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A redex R in a lambda-term M is called needed if in every reduction of M to nor
mal form (some residual of) R is contracted. Among others the following results are 
proved: I. R is needed in Miff R is contracted in the leftmost reduction path of M. 
2. Let .df: M0 -+ M 1 -+ M 2 -+ ... reduce redexes R;: M,--+ M,+ 1, and have the 
property that Vi. 3.i ?- i. R, is needed in Mr Then .:if is normalising, i.e., if M0 has a 
normal form, then .Jf is finite and terminates at that normal form. 3. Neededness is 
an undecidable property, but has several efficiently decidable approximations, 
various versions of the so-called spine redexes. !:' 1987 Academic Press, Inc. 

1. INTRODUCTION 

A number of practical programming languages are based on some 
sugared form of the lambda calculus. Early examples are LISP, McCarthy 
eta/. (1961) and ISWIM, Landin (1966). More recent exemplars include 
ML (Gordon et al., 1981 ), Miranda (Turner, 1985), and HOPE (Burstall 
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er al .. 1980 ). We use the term lambda language to cover these and similar 
languages. 

Classical implementations of a lambda language have adopted an 
applicative order evaluation strategy, as embodied for example in the 
original SECD machine (Landin, 1964 ). It is well known that this strategy 
is not normalising for all lambda terms. It is also well known that the 
leftmost reduction strategy is normalising. However, until graph reduction 
was introduced by Wadsworth ( 1971) the leftmost strategy was not con
sidered practicable. 

The adoption of a normalising implementation of lambda languages has 
a number of advantages, of which the ability to specify data structures of 
unbounded size is most notable. Turner (1979, 1985) has argued the case 
for normalising implementations in a number of papers. 

Recent advances in compiling techniques have led to normalising 
implementations of lambda languages on sequential machines which rival 
in performance terms applicative order implementations, e.g., Augustsson 
( 1984 ). By taking advantage of the side-effect-free nature of lambda 
languages (at least in benign incarnations) it may be possible to achieve 
further improvements in performance by developing appropriate parallel 
architectures. 

However, the best-known normalising strategy for the lambda calculus is 
the leftmost strategy, and this is sequential in the sense that identifying 
the "next" leftmost redex cannot in general be achieved without at least 
identifying the current leftmost redex. Equally, at least some of the 
identification work can be done by a compiler: recent work on strictness 
analysis, such as, Mycroft ( 1981 ), has exploited this observation. 

The fundamental notion underlying this paper is that in every lambda 
term not in normal form there are a number of needed redexes. A redex is 
said to be needed in a term in a term M if R has to be contracted (sooner 
or later) when reducing M to normal form. It will be shown that these 
redexes can be reduced in any order, or in parallel, without risking 
unnecessary nontermination. We will present efficient algorithms for iden
tifying sets of needed redexes in a term. The most general concept of 
neededness is undecidable, as we show in Theorem 3.12. However, a family 
of algorithms can be identified which deliver increasingly better (but 
increasingly costly) approximations to the needed set. All the algorithms 
offered identify redexes which can be contracted safely, i.e., secure in the 
knowledge that such contraction will reduce the length of a leftmost red uc
tion sequence to normal form by at least 1. 

In Berry and Levy ( 1979) and also in Levy ( 1980) certain families of 
redexes are identified in order to obtain optimisations for some classes of 
reduction systems. 

The various algorithms for detecting needed redexes are comparable to 
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the so-called abstract interpretations of terms, see Burn et al. (1986 ). For 
example, in the simplest of our algorithms the term 

(Jex. (Jcy. yPQ)R)S 

is mapped to 

(Ax. (A.y. y..L..L ).l ).l, 

concluding that the two remaining redexes are needed in the original term. 
Just which of the defined algorithms is appropriate for a given implemen

tation is technology and application dependent. Our contribution is to offer 
a range of choices to the implementor which frees him from the sharp dis
tinction between applicative and normal order strategies, which currently 
forces him to either accept wholesale the inefficiency risks associated with 
normal order, or to buy the known efficiency of applicative order at the 
cost of losing normalising properties for his implementation. 

The relation with strictness analysis is as follows. There is a sharper 
notion of neededness: a redex R is head-needed in a term M if R has to be 
contracted in any reduction to head normal form. For example R in ).x. Rx 
is needed and head-needed, but in A.x. xR only needed. This notion of 
head-neededness is essentially the same as that of strictness, albeit that 
head-neededness refers to the argument whereas strictness refers to the 
function: we have for all redexes R and all contexts C[ ], 

R is head-needed in C[R] ~ C[ ] is strict in its argument [ ]. 

See Section 5 for further discussion on strictness. 

Plan of the paper. In Section 2 we introduce the concepts and ter
minology necessary to make this paper self-contained. Section 3 contains 
the major new theoretical concepts and results: the main result in this sec
tion is that any strategy which eventually removes all needed redexes in a 
term is normalising. Section 4 develops some practical algorithms for iden
tifying sets of needed redexes in a term. Section 5 offers some concluding 
remarks on strictness analysis, sequentiality, and extensions of A.-calculus. 
The Appendix discusses the method of Levy-labelled A.-calculus, which can 
be used to provide alternative proofs of some of our results. 

2. PRELIMINARIES 

In this paper we will use notation and terminology of Barendregt ( 1984 ). 
However, in order to make the paper practically self-contained, we will 
introduce the relevant concepts and notations in the present section. Also 
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some specific preparations for the sequel are included, in the form of 
Propositions 2.6 2.9. 

2.1. DEFINITIONS. The set of ).-terms, notation A, is defined inductively 
by 

(al x, y. ::, ... EA: 

(bi Af.l'v'Ei1=>(MN)EA; 

(c) ME A=> ().x.M) EA. 

If in (c) the proviso xEFV(M) is added, we get the set of J.I-terms. Here 
FI"( M) is the set of free variables of M. 

A term of the form (MN) is an application (of M to N). M is the rat or 
and /1; is the rand. A term (}.x.M) is an abstraction, x is its bound variahle, 
and M is its bodr. 

In application~ the usual bracket convention of "association to the left'' 
is employed: also outermost brackets are omitted. Repeated abstractions 
like (h·.(l,r.(i.:.M))) are written as l.xyz.M. 

We use :. =" to indicate syntactical identity of terms, reserving "=" for 
the relation of reduction, which we will now define. 

A term R = (}.x.A )B is caJied a redex. Given such a term, 
R' =A [x : = B] denotes the result of substituting B for the free occurrences 
of x in A. R' is called the contractum of R. A term not containing redexes is 
a normal form (or: in normal form). The passage from a red ex to its con
tract urn R-> R' is called a contraction. One step ([3- )reduction is defined by 
C[R]-> C[R']. where R ...... R' is a redex contraction and C[ ] is a context 
with one hole, i.e., a !.-term with one occurrence of a hole [ ]. C[M] is the 
result of substituting M for [ ] in C[ ]. The subterm relation sub is 
defined by 

M sub N <=> N = C[ M] for some C[ ]. 

When stating that M is a subterm of N, in this paper we will refer always 
to some specific occurrence of M in N. 

If we want to display which redex R is contracted in the reduction step 
Af-> N, we write R: M-> N. Again here, we refer to a specific occurrence of 
R in M. The transitive reflexive closure of the one step reduction relation 
_,. is denoted by --+>. Reduction sequences (or reductions, for short) 
Ml)-> Ai 1-+ M1 _, · .. will be denoted by :Yi, Y, .... They may be finite or 
infinite. Although it is an abuse of notation, we will sometimes write a 
reduction . .JI: M0 _,. M 1 -> · · · -> M,, as~: M 0 --+> Mn, still bearing in mind 
that we refer to a specific reduction from M 0 to Mn· 

The equivalence relation generated by ...... is called convertion and written 
as "= ." It should be distinguished from =, syntactical equality. 
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Leftmost Reductions and Head Reductions 

2.2. DEFINITIONS. If N is an abstraction term ).x. A we call the prefix Ax 

the abstractor of N. Likewise if R is a redex Ux. A )B the abstractor of R is 

Ax. If M is not a normal form, the lejimost redex of M is that redex whose 
abstractor is to the left of the abstractor of every other redex in M. 
A leftmost reduction is one in which each contracted redex is leftmost. 

A leftmost reduction step is denoted by ->Im. 

The leftmost redex R is a nonnormal form M is called the head redex if 

its abstractor is only preceded (in the left to right order of symbols) by 

abstractors of abstraction terms (not redexes ). In particular, the abstractor 
of the head redex is not preceded by a variable. Thus in M==.A.x.xR, 
where R is a redex, R is the leftmost redex but not the head redex; M has 
no head redex. On the other hand, R is the head redex of ),x. RA BC. A 
term is in head normal form if it has no head redex. The set of head normal 
forms can be defined as follows: for any terms M 1 , ••• , M,,, the term 

)x 1 ••• x,,,. yM 1 ••• M 11 is a head normal form. Here n, m;:, 0. A head reduction 
is one in which only head redexes are contracted. This is all standard 

terminology (apart from "abstractor"); the following is not. 

2.3. DEFINITION. The active components of Mare the maximal subterms 

of M which are not in head normal form. 

Here "maximal" refers to the subterm ordering; so the active components 

are mutually disjoint. If a term is not in head normal form, it has one 

active component, namely itself. A normal form has no active components. 

The set of active components of ).x 1 ••• x,,.yN 1 ••• Nk is the union of the sets 
of active components of N 1, ••• , Nk. The word "active" refers to the fact that 
the active components are embedded in a context which is "frozen," i.e. a 

normal form when the holes [ ] are viewed as variables. (This frozen 

context of Mis the trivial context [ ] if Mis not a head normal form.) 

