
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

R.N. Bol, K.R. Apt, J.W. Klop

An analysis of loop checking mechanisms for logic programs

Computer Science/Department of Software Technology Report CS-R8942 October

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11 ·
1 946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright© Stichting Mathematisch Centrum, Amsterdam

An Analysis of Loop Checking
Mechanisms for Logic Programs

Roland N. Bo11

Krzysztof R. Apt1 ,2

Jan Willem Klop 1 ,3

Abstract
We systematically study loop checking mechanisms for logic programs by considering
their soundness, completeness, relative strength and related concepts. We introduce
a natural concept of a simple loop check and prove that no sound and complete simple
loop check exists, even for programs without function symbols. Then we introduce a
number of sound simple loop checks and identify natural classes of PROLOG

programs without function symbols for which they are complete. In these classes a
limited form of recursion is allowed. As a by-product we obtain an implementation of the
closed world assumption of Reiter [19) and a query evaluation algorithm for these
classes of logic programs.

Key Words and Phrases: deductive databases, logic programming,

termination, loop checking, PROLOG interpreter.

1985 Mathematica/ Subject Classification: 68040, 68T15
1987 CR Categories: F.3.2, F.4.1, H.3.3, 1.2.3.

1. Introduction

1.1. Motivation

PROLOG has been advocated as a programming language which allows us to

write executable specifications. Unfortunately, when interpreting correct

1 Centre for Mathematics and Computer Science
P.O.Box 4079, 1009 AB Amsterdam, The Netherlands
2 Department of Computer Sciences, University of Texas at Austin,
Austin, Texas 78712-1188, USA
3 Department of Computer Sciences, Free University of Amsterdam
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

Report CS-R8942
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

2

specifications written in the form of a logic program as a PROLOG program, a
divergence usually arises. This is due to the fact that the PROLOG interpreter
uses a depth-first search and consequently can enter an infinite branch and miss a

solution.
The problem of detecting such a possibility of divergence is obviously

undecidable as PRO LOG has the full power of recursion theory. Consequently
this problem has been taken care of by developing a number of useful heuristics
on how to avoid a possibility of non-termination. However, the resulting
program can be very different from the original specification.

Another possible approach to this problem has been based on modifying the
underlying computation mechanism that searches through the corresponding
SLD-trees by adding a capability of pruning. Pruning an SLD-tree means that at
some point the interpreter is forced to stop its search through a certain part of the
tree, typically an infinite branch. Every method of pruning Sill-trees considered
so far has been based on excluding some kind of repetition in the SLD­
derivations, because such a repetition makes the interpreter enter an infinite loop.
That is why pruning SLD-trees has been called loop checking. Such
modifications of PROLOG interpreters were considered in the literature (see e.g.
[3], [4], [8], [18], [20], [21] and [22]), but no results were proved about them,
with notable exceptions of [20], [21] and [22].

1.2. Plan of the paper
In this paper we systematically study loop checking mechanisms. To this end,
after providing in section 2 a sufficiently general definition of a loop check, we
introduce in section 3 the relevant concepts, like soundness (no computed
answer substitution to a goal is missed), completeness (all resulting derivations
are finite) and relative strength. We also introduce there a natural subclass of
loop checks, called simple loop checks, obtained when their definition does not
depend on the analyzed logic programs. We prove among others that no sound
and complete simple loop check exists even in the absence of function symbols.

In the remainder of the paper we study a number of intuitive simple loop
checks. We can divide them into three groups, which are studied in the sections
4,5 and 6 respectively. For each group we prove the appropriate soundness
results and identify one or more natural classes of programs without function
symbols for which the loop checks in the group are complete. The loop checks in

all three groups appear to be complete for restricted programs without function

symbols. Restricted programs allow a restricted form of recursion (hence the

name).

The first group consists of loop checks based on the equality between goals,

respectively resultants, of the derivations and is studied in section 4. We call

these loop checks equality checks.

The second group loop checks based on the inclusion between goals,

respectively resultants, of the derivations and is studied in section 5. We call

these loop checks subsumption checks. Subsumption checks are stronger than

the corresponding equality checks and therefore they prune SLD-derivations

earlier than their counterparts. This makes it more difficult to establish their

soundness but opens a possibility for completeness for a larger class of

programs than restricted ones.

We show that subsumption checks are complete for logic programs without

function symbols in which no variables are introduced in the clause bodies (so

called nvi programs). Also, the subsumption checks are complete for logic

programs without function symbols in which a variable occurs at most once in

every clause body (so called svo programs). These completeness theorems make

use of a simple version of Kruskal' s Tree Theorem, called Higman' s Lemma

[12]. While the use of this theorem to establish termination of term rewriting

systems is well-known (see e.g. [9] or [13]), we have not encountered any

applications of this theorem in the area of logic programming.

The third group is based on a simple loop check introduced by Besnard [3]

and is studied in section 6. These checks test for equality of atoms in a certain

context (a goal or a resultant). Therefore we call them context checks. We prove

that for certain selection rules, the subsumption checks are stronger than the

context checks.

As mentioned above, we prove that context checks are complete for

restricted programs without function symbols. Besnard [3] claims without proof

that a context check is also complete for nvi programs without function symbols.

1.3. Example

To better understand the relevance of the problems studied here, consider the

following example. Let P be the following simple-minded PROLOG program

computing in the relation tc the transitive closure of the relation r:

3

4

P = { tc(x,y) f- r(x,y).

tc(x,y) f- r(x,z),tc(z,y). }

Suppose we add to P the following facts about r: r(a,a)f-, r(a,b)f-, r(b,c)f-,

r(d,a)f-. Then if we ask:

- tc(a,b) we get the answer 'yes';

- tc(a,c) the program gets into an infinite loop (whereas we should get the answer

'yes');

- tc(a,d) the program gets into an infinite loop (whereas we should get the

answer 'no');

- tc(b,d) we get the answer 'no'.

Thus P is not the right program for computing the transitive closure. One

solution is to write a different program, which is not straightforward - see for

example the program in [7], section 7.2. In fact, Kunen [14] recently proved that

any such program must use either function symbols or negated literals.

In our solution, we change the underlying interpreter by adding to it an

equality check, and retain the above program, which turns out to be restricted.

