let g, h E IHl 5. Then we have the following:
(i) g ti h if and only if g ~~J.!iil h;

(ii) g =ffl h if and only if g ~~-m1 h;
(iii) g =."l' h if and only if g ~*h.
Proof. Item (i) is (essentially) proved in the Appendix of [BK83] and also in

Corollary 2.13 of [BK85]: the proofs there also take T-steps into account; after leaving
out all mention of T-steps, the result follows.

(ii) The implication from right to left follows from Proposition 3.2.l(i). The other
direction follows from Proposition 3.2.4(i), (vi).

(iii) The proof is similar to (ii). D

4. Axiomatising the equivalences on process graphs. We will now use our analysis
of = &1, = :g; on the graph domain IHl 8 to formulate complete axiom systems for these
notions. First this will be done for the signature of +, · alone, later on (in § 4.2) also

II, lL I, a H will be taken in to account.

4.1. The case without communication. We start with the observation (whose proof
is simple and omitted) that = ,,i, = ~ are congruences on IHl 8 (+, ·), and hence can be
factored out to yield IHJ 5 (+, ·)/ = t11 and IHls (+, ·)/ = ,,_, respectively. These are the
structures which we will now axiomatise.

We will prove that the axiom system BPA8 + Rl, 2 + S in Table 3 is a complete
axiomatisation for IHl 8 (+, ·)/ = ,i;; after leaving out axiom S we have a complete
axiomatisation for IHl 8 (+, ·)/ =t11· Here a, b vary over AU {8}; x, y, z, u, v are variables

1150 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

for processes. Note that R2 is not derivable from Rl because in BPA.s + Rl, 2 + S there
is no process x satisfying bx = b when b ¥- 8_ On the other hand, x should be present
in axiom S as the equation

a+ a (y + z) = a+ a (y + z) + ay

would yield the failure-inconsistent equation

a + ab = a + ab + a8.
Remark 4.1.1. (i) The axioms Rl, 2 and S (R for readiness, S for saturation),

which are specific for failure equivalence, appear already in [Br83] in a slightly different
form. [Br83] considers also r-steps and presents as laws valid for failure equivalence
in Proposition 1.3.6:
(1) r(µx+u)+ r(µy+v) = r(/Lx+ /LY+ u)+ r(µx+ µy+ v),

(2)

(here IL E A 5 U { r}; x, y, u, v are arbitrary processes), and in Proposition A.3 in [Br83]:

(3)

(4)

rx+ ry = rx+ ry + r(x+ y),

rx+ r(x+ y+ z) = rx+ r(x+ y)+ r(x + y + z).

Clearly (1), (2) imply Rl in Table 3; and using the r-law xr = x, also valid in failure
semantics, we also derive R2. Further, (3), (4) together with (2) yield the pair

ax+ ay = ax+ ay + a(x+ y),

ax+a(x+ y + z) = ax+ a(x+ y) + a(x+ y + z)

(where a E As), which is equivalent to axiom S in Table 3.

TABLE 3
BPA,+Rl,2+S

x+y•y+x Al
(x+y)+z=x+(y+z) A2
x+x•x A3
(x+ y)z • xz+ yz A4
(xy)z•x(yz) A5
x+8=x A6
8x = 5 A7

a(bx+ u) + a(by+ v) = a(bx+ by+ u)+a(bx+ by+ v) RI
a(b + u)+ a(by+ v) • a(b+ by+ u)+a(b+ by+ v) R2

ax+a(y+z)•ax+a(y+z)+a(x+y) S

(ii) The axioms Rl, 2 and Sare also immediate consequences of the proof system
of De Nicola and Hennessy [DH84] for strong testing equivalence = 2 , to be discussed
and related with failure equivalence later in Remark 7.3.3. This can be seen as follows:

(1) Axiom Sin Table 3: ax+a(y+z)=ax+a(y+z)+a(x+y) implies

ax+ay = ax+ ay+ a(x+ y)

by taking z = y; this is (05) in [DH84]. Further, (S) implies

ax+ a(x+ y+ z) = ax+ a(x+ y+ z)+ a(x + y)

READIES AND FAILURES 1151

by replacing yin (S) by x+ y. This is (06) in [OH84]. Vice versa, (S) follows from
(05), (06):

ax+ a(y+ z)

= ax+ a(y+ z)+ a(x+ y+ z)

(D5)

(D6)

=ax+a(y+z)+a(x+y+z)+a(x+y) (D5)

= ax+ a(y+ z) + a(x+ y).

(2) Axiom Rl: a(bx+u)+a(by+v)=a(bx+by+v)+a(bx+by+u) is derived
from the axiom system in [OH84] as follows:

bx+ 7(by+ v) = T(bx+ by+ v)

by+ 7(bx+ u) = 7(bx+ by+ u)

bx+ by+ 7(by+ v) + 7(bx+ u) = 7(bx+ by+ v) + 7(bx+ by + u)

bx+ 7(bx+ u) = 7(bx+ u)

by+ 7(by+ v) = 7(by+ v)

7(by+ v)+ T(bx + u) = 7(bx +by+ v) + 7(bx +by+ u),

a[7(by+ v) + 7(bx+ u)] =a[7(bx+ by+ v) + r(bx+ by+ u)],

(N3),

(N3),

(D9),

(D9),

a(by+ v)+ a(bx + u) = a(bx +by+ v) + a(bx+ by+ u) (Nl).

Here (Nl), (N3), and (D9) are axioms in [OH84].
(3) Axiom R2: a(b+u)+a(by+v)=a(b+by+u)+a(b+by+v) is not needed

in [DH84] because a process b, which first performs action b and then successfully
terminates, is not considered there. Note that the process bNIL of [DH84] corresponds
to b · 8 and is thus different from b.

4.1.2. Connecting terms with process graphs. Let Ter (BPA6) be the set of closed
terms in the signature of BPA5 (=the signature of BPA6 +Rl,2+S). We define the
following translations:

graph: Ter (BPA8) ~ 1Hl 8 ,

ter: 1Hl 5 ~ Ter (BPA8).

Here graph (T) is the process graph obtained by first normalizing T with respect to
A4, A6, A 7 in Table 3 and second by interpreting a, +, · as the corresponding "one-edge
graphs" and operators +, · on IHl 5 •

Further, to define ter (g) we first define tree (g) as the tree obtained from g by
"unsharing." Now we define ter (g) as the term corresponding in the obvious way to
tree (g).

Example 4.1.2. l. (i) graph (a(b + c + d)d +de+ ed) =graph (a(bd + cd) + ed) is
the graph in Fig.13(a).

(ii) If g is as in Fig. 13(b), then tree (g) is as in Fig. 13(c).
(iii) If g is as in (ii), then ter (g) =ace+ b(de+ ab).
Remark 4.1.3. Note that ter, graph are "almost" inverse to each other:

BPA51-(ter 0 graph)(T) = T,

(graph 0 ter)(g)±zg

where ti: (bisimilarity) coincides with ~rrI.IiiJ·

1152 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

TRANSFER LEMMA 4.1.4 (see diagram). Let g, h E IHl 8 be such that g::::} h. In case

::::} is ::::}1m1 we require moreover that g be a process tree. Then

BPA8 + Rl, 2+SHer (g) = ter (h).

g h

ter ter

BPA0 + Rl,2 + S

Proof A transformation g ::::}lil h (removing a double edge) "translates" into some

applications of A.3: x + x = x.
A transformation g ::::}liiJ h is invisible on the level of terms, i.e., ter (g) and ter (h)

are identical terms. Next consider a transformation g ::::}IiiiJ h, which consists of adding
two edges in g as in Fig. 14. (Note that in this case g is assumed to be a tree.) This
translates to an application of Rl if the subtrees x, y are nonempty, and to R2 if one
of these subtrees is empty. In case both subtrees x, y are empty we have an application
of axiom A3.

Finally, a transformation g ::::}1ivl h (see also Fig. 8) translates into some applications
of axiom S in Table 3. 0

THEOREM 4.1.5. (i) BPA8 + Rl, 21-T1 = T2 ~graph (T1) ="1 graph (T2).

(ii) BPA8 + Rl, 2+ S1--T1 = T2 ~ graph (T1) =""graph (T2).

Proof We prove (ii); the proof of (i) is similar.
Checking the soundness (::::}) is routine and will not be done here. As to the

completeness({:=): suppose graph (T1)=,;;graph (T2). Then by Proposition 3.2.4(ii),
(vii): graph (T1)~*graph (T2) via a restricted transformation. Now by the Transfer
Lemma 4.1.4 we have

BPA8 + Rl, 2 + Sl-(ter o graph)(T1) = (ter 0 graph)(T2)

and by Remark 4.1.3:

(b) .A -
y "\..
~a

FIG. 13

(c)

0

READIES AND FAILURES 1153

Notation 4.1.6. (i) If (I, E) is a specification (sometimes only written as E if the
signature I is clear), then J(l, E) is its initial algebra.