2.4. DEFINITIONS. If N is a subterm of M, the descendants of N after a 
reduction step M-> M' are those subterms in M' which can be "traced 

back" to Nin M, in the following sense. If N = x, the notion is clear. If N is 
an abstraction term (}.x.A) or an application (AB), we look when tracing 

to the outermost pair of brackets of N. (For a more precise definition using 
labels or underlining see Klop, 1980 or Barendregt, 1984.) Our stipulation 
that the "identity" of the outermost bracket pair determines the descen
dants, entails that the contractum R' of the redex R in M is not a descen

dant of R after the reduction step R: M--> M' (since in this redex contrac
tion the original outermost pair of brackets of R vanishes). Decendants of 
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redexes are also called residuals. Note that by the previous remark residuals 
of a redex are again redexes. The notion of descendants or residuals after 
one reduction step extends by transitivity to the notion of descendants or 
residuals after a finite reduction sequence f!,f, 

If~: M ->-+ N and Y: M ->-+ L are two "diverging" reductions, the well
known Church-Rosser theorem states that "converging" reductions 
.~': L-++ P and Y": N->-+ P can be found. (In another well-known ter
minology, ),-calculus is said to be confluent.) A stronger version of this 
theorem asserts that these converging reductions can be found in a 
canonical way, by adding "elementary reduction diagrams" as suggested in 
Fig. 1. 

The reduction diagram originating in this way is called D(.Jl, Y), and in 
Kl op ( 1980) or Barendregt (1984) it is proved that it closes; i.e., the con
struction terminates and yields reductions &' and Y' as desired. We write 
}f = Jl/Y and call 2£' the projection of f!,f by /f. Elementary reduction 
diagrams are obtained as follows: if R: M ....... N and S: M ....... L are two 
diverging reduction steps, converging reductions (making the elementary 
diagram complete) consist of contracting the residuals of R after S: M ....... L, 
resp. the residuals of S after R: M ....... N. In case one (or both) of these sets 
of residuals is empty, we introduce "empty" reductions as, e.g., in the 
elementary diagram shown in Fig. 2 (where l==.h.x). 

Letting R stand also for the reduction sequence R: M ....... N which reduces 
just R, then given any reduction f!,f: M ->-+ L, the parallel moves lemma 
asserts that the projection R/:14 consists of the contraction of all residuals of 
R after .:Ji. 

It is important to note that in general the residuals in P of redex R in M 
after a reduction M ->-+ P depend on the actual reduction from M to P. 
However, this is not so if M and P are left-upper corner and right-lower 
corner, respectively, of an elementary reduction diagram. As a con
sequence, this implies the following. 

M - N 

. - ; 

S' 
r " -. -. ~ 

• -
fr .. 
L 

R' 

FIGURE I 
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T"'-·T 
y y 

FIGURE 1 

2.5. PROPOSITION. Let 2-£: M -++ N and Y: M -+> M'. Consider the 
reduction diagram of Fig. 3. Let R sub M he a redex. Then the residuals of R 

in N' are the same with respect to the two reduction paths .1?1 * ( Y' /f!ll) and 

.</' * (~/Y). 
Prol~( The property holds for elementary reduction diagrams and 

therefore also for reduction diagrams. See Barendregt ( 1984) for more 
details. I 

In the sequel we will need the following fact. 

2.6. PROPOSITION. Consider the situation as in Fig. 3. Let R sub M be a 

redex none of whose residuals is contracted in f!ll. Let R' sub M' be a residual 
of R after reduction Y'. Then no residual of R' is contracted in f!ll/Y'. 

Proof: Suppose that a residual of R' is contracted in &/Y'. Since in 
;~/.</' the only redexes which are contracted are residuals of redexes 
contracted in .YI, it follows by Proposition 2.5 that a residual of R in a 
term of ,!J is contracted-contradiction. (For an alternative proof see the 
Appendix.) I 

We will need the following facts about reduction diagrams and the 
phenomenon of "redex creation." We say that redex S in M' is created by 
the step R: M-+ M' if S is not a residual of any redex in M. Facts like the 
Lemma 2.7(ii) are a good illustration of the beneficial use of Levy's labels 
expounded in the Appendix, which speeds up otherwise very tedious case 
verifications. 

2.7. LEMMA. Let M -+ 1m N and R: M-+ M'. 

M'---R-/_S _ _..,,...N' 

FIGURE 3 
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M-~N 

1~ i 
M'--lm--N' 

FIGURE 4 

(i) If R is not leftmost, then a common reduct of N and M' can be 
found hy contracting the leftmost redex in M'. See Fig. 4. 

(ii) Moreover, (f S sub M' is a redex and S' sub N' is a residual of Sin 
N' l'ia the contraction M' -->Im N', then 

S is created in R: M--> M' => S' is created in N--> N'. 

(iii) ff R is arbitrary, then we have the elementary diagram of Fig. 5, 
1rhere M' ->Im= N' denotes either the leftmost step or an empty step (in 
which case M' = N'). Moreover, M' ->im= N' is the empty step if.f R is the 
leftmost redex. 

Proof (i) Routine. See, for example, Lemma 13.2.5 in Barendregt 
( 1984 ). 

(ii) By distinguishing some cases. (For an alternative proof see the 
Appendix.) 

(iii) Immediate by (i ). I 

2.8. PROPOSITION. (i) Let M ->Im N and M--> M'. Then the reduction 
diagram looks like Fig. 6. 

(ii) Let M _.Im N and M ...... M'. Then the reduction diagram looks like 
Fig. 7. Moreover, M' = N' iff the reduction M' ...... M' contracts a residual of 
the leftmost redex in M. 

Proof ( i) By Lemma 2. 7 (iii) we can make a diagram chase as in Fig. 8 
and the result follows. 

(ii) Again by Lemma 2.7(iii) and a simple diagram chase. I 

3. NEEDED REDUCTION 

3.1. DEFINITION. Let R be a redex in M. 
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M Im 
II> N 

1 i 
M' 11>11> N' 

Im ~ 

FIGURE 5 

M Im ...... N 

i i 
M' 

Im 
..... N' 

F1m;Rr 6 

M Im 
""N 

i i 
M' 11>11> N' 

Im ~ 

FIGLRE 7 

M Im lm lm N 

.. lm -

" Im .. lm --. 

' lrn 

r 
lm , lm lm --

lm 

, lrn - Im -
lm t 

' 
' 

M' lm , lm lm N 

FIGURE 8 
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(i) R is needed in M (or just "needed" when the context makes clear 
which M is intended) if every reduction sequence of M to normal form 
reduces some residual of R. 

(ii) R is head-needed if every reduction sequence of M to head 
normal form reduces some residual of R. 

(iii) A reduction sequence is (head-)needed if every reduction step in 
the sequence contracts a (head- )needed redex. 

3.2. EXAMPLE. Consider Lx-y.lx(Ky(Jy)). Then in this term Ix is needed 
and head-needed, Ky(Jy) is needed but not head-needed and ly is neither 
needed nor head-needed, 

A head-needed redex is automatically needed since every reduction to 
normal form contains a reduction to head-normal form. If there is no 
reduction sequence to (head- )normal form, then every redex is (head-)
needed. Each term M not in normal form has at least one needed redex, the 
leftmost redex. The proof requires a routine argument which we omit. 
Similarly the head-redex of a term (if there is one) is always head-needed. 

3.3. DEFINITION. (i) Consider a reduction sequence 

Let R be a redex in M 0 such that no residual of R is contracted in ,~ and 
such that M" contains no residuals of R. Then we say that redex R is 
erased in ,J.f. 

(ii) Redex R in M is erasable if there is a reduction sequence //l 
beginning with M in which R is erased. 

The following facts, whose proofs are immediate, give a first and simple 
characterisation of the needed redexes in a term, and provide an easy 
example of needed redexes. 

3.4. PROPOSITION. (i) Let M have a normal jimn. Then for any redex R 
in M we have R is needed in M <::> R is not erasable in M. 

(ii) The leftmost redex in any term not in normal ji;rm is not erasable, 
hence is needed. I 

Note that the restriction to terms with normal form in Proposition 3.4( i) 
is necessary: e.g., in M:=Q(Lcl)R), where Q=Ux.xx)(Ax.xx) and R is 
some redex; R is erasable but by Definition 3.1 is also needed, as M does 
not have a normal form. 

A consequence of Proposition 3.4(i) is that in the U-calculus, where 
erasure of redexes is impossible, every redex is needed. 
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We will now investigate how the properties of neededness and 
nonneededness propagate along the lines of descendants (or residuals) 
of a redex in M, in some reduction sequence of M. As one may expect. 
nonneededness is a persistent property. 

3.5. THEOREM. Let M-* M'. Let S be redex in Mand S' be a residual 
of S in M'. Then 

(i) Sis not needed=>S' is not needed; 

(ii) Sis not head-needed=> S' is not head-needed. 

Equivalently 

S' is (head-) needed=> S is (head-) needed. 

Proof (i) Suppose S is not needed. Then there exists a reduction 
sequence Y': M --- N to normal form N in which no residual of S is 
reduced. Let Y'' be the projection of Y over M -tt M'. See Fig. 9. In every 
reduction step in .C/'' a redex is contracted which is a residual of a redex 
contracted in Y'. Since Y reduces no residuals of S it follows by 
Proposition 2.6 that no residual of S' is contracted in «!". Hence S' is not 
needed. 

(ii) Similar! y. I 
We now consider how (head- )neededness propagates. If R is needed in 

M, and R has just one residual R' in M' by reduction of some other redex 
in M, then it follows immediately from Definition 3.1 that R' is needed. 
When R has more than one residual, it is easy to see that it is possible that 
not all of them are needed. (Consider, e.g., (}.x.x(K!x))R.) However, we do 
expect that at least one residual is needed. The proof of this fact is not 
obvious. This is because if R has, say, two residuals R 1 and R 2 in M', one 
can imagine that every reduction sequence of M' to normal form might 
reduce a residual of R 1 or of R 2 , but with some of those sequences reducing 
only residuals of R 1 , and others reducing only residuals of R1. This does 
not happen. We will obtain this fact in Proposition 3.7 as an immediate 
consequence of another characterisation of needed redexes, which says that 

S subM 
8 ...... N 

1 "' 

s· sub M' ..... N 
s· 

FIGURE 9 
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for neededness it is sufficient to look only at the leftmost (or "normal," as it 
is also called) reduction sequence, instead of looking at all reduction 
sequences of a term to normal form. 