(In contrast, this solution cannot be applied to an alternative version of P

obtained by replacing the second clause by tc(x,y) f- tc(x,z),tc(z,y), as the

resulting program is not any more restricted.)

1.4. Applications

As a by-product of these considerations we obtain an implementation of the

closed world assumption of Reiter [19] and of a query evaluation mechanism for

various classes of definite deductive databases. The closed world assumption

(CW A in short) is a way of inferring negative information in deductive

databases. Reiter [19] showed that in the case of definite deductive databases

(DB in short) it does not introduce inconsistency. However, even though CWA

is correctly defined for DB, there is still the problem of how it can be

implemented, since it calls for the use of the following rule (or rather metarule):

ifDB If <p then DB I- -,<p,

that is: deduce -i<p if <p cannot be proved from DB using first order logic.

The problem is how to determine for a particular ground atom (or fact in

short) that there is no proof of it. The soundness and completeness results

proved in section 4 show that when DB is a restricted program, to infer -,A for a

fact A it suffices to use Clark's [5] negation as (finite) failure rule augmented

with an appropriate equality check.

A more general problem is that of query processing in DB: given an atom A,

compute the set [A]oB of all its ground instances AS such that DB I- AS. Indeed,

when A is ground and DB If A, the query processing problem reduces to the

problem of deducing -.A by means of CW A. The results proved in section 4

imply that when DB is a restricted program, to compute [A]DB for an atom A, it

suffices to collect all computed answer. substitutions in the SLD-tree with

leftmost selection rule and t--A as root, pruned by an appropriate equality check.

Similar results concerning CW A and query processing hold for the

subsumption and context checks and the corresponding classes of programs for

which they are complete.

This paper is an extension of Apt, Bol & Klop [l], where exclusively

equality checks were studied.

2. Loop checking

Throughout this paper we assume familiarity with the basic concepts and

notations of logic programming as described in [15]. For two substitutions cr and

"t, we write cr ::::;; "t when cr is more general than "t and for two expressions E and

F, we write E :S'. F when Fis an instance of E. We then say that Fis less general

than E.

Throughout this paper, by an SLD-derivation we mean an SLD-derivation

in the sense of [15] or an initial fragment of it. In SLD-derivations we shall only

use idempotent mgu's. It is known that any idempotent mgu is relevant, i.e. its

domain contains only variables of the atoms that are unified. An SLD-derivation

step from a goal G, using a clause C and an idempotent mgu S, to a goal His

denoted as G =>c,e H.

2.1. Definitions

The purpose of a loop check is to prune every infinite SLD-tree to a finite subtree

of it containing the root. One might define a loop check as a function from SLD­

trees to SLD-trees, directly giving the pruned tree. However, this would be a

very general definition, allowing practically everything. We shall use here a more

restricted definition according to which for a program P:

5

6

- a node in an SLD-tree of Pu{G} (for some goal G) is pruned if all its

descendants have been removed. (Note the terminology: the pruned node itself

remains in the tree.)

- by pruning some of the nodes we obtain a pruned version of the SLD-tree.

- whether a node is pruned depends only upon its ancestors in the SLD-tree, that

is on the Sill-derivation from the root up to this node.

Therefore, we can define a loop check as a function on the Sill-derivations

instead of on the SLD-trees. However, for convenience we do not define it as a

function from derivations to derivations, but as a set of derivations (depending
on the program): the derivations that are pruned exactly at their last node. Such a
set of SLD-derivations L(P) can be extended in a canonical way to a function

fL(P) from SLD-trees to SLD-trees by pruning in an SLD-tree the nodes in
{ G \ the SLD-derivation from the root to G is in L(P) } . In the remainder of this
article, we shall usually make this conversion implicitly.

It is useful to note here that our definition of a loop check excludes more
complicated pruning mechanisms for which the decision whether a node in a tree
is pruned depends on the so far traversed fragment of the considered tree. Such
mechanisms are for example studied in Vieille [22] and Seki & Itoh [21].

We shall also study an even more restricted form of a loop check, called
simple loop check, in which the set of pruned derivations is independent of the
program P. In other words, a loop check is a function, having a program as
input and a simple loop check as output. This leads us to the following
definitions.

DEFINITION 2.1.

Let L be a set of SLD-derivations.

RemSub(L) = {De LI L does not contain a proper subderivation ofD}
Lis subderivationfree ifL = RemSub(L). D

In order to render the intuitive meaning of a loop check L: 'every derivation
D e Lis pruned exactly at its last node', we need that L is subderivation free.
Note that RemSub(RemSub(L)) = RemSub(L).

In the following definition, by a variant of a derivation D we mean a

derivation D' in which in every derivation step, atoms in the same positions are

selected and the same programs clause are used. D' may differ from D in the

renaming that is applied to these program clauses for reasons of standardizing
apart and in the mgu used. It has been shown that in this case every goal in D' is
a variant of the corresponding goal in D (see [16]). Thus any variant of an SLD­
refutation is also an SLD-refutation and yields the same computed answer
substitution up to a renaming.

DEFINITION 2.2.

A simple loop check is a computable set L of finite SLD-derivations such that
- for every derivation D: if D e L then for every variant D' of D: D' e L;
- Lis subderivation free. D

The first condition here ensures that the choice of variables in the input
clauses in an SLD-derivation does not influence its pruning. This is a reasonable
demand since we are not interested in the choice of the names of the variables in
the derivations.

DEFINITION 2.3.

A loop check is a computable function L from programs to sets of SLD-
derivations such that for every program P, L(P) is a simple loop check. D

Of course, we can treat a simple loop check L as a loop check, namely as the

constant function A.P.L.

DEFINITION 2.4.

Let L be a loop check. An SLD-derivation D of Pu{G} is pruned by L if L(P)

contains a subderivation D' of D. D

2.2. Example

EXAMPLE 2.5 (Variant of Atom check).

(This example is based on Example 8 in [3], see also [10]).

A first attempt to formulate the Variant of Atom (VA) check might be: 'A
derivation is pruned at the first goal that contains a variant A of an atom A' that
occurred in an earlier goal.' Note that we have to allow here that A and A' are

7

8

variants: if we required A = A' then we would violate the first condition in

Definition 2.2.