(ii) == denotes isomorphism between algebras.
COROLLARY 4.1.7. (i) IHl 8 (+,·,a, 5)/ =:m ==: J(BPAa + Rl, 2).
(ii) IHIB(+,·,a,5)/=s;;==I(BPA6 +Rl,2+S). D

4.2. The case with communication: the graph model of ACP r. Finally we will prove
the results above in the presence of communication. The operators II. [[_,
·,I. a H. aH(a EA) on IHl 6 were already introduced in § 1.2. They are the semantical
counterparts of the same operators in the axiom system ACP,, as in the upper part of
Table 4, which presents the axiom system ACP, + Rl, 2 + S, and which extends our
earlier axiom system BPA6 + Rl, 2+ S in Table 3.

As before, in Table 4 a, b, c vary over AU {5}, and x, y, z, u, v vary over processes.
We want to prove that the initial algebra of ACP, + Rl, 2+ S is isomorphic to the

model of finite acyclic graphs modulo failure equivalence = s;;, called the graph model
for ACP, + Rl, 2 + S. To this end we have first to prove that ="" is a congruence with
respect to also the new operators. Once we have this, and knowing from [BK85],
[BK86a] (after leaving out all reference to T-steps) that there is the isomorphism

J(ACP,) == IHl 8 (+, "II, ~,"I. aH, aH, a, 5)/ tl

where tl is bisimulation (which coincides with <::::>~1•1 u1 ; Corollary 3.2.5(i)), the derived
isomorphism is a consequence from some general facts which we will state now.

4.2.1. General intermezzo. Let A be an algebra that on the one hand can be
expanded to A* (i.e., enriched with new functions; the domain is invariant) and on
the other hand can be factored out via =, a congruence on A, to A/=. Suppose
moreover that = is also a congruence on A*. (See the following diagram.)

A expansion ., A*

= is congruence for . *
the operations in A

~ c
~ c
~
~

' ~ i c;·
~ ~

A/:: : ~ A*/::: = (A/:)*
l'.\fJOf!SlOfl

Then this expansion and factorisation are compatible (or commuting): A*/=
equals (A/=)*. Now let A, A*, A/= be isomorphic respectively to the initial algebras
of the equational specifications(~. E), (I U a, EU D), (I, EU F).Then it follows that
(I U a, EU D) is

(1) a conservative extension of the "base" specification (~. E) (i.e., no new
identities between closed terms in the base signature I are provable from (I U a, E U
D)), and

(2) moreover, the extra operators in a can be eliminated:

conservative extension with elimination property
(I,£)------------- (I U a, EU D)

1
(I, EUF).

1154 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

F!G.14

TABLE 4

ACP,+Rl,2+S

x+y=y+x
x+(y+z) =(x+ y)+z
x+x=x
(x+y)z=xz+yz
(xy)z = x(yz)
x+B=x
8x=8

a[b=bfa
(a[b)[c=a(bfc)
8[a=8

xjjy =x IL y+ Y IL x+xfy
all.x=ax

ax IL r= a(xll y)
(x+ y) IL z =x 11_ z+ y IL z
ax[b=(a[b)x
afbx=(a[b)x
ax[by= (a I b)(xjjy)
(x+y)fz=x[z+yfz
xf (y+z) =xfy+x[z

aH(a)=a ifaf!H
aH(a)=8 ifaeH

aH(x+ y) =ilH(x)+aH(Y)
aH(xy) =ilH(x) · aH(y)

aH(b)=b ifbf!H
aH(b)=a ifbeH

aH(x+ y) = aH(x)+aH(y)
aH(xy) = aH(x) · aH(y)

a(bx+ u)+a(by+ v) == a(bx +by+ u) +a(bx+ by+ v)
a(b+ u)+ a(by+ v) = a(b+by+ u)+a(b+by+ v)

ax+ a(y + z) = ax+ a(y + z) +a(x+ y)

Al
A2
A3
A4
A5
A6
A7

Cl
C2
C3

CM!
CM2
CM3
CM4
CM5
CM6
CM7
CMS
CM9

DI
02
03
04

RN!
RN2
RN3
RN4

Rl
R2

s

Furthermore (and this is what we are interested in) we may conclude from the
given isomorphisms that

A*/== (A/=)*= /(I.U.1, EU DU F)

READIES AND FAILURES 1155

where the last algebra is the initial algebra of the union of (:~:, E U F) and (:£ U A,
BUD).

(In the statement of the next theorem, as well as in its proof and Table 5, we have
suppressed mention of the constants a, 8 in, e.g., ll-Il 5 (+,·),which actually should read
ll-Do(+,-, a, 8)(a EA).)

THEOREM 4.2.2. Let the initial algebras l(BPA)8) etc. as in Table 5(ii) of the axiom

systems BPA0 etc. as in Table 5(i) be given. Furthermore, consider the graph models
IJ-0 8 (+, ·)/ ti etc. as in Table 5(iii).

Then corresponding initial models and graph models are isomorphic. In particular:

I(ACP,+Rl,2+S)=IHl8(+,., 11, lL l,aH,aH)/=g;.

Proof. Consider, for example,

BPA8 ___,. ACP,

BPA8 + Rl, 2+S

and the corresponding initial algebras

I(BPA8) ___,. l(ACP,)

I(BPA8 + Rl, 2 + S)

and furthermore (by position in the diagram in Table 5) the corresponding graph models

i horn

IH!a(+,.)/ =;;;

By Corollary 4.l.7(ii) we have l(BPA8 +Rl,2+S)=IHl8(+,-)/=g;;, and by results
in [BK85], [BK86a], [BK86b] we have I(BPA8)=1Hl 8 (+,·)/ti and I(ACP,)=
IHl.s(+, ·,II, ll_, \,aH, aH)f ti.

Therefore, by 4.2.1, it suffices to prove that = g;; is a congruence with respect to
the "new" operators on IHl 5 in order to conclude that

J(ACP,+Rl,2+S)=IHlo(+, ·, 11, lLl,aH, aH)f =g;.

This is proved in the next proposition. D
PROPOSITION 4.2.3. (i) Failure equivalence is a congruence with respect to the

operators II, [j_, I, aH, aH on IHla.
(ii) The same holds for ready equivalence.
Proof. (i) We consider some typical cases.
The case of a H. To prove g= 9-Fh =;.aH(g)=,;;aH(h). By Corollary 3.2.5 it suffices

to check that g ==;. h implies a H (g) = ;y;o H (h). The cases that ==;. is =;.1;1 or =;.1n1 present
no problem. As to =;.mil: it is easy to verify that

g =;.1w1 h implies aH(g) =att(h) or aH(g) =;.1m1aH(h).

As to =;.1;vi. as in the previous case, the effect of aH (renaming some atoms in g, h into
8 and 8-normalising the resulting graphs again) is such that either the "same" fork
can be inserted or att(g) =aH(h).

1156 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

TABLE 5

(i)

BPA5---------> ACP,
1 1
BPA8 +Rl,2 ACP,.+Rl,2
1 1
BPA8 +Rl,2+S ACP,.+Rl,2+S

(ii)
I(BPA8),-~•:.:.c'P ___ __. J(ACP,.)

ihorn 1horn

/(BPAs+Rl,2) exp J(ACPr+Rl,2)
1hom 1horn

l(BPA8 + Rl, 2+ S)·-0 '-'-P _ _, l(ACP, + Rl, 2+S)

(iii)

IH!a(+,.)/

thorn

IH!a(+,.)/=,.
1hom

IH!a(+, ·)/=,.,

exp
IH!s(+,·, II, IL.l,aH, aH)/~
thorn

exp
---'------> IH!s(+, ·,II, \j_, I, aH, aH)/=""

1horn
exp

---'-----> IH!s(+, ·.II. IL I. aH, aH)/'="(;'

(Note here that it is crucial that process graphs g, h as in Fig. 15 are not failure
equivalent, since a{b} would yield a trace ao in h but not in g.)

The case of 11- It suffices to prove

g~ g' implies gllh =.<F g'llh.
As above, only the cases [iii], [iv] (cross and fork, respectively) are of interest. In fact
we will prove the following:

(i) g ~1m1 g' implies g 11 h ~1m1 g'11 h.
(2) g~li•lg' implies gllh =g;g'llh.
Proof of (1). Due to the construction of a merge as a Cartesian product with

diagonal edges for communications (Fig. 16), it is "geometrically" clear (see Fig. 17)
that inserting a cross in g amounts to inserting several crosses (also possibly diagonal
ones, depending on the communication function) in the merge gll h. So gllh ~1m1 g'llh.
(It is not hard to see that the condition on histories, which is stated in the definition

0

FIG.15

READIES AND FAILURES 1157

h: 0
c

g llh:

FIG. 16

of =::}1rn1, stays satisfied in such a way that insertion of these crosses in g II h is indeed
legitimate.)