3.6. THEOREM. Let R he a redex in M. 

( i) Let !:!': M _.._. N he a longest possihle le.ff most reduction starting 
ll'ith M. Then N is the normal form of M and 

R is needed~ some residual of R is contracted in ,!/). 

(ii) Let :If: M _.._. N he a longest possible head-reduction starting irith 
M. Then N is a head-normal form of M and 

R is head-needed~some residual of R is contracted in ,if. 

Proql ( i) ( =>) By the definition of neededness. ( =) Leftmost redexes 
are needed. If some residual of R is a leftmost redex, then by Theorem 3.5, 
also R is needed. 

(ii) Similarly. I 
This result can be reformulated as follows: 

R is (head-)needed iff R is not erased in Y'(.Yt) 

iff R has a residual with respect to 2'( ,f{) that is a leftmost redex. 

In the sequel '.IJ will range over !:!' and Yt. 

3.7. PROPOSITION. Suppose M has a (head- )normal f(mn, and R is a 
(head-) needed redex of /II. Suppose Y': A1 -++ N is a reduction sequence 
irhich does not reduce any residual of R. Then R has a ( head-)needed 
residual in N. 

Proof: Let '.IJ: N _.._. N0 be the leftmost (head-)reduction sequence of N 
to (head-)normal form. Because R is (head-)needed in M, some residual R 1 

of R must be reduced in ::/' * '.IJ. Since /!' reduces no residuals of R, the 
redcx R 1 must descend from some residual in N of R0 , with respect to //'. 
Then R0 is (head- )needed in N, by Theorem 3.6. I 

3.8. PROPOSITION. rr R: M-> M', Q is a redex of M' created hy R, and Q 
is ( head-)needed, then R is (11ead-)needed. 

Proof We will prove this for the case of head-neededness. The case of 
neededness is similar. 

lf M has no head-normal form, then every redex in Mis (trivially) head
needed, and the theorem holds. 
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Otherwise, let ~4: M -- N be the head reduction path to head normal 
form. Let R: M--+ M', and let Q be a redex of M' created by R. We will 
prove that if R is not head-needed, then neither is Q. 

We proceed by induction on the length of (4. If '.4 is the empty sequence, 
then M is already in head normal form. Therefore M' is also in head 
normal form. No redexes in M' are head-needed, and the theorem holds. 

Otherwise, '.4 =G.~§', where G is the leftmost redex of M. We begin by 
establishing some properties of the diagram D( R, ~§) shown in Fig. I 0. 

By Theorem 3.6, G is head-needed; by hypothesis R is not. Therefore R is 
not the leftmost redex of M. Since R is not head-needed, by Theorem 3.5 
none of its residuals is head-needed. Therefore every vertical reduction in 
Fig. 10 is nonhead-needed. By applying Lemma 2.7(i) throughout the 
diagram, we find that in every elementary sub-diagram, the horizontal sides 
each consist of a single leftmost reduction. Thus each reduction sequence 
'./}' /( R 1 ••• R,) ( 0 :S; i::::; 11) is the same length as '.4', which is shorter than '/J. 
Since N is in head normal form, so is every term occurring down the right
hand side of Fig. I 0, and each sequence '.I/'/( R 1 ••. Ri) ( 0 :S; i:::::; 11) is a leftmost 
reduction to head normal form. 

Now we can show that Q is not head-needed. To show this, it is enough 
to show that Q is not reduced in G/ R, and no residual of Q is head-needed 
in P'. 

R creates Q in M', and R is not leftmost, so Q cannot be leftmost. 
Therefore Q is not G / R. 

Let Q' be a residual of Qin P'. By Lemma 2.7(ii) applied to the left-hand 
box of Fig. I 0, Q' is created by R/G. Let R/G = R 1 ••• Rw Then some R, 
creates a redex Q" such that Q' is a residual of Q" by Rif 1 •.• R11 • We 
established above that R, is not a head-needed redex, and that 
'.4' /( R 1 ... R, 1 ) is a reduction to head normal form which is shorter than '.fJ. 
Therefore induction applies, showing that Q" is not head-needed. Q' is a 
residual of Q", so by Theorem 3.5 it is also not head-needed. I 

A useful property is that "(head- )neededness is preserved upwards," with 
respect to the relation "subterm of." 

M__Q___.. P 
a· .... N 

'i 
R, .. Ri-1 11'/(R1 ... R1_1) 

R, lr C>'/(R1 ... R,) 

Ri+! .. Rn 

QsubM'~P' u'/(R/G) 
N' 

FIGURE 10 
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3.9. LEMMA. Let R sub S sub M, with R and S redexes. Then 

R is (head-) needed in M = S is (head-) needed in M. 

Proof If M has no (head- )normal form then this is trivial. Otherwise, 
let <§: M -+> N be the leftmost (head- )reduction of M to its (head- )normal 
form. Suppose that Sis not (head- )needed in Min order to show that R is 
not (head- )needed in M. Then no residual of S is contracted in ~§. The 
redex S is to the left of R and the same holds for the respective residuals. It 
follows that no residual of R is contracted in <§. Therefore R is not (head-)
needed by Theorem 3.5. I 

3.10. PROPOSITION. J,et R: M-> N and let S he a (head- )neuled redex 
in M. Suppose that R is not ( head-)needed. Then S has a uniqu<' residual S' 
in N. Moreover, S' is (head-) needed. 

Proof Suppose that the (head- )needed redex S is multiplied by con
tracting R, then R is a superredex of S and therefore by Lemma 3.9 also R 
would be (head-)needed, contradiction. Moreover, since S is (head-)
needed, it is different from R and cannot be erased by reducing R. It 
follows that S has a unique residual S'. This S' is also (head- )needed by 
Proposition 3.7. I 

3.11. LEMMA. IfF=r1F', then 

R (head-) needed in FR= R (head-) needed in F' R. 

Proof By the Church-Rosser theorem one has F->-+ F" and F' -+> F" 
for some F". Then FR ->-+ F"R and F' R -+> F" R. Suppose R is (head-)
needed in FR. Then also R is (head- )needed in F" R by Proposition 3.7 and 
hence in F' R by Theorem 3.5. I 

Intuitively, (head- )neededness is related closely to termination. Con
sequently, the following result comes as no great surprise. 

3.12. THEOREM. It is undecidable whether a redex in some term is 
(head-) needed. 

Proof Scott's theorem (see Barendregt, 1984, 6.6.2) states: ''Let X be a 
set of lambda terms which is closed under conversion. Moreover, let X not 
be the whole set of lambda terms nor be empty. Then X is not recursive." 
Now consider the set 

X = {FIR is (head-)needed in FR}. 
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Then X satisfies the criteria of Scott's theorem, by Lemma 3.11. Hence it is 
not decidable whether R is (head- )needed in FR. From this it follows that 
it is in general not decidable whether a redex in some term is (head-)
needed. I 

However, just as we can determine that certain programs terminate we 
can hope to identify at least some (head- )needed redexes in some lambda 
terms. Theorem 3.12 does not say we cannot do anything; it just tells us 
that perfection is not possible. 

We will now proceed to give a surprisingly simple characterisation of the 
(head- )needed redexes in Min terms of their behaviour with respect to the 
leftmost (head-)reduction sequence of M to its (head) normal form. The 
following definition and treatment are suggested by the analogous treat
ment in H uet and Levy ( 1979 ). 

3.13. DEFINITION. (i) Let M be a term. Then the norm of M, notation 
llMI[, is the length (in number of reduction steps) of the leftmost reduction 
sequence of M to normal form if this exists, and "infinite" otherwise. 

(ii) Similarly, the head-norm of M, notation llMllh, is the length of 
the head-reduction sequance of M to head normal form, if this exists, and 
"infinite" otherwise. 

Note that llMllh ~ llMlf. 

3.14. Notation. ->n denotes the contraction of a needed redex and --+. n 

the contraction of a nonneeded redex. Similarly ->hn denotes the contrac
tion of a head-needed redex and ---> _ hn of a redex that is not head-needed. 
For each such reduction relation --+" its transitive reflexive closure is 
denoted by -++,. 

3.15. THEOREM. ( i) Let M have normal form. Then 

M-+-->N=llMll>llN[f; n 

M--;;+ N= l[Mf[ = llNI[. 

(ii) Let M have a head-normal form. Then 

That is, (head-) needed reduction is (head-) norm-decreasing; non-( head-)
needed reduction is ( head-)norm-preserving. 

643175/3-2 
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Proof (i) Let R sub M be arbitrary and consider the leftmost reduc
tion sequence .P: M= M 0 -++ Mk to normal form Mk. Let R: M--+ N= N0 • 

By Proposition 2.8 we can erect the diagram in Fig. 11, where .P' is again 
leftmost. Hence in any case llMll ~ llNll. 

If R is needed, at least one of its residuals is contracted in .P. Say this is 
in the step M; -++ 1m M;+ 1 • Since M;-++ N; contracts all the residuals of R, 
it also contracts the leftmost redex in M;. Therefore by Proposition 2.8 the 
reduction sequence N; -+ 1m,. N;+ 1 is the empty step. Hence llMll > llNll. 

If R is not needed, then by Theorem 3.6 no residual of R is contracted in 
ff'. Therefore again by Proposition 2.9 each step M; -+ 1m M;+ 1 in ff' gives 
exactly one leftmost step N; -+ 1m N;+ 1 in .P'. Thus ff' and .P' have exactly 
the same length, and II Mll = II NII. 

