View metadata, citation and similar papers at core.ac.uk

CEUR-WS.org/Vol-2175/paper0l.pdf

<
brought to you by .{ CORE

provided by CW!I's Institutional Repository

Integrating Analytics with Relational Databases

Mark Raasveldt
supervised by Hannes Miihleisen and Stefan Manegold
Centrum Wiskunde & Informatica
Amsterdam, Netherlands

m.raasveldt@cwi.nl

ABSTRACT

In order to uncover insights and trends, it is an increas-
ingly common practice for companies of all shapes and sizes
to gather large quantities of data and to then analyze that
data. This data can come from a multitude of different
sources, ranging from data gathered about consumer behav-
ior to data gathered from sensors. The most prevalent way
of storing and managing data has traditionally been a re-
lational database management system (RDBMS). However,
there is currently a disconnect between the tools used for
analysis of data and the tools used for storing that data.
Instead of working directly with RDBMSes, these tools are
build to work in a stand-alone fashion, and offer integration
with RDBMSes as an afterthought. The focus of my PhD
research is on investigating different methods of combining
popular analytical tools (such as R or Python) with database
management systems in an efficient and user-friendly fash-
ion.

1. INTRODUCTION

There is a disconnect between data-intensive analytical
tools and traditional database management systems. Data
scientists using these tools often prefer to manually manage
their data by storing it either as structured text (such as
CSV or XML files), or as binary files [8]. This approach
of managing data introduces a lot of problems, especially
when a large amount of data from different sources has to
be managed or combined. Flat file storage requires tremen-
dous manual effort to maintain, is often difficult to reason
about because of the lack of a rigid schema and is difficult to
share between multiple users. Furthermore, modifying the
data is prone to corruption because of lack of transactional
guarantees and atomic write actions. Another consequence
of this disconnect is that data scientists have re-implemented
many common database operations inside libraries such as
dplyr [16] or Pandas [9]. Instead of performing joins or ag-
gregations using a RDBMS, they perform them using these
libraries. However, these libraries suffer from having to load

Proceedings of the VLDB 2018 PhD Workshop, August 27, 2018. Rio de
Janeiro, Brazil.

Copyright (C) 2018 for this paper by its authors. Copying permitted for
private and academic purposes.

DBC

Analytical Tool Database

(a) Client-Server connection.

Database Analytical Tool
Analytical Database

Tool |

. N/

(b) In-database processing. (c) Embedded database.

Figure 1: Different ways of connecting analytical tools with
a database management system.

all required data and intermediates into memory, leading to
frequent out of memory problems or poor performance due
to swapping.

These issues could be solved through the use of a RDBMS.
The RDBMS can prevent data corruption through ACID
properties, it can automatically manage data storage for
the user and make data easier to reason about by enforc-
ing a rigid schema. In addition, the RDBMS can perform
efficient execution on larger-than-memory data, and allows
concurrent read and write access to the data in a safe way.

Popular analytical tools such as R or Python can be used
in conjunction with database systems. There are SQLite
bindings for these languages, and it is possible to connect
to a database server using standard client connector proto-
cols. However, data scientists prefer to use flat file storage
methods over these existing approaches, because these con-
nections are either inefficient or inconvenient to use.

The focus of this work is on identifying the problems en-
countered when combining a RDBMS with analytical tools,
and on implementing various solutions to overcome these
issues to allow for both a more efficient and more flexible
combination of these tools. Figure 1 shows the three main
methods in which a relational database can be combined
with an analytical tool. We investigate each of these meth-
ods, and attempt to improve them from both a usability and
a performance perspective.

https://core.ac.uk/display/301634621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Time

Query Result Set

Execution Serialization

Server

Authentication
Result Header

Client

Result Set
Deserialization

Figure 2: Communication between a client and server.

2. CLIENT-SERVER CONNECTION

The standard method of combining a standalone program
with a RDBMS is through a client-server connection. This
is visualized in Figure la. In this way, the database server
is completely separate from the analytical tool. It runs as
either a separate process on the same machine or on a differ-
ent machine entirely. The analytical tool can issue queries to
the database, after which the server will compute the answer
to the query and transfer the results to the client through
the socket. This process is shown in Figure 2.

In order to perform analytics on data stored inside the
database, the data is exported from the database to the an-
alytical tool over the socket connection, after which that
data is processed in the client. The main advantage to this
approach is that it is mostly database agnostic, as the stan-
dardized ODBC or JDBC connectors can be used to connect
to almost every database. In addition, it is relatively easy to
integrate into existing pipelines as the loading from flat files
can be replaced by loading from a database without having
to touch the rest of the pipeline.