The intuition behind this loop check is the following. We wish to prove A'

by resolution. If we find out after some resolution steps that in order to prove A'

we need to prove a variant A of A', then there are two possibilities. One is that

there is a proof for A. Then this proof could also be used as a proof for A', by

applying an appropriate renaming on it. So we do not need the proof of A' that

goes via A. The other possibility is that there is no proof for A. In that case, the

attempt to prove A' via A cannot be successful. So in both cases there is no

reason to continue the attempt to prove A' via A.

The derivation step t-B,A =>Bf- t-A shows that the first formulation of the

VA check is not precise enough: it does not capture the intuition that the proof of

A' goes via A. The atom A should be the result (after one or more derivation

steps) of resolving A', or a further instantiated version of A' (if A' is not

immediately selected).

Therefore we define VA =

RemSub({DID= (Go =>c1,e1 G1 =:> ... =:> Gk-1 =>ck.Elk Ok) such that for some i

and j, 0 ~ i ~ j < k, CTk contains an atom A that is

- a variant of an atom A' in Gi and

- the result of an attempt to resolve A'0i+l · .. ej, the

further instantiated version of A', that is selected in Gj }).

We now illustrate the use of this loop check.

LetP= { A(O) t- (Cl),

B(l) t- (C2),

A(x) f- A(y)

C f- A(x),B(x)

letG = t-C.

(C3),

(C4) },

That the informal justification of the loop check VA is incorrect, is shown by

applying it to two SLD-trees of Pu{G}, via the leftmost and rightmost selection

rule respectively, which gives us Figure 2.1. (In this figure and elsewhere a

failed node, i.e. a node without a successor in the SLD-tree, is marked by a box

around it.)

~c

+(C4)

~c

+(C4)

~ A(x),B(x) ~ A(x),B(x)

I (C2)
.{x/l}

(Cl) ~C3)'
x'/x}

__ .c:;__

~ B(O) ~ A(y'),B(x) ~ A(l)

/~~1Y ~C3)" I (C3)' {y'"J/' {x"/y'} ' VA prunes here t{x'/l}

I ~ A(y')
~ B(x) ~ A(y"),B(x) ,_ _____ _

(Cl) (C3)"' {y'/0} {x"/y'} l<c2) i ~ <cv) \c3)"
{xll} {y"/O}. {x"'/y"}

0
0

FIGURE 2.1

A detailed analysis shows why the goal 03 = ~A(y') in the rightmost tree is

pruned by the VA check. Clearly, a variant of A(y') occurs in an earlier goal:

A(x) in 01. So we take i = 1. In 01, A(x) is not yet selected, so j > i. In fact

j = 2, for in 02 the atom A(l), which is a further instantiated version of A(x), is

selected. Indeed, A(y') is the result of resolving A(l). Therefore the derivation is

pruned at 03 by the VA check. (In this case, A(y') is the direct result of

resolving A(l), but in general there may be any number of derivation steps

between Oj and Gic.) O

Indeed, this loop check has not worked properly here: all successful

derivations have been pruned. Clearly, this is an undesirable property for loop

checks. On the other hand, all infinite derivations are pruned, as intended. In the

next section, we shall give formal definitions of these and related properties of

loop checks.

9

10

3. Some general considerations

In this section some basic properties of loop checks are introduced and some

natural results concerning them are established.

3.1. Soundness and completeness

The most important property is definitely that using a loop check does not result

in a loss of success. Since we intend to use pruned trees instead of the original

ones, we need at least that pruning a successful tree yields again a successful

tree.

Even stronger, because we use here a PROLOG-like interpreter augmented

with a loop check as the only inference mechanism, we do not want to lose any

individual solution. That is, if the original tree contains a successful branch (with

some computed answer substitution), then we require that the pruned tree

contains a successful branch with a more general answer substitution.

Finally, we would like to retain only shorter derivations and prune the

longer ones that give the same result. This leads to the following definitions,

where for a derivation D, IDI stands for its length, i.e. the number of goals in it.

DEFINITION 3.1 (Soundness).

i) A loop check Lis weakly sound if for every program P and goal G, and SLD­

tree T of Pu{G }: if T contains a successful branch, then fL(P)(T) contains a

successful branch.

ii) A loop check Lis sound if for every program P and goal G, and SLD-tree T

of Pu{G}: if T contains a successful branch with a computed answer

substitution cr, then fL(P)(T) contains a successful branch with a computed

answer substitution cr' such that cr' s cr.

iii) A loop check Lis shortening if for every program P and goal G, and SLD­

tree T of Pu{G}: if T contains a successful branch D with a computed answer

substitution cr, then either fL(P)(T) contains D or fL(P)(T) contains a successful

branch D' with a computed answer substitution cr' such that cr' s cr and ID'I < IDI.

D

The following lemma is an immediate consequence of these definitions.

LEMMA 3.2. Let L be a loop check.

i) If Lis shortening, then L is sound.

ii) If Lis sound, then Lis weakly sound. D

The purpose of a loop check is to reduce the search space for top-down
interpreters. We would like to end up with a finite search space. This is the case
when every infinite derivation is pruned.

DEFINfTION 3.3 (Completeness).

A loop check L is complete if every infinite SLD-derivation is pruned by L. D

We must point out here that in these definitions we have overloaded the
terms 'soundness' and 'completeness'. These terms do not refer here only to
loop checks, but also to interpreters for logic programs (with or without a loop
check). Such an interpreter is sound if any answer it gives is correct w.r.t. the
intended model or the intended theory of the program. An interpreter is complete
if it finds every correct answer within a finite time.

3.2. Interpreters and loop checks

11

When a top-down interpreter is augmented with a loop check, we obtain a new
interpreter. The soundness and completeness of this new interpreter depends on
the soundness and completeness of the old one, as well as on the soundness and
completeness of the loop check. However, these relations are not trivial. For
example, it is not true that adding a complete loop check to a complete interpreter
yields again a complete interpreter.

These relationships are expressed in the following lemma's. We refer here to
two interpreters: one searching the SLD-tree depth-first left-to-right (as the
PROLOG interpreter does), and one searching breadth-first. Without a loop
check, bot;h interpreters are sound w.r.t. CW A. The breadth-first interpreter is

also complete (but not complete w.r.t. CW A).