(ii) Similarly. I 
The next theorem collects all our equivalent characterisations of (head-)

neededness. 

3.16. THEOREM (equivalent characterisations of (head-)neededness). 
(i) Let M have normal form N, and let R in M be a redex. Let ff' be the 
leftmost reduction sequence from M to N. Then 

R is needed in M =- R is not erasable in M 

=- R has a residual contracted in ff' 

=- R is not erased in ff' 

=- R is norm-decreasing. 

(ii) Let M have a head-normal form, and let R in M be a redex. Let 
.Yf be the maximal lejirnost head-reduction sequence starting from M. Then 

R is head-needed in M =- R has a residual contracted in J/(' 

=- R is head-norm-decreasing. I 

L 

·r~r~r 
Im 

No im 5 NI Im,, N2 Im., 

L' 
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3.17. PROPOSITION. Let M have a (head- )normal form. Then the leftmost 
(head-) reduction sequence of M has maximal length among the (head-)
needed reduction sequences to (head- )normal form. (There may of course be 
longer sequences, but these include redexes that are not ( head-)needed.) 

Proof Every (head-)needed reduction reduces the (head- )norm by at 
least one. Therefore a (head- )needed reduction sequence from M to 
(head-)normal form can have length no more than II Mll 1hl. But llMll 1hl is 
the length of the leftmost (head- )reduction sequence to (head- )normal 
form. I 

This proposition implies that in the U-calculus the leftmost reduction 
sequence of M has maximal length among all reduction sequences. This 
implies the well-known fact for the U-calculus, that if M has a normal 
form, then all reductions starting with M terminate. 

3.18. LEMMA. (i) Let R: M--+ N and S: N--+ L, where R is nonneeded 
and Sis needed. Then there exist a term N', a needed redex S': M--+ N', and 
a sequence N' --- L of nonneeded reduction steps. See Fig. 12. 

(ii) An analogous statement holds for head-neededness. 

Proof (i) By Proposition 3.8 nonneeded redexes never create needed 
redexes, so S must be a residual by R of some redex S' in M. By 
Proposition 3.10, S must be the only residual of S'. Therefore we can make 
the above reduction diagram. Hence by Theorem 3.5, the redexes reduced 
in N' --- L are nonneeded. That S' is needed follows also by 3.5. 

(ii) Similarly. I 

3.19. THEOREM. Let .~: M --- N he a reduction sequence. Then there are 
sequences Y: M --- L and :Y: L --- N such that Y is needed, :Y is non
needed, and ;3f. = ,</ * :Y. ( "Nonneeded reductions can he postponed.") 
Similarly for nonhead-needed reductions. 

Proof By Lemma 3.18 using some "diagram chasing." I 
The word "needed" refers to the fact that, by definition, some residual of 

the needed redex must be contracted in order to each normal form. Now 

M R ..... N 

:l r. 
N' ... L ...., 

FIGURE 12 
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we will show that reduction of needed redexes is not only necessary, but 
also sufficient to reach the normal form. More generally, we will show that 
if an arbitrary finite number of nonneeded steps is allowed between needed 
steps, the resulting reduction sequence is still sufficient to reach normal 
form. That is, "quasi-needed reduction is normalising." 

3.20. DEFINITION. Consider a (finite or infinite) reduction sequence 

with R;: M;-7 M;+ 1 • 

(i) i!ll is called a quasi-needed reduction sequence if 

Vi.3)~ i.R1 is needed in M1. 

(ii) Similarly we define quasi-head-needed. 

So the quasi-needed reduction discipline has the nice property that one 
is free to perform, between needed reduction steps, an arbitrary finite 
reduction sequence. 

3.21. THEOREM. ( i) Let M have a normal form. Then every quasi-needed 
reduction sequence starting with M terminates. 

(ii) Similarly, if M has a head-normal form, then every quasi-head
needed reduction starting with M terminates. 

Proof (i) By Theorem 3.15, needed reductions are norm-decreasing, 
while nonneeded reductions are norm-preserving. Hence a quasi-needed 
reduction sequence starting from a term with a finite norm (i.e., having a 
normal form), must end in a term with norm 0 (i.e., a normal form). 

(ii) Similarly. I 
It follows that if a term has a (head )-normal form, then a q uasi-(head- )

needed reduction is able to find it (one). 

4. SPINE STRATEGIES 

As shown in 3.12, neededness of a redex R in M is undecidable in 
general. In practical cases we usually work with terms having a (head) nor
mal form. In these cases we can decide whether R is (head) needed: reduce 
M by the leftmost reduction path L to (head) normal form; if (a residual 
of) R is reduced in L, then R is (head-)needed, otherwise not. (A leftmost 
reduction to head normal form is a head reduction.) This is, however, not a 
practical algorithm: it uses unpredictably long look-ahead. 



NEEDED REDUCTION AND SPINE STRATEGIES 209 

Practical algorithms for identifying needed redexes should be efficient: 
the number of steps required should be bounded by some linear function of 
the size of a term. This motivates the various notions of spine redex 
introduced below. These come in two groups: various notions of head-spine 
redex and spine redex. These are generalisations of the notions of head 
redex and leftmost redex, respectively. The redexes belonging to these 
families are all needed. Moreover, we will give efficient algorithms to test 
whether a redex in a term belongs to one of the classes. 

4.1. DEFINITION. The set HS(M) of head spine redexes m a lambda
expression M is defined as 

HS(M) = 0 if Mis in head normal form 

HS(M) = { ().y.P)Q} u HS(P) if M :dx1 •• x,,.((Ay.P)Q)R 1 ••• R,,,, 

for some n, m? 0. 

We will see that there is an efficient algorithm for identifying the head 
spine redexes, by computing the head spine of the given term. 

4.2. DEFINITION. For a lambda-expression M we define hs(M); this will 
be the same term with some underlining: 

hs(x) =,;>; 

hs(kc P) = ),x. hs(P) 

hs(PQ) = hs(P)Q 

It is easy to see that a redex R in Mis a head spine redex iff the ) of R is 
underlined in hs(M). 

4.3. DEFINITION. Every lambda-expression can be written in the form 

M= h 0 • (J.x 1• ( ••• (h,,.yP,,+ 1 )P,,) ... )P 1, 

where n? 0, the x0 , .•. , x,,, P 1 , ••. , P 11 + 1 are vectors, i.e., x 0 = x 01 , x01 , ... ,etc. 
Note that such vectors are not subterms, but lists of subterms. The vectors 
x0 and P11+ 1 may be empty, but the remaining X; and P; are nonempty. 
Note that with more parentheses we have 

M = (h0 • ((h 1 • (( ••• ((AX,,. ( yP 11 + 1 ) )P,,)) ... ) )P 1 ). 

The head spine corresponds to the underlined portion of M. The variable 
y is called the head variable of M. By analogy with the notion of "spine," 
the terms Pi/ are called the ribs of M. 
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EXAMPLE. A term with n = 2 looks like 

and when the vectors are written out, e.g., like 

In tree notation the term looks like Fig. 13. The thick lines pick out the 
head-spine. 

Looking at a term M in this way makes it clear that its leftmost reduc
tion sequence begins by reducing all the head spine redexes, from the out
ermost inwards. If in a leftmost reduction some rib Pu is substituted for the 
head variable of M, the head spine of M is extended by the head spine of 
P,,, and the head spine redexes of P,1 will have residuals on the spine of the 
resulting expression. It follows from the contrapositive formulation of 
Theorem 3.6 that all the head spine redexes of P;i are needed in M. These 
observations provide a basis for a better approximation to neededness than 
that offered by head spine redexes. 

FIGURE 13 
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4.4. DEFINITION. (i) Let M be as above and let P1 =Pil.P12 ... and 
x,=x11 ,x12 ..•• Then M has the head spine target Pn if y=xil with i>O. 
This subterm will be substituted for the head spine variable when nor
malising M. 

(ii) M has the polyadic head spine target P,; if y = x 11 with i > 0 and 
P 11 exists (i.e., P 1 has at least j elements). 

4.5. EXAMPLE. Consider M = (AX1 X2X3. (UY1 Y2· ((},z 1 Z2.:::3Z4. y w! W2) 
Zi))Y1 Y2 Y3 )); then 

Y=Y1 

Y= Y2 

y=z1 

y is free 

= Y1 is the (polyadic) head spine target; 

= Y2 is the polyadic head spine target; 

= Z 1 is the (polyadic) head spine target; 

=there is no (polyadic) head spine target; 

=there is no (polyadic) head spine target. 

4.6. DEFINITION. Let M be a term with head spine target N. An exten
ded head spine redex of M is a head spine redex of M or an extended head 
spine redex of N. 

Let M be a term with polyadic head spine target N. A polyadic head 
spine redex of M is a head spine redex of M or a simple polyadic head 
spine redex of N. 

Recall that the active components of M are the maximal subterms of M 
not in head normal-form. For example, if M:=Ax.Uy.P)QR, then Mis 
the only active component of itself. If M = ),x. yR 1 ... Rn,, then the active 
components of M are those of R 1, ... , R,,, together. 

4.7. DEFINITION. (i) A spine redex of M is a head spine redex of an 
active component of M. 

(ii) Similarly, extended or polyadic spine redexes are respectively the 
extended or polyadic head-spine redexes of an active component in M. 

4.8. LEMMA. Let A suh M he an active component. Then 

R is head-needed in A = R is needed in M. 

Pror~l Induction on the length of M. If M is not in head-normal form, 
then A = M and the statement is trivial. Otherwise, M = Xx- I ... xii. yA 1 ... Am 
and A is an active component of say A 1• By the induction hypothesis R is 
needed in A 1, hence in M. I 
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4.9. THEOREM. (i) Head spine, extended head spine, and polyadic head 
spine redexes are all head-needed. 