However, this approach is problematic when dealing with
a large amount of data as is often required in modern analyt-
ical pipelines. The time spent on serializing large result sets
and transferring them from the server to the client can be
a significant bottleneck. In addition, this approach requires
the full dataset to fit inside the clients’ memory.

In our work [13], we perform a survey of popular RDBMS
and note that they are not optimized for the scenario of
high-volume data export. They take a significant amount of
time to export a relatively small amount of data even when
the server and client are located on the same machine or
connected through a high-throughput network connection.
This is because existing client protocols were designed for
the transfer of a small amount of rows in OLTP workloads,
and have significant per-tuple and per-value overheads that
result in the slow export of large tables.

To remedy this problem, we investigate the different de-
sign choices that can be made when designing a result set
serialization format, and we propose a new client protocol
that is optimized for the transfer of large amounts of data
from the server to the client. By using a column-major
chunk-wise format that utilizes lightweight compression and

a binary format that is close to the native database format,
we can export large tables an order of magnitude faster than
existing solutions.

However, even with a client protocol optimized for this
scenario, there is still a significant amount of time required
to push data “over the wire”. In addition, as this approach
only replaces the loading of data from a flat file storage
system with the loading of data from the RDBMS into the
client, it still requires the entire dataset and intermediates
to fit inside the clients’ main memory.

3. IN-DATABASE PROCESSING

In order to avoid the cost of exporting the data from the
database, the analysis can be performed inside the database
server. This method, known as in-database processing, is
shown in Figure 1b.

In-database processing can be performed in a database-
agnostic way by rewriting the analysis pipeline in a set of
standard-compliant SQL queries. However, most data anal-
ysis, data mining and classification operators are difficult
and inefficient to express in SQL. The SQL standard de-
scribes a number of built-in scalar functions and aggregates,
such as AVG and SUM [7]. However, this small number of
functions and aggregates is not sufficient to perform complex
data analysis tasks [15].

Instead of writing the analysis pipelines in SQL, user-
defined functions or user-defined aggregates in procedural
languages such as C/C++ can be used to implement clas-
sification and machine learning algorithms. This is the ap-
proach taken by Hellerstein et al. [4]. However, these func-
tions still require significant rewrites of existing analytical
pipelines written in vectorized scripting languages. In ad-
dition, writing user-defined functions in these languages re-
quire in-depth knowledge of the database internals and the
execution model used by the database [3].

In order to make it easier to perform in-database ana-
lytics, we introduced MonetDB/Python UDFs [12] in the
Open-Source DBMS MonetDB [6]. These user-defined func-
tions can be written in Python, and process code in a vec-
torized way. The input and output variables of the func-
tions and aggregates can be provided as either standardized
NumPy arrays [14] or Pandas DataFrames [9]. In this way,
the user-defined functions mimic the execution of regular an-
alytical Python programs and can be written without any
knowledge of the database internals. Because of their vector-
ized nature, the heavy interpreter overhead is not incurred
once for every tuple but only once for every invocation of the
function. Combined with the use of zero-copy techniques for
both the input and output columns these functions can be
executed efficiently on large datasets.

|| SELECT MEDIAN(SQRT(i * 2)) FROM tbl;

Listing 1: Chain of SQL operators.

* SQRT
— T 2 W
i edian
aE / 2] 4 \ 73
2 3 5 va
[a] —_—
81— 4 g8 | V8 Output
4 — V8 | ——
T - Ji0 2.995
T [5] — [10 |—
6 Vi2
7 18] 12 V14
i \ (7] —— 14 / V16
8 16

Figure 3: Parallel operator chain of Listing 1.

Parallelism. Another advantage of UDF's is that they
can take advantage of the databases’ automatic paralleliza-
tion model. In MonetDB, parallel execution is achieved
by marking individual operators as either parallelizable or
blocking. When a chain of parallel operators is executed on
a column, the column is split up into several chunks and the
operator is executed once on each chunk. When a blocking
operator is encountered, the chunks are packed into a sin-
gle column and the blocking operator is executed on that
column. This process is visualized in Figure 3.

MonetDB/Python UDFs can be parallelized in the same
way. The functions can be set to either allow parallelization,
in which case they are executed as a parallelizable operator,
or to disallow parallelization, in which case they will operate
with the entire column as input. User-defined aggregates are
parallelized over the different groups, where the aggregate is
called once for each group with the tuples belonging to that
group as input. The aggregates computed for each group
are then gathered and combined to form the final result.