LEMMA 3.4. Let P be a program, A a ground atom and La weakly sound loop

check. Then for every SLD-tree T of Pu{t-A}, P 1-cwA -,A ifffL(PJ(T)

contains no successful branches.

12

PROOF. We know by the soundness and strong completeness of Sill-resolution

(see [2],[15]) that PI-cw A -,A<=> P If A<=> T contains no successful branch.

=> T contains no successful branch and fL(P)(T) is a subtree of T, so fL(P)(T)

contains no successful branch either.

<= Since L is weakly sound, a successful branch in T would yield a successful

branch in fL(P)(T). But fL(P)(T) contains no successful branch, hence T

contains no successful branch either. D

Thus an interpreter augmented with a weakly sound loop check remains

sound w.r.t. CWA. Since fL(P)(T) may be infinite, nothing can be said about

completeness.

LEMMA 3.5. Let P be a program, A an atom and La sound loop check. Then for

every SLD-tree T of Pu{ ~A} and for every ground substitution 8, P J- AO

if! fL(p J(T) contains a successful branch with a computed answer

substitution -r such that -r ~e.

PROOF. We have by the strong completeness of SLD-resolution PI- AS~ T

contains a successful branch with a computed answer substitution a such that

CJ'::;; 0.

=> T contains this successful branch, and since L is sound, fL(P)(T) contains a

successful branch with a computed answer substitution 't such that 't ::;; cr.

Hence 't::;; 0.

<= fL(P)(T) contains a successful branch with a computed answer substitution

't ::;; 0, so T contains this branch as well. o

Thus an interpreter augmented with a sound loop check remains sound.

Moreover, a breadth-first interpreter remains complete.

COROLLARY 3.6. Let P be a program, A a ground atom and L a weakly sound

and complete loop check. Then for every SLD-tree T of Pu{ ~A}, P J-cwA

-.A ifffL(PJ(T) is finite and contains no successful branches.

PROOF. By Lemma 3.4 and the Completeness Definition 3.3. D

Thus an interpreter augmented with a weakly sound and complete loop

check becomes complete w.r.t. CW A.

COROLLARY 3.7. Let P be a program, A an atom and La sound and complete

loop check. Then for every SLD-tree T of Pu{ rA} and for every ground

substitution (}, P f- A(} ifffL(PJ(T) is finite and contains a successful branch

with a computed answer substitution -r such that -r S (}.

PROOF. By Lemma 3.5 and the Completeness Definition 3.3. D

Thus a depth-first interpreter augmented with a sound and complete loop

check becomes complete . This also means that a sound and complete loop check

can be used to implement query processing as defined in the introduction.

Indeed, given a program P and an atom A with an SLD-tree T of Pu{ f-A}, it

suffices to traverse the finite tree fL(P)(T) and collect all computed answer

substitutions.

3.3. Comparing loop checks

After studying the relationships between loop checks and interpreters, we shall

now analyze a relationship between loop checks themselves. In general, it can be

quite difficult to compare loop checks. However, some of them can be compared

in a natural way: if every loop that is detected by one loop check, is detected at

the same derivation step or earlier by another loop check, then the latter one is

stronger than the former.

DEFINITION 3.8.

Let Li and L1 be loop checks.

L1 is stronger than L1 if for every program P and goal G, every SLD-derivation

Die L1(P) of Pu{G} contains a subderivation D1 such that D1 e Li(P). D

13

In other words, Li is stronger than L1 if every SLD-derivation that is pruned

by L1 is also pruned by L1. Note that the definition implies that every loop check

is stronger than itself.

The following theorem will prove to be very useful. It will enable us to

obtain soundness and completeness results for loop checks which are related by

the 'stronger than' relation, by proving soundness and completeness for only

one of them.

14

THEOREM 3.9 (Relative Strength). Let L1 and L2 be loop checks, and let L1 be

stronger than L2.

i) If L1 is weakly sound, then L2 is weakly sound.

ii) If L1 is sound, then L2 is sound.

iii) If L1 is shortening, thenL2 is shortening.

iv) If L2 is complete then L1 is complete.
PROOF. i)-iii) If an SLD-tree T contains a successful branch, then fL 1(P)(T)

contains a successful branch that satisfies the conditions of Definition 3.1. Since
L1 is stronger than L2, fLi(P)(T) is a subtree of tL2(P)(T), so this branch is also

contained in fL2(P)(T).

iv) Every infinite SLD-derivation is pruned by L1, so it is also pruned by Li. 0

Now we have a clearer view of the situation. Very strong loop checks prune

derivations in an 'early stage'. If they prune too early, then they are unsound.

Since this is undesirable, we must look for weaker loop checks. But a loop

check should preferably be not too weak, for then it might fail to prune some

infinite derivations (in other words, it might be incomplete). Of course, the

'stronger than' relation is not linear. Moreover, loop checks exist that are neither

sound nor complete.

3.4 Sound and complete loop checks

A question now arises: do there exist sound and complete loop checks?

Obviously, there cannot be such a loop check for logic programs in general, as

logic programming has the full power of recursion theory. (Remember that

according to the definition, a loop check is computable.) So when studying

completeness we shall rule out programs that compute over an infinite domain.

We shall do so by restricting our attention to programs without function

symbols, so called function-free programs. This restriction leads to a finite

flerbrand Universe, but other solutions (typed functions, bounded term-size

property [11]) are also possible here.

Note that our definitions so far referred to arbitrary programs and SLD­

derivations. In the sequel, we shall consider certain classes of programs (like

function-free programs) and SLD-derivations (like the derivations via the

leftmost selection rule). The definitions we introduced can be extended in an

obvious way so that we can use terminology like 'complete w.r.t. the leftmost
selection rule for function-free restricted programs'.

As stated above, we shall study completeness only for function-free
programs. So our question can be reformulated as: is there a sound and complete
loop check for function-free programs? Before answering this question for loop
checks in general, we shall answer it for simple loop checks.

THEOREM 3.10. There is no weakly sound and complete simple loop checkfor
function-free pro grams.