(ii) Spine, extended spine, and polyadic spine redexes are all needed. 

Proof (i) From the definition of head spine redexes it is clear that 
these will be contracted on the head reduction path. Hence by 3.6(ii) such 
redexes are head-needed. From the definition of extended or polyadic head 
spine redexes it also is clear that these will become head redexes; therefore 
they are also needed. 

(ii) By (i) and Lemma 4.8. I 

Figure 14 summarises the relations between the various classes of 
redexes. 

Now we will turn to the algorithms that detect the various classes of 
needed redex. First we give a noncomputable version in order to make the 
idea clear. 

4.10. DEFINIT!ON. The selection number of a A-term M, notation Sel(M), 
is defined as 

Sel(M) = /(undefined), if M has no head-normal form; 

=0, 

=l, 

if M has a head-normal form with 

a free head variable; 

if M has a head-normal form 

Clearly Sel is a partial recursive function on (the codes of) terms. 

The selection number is related to the notion of head-neededness. In the 
following definition .ii l. stands for the set of lambda terms extended with a 
new constant 1.. 

head spine i;;; spine 
in in 

extended head spine i;;; extended spine 
in in 

polyadic head spine i;;; polyadic spine 
in in 

head-needed i;;; needed 

FIGURE 14 



NEEDED REDUCTION AND SPINE STRATEGIES 

4.1 I. DEFINITION. The map < >: A --> A J_ is defined as 

(x) = x; 

(h. P) = ),x. (P); 

(PQ) = (P)(Q), 

= (P)1-, 

ifSel(P) = 1, 

otherwise. 

4.12. EXAMPLE. Let 

Then 

M 1 = J.w. (J.xy. yA B)( ()..::. ir )B); 

M 2 = },w. (J.xy .xA B)( (A..::. ir)B). 

(M 1 ) = J,w.(hy. y.l.l ).l; 

(M2 ) =),a·. (Lx-y .. d 1- )(() . .::. w ).l ). 

4.13. DEFINITION. Let R be a redex in M. 
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(i) R is called ( )-preserved if the abstractor of R is still present 
in (M). 

(ii) R is called ( )-needed if R is ( )-preserved in an active com
ponent of M. 

4.14. PROPOSITION. ( i) R is ( )-preserved= R is head-needed. 

(ii) R is ( )-needed= R is needed. 

Proof (i) By induction on the term M of which R is a subterm. If 
M = x, then the result is trivial. If M = A.x. P, then the result follows from 
the induction hypothesis. If M = PQ, then there are three subcases: 

R = PQ. Then R is head needed. 
R sub P. Then 

R < )-preserved= R visible in ( M) 

= R head-needed in P, by the induction hypothesis 

= R head-needed in M. 

R sub Q. Then 
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R< >-preserved= R visible in <M> = <P) < Q) & Sel(P) = l 

= R visible in< Q) & Sel(P) = 1 

=>Rhead-needed in Q & P -++h A.x 1 ••• xn.x 1 N 1 .•• Nk 

=>Rhead-needed in PQ = M. 

(ii) By (i) and Lemma 4.8. I 

The converse does not hold; R in (h.xR(A.y. y))(A.pq.p) is head-needed, 
but not < )-preserved. 

Now we will define several computable approximations to Sel: Sel1..A
These partial recursive functions are computable in the sense that their 
domains are recursive. The definition of Sel; is simultaneous with that of 
< );. 

In the following definition j denotes "undefined" and a -'- b is a - b if 
this is not negative and 0 otherwise. 

4.15. DEFINITION. (i) < ); is defined by replacing Sel in the definition 
of ( > by Sel,.. 

(ii) Sel 1(P) = j,forallP. 

(iii) Sel 2(x) = 0; 
Sel 2(PQ) = i; 
Sel 2(A.x.P) = 1, 

= i' 
(iv) Sel 3(x) = O; 

Sel 3(PQ) = Sel3(P) ..!.. 1, 

= i' 
Sel 3(.Jcx.P) = 1, 

= Sel 3(P) + l, 

=0, 

(v) Sel 4(x) = 0; 
Sel4 (PQ) = Sel4 (P) ..!.. 1, 

= Sel4 (Q)-lengthtail(P), 

= j, 
Sel4(A.x.P) = 1, 

= Sel4 (P)+ 1, 

=0, 

if x E FV( ( P) 2 ), 

otherwise. 

ifSel 3(P) # 1, 
otherwise; 
if x E FV( <P)3), 
if x ~ FV( <P) 3 ) 

and Sel3(P) > 0, 
otherwise. 

ifSel4(P)# 1, 
ifSel4(P)= 1 
and Sel 4 (Q) > lengthtail(P) 

otherwise; 
if x E FV( ( P) 4 ), 

if x ~ FV( < P) 4 ) 

and Sel 4(P) > 0, 
otherwise. 
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Here length tail( P) is defined by: 

if P has as head-normal form Xx 1 ••• xm. yQ 1 ••• Q,, (with n, m ~ 0), 
then lengthtail(P) = n, otherwise i 

Moreover, we have the property 

Sel 4 (P) = 1 => lengthtail(P) is defined. 
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It follows that Sel4 is computable, even although its definition uses 
the uncomputable-- more precisely, not always computable-function 
lengthtail. We will not prove this fact here as it will follow from a more 
precise analysis later on. See Definition 4.22 below. 

4.16. DEFINITION. Let R be a redex in M. 

(i) R is< );-preserved if R is visible in (M);. 

(ii) R is < ) ;-needed if R is < ) ;-preserved in an active component 
of M. 

4.17. DEFINITION. Let R be a redex in M. 

( i) R is called a generalised head spine red ex if R is < ) 4-preserved. 

(ii) R is a generalised spine redex if R is a generalised head spine 
redex of an active component of M. 

It is clear that for the partial functions Se!; we have 

Se! 2 Sel 4 2 Sel 1 2 Sel 2 2 Sel 1 , 

i.e., the Sel; are successively better approximations of Se!. 
In the next proposition 2 denotes Bohm-tree inclusion of kl-terms, that 

is M 2 N i!T M results by replacing some occurrences of .l by arbitrary 
A.1--terms. E.g., A.x.xy2A.x.x.l. 

4.18. PROPOSITION. For all terms M we have 

Proof By the previous remark. I 

EXAMPLE. Let M=I(K*J((h.xl)K*(JJ)))(wl(II)), where K*=L-x:y.y 
and w = )x. xx. Then 
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<M> 1 :=H_l_; 

(M) 2 = l(K*..L..L)..L; 

( M) 3 = l(K*..l ( (A,x .x..L )K *..L) )..L; 

(lvf > 4 = l(K* ..L ( ().x .x..L )K*(II)) )( (h .x ..L )/ J_ ); 

<M > = I(K*..L (Ux .x..L )K *(II)))( (h. x ..L )!(II)). 

4.19. PROPOSITION. (i) R< );-preserved=R head-needed. 

(ii) R( );-needed= R needed. 

Proo( (i) By Proposition 4.17 it follows that if R is visible in < M > ;, 
then aiso in (M) and therefore < )-preserved. Hence by Proposition 4.14 
we are done. 

(ii) By (i) and Lemma 4.8. I 

4.20. PROPOSITION. (i) R is a head-spine redex <=> R is < > 1-preserved. 

(ii) R is a spine redex <=> R is < > 1-needed. 

(iii) R is an extended head spine redex = R is ( > 2-preserved. 

(iv) R is an extended spine redex = R is < > rneeded. 

(v) R is a polyadic head spine redex = R is ( > 3-preserved. 

( vi) R is a polyadic spine redex = R is < > 3-needed. 

Proof: For the statements including "head-" this follows by induction 
on the structure of M in which R occurs. The case distinctions are best 
made according to the shape of M displayed in Definition 4.3. As a typical 
example let us show (v) with M=((}.x 1x 2 .().y 1 y 2 .x2 Z)Y)X1)X2 and let R 
sub M in fact be sub X 2 • Then 

R is polyadic head spine redex of M 

= R polyadic head-needed in X 2 

= R visible in (X2 > 3 , by the induction hypothesis 

= R visible in (M) 3 = ((A.x 1 x 2 • (Ay 1 J'2.x 2 ..L )..l )..L )(X2 ) 3 , 

since Sel 3((}.x1x2.().y 1 J12.x2Z)Y)Xi) = Sel 3((Ay 1 y 2.x2Z)Y) +I+ I - I= I. 
For the statements without "head-," the validity follows from 

Lemma 4.8. I 

The reverse implications in (iii) and (v) do not hold. Consider, e.g., 
M =(kc ().y. yA )x )R. Then R is not an extended (nor polyadic) head spine 
redex, although R is visible in (M)i. 
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As to the length of the different spine reductions, we can state the follow
ing simple observation. 

4.21. PROPOSITION. All spine reduction sequences of a given term to 
normal form have the same length. 

Proof Note that if R 0 and R 1 are two different spine redexes in M, then 
R0 and R 1 can neither multiply nor erase each other. Hence we have the 
elementary reduction diagram of Fig. 15. Now the statement follows by a 
simple diagram chase. I 

For extended and polyadic spine reductions this is not true, since, for 
example, a polyadic spine redex may be duplicated by a spine redex to its 
left. 

The corresponding theorem for head reductions would be trivial, since 
there is only at most one head redex in any term. 