Proof of (2). Under the assumption g =::}!ivJ g' we now prove gjlh =Sl'g'llh directly
from the definition = 8l'· So consider the addition in g of a fork that connects all
successors of s 1 (see Fig. 18) to some of those of s3 • That is, the failure pairs contributed
by the new node s2 are contained in those of s 1 • Then we must check that the new

FIG. 17

1158 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

h: 0
d

g:

d

FIG. 18

nodes (s2 , t) in g'llh caused by this addition, contribute no new failure pairs. It is not
hard to check that indeed the failure pairs of (s2 , t) are contained in those of (s2 , t)
by some consideration of the outgoing edges of (si. t) and (si. t). The precise
verification is omitted here.

The proof of part (ii) of the proposition is as for (i)-but simpler. It is omitted
here. 0

5. The failure model of ACP,. In the previous sections the notion of failure
equivalence was introduced for the process graph domain IHl 8 , and it was shown to be
a congruence with respect to the operators of ACP, in IHl 11 . The quotient IHlll/=g; was
shown to be a model of ACP,, called the graph model of ACP,. Furthermore, a
complete axiomatisation ACP, + Rl, 2 + S was given for = g; in the sense of

/(ACP, + R 1, 2+ S) ==D-n11/=g;.

Here IHld=s; is short for IHla(+,.,ll,IL.!,aH,aH,a,5)/sas-. In this section we will
provide an explicit representation of the quotient structure IHla (+, ·, II, ll.,
j, aH, aH, a, 8)/ = s-, called the failure model of ACP,. The model will shed more light
into the structure of failures, and-in connection with§ 6.2-it will link our definitions
with the original work on failures in [BHR84].

5.1. The domain f of failure sets. First we introduce the domain of failure sets,
denoted by f. It consists of all finite subsets

Fs;;;A+U(A*x9P(A))

(where A* is the set of finite words over A, A+ is the set of nonempty finite words

READIES AND FAILURES 1159

over A, and 2P(A) is the power set of A) which satisfy the following closure properties:
(i) [e, 0] E F;

(ii) [o-1CT2,0]EF=?[o-i,0]EF;
(iii) Xs Yand[o-, Y]EF=?[a,X]EF;
(iv) [o-, X] E F and [o-, X U {a}] E F =? o-a E For (o-a, 0] E F;
(v) aa E F =? [o-, 0] E F;

(vi) [e, X] E F & a EX=? [a, 0] E F.
The conditions (i)-(iv) on failure sets are exactly as in [BHR84]. Condition (v) deals

with traces u EA+ which allow a direct definition of sequential composition without

using (and later hiding again) an extra action v' coding the event of successful

termination as in [BHR84]. In § 6.2 on CSP we will restrict ourselves to CSP without

successful termination. Then this difference is irrelevant. Condition (vi) is needed

because we do not consider T-steps and hence no initial nondeterminism.

5.2. Operations on failure sets. Now we define the constants 15, a(a EA) and the

operations +, ·, II, lL, a H, aH of ACP, directly on IF. For F, GE IF we put the following:
(i) o={[s,XJIXsA}.

(ii) a={[a,XJIXsA-{a}}U{a}.
Initially "a" can refuse anything except "a." After "a" has occurred, the

process successfully terminates.
(iii) F+ G={[e, XJl[e, X]E Fn G}

U {o-lo-E FU G}
U{[o-,XJlo-;Cs/\[o-,X]EFUG}.

u { CT I (}" E Fu G}
U { [u, X] I o- ;6 e /\ [u, X] E F U G}.

In its first step F + G can refuse only those actions which can be refused
by both F and G. In all subsequent steps F + G behaves as FU G.

(iv) F· G={[o-,XJl[o-,X]EF}
U {u1a 2 I o-1 E F /\ o-2 E G}
u {[0-1 0"2' X] I 0"1 E F /\ [0-2' X] E G}.

F · G first behaves like F and after successful termination of F in a trace
0-1 continues to behave as G.

(v) (1) FllG={o-l30-1EF,o-2E G: CTEo-iilo-2}

u {[o-, XJl3[0-1, X1J E F, [0-2, X2]E G: 0-E CT1llo-2

(2) AXs(X1nX2)-{(alb)laEX1AbEX2}}

(3) U{[o-,XJl30-1EF,[u2,X2]EG:o-Eo-iilo-2/\X=X2}

(4) u {[o-, X] l3[o-i, X1J E F, <T2 E G: CTE 0-1110-2 /\ x = X1}

where 0-1110-2 is the set of traces in A* defined inductively by

e llu = o- II e = { o-},

ao-1 II bo-2 =a. (0-1 llbo-2) u b. (ao-1II0-2) u [a I b] . (0-1II0-z)

with [albJ={(alb)} if albr!'/5 and 0 if alb=/5.
Thus o-1 II a 2 is the set of successful traces obtained by merging and

communicating between o-1 and o-2 • For all traces a 1 E F and o-2 E G this set
is included in Fii G (clause (1)). Besides traces Fii G contains certain failure
pairs [o-, X]. If either For G have already terminated, X is just the refusal

set of the other, not-yet-terminated component G or F (clauses (3) and

1160 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

(4)). If neither F nor G have terminated, X contains only actions that both
F and G can refuse. This suggests X s; X 1 n X2 , where X 1 and X 2 are the
refusal sets of F and G. However, Fii G cannot refuse the possible communi
cations between F and G. These communications can only be of the form
(a I b) with a e X 1 and be X 2 • This explains the condition

x s; X1 n X2-{(a I b)la E X1 /\be X2}

for the refusal set X of Fil G (clause (2)). Note that in case of (a I b) == o
nothing is deduced from X 1 n X 2 •

Clearly, Fll_ G and FIG are just variations of FllG differing only in their first actions.
(vi) Fll_ G = {u I 3a1 E F, 0"2 E G: a E a1 ll a2}

U {[s, X] l[s, X] E F}

U {[a, X] la ;of e /\ 3[a1 , X1] E F, [a2, X 2] E G: aE a 1 ll_ a2

AX s; (X1 n X 2)-{(a lb)lae X1 A b EX2}}

U{[a, X]la;of e /\ 3a1 E F, [a2 , X 2] E G: aE a1 ll_ a 2 /\ X = X 2}

U {[a, X] I a ;of e /\ 3[a1, X1] E F, a2 E G: a E a1 lL a 2 /\ X = X1}

where a 1 lL a 2 is the set of traces in A* defined inductively by

ell_ a= 0,

aa1 lL a2 =a· (a1lla2).

Until the completion of its first communication F lL G behaves as F. This
explains why F lL G inherits all initial failure pairs [s, X] of F. Afterwards
F lL G behaves as Fil G.

(vii) FIG={u)3a1 EF,a2 EG: aEa1 la2}

U {[e, X] l3[s, X 1] E F, [s, X 2] E G: X s; A

- { (a I b) I a e X 1 /\ b e X 2}}

U {[u, X] I a ;of e /\ 3 [a 1 , X l] E F, [a 2 , X 2] E G: a E a 1 I a 2

/\ X s; (X1 n X2)-{(a lb)laE X 1 /\ bE X 2}}

U {[a, X] I a ;of e /\ 3a1 E F, [o-2, X2] E G: a E a1 I 0-2 /\ X = X2}

U {[a-, XJla¥ i:: /\ 3[o-i, X 1] E F, u2 E G: aE a 1 la2/\ X = X 1}

where a-1 I a 2 is the set of traces in A* defined inductively by

sla2=0-1ls=0,

aa1 I ba2 =[a I b] · (o-1ilo-2).

In its first step FIG requires a communication between F and G. Here
initially FI G can refuse every set X of actions not containing possible
communications between F and G. This explains the condition

X s; A-{(a I b) I a e X 1 11 be X2 }

for the failure pairs [s, X]. After its first step FIG behaves like Fil G.

READIES AND FAILURES

(viii) aH (F) ={er I er E F does not contain any a EH}

U {[er, X U Y] I [er, X] E F, s does not contain any a E H, and

Ys;:H}.

1161

In aH(F) only those traces that do not contain any a EH are successful,
and the actions in H can be refused at any moment.