Development Workflow. A challenge when developing
user-defined functions is that, since they are executed inside
the database server, standard tools and integrated develop-
ment environments (IDEs) cannot be used to develop them.
As a result, developers cannot use sophisticated debugging
techniques (e.g., Interactive Debugging) and have to resort
to inefficient debugging strategies to make their code work.

In order to make it easier to develop MonetDB/Python
UDFs, we extended the client of MonetDB to allow for local
testing of user-defined functions [5]. The required data (or
a sample of it) is automatically shipped from the database
to the client together with the source code of the UDF. It
can then be executed locally and run in either a stand-alone
interactive debugger or a full-fledged IDE.

Model Management. Another issue that arises is the
management of different machine learning models. Current
systems, such as TensorFlow, allow the models to be written
to disk as individual files. However, much like handling data
as flat files, handling models as flat files is cumbersome and
error-prone.

In our work [11], we investigate how we can do model man-
agement using a relational database. By storing the models
in a relational database, we can store the models along-
side their training information or meta-information gathered
about the model. This allows us to query and apply the
models based on this information, as well as apply multiple
models in parallel for ensemble learning.

SQLite
40 -
__30- PostgreSQL
N\
(&)
e 20-
= MonetDB
10 -
MonetDBLite
0- =
100K 1™ 10M

Rows (log #)

Figure 4: Transfer of the TPC-H lineitem table from the
database to the client process.

4. EMBEDDED DATABASE

Both the previously managed approaches require the user
to have a running database server. This requires signifi-
cant manual effort from the user, as the database server
must be installed, tuned and continuously maintained. For
small-scale data analysis, the effort spent on maintaining
the database server often negates the benefits of using one.

Embedding a database inside the client program, as shown
in Figure lc, is more applicable for these use cases. As the
database can be installed and run from within the client
program, maintaining and setting up the database is much
simpler than with full-fledged database systems.

The most commonly used embedded database is SQLite [2].
However, SQLite is first and foremost designed for transac-
tional workloads. It is a row-store database that uses a
volcano-based processing model for query execution. While
popular analytical tools such as Python and R do have
SQLite bindings, it does not perform well when used for ana-
lytical purposes. Even exclusively using SQLite as a storage
engine typically does not work out well in these scenarios.
Often only select columns of a table are used in analyses,
and its row-wise storage layout forces it to always load en-
tire tables. This can lead to very poor performance when
dealing with wide data.

To fill this gap, we created MonetDBLite [10], an Open-
Source embedded database based on the popular columnar
database MonetDB. Much like SQLite, it is an in-process
database that can be installed and run directly from within
popular analytical tools without any external dependencies.
However, unlike SQLite it is designed for analytical work-
loads, and as such performs significantly better when ex-
ecuting analytical queries that operate on large amounts
of data. Because of the columnar layout of the database
and zero-copy semantics, data can be copied between the
database and the analytical tool for a constant cost, and no
large costs need to be paid when extracting only a subset of
columns from a wide table.

This efficient data transfer is illustrated in the experi-
ment in Figure 4, where we transfer the lineitem table from
the TPC-H benchmark [1] from the database to the client
process using MonetDBLite, SQLite, MonetDB and Post-
greSQL. We observe that data can be exported from Mon-
etDBLite an order of magnitude faster than over either a

socket connection (in the case of MonetDB and PostgreSQL)
or from the row-storage model of SQLite.

5. RESEARCH DIRECTIONS

While our current solutions have made it both easier and
more efficient to combine relational databases with analyt-
ical tools, connecting them efficiently and effortlessly is by
no means a solved problem. In this section, we will describe
the open research problems that we have identified and how
we plan on tackling them in the future.

Automatic Code Shipping. While user-defined func-
tions allow for efficient in-database analytics, it still requires
significant manual transformation effort to take an exist-
ing analytical pipeline and make it run inside the database
server. Ideally, we would be able to automatically translate
an existing analytical pipeline and execute it on data resid-
ing in the database without requiring manual user effort.

A solution to this problem could be to take a program
that uses a database connector to connect to a database,
and run the code directly inside the database server. In-
stead of connecting with the database through a socket, the
SQL code could be directly executed inside the server and
the results could be used inside the analytical tool without
requiring data transfer. This approach does negate the po-
tential advantages of automatic parallelization, however.