An Algorithm for Detecting Generalised (Head) Spine Redexes 

The definition of Sel4 contains an unsatisfactory element, namely the 
appeal to lengthtail(M), for which the head-normal form of M must be 
determined. It would be better to have a more explicit algorithm to deter
mine lengthtail(M). Such an algorithm is given by the following definition. 
The operation L gives what was called above lengthtail, in those (com
putable) cases where Sel4 needs it. K is an auxiliary function; see 
Theorem 4.31 below. K(M), Sel4(M), L(M) are defined simultaneously; 
therefore it is convenient to work with triples (K(M), Sel4(M), L(M)), 
abbreviated as KSL( M) and varying over ~ 3 u { ( *• *, *)}. The operation 
+ on this set works coordinatewise with the understanding that n + * = *· 

4.22. DEFINITION. (i) KSL(.l) = ( *, *• *) 

(ii) KSL(x) = (0, 0, 0) 

(iii) KSL(A.x.P) = KSL(P) + (1, 1, 0) if x E FV( (P) 4 ) or 
FV((P) 4 )=0, KSL(A.x.P)=KSL(P)+(l,0,0) otherwise. 

Ro 
M--~--

FIGURE 15 
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(iv) KSL(PQ)=KSL(P)ffiKSL(Q), where ffi is recursively defined 

by 

(I ) ( *• *, *) 

(2) (0,0,j) 

EB(x,y,z) 

EB (x, y, z) 

(3) (k+l,O,j) EB(x,y,z) 

(4) (k+l,1,j) ffi(*,*,*) 

(5) (k+l,1,j) ffi(O,O,j') 

(6) (k + 1, n + 2, j)EB (x, y, z) 

(7) (k+l,1,0) ffi(k'+l,O,j') 

(8) (k+l, 1,j+l)EB(k'+l,O,j') 

(9) (k+l,1,0) EB(k'+l,l,/) 

=(*,*,*) 

= (0, 0, j + 1) 

= (k, 0, j) 

= ( *· *, *) 

= (k, 0, j + /) 
=(k,n+l,j) 

= (k + k' + 1, 0,j') 

= (k+ 1, 1,j)EB(k', O,j') 

=(k+k'+l,k+1,j') 

(10) (k+l,l,j+l)ffi(k'+l,l,/) =(*,*,*) 

(11) (k+l,1,0) EB(k'+l,n'+2,j')=(k+k'+l,k+n'+2,j') 

(12) (k+l,l,j+l)EB(k'+l,n'+2,j')=(k+l,1,j)E8(k 1,n 1 +l,j'). 

As to the intuition for KSL(M), the following will be proved: 

KSL(M) = (k, s, j) = M has a head-normal form of 
the form A.z 1 ••• zk.z,N 1 ••• Ni. 

The reverse implication does not hold; M = (A.x. xl)I has a head-normal 
form I, but 

KSL(M) = KSL(Xx .xl) tt; KSL(I) = (KSL(xl) + ( 1, 1, 0 )) tt; KSL(l) 

= ((KSL(x) tt; KSL(I)) + ( 1, 1, 0)) EB KSL(I) 

=(((0,0,0)EB(l, 1,0))+(1, l,O))EB(l, 1,0) 

= ( ( 0, 0, 1 ) + ( 1, 1, 0)) E8 ( 1, 1, 0) 

=(1, 1, l)EB(l, 1,0) 

The reason is that the computation of the head-normal form of M uses the 
underlined subterm in (A.x.x!)I whereas the definition of ( ) 4 (for which 
KSL is a subroutine) is such that every vector xP 1 ... Pi is replaced by 
xl.. .. .1 (j times .l; this is abbreviated as x.1 1). One can formulate a restric
ted .A-calculus embodying these restrictions (namely that no information is 
visible of a vector xP 1 ••• Pj except the head variable and the length j of the 
tail) in the calculation of KSL and therefore of ( ) 4 , and obtain a precise 
characterisation of when KSL(M) = ( *, *, *) as follows. 
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4.23. DEFINITION. ..U_-calculus has as terms the set /L.L and as rules 
(i) _.LM-+_.L, 

(ii) k\. J_ -+ J_' 

(iii) xP 1 ... Pi-+x_.L1,j~O, 

(iv) ().xl ... Xk--'-°I J_i)P-+ h2···xk.P _.Li, if k;:::, 1, j~ 0, 

( V) (h 1 ... X k • X11 j_I )P _,. h 2 ... X k. X,, _.Li, if k;:::, 1, j ~ 0, II=/ I. 

Note again that the _.Li are not subterms. 
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These rules generate a reduction relation -+, a reflexive-transitive 
closure -++,and an equality =, just as for ordinary )-calculus. When it is 
necessary to distinguish these relations from those of ).-calculus, we write 
i._.L e--- M-+ N, L.L e--- M -++ N, and ).J_ e--- M = N. 

EXAMPLE. In A.L (h.xx)()x.xx)-++ (}.x.x_.L)().x.xl_)-++ (i.x.x_i_)J_ 
-+ J__l-+J_, 

4.24. PROPOSITION. )._.L-calculus is terminating and Church-Rosser. The 
normal forms are J_ and i.x 1 ... xk .x11 _.l'. 

Proo( Every reduction decreases the length of a term, hence the system 
is terminating. The Church-Rosser property follows via Newman's lemma 
(see Proposition 3.1.25 of Barendregt, 1984 ), since the system is easily 
proved to be weakly Church-Rosser. I 

4.25. LEMMA. (i) KSL( J_) = ( *, *, * ). 
(ii) KSL().x 1 ... xk.xn _.Li)= (k, 11, j), if I ~ /1 ~ k. 

(iii) KSL(i.x 1 ... xk.x_.Li)=(k,O,j), ifxr/3{x 1, ... ,xd. 

Proof By the definition. I 

4.26. LEMMA. KSL is substitutive. That is, if' KSL(E) = KSL(F), thenj(Jr 
any G, KSL( G[ y := £]) = KSL( G[ y := F]) (where by the usual variahle 
convention the substitution automatically renames variables in E to m·oid 
captures). 

Proo( By induction on the structure of G. 

(i) G=-x. Trivial 

(ii) G=.i.x.P. Write GE=-G[y:= E]. Now 

KSL( G'') = KSL().x .Pr.)+ ( 1, 1, 0) or (1, 0, 0) 

=KSL(P1')+(1, 1,0)or(l,0,0) 

= KSL(PF) + (1, 1, 0) or (I, 0, 0) 

= KSL(GF), 

(by the induction hypothesis) 
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since x E FV( ( pL,·) 4 ~ x E FV( ( pF) 4 ) because x =I= y and x is not free in E 
or F 

(iii) G = PQ. Similar but easier. I 

4.27. LEMMA. Let E be a A.1-redex without proper suhredexes. Let F he 
the contractum of E. Then KSL(E) = KSL(F). 

Proof By cases of ),1-reduction, and by induction, firstly on the size of 
E, and then (when E is an application) on the size of the rator of E. See 
Definitions 4.22 and 4.23. 

(i) E=.1M. Then F=..l. Now KSL(E)=(*,*,*)(f)KSL(M)= 
( *, *, *) = KSL(F). 

(ii) E= A.x . .l. Then F=. .l. Now KSL(E) = ( *, *, *) = KSL(F). 

(iii) E:xP, ... P1. Then F=.x1'. Now KSL(E)=(0,0,j)=KSL(F). 

(iv) E= (A.x 1 ••• xk .x 1 L 1)P. Then F= ).x2 ••• xk. P 1 1. Now 

KSL(E) = KSL(}.x, ... xk.x 11 1) (f) KSL(P) 

= (k, 1, j) (f) KSL(P). 

We compute KSL(F) according to the following subsubcases ( 4 ), (5 ), 
(7)-(12) corresponding to the definition of (f). 

(4) KSL(P)=(*,*,*). Then P=.l. Now F=).x 2 •.. xk.1li and 
KSL(F) = ( *, *, *) = KSL(E). 

(5) KSL(P)=(O,O,j'). Then P=y1 1'. Now F:Jcx2 ... xk,ylr1 1 

and 

KSL(E) = (k, 1, j) E8 (0, 0, /) = (k - I, 0, j + j') = KSL(F). 

(7) KSL(P) = (k' + 1, 0, j') & j= 0. Then P= Jcy, ... Yk·+ 1 • yl1. 

Now F=.).x2 ..• xk.P and 

KSL(E) = (k, 1, 0) E8 (k' + 1, 0, /) = (k + k', 0, j') = KSL(F). 

(8) and (12) can be treated simultaneously. KSL(P) = (k' + 1, n', )'), 
where n' =I= 1, and k, j > 0. P = A.y 1 ••• Yk· + 1 • yl_l, where if n';::,: 2 then y = y,,, 
and if n' = 0 then y is not equal to any of y 1 ••• Yk· + 1• Now 
F=h2 ••• xk.P11. Let G=(A.x 1 ••• xk.x 1 1 1 - 1)(Pl). Then G-+F. From the 
definition of (f) we have 

KSL(E) = (k, 1, j) E8 (k' + 1, n', j') = (k, 1, j- 1) E8 (k', n", /) = KSL( G), 

where if n' = 0, then n" = 0, and if n';::,: 1, then n" = n' - 1. We must prove 
KSL(G) = KSL(F). Since P is an abstraction, P J_ is a redex. Let P' be the 
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result of reducing it. It is clear that P J_ contains no proper subredexes and 
is smaller than E; therefore by the induction hypothesis KSL( p J_) = 
KSL( P' ). By substitutivity of KSL one has KSL( G) = KSL( G' ). where 
G'=().x 1 ••• xk.x1_Li-l)P'. Let F'=).x2 ... xk.P'J_i 1• Then G'-+F' and 
F-+ F'. Both G' and F' are smaller than E, and are both redexes not 
containing subredexes. Therefore by the induction hypothesis KSL( G') = 
KSL(F') = KSL(F), and the result is proved. 

(9) and ( 11) can be treated simultaneously. KSL( P) = (k' + J, 
n'+ 1,j')&k>O, j=O. Then P=:A.y 1 ••• Jk·+i·Yn·+i_Lr. Now F=J.x2 ••• xk. 
P=).x2···XkY1···Yk·+1·Y,,·+1J_f, and we have 

KSL(E) = (k, I, 0)E8 (k' + 1, n' + l, /) = (k+k', k + n' + 1./) = KSL(F). 