(ix) aH(F) ={aH(er)lerE F

U {[aH(a), X] I a EX 11 [a, XU HJ E F}

U {[a H (a), X] I a ~ X 11 [er, X - H] E F}

where the renaming operator aH is applied pointwise to the elements in er.
A set X can be refused by aH(F) if a//(X) = {b I 3c EX: aH(b) = c} can be
refused by F

Except for the different representation of successful termination, the definitions of
l3, a,+, ·, aH are as for STOP, a~ SKIP, D,; and direct image in [BHR84]. The
definition of II differs from the parallel composition operators in [BHR84]. In § 6.2
we will show how to interpret in ACP, synchronous parallel composition of [BHR84].
The operators \\,I, aH are not present in [BHR84].

5.3. The failure model. The failure model of ACP, is now given by the structure
IF(+," II, lL. l,aH, aH, a, 8)(a EA).

THEOREM 5.3.1. The failure model of ACP, is isomorphic to the graph model of
ACP,:

IHls(+, ·,II, lL. I, aH, aH, a, 8)/ =5'=1F(+," I\, ll_, I, aH, aH, a, 8).

Proof. Consider the mapping :ffe: IHl 8 ~IF introduced in § 2.2. It is clear that :ffe is
well defined, i.e., that :ffel[g] E IF holds for every g E IHl 6 • Also, by Definition 2.2.3, g = :g; h
if and only if .'F[g] = :ffel[h] for all g, h E IHl 8 • Thus :ffe is also well defined and injective
as a mapping:

:ffe: IHl 0 / = :g; ~IF

(which, by abuse of language, we denote also with :ffe). Now .'1' is surjective and behaves
homomorphically over the operations +, ·, jj, ll_, I, aH, and aH. The proofs of these
facts are tedious but follow in a straightforward way from the definitions of these
operators on graphs (in § 1.2) and the definitions of the corresponding operators on
IF (in § 5.1). We will not spell out these proofs. Thus .'1' is the required isomorphism
from IHl 8 (· ··)to IF{-··). O

6. ACP, with one-to-one communication. As a preparation for the subsequent
section we now introduce some additional structure on the alphabet A 8 and the
communication function I: A 8 x As ~As of ACP ,.

6.1. One-to-one communication. First we assume that A (with typical elements
a, b EA) is partitioned into A= CU/, where C (with typical elements c, d EC) is the
set of communicating actions and I (disjoint from C and with typical elements i, j E /)

is the set of internal actions. The set I will serve as an auxiliary tool for the communica
tion function 1-

Second, we denote by a(x), the alphabet of x, the set of non-8 actions occurring
in the closed ACP,-term x. For example, a(a8 + cd) ={a, c, d}. In subsequent results
we will usually be interested in terms x with a (x) <;: C, i.e., not involving internal,

1162 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

auxiliary actions. Formally, the alphabet of a closed ~CPr-term .x is defined by fir~t
eliminating the operators II,[!._, I, aH, and aH from x, usmg the ax10ms of ACPr. (This
is possible by virtue of an elimination theorem to this effect proved in [BK84a] for
ACP; the extra operators aH in ACPr present no problem.) The resulting closed term
x' contains only the "basic constructors" + and ·, and we may further suppose that
x' contains no subterm of the form (p+q)r (by some applications of axiom A4 of
ACP,, see Table l); that is, x' uses only prefix multiplication. Now we define a(x) to
be a(x'), where a(x') is defined by the following clauses, using induction on the
structure of x':

a(8)=0,

a(a) ={a}

a(Bx) = 0,

(a EA),

a(ax) ={a} U a(x)

a(x+ y) = a(x) U a(y).

(a EA),

(That a(x) is indeed well defined in this way, follows from the confluence property
of the rewriting procedure used in obtaining x' from x. This fact is for ACP also proved
in [BK84a] and is easily carried over to ACPr.)

LEMMA 6.1.1. For closed terms x, y over ACP, with a(x), a(y) s;;: C we have

ac(xllY) = ac(xly).

Proof It suffices to show that ac(x ~ y) = 8. Recall that x can be normalized in
ACP, to

with C;, dj E C, and with the empty sum l denoting 8. Thus

x ~ y =l;c;(x;JJy) = lAy

which implies ac(x ~ y) = 8. D
DEFINITION 6.1.2. Assuming the above partition of the alphabet A we say ACP,

has one-to-one communication if for the communication merge I there exists a bijection
cp: C ~ C such that c I c,o(c) EI for every c EC, and a I b = 8 otherwise.

Note that cjcp(c)EJ implies cjc,o(c)rf8. Next, we show that the definitions of
parallel composition used in CSP and CCS are typical examples of one-to-one com
munication.

6.2. Hoare's parallel composition 11.>r> in CSP. In [BHR84] Hoare et al. propose
an operation x II :tt y modelling the full synchronization of processes x and y. We shall
consider II~ here within a small subset of the language CSP [BHR84] which we call
"CSP." The signature of "CSP" is given by

- the constant STOP,
- unary prefix operators c ~ , for c E C,
- the binary infix operators D and ll:rt"

Here C is a given set of communication actions, contained in the overall alphabet A.
The semantics of "CSP" is determined by the failures model of [BHR84]. It is

based on the failures domain IF BHR consisting of all subsets

Fi;;A*xgt>(A)

READIES AND FAILURES 1163

satisfying the closure properties (i)-(iv) discussed in § 5.1. The additional closure
property (v) on traces is not needed here since the failure sets FE fsHR contain only
failure pairs [u, X].

The failure model assigns to each closed "CSP" term x a failure set g;BHR[x] in
the domain IFaHR· According to [BHR84] the definition is as follows:

(i) SfrsHR[STOP] = {[e, X] [X £A};

(ii) SfrsHR[c~ x] = {[e, XJ[X S A-{c}} U {[c · u, X] [[u, X] E g;BHR[xil};

(iii) %BHR[x Dyll= {[e, X] I [e, X] E %BHR[x] n %BHR[yil}

U {[u, X] [u ¥- e A [u, X] E SfrsHR[x] U g;BHR[Y Il};

(iv) %BHR[x[[:l't'y]={[u,XU YJ[[u,X]Eg;sHR[x]f\[u, Y]Eg;sHR[yil}.

The failure model induces the following failure equivalence = 30,BHR on closed "CSP"
terms x and y:

X ;s ~.BHRY iff g;BHR[X] = gfBHR[y].

We now link these definitions of [BHR84] to our present setting by interpreting "CSP"
in ACP, with one-to-one communication. Let C = { c1 , • • • , Cn}. Then we take A= C U I
with

I= {c .. · c} 1, ' n

where the ci(i = l, · · ·, n) are new copies of the actions ci in C. Furthermore, one-to-one
communication is introduced by putting cp (c) = c and c Jc= c for every c E C. The
interpretation of "CSP" in ACP, is given by a mapping Jli from closed "CSP" terms
into closed ACP, terms defined as follows:

(i) Jli(STOP) = o;
(ii) Jli(c...,. x) = c · Jli(x);

(iii) J'i(xDy) = .!i'(x)+Jli(y);
(iv) .!i'(x[[:l(y) = C1(Bc(Jli(x)[IJ1i(y)))

where C 1 abbreviates the composite operator (c1){<"il 0 • • • 0 (Cn){C,,l> built from the
renaming operators (c;){<;J(i = 1, · · ·, n) that rename C; into cj.

This interpretation is justified by the following result.
PROPOSITION 6.2.1. For closed "CSP" terms x

g;BHR[xil = %[.1'(x)Il £ C* x 9J>(A)

holds where% is the ACPJailures model of§ 5. In particular Sfr[Jli(x)] does not contain
any traces u signaling successful termination, only failure pairs [u, X].

Proof. By induction on the structure of x. The cases (i)-(iii) are immediate. Case
(iv), parallel composition, is more tedious. It is easy to see that both

%BHR[x [[Ye y], %[C1(Bc(.1'(x)[[.1'(y))]s; C* x 9J>(A).

Hence the closure properties of the failure domains IFaHR and IF, respectively, imply

[u, X] E SfrsHR[x ll?e y] iff[u, XU Y] E SfrsHR[x llill' y],

[u, X] E %[C1(Bc(Jli(x)l[Jli(y)))] iff [u, XU Y] E %[C1(Bc(Jli(x)[IJ!i(y)))]

for arbitrary Y s; A - C. Thus it suffices to show

[u, X] E SfrsHR[x ll:lt' y] iff [u, X] E %[C1(Bc(.1'(x)[[Jl(y)))]

for er E C* and X s C.