PROOF. Let L be a simple loop check that is complete for function free
programs. Consider the following infinite SLD-derivation D, obtained by
repeatedly using the clause A(x)f-A(y),S(y,x) (using the leftmost selection
rule).

f-A(xo),B(xo)

.u.
f-A(x1),S(xi,xo),B(xo)

JJ
f-A(x2),S(x2,x i),S(x 1,xo),B (xo)

JJ
f-A(x3),S(x3,x2),S(x2,x i),S(x 1,xo),B(xo)

JJ

FIGURE 3.1

15

Since L is a complete loop check, this derivation is pruned by L and since L
is simple, the goal at which pruning takes place is independent of the program
used for this derivation. Suppose this derivation is pruned by L at the goal
f-A(x0),S(x0 ,x0 _ 1),. .. ,S(x i,xo),B(xo).

Now let P = { S(i,i+l)f- \ 0::;; i < n} u { A(O)f-, A(x)f-A(y),S(y,x),
B(n)f- }. Extending the above derivation to an SLD-tree of Pu{G} (still using
the leftmost selection rule, see Figure 3.2), we see that every goal of the
derivation has two descendents, obtained by applying the clauses
A(x)f-A(y),S(y,x) and A(O)f- respectively. The derivation of Figure 3.1 shows

16

the effect of repeatedly applying A(x)f-A(y),S(y,x). After applying A(O)~ at

some goal, a derivation becomes deterministic: if there are initially m S-atoms,

then these atoms are resolved from left to right by the clauses S(0,1)~, ... ,

S(m-1,m)f-.

f-A(xo),B (xo)

JJ
f-A(x1),S(x1,xo),B(xo)

JJ
f-A(x2) ,S(x2,x 1),S (x 1,xo),B(xo)

JJ

=> f-S(O,xo),B(xo)

=> ~S(O,x1),S(x1,xo),B(xo)
=> f-S(l,xo),B(xo) => l~B(2)l

f-A(xn),S(xn,Xn-1), ... ,S(xi,xo),B(xo) => ... n intermediate goals ... => ~B(n)

=>0

FIGURE 3.2

Finally, the goal f-B(m) is left. Since of all goals of the form f-B(i) (i ~ 0)

only the goal f-B(n) can be refuted, exactly n S-atoms are needed. Therefore the

only successful branch of this SLD-tree of Pu{G} goes via the goal

f-A(xn),S(xn,Xn-1), ... ,S(xi,xo),B(xo). As exactly this goal is pruned by L, L

has pruned the only successful branch of this SLD-tree. Hence L is not weakly

sound. D

However, taking the program into account gives us an opportunity to define

for function-free programs a shortening (so a fortiori sound) loop check which is

complete. Moreover, this loop check is stronger than every other shortening loop

check. Strange as it may seem, this one is also impractical. It is like solving a

puzzle by trial and error. One can save effort if one can avoid the trials that lead

to an error. Assuming that the puzzle is solvable (as our 'puzzle', finding the

correct answers to a given goal, is), it is possible to find out exactly which trials

to avoid. How this can be done is formalized in the proof of Theorem 3.13 (1).

However, solving the puzzle is the first step of the method described, so it can

only be of theoretical importance.

For convenience, we shall write S(P ,G,cr) for the set of successful SLD­

derivations of Pu{G} with a computed answer substitution t such that t s; cr.

We say that a derivation Dis a shortest derivation in S(P,G,a) if De S(P,G,cr)

and IDI = min { ID'l ID' e S(P,G,cr) }.

DEFINITION 3.11 (STRONG check).

For a function-free program P, STRONG(P) = RemSub({ D == G => ... I for no

a, Dis an initial fragment of a shortest derivation in S(P,G,cr}). D

Note that an SLD-tree pruned by STRONG consists not only of the shortest

refutation(s) of Pu{G} for any computed answer substitution cr, but also of the

derivations that follow the path of such a derivation but 'make a wrong

decision', that is a step deviating from such a refutation. After such a step, the

derivation is immediately pruned by STRONG. This effect is a consequence of

the fact that pruning a node in a tree implies removing all descendents, so we

cannot remove the descendents caused by a 'wrong step' while retaining the

others. The following example shows the effect of pruning an SLD-tree by

STRONG.

EXAMPLE 3.12.

Let P = { A(l) f- (Cl),

A(y) f- B(y,z),A(z) (C2),

B(w,O) f­

B(0,1) f­

and let G = f-A(x).

(C3),

(C4) },

17

Consider an SLD-tree of Pu{G} displayed in Figure 3.3. In S(P,G,{x/1})

a shortest derivation has 2 goals, in S(P,G,{x/0}) a shortest derivation has 4

goals and in S(P,G,£) a shortest derivation has 6 goals. These derivations are

retained by STRONG in the considered SLD-tree, the others are pruned (at the

horizontal lines in the figure). Among these are successful ones, but not shortest

ones. (The tree in Figure 3.3 is extended beyond the sixth level to show this

effect.) D

18

rA(x)

{x/1 ~ix}
O rB(x,z),A(z)

({x/l}) (C4)/ \ (C3)

{x10,z11y ~w1x,z10}

rA(l) rA(O)

(C2)'/ \(Cl) \ (C2)'

{y'/1}/ \ ~'/0}

rB(l,z'),A(z') D rB(O,z'),A(z')

(C3) I ({l<IO}) (C4y \(C3)'

{z'10,w11} ~ {z'r ~·10,w·10}

rA(O) rA(l) rA(O)

(C2)"l (Cy l (C2)" l (C2)"

{y"/O} D {y"/1} ~ {y"/O}

rB(O,z"),A(z") CQ rB(l,z"),A(z") rB(O,z"),A(z")

(C4) I \ (C3)' I .(C3)' (C4) l \ (C3)"
{z"/l}i \{z"/0,w'/O} ~z"/O,w'/l} {z"/l} ~z"/O,w"/0}

rA(l) rA(O) rA(O) rA(l) rA(O)

(Cl/\ \
,, 0 "'

00
..... ·•·· ·~ .. ;~

FIGURE 3.3

THEOREM 3.13. For function-free programs:

i) STRONG is a shortening loop check.

ii) STRONG is stronger than any shortening loop check.

iii) STRONG is complete.

PROOF. i a) STRONG is a loop check.

The non-trivial point here is to prove that for every function-free program P,
STRONG(P) is computable. Can we, given a derivation D = G => ... ,decide
whether or not D is pruned by STRONG and if so, at which node? Indeed we
can, using the following procedure.