( 10) KSL(P) = (k' +I, 1, j') & k, j > 0. Then P = l.y 1 ••• rk + 1 . y 1 1 1 . 

Now F= ).x 2 ••• xk.P _Li: 

KSL(E) = (k, 1, j)E8 (k' + 1, I, j') = (*, *, *) 

KSL(F) = (KSL(P) E8 KSL(J_) EB ... EB KSL( J_ )) + ... 
= ((k' +I, 1, j')EB (*, *, *)EB ... EB (*, *· *)) + ... 
=(*, *, *)+ ... 

= ( *, *, *) 

KSL(E) = KSL().x 1 ••• xk.x 11 J_i) EB KSL(P) 

= (k, n, j) EB KSL(P). 

We compute KSL(F) according to cases (3) and (6) of the definition of EB. 

(3) n = 0. KSL(E) = (k, n, j) EB KSL(P) = (k-1, 0, j) = KSL(F) 

(6) n;::, 2. KSL(E) = (k,n,j) EB KSL(P) = (k-I,n-1,j) = 
KSL(F). I 

4.28. PROPOSITION. If )._l_ 1- E = F, then KSL( £) = KSL(F). In par
ticular, KSL(E) = KSL(Enr), where E"r is the normal form of' E. 

Proof From Lemmas 4.26 and 4.27, if ,U 1- E-+ F, then 
KSL(E) = KSL(F). The proposition follows. I 

4.29. PROPOSITION. {i) KSL(M)= (k, n,j)<o>).J_1-M __,... ).x1···xk.x11F 

(ii) KSL(M) = (*, *, *)~ .U 1- M __,... L 
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Proof The normal forms of .H_ are Jex 1 ••• x k. x,, l.1 and l.. Every 
Jcl.-expression has a normal form. Hence the proposition follows from 
Lemma 4.25 and Proposition 4.28. I 

4.30. PROPOSITION. If Xl f- M -+-> AX 1 ... x k. x,, l.1, then Jc f- M ........ 
J..x 1 ... xk.x,,P 1 ... P1,for some expressions P 1 ••• P1 .. 

Proof All J..1.-reductions can be mimicked in J... I 

4.31. THEOREM. KSL( M) = (k, s, j) ==> M has a hnf of the form 
l.z 1 ... zk.zsN1 ... Ni. 

Proof From Proposition 4.29 and Proposition 4.30. I 

5. CONCLUDING REMARKS 

We will make some remarks on the relation of the present work with 
"strictness analysis" and with the various concepts of "sequentiality." 

Strictness 

As the bare essence of "strictness analysis" we understand the following. 
Given a domain D of data, including an undefined element l., and some 
space IF of functions over D (not necessarily only unary functions) we will 
understand "strictness analysis" to designate the endeavour of (I) giving 
characterisations of some classes of strict functions from IF and ( 2) giving 
computable approximations (that is, subclasses) of some classes of strict 
functions from IF. Here a unary function f in IF is strict if f( l.) = 1, mean
ing that nonzero information output can only be obtained by nonzero 
information input. Further, a binary function g in IF is strict in both 
arguments if g(l., x) = g(x, l.) = l., and likewise for n-ary functions. 

In our setting, the data domain D is the set of A-terms modulo equality 
as obtained by /3-reduction plus the rule M-> l. for all M without head 
normal form. Thus all terms without head normal form are considered to 
be meaningless and identified with the undefined element l.. In Barendregt 
( 1984, Chap. 16) this lambda theory is called .'ff. The space of n-ary 
functions IF consists of contexts C[ , .. ., ] with n (or fewer) holes; here 
n:;;:: 1. We now have the following result, due to H. Mulder (oral com
munication). 

5.1. PROPOSITION. For every context C[ J and every redex R we have: 

the unary function associated with C[ J is strict <=> R 
is head needed in C[R]. 
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Proof We show that the negations of both sides are equivalent: 

C[ J_] =I= J_ <=> C[ J_] has a head normal form 

It follows that 

(without reducing R, where M;* is the.result 

of substituting R for J_ in M 1) 

<=> R not head needed in C[R]. I 

C[ ] is strict in [ ] <=> \:/ R. R is head-needed in C[ R] 

<=>:JR. R is head-needed in C[R]. 
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Thus our computable approximations of the concept of head-needed 
redex, such as head spine redex, generalized head spine redex, etc., can be 
perceived as strictness analysis. 

Berry Sequentiality 

At this point it is worthwhile to note that in the pure }.-calculus there are 
no nontrivial 11-ary functions (with n ~ 2) which are strict in all their 
arguments. That is, if C[M, J_] = C[ J_, M] = J_ for all M, then the 
function associated with this binary context is identically L This follows 
from a theorem of G. Berry ( 1978) who refers to this fact as the "sequen
tiality" of A-calculus. It is therefore slightly puzzling that an operator 
like+ can be defined in A-calculus by a term PLUS such that PLUS 
!:UlJ -- n + m; apparently the operator + which is strict in both arguments 
in some setting (D, F) can only be implemented in A-calculus such that the 
dependence on one argument is nonstrict; indeed, the usual definition of 
PLUS will be such that PLUS J_ /JJ = l_, whereas PLUS !JJ_ =I= L The 
"Berry-sequentiality" of ).-calculus entails that PLUS reads in and 
processes its input in a sequential way. 

Of course the concept of strictness depends entirely on what is taken to 
be J_; a typical example is the following: in U-calculus with "having no 
head-normal form" standing for "undefined" we have, as we just saw, no 
binary contexts strict in both "arguments." However, if we take as notion 
of undefined: "having no normal form" (so M---> J_ if M has no nf) then 
there are binary functions strict in both arguments; just take the context 
Az .z[ ] [ ]. (The restriction to A.I-calculus is necessary for this example, 
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since in ).-calculus it is not possible to identify all terms without normal 
form.) See the discussion on "undefined" in Barendregt ( 1977 ). 

The remark above on the nonexistence of binary functions (as given by 
contexts) strict in both arguments can be paraphrased in another way. In a 
Jc-term M we can discern the head-needed redexes R 1 , ... , R11 • Each redex R, 
can be replaced by an arbitrary redex which still is head-needed if the other 
redexes are kept the same. So we have determined head-needed "places"; 
but the place occupied by R,, while independent of R,, does depend on the 
other redexes. In fact, Berry's sequentiality theorem states that there is no 
binary context such that both places are head-needed regardless of the con
tents; the head-neededness of one place depends on the actual content of 
the other place. 

Huet-Levy Sequentiality 

The terminology of "needed places" brings us to another concept of 
sequentiality, that of H uet and Levy ( 1979 ), which should not be confused 
with Berry's notion of sequentiality. While Berry's notion refers to the way 
in which data are read in and processed in a }.-term, regardless of any 
"reduction strategy," the notion of Huet and Levy says that a sequential 
reduction strategy (as opposed to a parallel one) is adequate for reaching 
(head) normal forms. This in contrast with some rewriting systems for 
which no adequate sequential reduction strategy exists and for which one 
must adopt a parallel strategy in order to be sure of finding (head) normal 
forms whenever they exist. In the terminology of Huet and Levy, a rewrite 
system is sequential if for every n-ary context C[ , ... , ] in normal form and 
for every substitution with redexes R 1 such that the result C[R 1 , ... , R,,] has 
a normal form, there exists at least one redex R, which is needed. A 
shortcoming of this notion is that, in general, it cannot be decided whether 
a rewrite system has this property; and second, that even if the rewrite 
system has this sequentiality property, such a needed redex cannot always 
be indicated in a computable way. Therefore they introduce a stronger 
concept: a rewrite system is strongly sequential if for every n-ary context 
C[ , ... , ] in normal form there exists a needed place, say the ith place. This 
means that after filling up the context with redexes R, such that 
C[R 1 , ... , R,,] has a normal form, the ith redex is needed. Clearly, 
A.-calculus is strongly sequential in this sense: the leftmost place in 
C[ , ... , ] is always needed. 

Summarizing. (i) A.-calculus is strongly sequential in the sense of Huet 
and Levy; 

(ii) }.-calculus with identification of terms without head-normal form 
is sequential in the sense of Berry. 
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To see the difference between the two notions even more sharply, one 
may consider the extension of A-calculus with an new constant + satisfying 
rz + lJJ--> n + m, 1- + !J--> 1-, and !J + 1- ..... 1-. This extension is still strongly 
sequential in the sense of Huet and Levy, but it is not Berry-sequential. 
Another extension of ).-calculus, with or( T, x) ..... T, or(x, T) ..... T, and 
or(F, F)--> Fis neither Huet-Uvy-sequential nor Berry-sequential. The first 
operator, +, is strict in both arguments, the second, or, is strict in neither 
of its arguments. 

It is interesting to note that for lambda calculus with or, there 
nevertheless exists a strategy which is sequential, in the weak sense that it 
chooses a single redex to reduce at each step, without memory of the past 
history of the computation (Kennaway, 1987). 

Extending Lambda Calculus 1rith Strict Operators 

Our algorithms for the determination of sets of needed and head-needed 
redexes can easily be extended to extensions of ).-calculus with strict 
operators such as +. We will show that the algorithms for Sel; and ( ) , 
(see Definition 4.15) can easily be extended to the case where a "demand
forking" operator like "+" is present. We will only do this for i = 3. 

Consider the extension of ).-calculus with a binary operator +, and 
numerals !J for each natural number n. Apart from the {3-reduction rule 
there are the rules + (!J, lJJ) --> n + m for all n, m. An expression + (!J, I])) is a 
"+-redex." Call this extension ).+-calculus. An example of a ).+-term is 
(.l.x. + (x, x))J. (Note that +(x, x) is not a redex.) 