1164 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

Let a- and .X result from u and X by replacing pointwise each action c by c. In
particular, we have C =A - C. Then for er E C* and X s C

[er, X] E S'PsHR[x ll:K y]

if and onlv if (induction hypothesis, definition of II ,71,)

3X1 s; C, X2s C:

[er, X1] E gp[Jl(x)] /\[er, Xi] E @P[Jl(y)] 11 X S X1 U X 2

if and only if (definition X)
3X1 s; C, X 2 <;: C:

[er, X1] E gp[Ji(x)] 11 [er, X2] E 3'[.Jl(y)] 11 X s {cl c E X1 U X2}

if and only if (closure properties of the failure domain IF)

3X1 , X2 : Cs X1sA11 Cs X2 s A

11 [er, X1] E @P[Ji (x)] 11 [u, X2] E @P[.91 (y)]

11.X s X1 nx2-{cice X1 u X2}

if and only if (one-to-one communication, definition 11)

[8-, X] E @P[Ji(x)llJi(y)]

if and only if (definition C1, ac)

[er, X]E 3PffC1(ac(Ji(x)llJ1(y)))]

This finishes our proof. 0
Consequently, for "CSP" the original failure equivalence == :l",BHR of [BHR84]

coincides with our definition of failure equivalence == s; in § 2. More precisely we have
the following corollary:

COROLLARY 6.2.2. For closed "CSP" terms x and y

X =.¥,BHRY ijf .f!(x) ==s;Ji(y).

For closed "CSP" terms x and y the notions of trace and trace equivalence are
defined via the interpretation in ACP,:

trace (x) = trace (.11 (x)),

x-1,y iff.f!(x)-t,Jl(y).

(Actually, trace is in § 2.1 only defined on graphs; using the operation graph from
§ 4.1.2 we now define for a term x, trace (x) as trace (graph (x)).) Using Proposition
6.2.1 the trace set of a term x can also be computed directly from its failure set g;-BHR[x]:

trace (x) = { CT. o I [er, A] E g;-BHR[x]}.

Recall that in our paper we only consider complete traces, either leading to a deadlock
8 or to successful termination (not possible for "CSP"). In [BHR84] the word "trace"
is used as well, but it refers to any sequence U" with

Such sequences were called histories in § 2.

READIES AND FAILURES 1165

6.3. Milner's parallel composition 11,j(in CCS. Since the parallel composition II in
ACP, can be seen as a generalization of Milner's operation llAt in CCS [Mi80], it is
easy to regain the original definition. As for CSP, we do this within a small subset of
CCS which we call "CCS." Milner stipulates that the set C of communicating actions
is equipped with a bijection - : C ~ C satisfying c =c. Here c is called the matching
action of c. In addition to communicating actions Milner uses a symbol r denoting
the so-called silent action. We will write r because we work here without Milner's
,,--laws that make r silent or invisible (see the discussion below and § 8). Hence the
alphabet for "CCS" will be A= CU { 7}.

The signature of "CCS" consists of the following:
- the constant NIL;
- unary prefix operators a·, for a EA;
- unary postfix operators \H, for H s;: C;
- the binary infix operators + and llu.

Informally, x 11_,jf y denotes the nondeterministic interleaving of x and y, plus the
communication of x and y via matching actions which then yield r as a result. Following
[Mi80], this can be expressed by the infinite axiom scheme:

(*) (L;a;X;) JIM (L;b;y)=2.;a;(x; llA1Y)+:l;b;(X 11.MyJ+:la,~5,T' (X; Jl.uY;)
where x = '2:.;a;x; and y = L;b;Y;·

We shall define the semantics of 1141 via an interpretation 5' of "CCS" in ACP,
with one-to-one communication. To this end, take I = { 7} and define

cp (c) = c and c I c = r.
Then 5' is rather trivial:

(i) 5'(NIL) = 8;
(ii) 5'(a·x)=a·!fi(x);

(iii) 5'(x\H)=aH(.9(x));
(iv) .9(x+ y) = !fi(x) +.9(y);
(v) !fi(x 11.M y) = 5'(x)JJ5'(y).

Note that the auxiliary operations lL and I in ACP, serve to replace the infinite axiom
scheme (*) by finitely many ACP, axioms.

In [Mi80] Milner studies CCS terms under the (weak) bisimulation equivalence
[Pa83]; however, here we shall study "CCS" under the failure equivalence. For closed
··ccs" terms x and y we define the notions of failure equivalence, trace equivalence
and alphabet via the interpretation !Ji in ACP,:

x=:¥y iff.1'(x)=gi;.1'(y),

x-,r y iff !fi(x) -,r.1' (y),

a(x) = a(.1'(x)).

In general, these definitions are not quite appropriate for CCS because r should be
silent or invisible; more formally r should be subject to Milner's r-laws. In the above
interpretation of "CCS" 7 remains visible, i.e., recorded in the traces and failure pairs.
The reason for this clash is that CCS indivisibly couples parallel composition II.« and
T, whereas we decided to separate failure equivalence = gi; from r.

However, we can regain the spirit of CCS if we restrict the failure equivalence to
r-free "CCS" terms x and y, i.e., with

7e a(x), a(y).

1166 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

Unfortunately, r-free "CCS" terms are not closed under parallel composition II..«·
Therefore we shall consider also a modified trace set

trace;: (x)

for "CCS" terms x which results from trace (x) by deleting in every trace u · 8 E trace (x)
all occurrences of r in u. Then trace;: (x) represents the set of complete traces in the
sense of CCS. For example,

trace (cNIL II..« cNIL) ={cc8, cc8, r8},

trace, (cNIL II..« cNIL) ={cell, cc5, 8}.

7. The maximal trace respecting congruence. In § 4 (Proposition 4.2.3) it was shown
that failure equivalence =,,, is a congruence with respect to the operators of ACP r· In
this section we will prove that for ACP, with one-to-one communication failure
equivalence is in fact the maximal trace respecting congruence. This implies a full
abstraction result for the failure model of § 5. But first let us introduce the relevant
concepts.

7.1. Preliminaries. Let I be a signature with Ter (I) denoting the set of closed
terms over I. By Ter (I)[g] we denote the set of terms over I with g as free variable.
These terms are called contexts and are typically written as C"€[g).

Let ff~ Ter (2). A congruence for ff is an equivalence relation= on ff, such that

x= y implies <€[x] = C"€[y]

for all terms x, y E ff and contexts C"€[g] E Ter (I)[g] with C"€[x], C"€[y] E ff. A con
gruence= for ff is trace respecting if

x = y implies trace (x) ::::: trace (y)

for all x, y E ff. A trace respecting congruence= for ff is called maximal if for all
x, y E ff, x ¥5-y implies that there exists some context C"€[g] E Ter (I)[g) with
C"€[x], <€[y] E ff and trace (C"€[x]) ;C trace (C"€[y]).

PROPOSITION 7.1.1. For each ff~ Ter (2) the maximal trace respecting congruence
for ff exists and is unique.

Proof. Uniqueness. Suppose = 1 and = 2 are different maximal trace respecting
congruences on ff. Then for some x, y E ff we have

x= 1 y, but x¥5- 2 y.

Since = 1 is a trace respecting congruence on ff, trace (<g[x]) = trace (C"€[y]) holds for
every context C"€[g] E Ter (I) [g] with <(g[x], C"€[y] E ff. But this contradicts the maximal
ity of ¥5- 2 •

Existence. Define =, a binary relation on ff, as follows: x = y if and only if for
every context Cf6[g] E Ter (I)[g] with <(g[x], <€[y] E ff, trace (C"€[x]) =trace (<€[y]) holds.

It is easy to see that = is a trace respecting congruence for ff; maximality follows
from its definition. 0

7.2. A characterisation of failure equivalence. Let us now turn to ACP,. We write
Ter (ACP,) instead of Ter (2). From § 4 we know that failure equivalence = g; is a
trace respecting congruence for Ter (ACP,). (For the sake of convenience, we have
identified here the semantical notion = g; with the equivalence induced by = g; on
Ter (ACP,) via the correspondence between process graphs and terms, explained in
§ 4.1.) Thus for ACP,, in general, we have

2 9' ~ =max

READIES AND FAILURES 1167

with =max denoting the maximal trace respecting congruence for Ter (ACP,). If we
specialize ACP, to the case of one-to-one communication, we can actually prove that

5 :ffe = =max,

and thus arrive at a very pleasing characterization of failure equivalence.
THEOREM 7.2.1. Consider ACP, with one-to-one communication. Then failure

equivalence = ;g; is the maximal trace respecting congruence for the set ff c of all closed
terms x over ACP, with alphabet a(x) s;; C.

Proof Suppose x ;;/; s-Y; i.e., S9[x] # S9[y] holds for x, y E f'fc. If trace (x) ¥
trace (y), the trivial context '(5'[~]= ~will do. Now suppose that trace (x) =trace (y)

holds. Because of x~ ;g;J we can assume without loss of generality that there exists a
failure pair [u, X] with

[u, X] E $9Ix], [u, X]~ S9[y].