1. Compute the set of correct answer substitutions for Pu{G} (e.g. bottom up).
Since P has no function symbols, this set is finite. Construct (breadth first) an
initial fragment of an SLD-tree of Pu{G} that contains (an initial part of) D and
for each correct answer substitution a successful branch with a more general
computed answer substitution. Such a fragment exists by the strong
completeness of SLD-resolution. It has been shown in [17] that a length
preserving bijection exists between the successful branches of two different
Sill-trees for Pu{ G}. Therefore in every SLD-tree of Pu{ G}, for every correct
answer substitution cr there exists a derivation D' e S(P,G,cr) with ID'I = min {
ID"! ID" e S(P,G,cr) }.

2. For each computed answer substitution, mark the nodes of the shortest
successful branches with this computed answer substitution.

19

3. Prune D at the first node in the tree that is not marked. If such a node does not
exist, then Dis a subderivation of a shortest successful branch.

i b) STRONG is shortening.

If a successful derivation D of Pu{G} with computed answer substitution cr is
pruned by STRONG, then it is not a shortest derivation in S(P,G,cr). By
construction, there exists a shortest derivation D' e S(P,G,cr) in the SLD-tree. D'

is shorter than D and not pruned by STRONG.

ii) STRONG is stronger than any shortening loop check.

Let L be a loop check and let D be a derivation of Pu{ G} that is pruned by L. If
D is a subderivation of a shortest successful derivation D', then L is not

shortening. Otherwise, Dis pruned by STRONG.

iii) STRONG is complete.

If Dis an infinite SLD-derivation, then only an initial fragment ofD is contained

in the constructed (finite) part of the SLD-tree. Since the last goal of D that is in

20

the tree is not successful, D contains a 'wrong step' there or earlier. Hence D is

pruned by STRONG. D

So far, we have not been very successful in defining useful sound and
complete loop checks. In the next section, we shall restrict our attention to simple
loop checks. They will be shortening, but as shown above, they cannot be
complete (not even for function-free programs). Nevertheless, for each of these
loop checks we shall introduce one or more natural classes of programs for

which they are complete.

4. Equality checks

4.1. Overview
In this section, we introduce some simple loop checks. For each of them, there
exist two versions: the first one is weakly sound, the second one shortening. The
second, shortening version is obtained by adding an additional condition to the
first one. By this construction, the first version is always stronger than the
corresponding second version.

Starting with the Variant of Atom check, we can make three independent
modifications of it.

1. Adding this additional condition, dealing with the computed answer
substitution 'generated so far'. A neat formulation of this condition can be
obtained by the use of resultants instead of goals in Sill-derivations. When
considering a derivation Go =>c1,e1 Gi => ... , to every goal Gi = rSi there
corresponds the resultant Ri = So01 ... SjrSj. Resultants were introduced in
[16].

2. Replace variant by instance. This yields the Instance of Atom (IA) check. This
check is still unsound: it is even stronger than the VA check. Besnard [3] has
introduced a weakly sound version of this loop check. This check and related
ones (derived from VA; shortening versions) are discussed in section 6.

3. Replace atom by goal. This yields the Equals Variant of Goal (EVG) check.
Informally, this loop check prunes a derivation as soon as a goal occurs that is
a variant of an earlier goal. Replacing 'variant' by 'instance' again yields the
Equals Instance of Goal (EIG) check. The shortening versions are called
Equals Variant of Resultant (EVR) and Equals Instance of Resultant (EJR).

Taking goals instead of atoms as a basis for a loop check yields two

independent choices again.

3a. Whereas equality between atoms is unambiguous, equality between goals

is much less clear. In SLD-derivations, we regard goals as lists, so both

the number and the order of occurrences of atoms is important. However,

we may also regard them as multisets, where the order of the occurrences

is unimportant. We might even consider regarding them as sets, but that

proves to be impractical: the difference between the derivation steps

~A,A ~ ~A and ~A ~ ~A is then no longer visible. Regarding goals

as sets in our loop checks would require regarding goals as sets in SlD­

derivations, which would result in too many undesirable effects.

So we shall consider two EVG checks: EVGL (for list) and EVGM

(for multiset). The same holds for EIG, EVR and EIR. We shall refer to

these eight loop checks as the equality checks. They are discussed in the

remainder of this section.

21

3b. Finally, we may replace 'G2 is a variant/instance of G1' by 'G2 is

subsumed by a variant/instance of G1'. We define 'G1 subsumes G2' as

'G1 ~ G2'. Thus we can make a distinction between 'subsumed by a

variant' and 'subsumed by an instance'. Usually in literature, 'subsumed

by a variant' is not considered, 'subsumed by an instance' is simply called

'subsumed' (see e.g. [6]). Subsumption can also be defined for

resolvents.

This yields the subsumption check. Since this modification is again

independent of the others, there are also eight subsumption checks. These

checks are discussed in section 5.

4.2. Formal definitions
We now study the equality checks in more detail. At first we give a formal

definition of the weakly sound versions. Then we introduce an additional

condition that makes these checks shortening. Finally, we identify a natural class

of programs for which the equality checks are complete.

In fact, we should give a definition for each equality check. This would

yield eight almost identical definitions. Therefore we compress them into two

definitions, trusting that the reader is willing to understand our notation. The

22

equality relation between goals regarded as lists is denoted by =L; similarly =M

for multisets. We begin with the weakly sound versions.

DEFINmON 4.1 (Equality checks for Goals).

For Type e {L,M}, the Equals Variant/Instance of Goalrype check is the set of

Sill-derivations
EVG/EIGType = RemSub({ D I D = (Go =>c1,e1 Gl => ... => Gk-1 =>ck,ek Gk)

For example,

such that for some i, 0 S i < k, there is a

renaming/substitution 't such that Ok =Type Grr }). D

EIGM = RemSub({ D I D = (Go =>ci.a1 01 => ... => Gk-1 =>ck,ek Ok) such that

for some i, 0 :s; i < k, there is a substitution 't such that Ok =M Gi't }).

The informal justification for these loop checks is similar to the one given

for the VA check. Suppose that we want to refute a goal G. If we find that in

order to refute G we need to refute a variant or instance of G, say G't, then two

cases arise. If there is no solution for G't, then pruning G't is clearly safe. On the

other hand, if there is a solution for G't, then the derivation giving this solution

might be used (possibly in a more general form) directly from G.