We have to define what a head-normal form in).+ -calculus is: it is a term 
such that neither a {3-redex nor a +-redex is in "head position." More 
precisely: 

5.2. DEFINITION. (i) Let M be a ;. +-term. A redex R sub Mis in heat/
position if the leading symbol of R (that is, ). or +) is only preceded by 
occurrences of + or ). where the latter are not redex-).s. Here the 
precedence ordering is as follows: ( 1) if s, t are symbol occurrences in an 
application PQ, sin P and tin Q, then s precedes t; (2) in +(P, Q) the + 
precedes all symbols of P, Q, but there is no relation between s in P and t 

in Q. 

(ii) A). +-term Mis a head-normal form if there is no redex R sub M 
in head-position. 

EXAMPLE. +(().x.+(J,i)), 1) is not a head-normal form; ).xy.+ 
( + (x, + ( 1, 1) ), y) is a head-normal form but not a normal form. 

The notion of (head- )needed is analogous to the case without +. 
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Now Sei3(M), for a A.+ -term M, is defined a.s fol~ows. It will be a set of 
non::ero natural numbers. First some notation; tf X 1s such a set, then 

X - - 1 = { n In+ l EX} - { 0} 

X++l={n+llnEX}. 

Simultaneously with Sel 3(M), we define (M)3. 

5.3. DEFINITION. (a) 

<x) 3 =x; 

<o )3 = o; 

<J.x.P) 3 

<PQ)3 

=AX. <P)3; 

= (P)3(Q)3, 

= (P) 3 J.., otherwise; 

( + ( P, Q)) 3 = + ( ( P) 3, ( Q) 3 ). 

( b ) Se! 3 (!J) 

Sel 3(PQ) 

Sel 3(),x.P) 

= Sel3(x) = 0; 

= Sel3(P) - - l; 

= (Sel 3(P) + + 1) u { 1 }, if x E FV( ( P) 3 ), 

= Sel 3(P) + + I, otherwise; 

Sel 3( + (P, Q)) = Sel 3(P) u Sel 3 (Q). 

(Note that the role of j in Definition 4.15 is now played by 0). 

EXAMPLE. (i) Sel.i().xyz.+(z, +(x,z)))= {1, 3}. 
(ii) ((),xyz. + (z, +(x, z)))PQRS) 3 = (hyz. + (z, + (x, z)))(P) 3 ..L 

(R)3J.. 

The proof of the following fact follows the same lines as the case without 
+, and is omitted. 

5.4. THEOREM. All redexes uisible in (M) 3 , where Mis a A.+ -term, are 
(head- )needed. I 

Summary of Results 

The Introduction motivated the precise identification of the concept of 
needed redex in a lambda term and the requirement for efficient algorithms 
which yield approximations to this undecidable notion. Section 3 developed 
the main technical results characterising neededness and proving that 
quasi-needed reduction sequences are normalising. Section 4 begins the 
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work of identifying efficient algorithms for computing neededness. Whether 
such algorithms are best employed at compile or run time is very much a 
matter for the implementor, and the technology available to him. At the 
time of writing he will achieve some benefit from including an algorithm for 
detecting neededness in a compiler for a sequential machine. Future 
implementors may find it useful to embody algorithms for recognising 
needed redexes in hardware. Section 5 illustrates how the approach can be 
extended to A.-caiculus with built-in operators. 

APPENDIX: U:vv's LABELLED LAMBDA CALCULUS 

Levy's labelled A.-calculus is a powerful instrument to trace in a precise 
way what happens in a reduction sequence. Many arguments using the ter
minology of reduction diagrams, residuals of redexes and creation of 
redexes as explained in the Introduction can be dealt with in a more suc
cinct way using Levy's labels. In this Appendix we will introduce Levy's 
labelled A.-calculus and use it to obtain some alternative proofs for 
propositions in this paper, in particular, those propositions which are 
required for a complete proof have very verbose arguments and elaborate 
case distinctions, which, therefore, we have only sketched. Besides giving 
additional credibility to some of those technical propositions, we feel that 
Levy-labelled A.-calculus can play a beneficial role in investigations similar 
to the present one. Levy-labelled A.-calculus was introduced in Levy (1975); 
we will present and use the simplified version in Klop ( 1980) (in Baren
dregt, 1984, Exercise 14.5.5 ). 

6.1. DEFINITION. ( i) Let L0 = {a, b, c, ... } be an infinite set of symbols. 
The set L of (Levy) labels is defined inductively by 

wEL 0 =>WE L 

w, veL=>WVEL 

WEL =>};t'EL. 

Here wv is the concatenation (without brackets) of the words w and v. 
Note that labels may have nested underlinings, as in afz.f.abfa. 

(ii) The set AL of labelled A.-terms is inductively defined by 

XEAL, 

M, NEAL:::::> (MN)E AL, 

MEAL=>(A.x.M)eAL, 

ME AL=> (M"') E AL. 
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Since the first three clauses generate unlabelled terms, this means that we 
have defined terms with partial labellings (i.e., not every subterm bears a 
label; equivalently, some subterms may have the "empty label"). 

Multiple labellings as in (M'")" will be simplified to M"'"; this sim
plification is executed as soon as possible. 

(iii) Labelled /J-reduction -+ L (where the subscript L will often be 
dropped) is defined by 

().x.M[x])"'N 7 (M[(N)"'])"', 

i.e., each occurrence of x in the (labelled) term M(x) is replaced by N""' 
(note that N may have some labels itself; see example below) and the result 
is labelled by 1-l" The label w appearing in this definition is called the degree 
of the redex in the LHS. Here is an example of a labelled reduction step, 
where we have omitted parentheses as allowed by part (i) of the definition: 

Note that this step has taken place in the labelled context [ ]<; and that 
substituting (A.y. B)d~ in xa has yielded (A.y. B)d!·a. 

The following fact is proved in Levy (1975) and Klop (1980). 

6.2. THEOREM. Labelled A-calculus is confluent. I 

6.3. EXAMPLE. Figure 16 shows an elementary reduction diagram of 
labelled ).-calculus. 

Residuals of redexes are defined in the case of labelled reductions just as 
in the unlabelled case. We can now state the first benefit of the labelled ver
sion of reductions: let R in the unlabelled term M be a redex, and suppose 
M--++ N. To determine the residuals of R in N, we attach an atomic label, 
say "a," as the degree of R (that is, R= (A.x.A)B is replaced by (A.x.AtB). 
The result is a (partially) labelled term M', where I denotes the labelling. 
The given reduction M --++ N can now in the obvious way be "lifted" to the 
labelled case; we find a labelled reduction M' --++ L NJ, where NJ is N 
together with a labelling J. Now all redexes R', R", ... in NJ with degree "a," 

FIGURE 16 



NEEDED REDUCTION AND SPINE STRATEGIES 229 

are residuals of the original redex R, and they are the only ones. (The proof 
is a routine exercise.) 

Creation of redexes can also neatly be expressed in the formalism of 
labelled reduction. Given an unlabelled reduction step R: M -+ N and a 
redex S of N, we say that S is created by the R-contraction if S is not the 
residual of any redex in M. Now if the present reduction step takes place in 
the labelled setting: M 1 -+ NJ, it turns out that the degree of the created 
redex S in N1 contains the underlined degree of the creator redex R as a 
subword. We give an example. 

6.4. EXAMPLE. (i) M =. R =. (Lcx"B)' ().x. A)" -+ (().x. A )"rn B)' =. S =. N. 
Indeed the degree 1vpu of the created redex contains the underlined degree u 
as a subword. 

(ii) Ux.x")'Vy.A )"B-+ ()_y.A )"Tll'B 

(iii) ().x.).y.u")'CB--. (J.y. C'")'B. 

(Essentially these are all ""types of creation" that exist.) Theorem 6.2 can 
in fact be strengthened in the same way as for unlabelled reductions, as in 
2.35 of the preliminary section: the common reduct can be found by com
pleting a reduction diagram (now for the labelled case) by adding "elemen
tary labelled reduction diagrams" of which one is displayed in Fig. 16. In 
such elementary diagrams the redexes contracted in opposite sides have the 
same degree; so one might say that degrees propagate without changing in 
horizontal and vertical direction, in the construction of a reduction 
diagram. Therefore. in a completed composite labelled reduction diagram, 
the degrees of the redexes contracted in the top side of the diagram coin
cide exactly with the degrees of the redexes contracted in the bottom side, 
and likewise for left side and right side. Bearing in mind that residuals have 
the same degree as their ancestor redex, we have an immediate proof of 
Proposition 2.7(ii) in the preliminary section. 

Finally, an alternative proof for Proposition 2.7(i) can be obtained easily 
using the above mentioned facts for labelled reductions. However, with the 
available power of labelled reductions. it is just as easy to skip 
Proposition 2.7 and prove Proposition 2.6 directly; 2.6 follows at once from 
the following. 

6.5. PROPOSITION. Let a reduction as in Fig. 17 he given, such that no 
residual of redo:: R in M is contracted in the reduction :Jf = M -+> N. Let 
redex Sin M he created by the step R: M-+ M'. Then in the projected reduc
tion JJl/ R no residual of S is contracted. 

Proof Label M partially by assigning degree "a" to R and degree "h" 
to all other redexes in M. Then every redex contracted in the reduction 



230 BARENDREGT ET AL. 

'.R. N M 

Rt i 
S sub M' N' 

R/[R) 

FIGURE 17 

A/ _,.... N has degree containing "b" as its only atomic label. The same 
therefore holds true for the projected reduction M' -->--+ N'. This means that 
no residual of S is contracted in that reduction, since in the labelled reduc
tion diagram (obtained by lifting the given reduction diagram starting with 
the before mentioned labelling of M) the degree of redex S in M' contains 
an occurrence of the symbol "a." I 
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