By the definition of 8f, [u, X] E gf[(x] implies that there exists some ready pair (u, Z) E

@l[x] with X s;; Z. Note that Z ¥ 0. Suppose we had (u, 0) E m[x]. Then u5 E

trace (x) =trace (y) and (er, 0) E m[y]. Thus [u, C] E S9[y] and therefore also [u, X] E

~x], a contradiction.
Trace equivalence of x and y implies that there exists a ready pair (a, Y) E m[y]

with Y # 0. Again by the definition of !ffe, [a, X] e S9I y] implies that for every such
ready pair (u, Y) E 9ll [y] there exists some d E X n Y. Now consider a context of the
form

C~'[g] = (C1{ii} 0 • • • ° Cn{i.,} 0 ac)(xllc,o(u) "2cp(d)" 8)

where the sum 2 is taken over all d EX n Y such that (a, Y) E 9ll[y]. Furthermore
I = { i1 , • • • , in}, c1 , • • • , en E C, cp is the bijection describing the one-to-one communica
tion in ACP, and cp(a) is the result of applying cp pointwise to a. Note that <g[~] is
uniquely determined by x and y except for the choice of the c1, · · · , c" in the renaming
operators. Note that indeed C€[x], ce[y] E f'ic due to the presence of operators ac and
%;l in '(5'[g]. We now claim that

(C1{i1l 0 ••• ° Cn{i.,})(u I cp(a)) . 8 E trace ('(6[x]), e trace (cg[y])

where ul <p(u) is understood by applying I pointwise to u and cp(u).
To prove this claim we first state a general observation about ready sets 9ll[z] of

closed terms z over ACP,. Let a= a,·· ·am and Z = {b 1 , • • ·, bn}. Then (u, Z) e m[z]
if and only if there exist x 1 , • • • , Xm, y 1 , • • ·, y,, E Ter (ACP,) with

ACP,1-x = a1(a2 . .. (am(b1Y1 + ... + bnYn)+ Xm) ... +x2) +x1.

This observation is obvious from §§ 3 and 4.
Next we recall from Lemma 6.1.1 that due to the encapsulation ac we can replace

the general parallel composition II in ce[g] by the communication operator I which
enforces synchronization.

Combining these two facts, it is easy to calculate that (u, Z) e 9/l[x] with X £ Z
yields

(c11111 ° · · · 0 cn1;.1)(ujcp(u)) · 5 Etrace ("€[x]).

Now suppose that this trace is also present in trace ('f5'[y]). Since ACP, allows only
one-to-one communication, there exists a history er E C* such that every ready pair
(u, Y) E m[y] satisfies X n Y = 0. This is a contradiction. This finishes our proof. 0

1168 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

7.3. Application to CSP and CCS. The characterization of failure equivalence for
ACP, yields corresponding results for the subsets "CSP" and "CCS" or [BHR84] and
[Mi80].

COROLLARY 7.3.1. For closed "CSP" terms the failure equivalence = go,BHR of
[BHR84] is the maximal trace respecting congruence.

Proof. Via the interpretation ji the failure equivalence = go,aHR is a trace respecting
congruence for "CSP." To show maximality, suppose x ¥' go,aHR y for closed terms x
and y. Then Ji(x) ¥'go Ji(y) by Corollary 6.2.2. Since a(.i(x)), a(Ji(y)) c;; C, Theorem
7.2.1 applies and yields a context c~H] in ACP, with

<€[Ji(x)] 1'-tr <e[Ji(y)].

Looking at the proof of Theorem 7.2.1 we see that <e(g] can be expressed in "CSP";
i.e., there exists a context <e'[(] in "CSP" with

where we stipulate Ji(g) =g. Thus

ji (<g')[Ji (x)] 1'-tr Ji (<g')[Ji (Y)].

Since Ji is defined by structural induction, we have Ji (<e')[Ji(x)] = ji(<e'[x]) and
likewise for y. Thus

<e'[x] 1'-tr <e'[y]

by the definition of trace equivalence for "CSP." 0
Due to the differences of T and 7 in CCS and ACP, (see§ 6.3), we can characterize

failure equivalence only for 7-free "CCS" terms.
COROLLARY 7.3.2. On the subset of closed, 7-free "CCS" terms failure equivalence

=go coincides with the maximal trace respecting congruence defined for full "CCS." ryzis
result holds for both notions of trace introduced for "CCS" terms, viz., trace(·) and
trace,,(·).

Proof. Via the interpretation Ji failure equivalence =go is a trace respecting
congruence for "CCS." This holds for the original definition of trace (·), however, since

trace (x) =trace (y) implies trace,, (x) =trace,, (y),

it holds for trace.; (·) as well.
Now consider two closed, r-free "CCS" terms X, y such that x ¥' s;Y, i.e.,

Ji (x)~ ~Ji(y). Since r-freeness means a(Ji(x)), a (Ji(y)) c;; C, the proof technique for
Theorem 1 .2.1 applies and yields an ACP, context of the form

<e[g] = acWIJi(z))

where z is a closed, 7-free "CCS" term such that for some n 6; O

Tn · 6 Etrace (<e[Ji(x)]), e trace (<e[Ji(y)]).

Note that in the definition of <e[g] we deviate slightly from Theorem 7.2.1 and omit
the renaming operator, which would yield here cl"l for some c EC. The reason is that
T (respectively, 7) cannot be renamed in Milner's [Mi80] (and hence "CCS").

The above <e[g] can be translated back into the "CCS" context

<e'[g] = (g 11.41 z)\C,

which yields

Tn · 6 E trace (<€'(x]), e trace (<e'[y]),

READIES AND FAILURES 1169

and thus

5Etrace;: ('t6'(x]), e trace;: ('t6'[y]).

This proves the maximality of failure equivalence for 7-free "CCS" terms with respect
to both notions of trace. D

Thus the (proof of) Theorem 7 .2.1 gives a uniform argument for the communication
mechanisms of both "CSP" and CCS."

Remark 7.3.3. (Comparison with the work of De Nicola and Hennessy [DH84].)
We have proved that (under a restricted communication format) processes are failure
equivalent if and only if they cannot be separated by any context where "separated"
refers to the criterion of having different traces. This characterisation is easy to
understand, as it involves only the notions of trace and context. It is interesting to
compare our result with a result in [DH84]. Since the settings are quite different (here
finite processes in ACP" there CCS with recursion, T-steps and an additional constant
0 denoting the undefined state), we state the comparison for the greatest common
denominator of ACP, and CCS, viz., the language "CCS" of§ 6.3.

De Nicola and Hennessy [DH84] set up a notion of testing and consider two
processes p and q as equivalent if and only if they pass exactly the same tests. This
idea of testing is very appealing, but the formal definitions are somewhat more technical.
Both processes and tests are just terms over the signature of "CCS." However, in the
alphabet A we assume a distinguished action w, which may appear in tests only. The
action w is interpreted as reporting success; it is needed in the definition of a process
passing a test. Due to the restriction to "CCS," we can phrase De Nicola and Hennessy's
definition as follows.

For "CCS" terms p, q, r and actions a E A we write

p.!4q if3r: "CCS"l-p=a· q+r,

p .!4 if3q :p E.+ q.

Intuitively, p .!4 q states that p can perform an action a and then behave like q. A
computation is a sequence of "CCS" terms of the form

:; T :;.
P1 """"P2"""" · • · """"Pn;

it is called maximal if there is no "CCS" term q with Pn -4 q. Since "CCS" does not
include recursion, any computation is finite here.

There are two forms of a process p passing a test t:
(i) p may pass t if there exists a computation

P 11.M t =Pt 11.M t1 .4 ' · · -4 Pn 11.M tn

with t" .!4, or equivalently if there exists some n ~ 0 with

7" · w E trace (p 11.M t),

(ii) p must pass t if whenever

P 11.M f = P1 11.41 f1 .4 · · · -4 Pn 11.41 fn

is a maximal computation then there exists some m with 1 :am :an and tm .!4.

Thus a term tn that can perform an w-action serves as a criterion for success. For
examples of (i) and (ii) we refer to [DH84].

Then De Nicola and Hennessy [DH84] introduce three so-called testing equivalen
ces on processes p, q:

(i) p = 1q if for every test t: p may pass t if and only if q may pass t.

1170 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

(ii) p = 2q if for every test t: p must pass t if and only if q must pass t.

(iii) p= 3 q if p=1q and p=zq.
It is now very interesting that for -T-free "CCS" the strong testing equivalence

coincides with the failure equivalence = ~· This is an immediate consequence of
Corollary 6.2.6 of [DH84] stated for the class of so-called strongly convergent CCS
terms, which in particular includes all -T-free "CCS" terms. Thus at least for 1-free
"CCS" terms we have a pleasing convergence of ideas:

strong testing equivalence =failure equivalence = maximal trace respecting congruence.