We shall prove later in this section that these loop checks are weakly sound.

However, they are not sound. To see this, suppose that we find for G't a

successful derivation D with a computed answer substitution er. Then using D

directly from G gives a computed answer substitution 'tCf (maybe a more general

substitution, but not necessarily). Therefore success is not lost.

However, the derivation G = Gi =>Ci+l,0i+l ... =>ck,0k Ok= G't, followed

by D, yields a possibly different computed answer substitution: 0i+1···0kcr, thus

possibly affecting soundness. (In Example 4.3, we show a specific program and

goal for which this difference arises.) Of course, we are only interested in the

effect of this difference on the variables of the initial goal Go. In Gi these

variables are renamed to Go81 ... 0i. So 't and 0i+l·· .ek should coincide on the

variables of 0081 ... ei.
Hence we can make these loop checks sound, and even shortening, by

adding the condition Go81 ... 0k = 0081 ... 0i't. (Note that in this equality it is

irrelevant whether goals are lists or multisets.) It will appear that this condition

23

works not only for EVG and EIG, but for all other loop checks studied in this

section, as well.

Finally, note that adding this condition is equivalent to the replacement of the

condition Gk =Type Ore by the condition Rk =Type Rn:, where Rk and Ri are the

resultants corresponding to the goals Gk and Gj.

DEFINITION 4.2 (Equality checks for Resultants).

For Type e {L,M}, the Equals Variant/Instance of Resultantrype check is the set

of SLD-derivations

EVR/EIRType = RemSub({ DID= (Go =:}c 1,E1 1 Gr=::} ... =::} Gk-1 =:}Ck,ek Gk)

such that for some i, 0 :::; i < k, there is a

renaming/substitution 't such that Ok =Type Grt

and 0081 ... ~ = 0081 ... 8(1: }). D

For example,

EVRL = RemSub({ DID= (Go =:}ci,e 1 G1 =::} ... =::}Ok-I =:}Ck,ek Ok) such that

for some i, 0 :::; i < k, there is a renaming -c such that

Gk =L Gi't and 0081 ... 8k = 0081 ... 8i't}).

The following example shows the difference between the goal-based and

resultant-based equality checks. It is so chosen that the other variations (variants

or instances, goals regarded as lists or as multisets) do not play a role.

EXAMPLE 4.3.

Let P = { p(a) f- ,

p(y) f- p(z)

let 0 = f- p(x).

(Cl)

(C2) },

Without the condition 0081 ... Sk = 0081 ... 8i'C we would only obtain the

computed answer substitution {x/a}, whereas we should also obtain the empty

substitution. This shows that the EVG and EIG loop checks are not sound.

In the leftmost tree f-p(z) is a variant of f-p(x), so the derivation is pruned

by EVG at that goal. However, the corresponding resultant p(x)f-p(z) is clearly

not a variant of p(x)f-p(x), therefore the derivation is not yet pruned by EVR.

After another application of (C2), the resultant p(x)f-p(z') occurs, which is a

variant of p(x)f-p(z). At that point the derivation is pruned by EVR.

24

The rightmost tree in Figure 4.1 shows an 'SLD-tree' in which the goals are
replaced by the corresponding resultants. Note that a successful branch in a
resultant-based SLD-tree does not end by the empty goal D, but by the instance

of the initial goal that was 'proved' by this branch. 0

EVG/EIG

An SLD-tree of
Pu{ G} based on goals:

An 'SLD-tree' of
Pu{G} based on resultants:

f-p(x) p(x)f-p(x)

(C2)/ \cc1) cc2)/ \ccl)
{y/x~ \{x/a} {y/x~ \{x/a}

f-p(z) 0 p(x)f-p(z) p(a)+--prunes
here 1 ~ ({xla}) (C21' ~Cl) @0 (C (Cl)

{y'/z {z/a} {y'/z} {z/a}

p(x)f-p(z') p(x)f-lp\ ~ ~Y\ CD

FIGURE 4.1

LEMMA 4.4. All equality checks are simple loop checks.

PROOF. Straightforward. D

Figure 4.2. shows the 'stronger than' relationships between the equality
checks (and the VA and IA checks) and summarizes their properties. In this
figure, an arrow Li ~ L2 means that L1 is stronger than Li. Proving these
'stronger than' relations is straightforward.

EVRL~~~~~~:•EVGL

~ ~
EIRL : EIGL

, ,
EVRM~~-1-~---1-~~•EVGM

~H ~,,
EIRM ~ EIGM

shortening

4.3. Soundness

H

VA

~ ,,
IA

FIGURE4.2

25

weakly sound

not weakly sound

We now prove that the equality checks based on resultants are shortening and

that the equality checks based on goals are weakly sound. According to the

Relative Strength Theorem 3.9 it is sufficient to focus on the strongest checks in

both classes: the EIRM and the EIGM checks. We need the following lemma.

LEMMA 4.5. Let P be a program. Let G1 and G2 be goals such that G1 =M G2.

Suppose Dis an SLD-derivation of Pu{G 1) with computed answer

substitution <5. Then every SLD-tree of Pu{G2} contains a successful

branch of length /D/ with a computed answer substitution <5.

PROOF. By the soundness and strong completeness of SLD-resolution, see [15].

0

THEOREM 4.6. i) The loop check EIRM is shortening.

ii) The loop check EIGM is weakly sound.

PROOF. Let P be a program and Go a goal.

i) Let D be an SLD-refutation of Pu{ Go} with computed answer substitution cr.