Alternatively, the code could be analyzed and translated
into user-defined functions that can be executed within the
database server and could potentially be parallelized. An-
alyzing if arbitrary code could be safely parallelized is not
possible, though, as it would be equivalent to solving the
Halting problem. However, it would already be useful if a
limited subset of operations could be automatically shipped
and executed in parallel inside the database server. For ex-
ample, a number of commonly used operations of the Pandas
and NumPy libraries could be supported.

UDF Co-optimization. Currently, MonetDB/Python
UDFs are executed as black-box functions. As a result, there
is almost no room for automatic optimization of the actual
code. The only optimization we apply is the parallelization
of the functions, however, even this requires the user to tell
us whether or not the function is parallelizable.

Lazy evaluation could allow us to optimize the UDFs
more. Rather than executing the function in an eager man-
ner, we could defer the execution of certain operations on
the input columns (e.g. common NumPy and Pandas oper-
ations). This would allow us to build a computation graph,
and either (1) run parts of that computation graph inside
the databases’ execution engine (where it could be executed
in parallel and take advantage of existing indexes), or (2)
feed information extracted from the computation graph to
the database optimizer.

Acknowledgments

This work was funded by the Netherlands Organisation
for Scientific Research (NWO), project “Process Mining for
Multi-Objective Online Control”.

6. REFERENCES

[1] TPC Benchmark H (Decision Support) Standard
Specification. Technical report, Transaction
Processing Performance Council, June 2013.

[2] G. Allen and M. Owens. The Definitive Guide to
SQLite. Apress, Berkely, CA, USA, 2nd edition, 2010.

[3] Q. Chen, M. Hsu, and R. Liu. Extend UDF
Technology for Integrated Analytics. In T. Pedersen,
M. Mohania, and A. Tjoa, editors, Data Warehousing
and Knowledge Discovery, volume 5691 of Lecture
Notes in Computer Science, pages 256—270. Springer
Berlin Heidelberg, 2009.

[4] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng,
K. Li, and A. Kumar. The MADIib Analytics Library:
Or MAD Skills, the SQL. Proc. VLDB Endow.,
5(12):1700-1711, Aug. 2012.

[5] P. Holanda, M. Raasveldt, and M. Kersten. Don’t
Hold My UDFs Hostage - Exporting UDFs For
Debugging Purposes. In Proceedings of the 28th
International Conference on Simpdsio Brasileiro de
Banco de Dados, SSBD 2017, Uberlndia, Brazil, 2017.

[6] S. Idreos, F. Groffen, N. Nes, S. Manegold,

S. Mullender, and M. Kersten. MonetDB: Two
Decades of Research in Column-oriented Database
Architectures. IEEE Data Eng. Bull, 2012.

[7] ISO. ISO/IEC 9075:1992, Database Language SQL.
Technical report, International Organization for
Standardization (ISO), July 1992.

[8] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer.
Enterprise Data Analysis and Visualization: An
Interview Study. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2917-2926, Dec. 2012.

[9] W. McKinney. Data Structures for Statistical
Computing in Python. In S. van der Walt and
J. Millman, editors, Proceedings of the 9th Python in
Science Conference, pages 51 — 56, 2010.

[10] M. Raasveldt. MonetDBLite: An Embedded
Analytical Database. SIGMOD ’18: Proceedings of the
2018 ACM International Conference on Management
of Data, 2018.

[11] M. Raasveldt, P. Holanda, H. Miihleisen, and
S. Manegold. Deep Integration of Machine Learning
Into Column Stores. In Proceedings of the 21st
International Conference on Extending Database
Technology (EDBT), 2018.

[12] M. Raasveldt and H. Miihleisen. Vectorized UDFs in
Column-Stores. In Proceedings of the 28th
International Conference on Scientific and Statistical
Database Management, SSDBM 2016, Budapest,
Hungary, July 18-20, 2016, pages 16:1-16:12, 2016.

[13] M. Raasveldt and H. Miihleisen. Don’t Hold My Data
Hostage: A Case for Client Protocol Redesign. Proc.
VLDB Endow., 10(10):1022-1033, June 2017.

[14] S. van der Walt, S. Colbert, and G. Varoquaux. The
NumPy Array: A Structure for Efficient Numerical
Computation. Computing in Science Engineering,
13(2):22-30, March 2011.

[15] H. Wang and C. Zaniolo. User-Defined Aggregates in
Database Languages. In R. Connor and A. Mendelzon,
editors, Research Issues in Structured and
Semistructured Database Programming, volume 1949
of Lecture Notes in Computer Science, pages 43—60.
Springer Berlin Heidelberg, 2000.

[16] H. Wickham. Package 'dplyr’: A Grammar of Data
Manipulation, 2017.