Conceptually, we find the notion of a maximal trace respecting congruence simpler
than the definition of passing a test.

7.4. Full abstraction. The notion of full abstraction is due to Milner [Mi77] (see
also [HP79], [Pl77]). It is a relationship between models (of an axiomatic system)
and equivalence relations (on the terms of that system) whose definition is motivated
by the following question:

Under what circumstances can we replace a term x by a term y without noticing this
change by a given equivalence =?

Using the notion of a context introduced above, this question amounts to:

Under what conditions on x and y do we have C€[x] = <g[y] for every context <g[g]?

Full abstraction can be seen as looking for a sufficient and necessary condition that
answers this question. Formally, we state the following definition.

DEFINITION 7.4.1. A model.;(,{, for ff s;;; Ter (I) is called fully abstract with respect
to an equivalence relation = on ff if for all terms x, y E ff:

.;f,{,[x]=At[y]iff<:g[x]=<g[y] holds for every context C€[g]eTer(I)[g] with
<g[x], <g[y]E ff.

Thus a fully abstract model .;(,{, optimally fits the equivalence = in the sense that it just
makes the identifications on terms that are forced by =. Usually, it is quite difficult
to discover fully abstract models (see [HP79], [Mi77], [Pl77]), but for the failure
model g;=IF(+, ·,II, L l,aH, aH, a, 5)(aeA) of§ 5 and the trace equivalence - 1r of
§ 2 we can now state such a result.

THEOREM 7.4.2. Consider ACPr with one-to-one communication. Then for the set
ff c of all closed terms x over ACP, with alphabet a(x) £:;; C the failure model fJi is fully
abstract with respect to the trace equivalence -ir·

Proof By Definition 7 .4.1, it suffices to show that for all x, y e ff c:

fffe[x]=fli[y] iffx=maxY

where =max is the maximal trace respecting congruence. But this is immediate from
Theorem 7.2.1. 0

COROLLARY 7.4.3. For the set of closed "CSP" terms the failure model flisHR of
[BHR84] is fully abstract with respect to the trace equivalence -tr·

For "CCS" we cannot state the analogous result due to the -T mismatch discussed
above.

8. Processes with recursion and abstraction: bisimulation versus failure equivalence.
8.1. Preliminaries. In the preceding sections we have been exclusively concernc·d

with the failure semantics for finite processes without abstraction, i.e., not involving
T-steps. In this section we will set aside that restriction and comment also on infinite

READIES AND FAILURES 1171

(recursive) processes with abstraction, in regard to bisimulation and failure equivalence.
The crucial point is the way in which infinite sequences of r-steps in a process are
treated.

In the failure semantics proposed in [BHR84], all processes having an infinite
r-sequence from the root are set equal (to the process CHAOS). The notion of
bisimulation is more discriminating. The advantage is that models obtained by bisimula
tion equivalence satisfy a useful abstraction principle: Koomen's Fair Abstraction Rule
(KFAR), as introduced in [BK84b]. Roughly, this rule gives a way of simplifying
processes by elimination of (some) infinite r-sequences. This elimination can be
understood as fairness of (visible) actions over silent r-steps. A more precise description
is given below. (Of course, setting all processes having an infinite r-sequence from the
root equal to CHAOS also eliminates infinite r-sequences, but then all information is
lost.)

Since KF AR is a very useful tool for system verification (e.g., in [B K84b] it was
used to verify an alternating bit protocol), it is natural to ask whether KFAr:.. is also
compatible with the somewhat simpler failure semantics. More precisely, we can ask
whether there exists a process model which for finite processes agrees with the failure
semantics and for infinite processes satisfies KFAR. Interestingly, it turns out that such
a model does not exist. To prove this result, we will formulate a set of assumptions
embodying failure semantics and KFAR, and derive an inconsistency. Formally, the
inconsistency arises from the following extension of the axiom system considered above:

ACP,+Rl,2+S
+ Milner's r-laws+axioms for abstraction operators
+KFAR
+ RSP (recursive specification principle).

Here RSP is the assumption that guarded systems of recursion equations have a
solution, which is moreover unique.

Now by virtue of our axiomatic approach we can pinpoint the origin of the
inconsistency derived below with some accuracy. It turns out that the failure of KFAR
in failure semantics holds already in ready semantics, and moreover that communication
does not play a role in the inconsistency. That is, the inconsistency already appears
in the subsystem

BPA+Tl +Tll-5+ Rl + KFAR+RSP

which we will explain now. BPA, for basic process algebra, consists of the axioms Al-5
of ACP,, which specify the properties of+ and ·. T1 is the simplest of Milner's r-laws
[Mi80] (see Table 6). In addition, Table 6 contains axioms Tll-TIS; these specify the
abstraction operators rl> where I~ A is a set of internal actions as simple renaming
operators (cf. [BK84c] and [BK86a], [BK86b]).

Rl is the axiom for the readiness semantics (see Tables 3 and 4):

a(bx+ u) + a(by + v) = a(bx +by+ u) + a(bx+ by+ v).

The recursive specification principle RSP states that guarded systems E of recursive
equations have unique solutions (see [BK84b] or [BBK85]):

E(x1 , • • ·, Xn), E(y 1 , • • ·, Yn), E guarded

X1=Y1

Informally, "guarded" means that every recursive occurrence of xi in E is preceded

1172 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

TABLE 6
BPA+Tl +Tll-5

x+y=y+x Al
(x+y)+z=x+(y+z) A2
x+x=x A3
(x+y)z=xz+yz A4
(xy)z=x(yz) AS

x-r=x T1

-r1 (r) = -r Tll
-r1 (a) = a if a ~ I Tl2
-r1(a)=r ifael TB
r1(x+ y) = -r1 (x)+ r1(y) TI4
-r1(xy)=-r1(x)·-r1 (y) TI5

by an action different from r. For example, the system

X2 = C(X1 + X2)+ d

is guarded and thus has a unique solution.
We will now explain KFAR. For each n ~ 1, we have a version KFARn. KFAR1

is as follows:

x=ix+y (iEJ)

r,(x) = T. T1(Y) .

The premise of KFAR1 says that x has an infinite i-trace (see Fig. 19). Now KFAR,
expresses the fact that x makes fair choices along its infinite i-trace, i.e., performing
x entails at most finitely many choices against y. We may note here the necessity of
the abstraction operator r1 in KFAR,: From x = rx + y it does not follow that x =
r · r1 (y), since the equation x = rx + y has infinitely many solutions (see [BK84c] or
[BK86a]).

x:

FIG. 19

READIES AND FAILURES

The version of KF AR for n = 2 is

x1 = ix2+ Yi. x2 = jx1 + Y2 (i,j E J)
T1(X1)=T· T1(Y1+Yi)

1173

In the general formulation of KFARn the premise displays an "I -cycle" of length n.
For a precise formulation we refer to [BK84b] or [BBK85].

Note that except for KFAR all assumptions in BPAT+Tll-TI5+Rl+RSP are
valid for failure semantics. To see that the T-laws TI1-TI3 (of which only the first one
is needed for the derivation of the contradiction below) are valid for failure semantics,
we refer to [Br83], which gives axioms describing failure semantics for finite processes
involving T-steps; these axioms imply the T-laws.

8.2. The inconsistency of failure semantics with KFAR. We will now derive the
announced contradiction. It is important to notice that this contradiction is entirely
insensitive to how failure semantics works with processes that contain T-steps.

Consider the following systems of guarded recursion equations:

and

{
x = ax1 + ax2 ,

E1 x1 = c+ bx2 ,

X2= d + bx1,

{
Y = ay1 + aJi,

E2 Y1 = c+ by2,

Ji= d+byl.

The systems E 1 , E2 have solutions x, y which can be depicted as in Fig. 20.
CLAIM: x and y are failure equivalent.
Intuitively this may be clear since (as demonstrated in § 3.1) axiom Rl amounts

to placing "crosses"; from the graphs for x, y we can thus obtain equivalent graphs
as in Fig. 21. These two graphs are in fact identical.

Proof of the Claim (Formally). Consider the system E3 of guarded recursion
equations:

{
z = az1 + az2 ,

E3 z1=c+bz1+bz2 ,

z2 = d + bz1 + bz2 •

(This system corresponds with the graph in Fig. 21.) Now

where

Further,

x = ax1 + ax2 = a(c+ bx2) + a(d + bx1) (by Rl)

= a(c+ bx2+ bx1)+ a(d + bx1 + bx2) = az; + az~

z; = c+ bx2 +bx1 == c+ b(d +bx1)+b(c+ bx2) (by Rl)

= c+ b(c+ bx2 + bx1) + b(d + bx1 + bx2)

= c+ bz\ + bz~

1174 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

y: !
y "'-.

b~

FIG. 20

and likewise

z~ = d + bz; + bz~.
So (x, z;, z;) satisfies E3 • A similar computation shows that (y, zr, z;), where

zr = c+ by!+ by2,

satisfies E3 • Hence by RSP,

(x, z;, z~) = (y, zr, zD = (z, Zi. Z2),

in particular x = y. This proves the claim.

FIG. 21

READIES AND FAILURES 1175

In order to derive the inconsistency we will abstract from b, by means of T/bl> in
x and y. This yields corresponding process graphs as in Fig. 22. Next we apply KFAR
on T/b}(x) and Tlbl(y) and obtain a(c+d) and ac+ad, respectively. This can be seen
graphically: KFAR shrinks the infinite T-traces to a point, obtaining the graphs as in
Fig. 23.

Formally:

Further,

yields by KFAR2 :

Hence from (*)

Next consider y:

(**)

T{b}(x1) = T· T{b}(c+ d) = T(c+ d),

T(b}(x2) = T" T{b}(c+d) = T(c+ d).

T{b}(x) = aT(c + d) + aT(c + d) (by T1 in Table 6),

= a(c+d)+a(c+d) = a(c+d).

Now y 1 = by1 + c yields by KFAR1: T{b}(y1) =Tc; similarly T{b}(y2) = Td. Hence from(**)

T{b}(y) = aTc+ aTd = ac+ ad.

So, since x=y, we have proved a(c+d)=ac+ad. But a(c+d) and ac+ad are not
failure equivalent.

8.3. Further results. The above inconsistency proves that the advantages of Koo
men 's fair abstraction rule, KFAR, cannot be combined with the simplicity of failure
semantics. We investigated this dichotomy further and were pleased to find a weaker

FIG. 22

1176 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

't{b}(x) ! 't(b}(y) !
~ ~ ~ ~

/I ~ / °"\
0 0

a(c + d) ac+ ad

FIG. 23

fair abstraction rule, called KFAR-, which is consistent with (finite) failure semantics,
and which is still useful for many process verifications. More precisely, the new rule
is consistent with a version of Brookes, Hoare, and Roscoe's failure semantics (BHR84]
without catastrophic divergence, i.e., that does not identify processes having an infinite
r-sequence from the root with the process CHAOS. The details and applications of
the new rule KFAR- can be found in [BK086].

Acknowledgment. We thank R. van Glabbeek and one of the referees for pointing
out some inconsistencies in a previous version of this paper and for many detailed
suggestions and corrections.

[BBK85]

[BK83]

[BK85]

[BK84a]

[BK84b]

[BK84c]

[BK86a]

[BK86b]

REFERENCES
J.C. M. BAETEN, J. A. BERGSTRA, AND]. W. KLOP, On the consistency of Koomen's Fair

Abstraction Rule, Report CS-R8511, Centre for Mathematics and Computer Science,
Amsterdam, the Netherlands, 1985; Theoret. Comput. Sci., 51 (1987), pp. 129-176.

J. A. BERGSTRA AND J. W. KLOP, An abstraction mechanism for process algebras, Report IW
231/83, Centre for Mathematics and Computer Science, Amsterdam, the Netherlands,
1983.

--, Algebra of communicating processes with abstraction, Theoret. Com put. Sci., 37 (1985),
pp. 77-121.

--, Process algebra for synchronous communication, Inform. and Control, 60 (1984),
pp. 109-137.

--, Verification of an alternating bit protocol by means of process algebra, Report CS-R8404,
Centre for Mathematics and Computer Science, Amsterdam, the Netherlands, 1984; also
in Math. Methods of Spee. and Synthesis of Software Systems 1985, W. Bibel and K. P.
Jantke, eds., Math. Research 31, Akademie-Ver!ag, Berlin, 1986, pp. 9-23.

--, A complete inference system for regular processes with silent moves, Report CS-R8420,
Centre for Mathematics and Computer Science, Amsterdam, the Netherlands, 1984; Proc.
Logic Colloquium in Hull, J. Truss and F. Drake, eds., North-Holland, Amsterdam, 1986,
pp. 21-81.

--, Algebra of Communicating Processes, in CW! Monographs I, Proc. CW! Symposium
on Mathematics and Computer Science, J. W. de Bakker, M. Hazewinkel, and J. K.
Lenstra, eds., North-Holland, Amsterdam, 1986, pp. 89-138.

--, Process Algebra: Specification and Verification in Bisimulation Semantics, in CW!
Monograph 4, Proc. CWI Symposium Mathematics and Computer Science II, M.
Hazewinkel, J. K. Lenstra, and L. G. L. T. Meertens, eds., North-Holland, Amsterdam,
1986, pp. 61-94.

[BK086]

[Br83]

[BHR84]

[DH84]

[He83]

[HP79]

[Ho78]
[Ho80]

[Mi77]
[Mi80]

[Mi83]

[OH83]

[Pa83]

[P177]

[RB81]

(VGI88]
[Wi83]

READIES AND FAILURES 1177

J. A. BERGSTRA, J. w. KLOP, AND E.-R. OLDEROG, Failures without chaos: a new process
semantics for fair abstraction, in Proc. IFIP Working Conference on Formal Description
of Programming Concepts, Gl. Avemaes 1986, M. Wirsing, ed., North-Holland, Amster
dam, 1987, pp. 77-101.

S. D. BROOKES, On the relationship of CCS and CSP, in Proc. !Oth Internat. Colloquium on
Automat. Lang. and Programming, Barcelona, J. Dfaz, ed., Lecture Notes in Computer
Science, 154, Springer-Verlag, New York, Berlin, 1983, pp. 83-96.

S. BROOKES, C. HOARE, AND W. ROSCOE, A theory of communicating sequential processes,
J. Assoc. Comput. Mach., 31 (1984), pp. 560-599.

R. DE NICOLA AND M. C. B. HENNESSY, Testing equivalences for processes, Theoret. Comput.
Sci., 34 (1984), pp. 83-133.

M. HENNESSY, Synchronous and asynchronous experiments on processes, Inform. and Control,
59 (1983), pp. 36-83.

M. HENNESSY AND G. D. PLOTKIN, Full abstraction for a simple programming language, in
Proc. 8th Mathematical Foundations of Computer Science, J. Becvar, ed., Lecture Notes
in Computer Science 74, Springer-Verlag, Berlin, New York, 1979, pp. 108-120.

C. A. R. HOARE, Communicating sequential processes, Comm. ACM 21 (1978), pp.666-677.
---, A model for communicating sequential processes, in On the Construction of Programs,

R. M. McKeag and A. M. McNaughton, eds., Cambridge University Press, London, New
York, 1980, pp. 229-243.

R. MILNER, Fully abstract models of typed A-calculi, Theoret. Comput. Sci., 4 (1977), pp. 1-22.
R. MILNER, A Calculus of Communicating Systems, Lecture Notes in Computer Science 92,

Springer-Verlag, New York, Berlin, 1980.
R. MILNER, Calculi for synchrony and asynchrony, Theoret. Comput. Sci., 25 (1983), pp. 267-

310.
E. R. OLDEROG AND C. A. R. HOARE, Specification-oriented semantics for communicating

processes, in Proc. lOth Intemat. Colloquium on Automat. Lang. and Programming,
Barcelona, J. Diaz, ed., Lecture Notes in Computer Science 154, Springer-Verlag, New
York, Berlin, 1983, pp. 561-572; expanded version, Acta Informatica, 23 (1986), pp. 9-66.

D. M. R. PARK, Concurrency and automata on infinite sequences, in Proc. 5th GI (Gesellschaft
fiir Informatik) Conference, Lecture Notes in Computer Science 104, Springer-Verlag,
New York, Berlin, 1981.

G. D. PLOTKIN, LCF considered as a programming language, Theoret. Com put. Sci., 5 (1977),
pp. 223-255.

W. C. ROUNDS, AND S. D. BROOKES, Possiblefutures, acceptances, refusals, and communicating
processes, in Proc. 22nd IEEE Synposium on Foundations of Computer Science, Nashville,
TN (IEEE Computer Society Press, 1981), pp. 140-149.

R. J. VAN GLABBEEK, Personal communication, 1988.
G. WINSKEL, Synchronisation trees, in Proc. lOth ICALP, Barcelona, J. Dfaz, ed., Lecture

Notes in Computer Science 154, Springer-Verlag, New York, Berlin, 1983, pp. 695-711;
expanded version in Theoret. Comput. Sci., 34 (1984), pp. 33-82.