If D is pruned by EIRM then we must find in every SLD-tree containing D an

26

SLD-refutation D' of Pu{ Go} with computed answer substitution cr' such that

cr' :s;; cr, ID'I < IDI and D' is not pruned by EIRM. We prove that D' exists by

induction on the length l of the refutation D. We have l ~ 1. For l = 1, D cannot

be pruned. Now suppose the theorem is true for every refutation of Pu{ Go} of

length 5:1. Let D be a refutation of length l+l. Suppose that D is pruned by

EIRM. Then we have D = (Go =>c 1,e1 G1 => ... => Gi-1 =>ci>ei Gi =>ci+I>0i+l

Gi+l => ... => Gk-1 =>ck,ek Gk =>ck+l,ek+l Gk+l => ... => D), and for some

substitution 't: Gt =M Gi't and Go61 ... 6k = Go01 ... 0i't·

By Lemma 4.5 we have a refutation of Grt with computed answer

substitution 0k+l· .. e,. Now we can obtain an unrestricted (in the sense of [15])

SLD-refutation D1 =(Go =>c1,e1 G1 => ... => Gi-1 =>Ci>0it Gi't => ... => D) of

Pu{ Go} (that is in the step Gi-1 =>chert Orr we do not use an mgu), which is

shorter than D. Using the Mgu Lemma of [15], we obtain an SLD-refutation D2

of Pu{ Go} with the same length as D1 and a computed answer substitution

cr2 5: 01 ... 0i't0k+1···0z. (Lemma 4.5 and the proof of the Mgu Lemma show that

for every SLD-tree containing D, such a derivation Di can be constructed.) D2 is

an SLD-refutation of Pu{Go} which is shorter than D, so by the induction

hypothesis there exists an SLD-refutation D3 of Pu{ Go} with computed answer

substitution 0"3 such that 0"3 5: a2 and D3 is not pruned by EIRM. Now we can

take D'=D3 and we have Goa' = Goa3 ~ Goa2 ~ 0061 ... 0i't0k+l · .. 01 =
Go01 ... 0i0i+1···0k0k+l· .. 6z = Gocr, so a'~ cr.

ii) Note that the additional condition 0061 ... ek = 0081 ... err was only used

to prove that cr' ~ a. o

COROLLARY 4.7 (Equality Soundness).

i) All equality checks based on.resultants are shortening. A fortiori they are

sound

ii) All equality checks based on goals are weakly sound.

PROOF. By Theorem 4.6 and the Relative Strength Theorem 3.9. 0

4.4. Completeness

For completeness issues, it is sufficient to consider the weakest of the equality

checks: the EVRL check. We know that EVRL is not complete - Theorem 3.10

presents a counterexample that holds for every simple loop check. However, for

the EVRL check this counterexample can be simplified. The program in Theorem

3.10 consists of a collection of ground facts and one recursive clause. Clearly,

this clause is the 'core' of the counterexample. It appears that for EVRL, we need

only this clause for a demonstration of its incompleteness. Moreover, we need

only the propositional structure of the clause, i.e. we may remove the arguments.

EXAMPLE 4.8.

Let P = { A ~ A,S } .
Then for 'the' SLD-tree T of Pu{ ~A} via the leftmost selection rule, fEvR1 (T)

is infinite. Indeed, every descendant of the initial goal has one occurrence of S

more than its parent goal, so it cannot be a variant of any of its ancestors. D

27

Obviously, the problem is that the atom A in the goal is allowed to generate

infinitely many S-atoms, which are never selected, thereby making the goal

wider and wider. We now introduce a class of programs for which this

phenomenon cannot occur and we prove that EVR1 is complete for these

programs. The necessary restriction is obtained by allowing at most one

recursive call per clause and allowing such a call only after all other atoms in the

body of the clause have been completely resolved. In order to avoid unnecessary

complications, we shall place the atom that causes the recursive call (if present) at

the right end of the body of the clause, and consider only derivations via the

leftmost selection rule. For a formal definition, we use the notion of the

dependency graph Dp of a program P.

DEFINITION 4.9.
The dependency graph Dp of a program Pisa directed graph whose nodes are

the predicate symbols appearing in P and

(p,q) e Dp iff there is a clause in P using pin its head and q in its body.

D p * is the reflexive, transitive closure of Dp. When (p,q) E Dp *,we say that p

depends on q. For a predicate symbol p, the class of p is the set of predicate

symbols p 'mutually depends' on: clp(p) = { q I (p,q) E Dp* and (q,p) E Dp* }.D

28

DEFINITION 4.10 (Restricted Program).

Given an atom A, let rel(A) denote its predicate symbol. Let P be a program.

A clause Ao~ Ai, ... ,An (n~O) is called restricted w.r.t. P if for i = 1, ... ,n-1,

rel(Ai) does not depend on rel(Ao) in P. The atoms Ai, ... ,An-1 are called the

non-recursive atoms of the clause Ao~ Ai, ... ,An.

A program P is called restricted if every clause in P is restricted w.r.t. P. O

Note that this definition allows at most one recursive call per clause. Thus

(disregarding the order of atoms in the bodies) restricted programs include so

called linear programs, which contain only one recursive clause and in this clause

only a single recursive call occurs. The 'transitive closure' program given in the

introduction is restricted. Note also that programs of which all clauses have a

body with at most one atom are restricted.

We now prove that EVRL is complete w.r.t. the leftmost selection rule for

restricted programs. An interesting feature of restricted programs is that in each

SLD-derivation via the leftmost selection rule, goals have a number of atoms

which is bounded by a value depending only on the program and the initial goal.

We shall show that this implies that modulo the 'being a variant of' relation, the

number of possible goals in such an Sill-derivation is finite.

In the rest of this section, Pisa function-free restricted program and G is a

goal in Lp. With the length of G, \G\, we mean the number of atoms in G. The

maximum length of the goals in a derivation of Pu{G} can be computed by

means of the following weight-function, which is defined on goals and predicate

symbols (by mutual induction).

DEFINITION 4.11.

Let P be a restricted program. Then the function weight is defined as:

i) for a goal G = ~A1, ... ,An (n~l) in Lp,

weight(G) = max{weight(rel(Ai))+n-i \ i=l, .. .,n};

ii) for a predicate symbol p of P, weight(p) =
rnax({ weight(~A1, ... ,An) I

A~Ai, ... ,An e P, n>O, rel(A) e clp(p), rel(An) e clp(p) } u

{ l+weight(~Ai, ... ,An-1) \

A~A1, ... ,An e P, n>l, rel(A) e clp(p), rel(An) e clp(p)} u

{l}i 0

Note that in the definition of weight(p), clauses of the form A+-B, with
cl(rel(A)) = cl(rel(B)) are not considered - they do not affect the length of goals
appearing in a derivation. Moreover, if the predicate symbols p and q are
mutually dependent, then weight(p) = weight(q).

The fact that P is restricted ensures that the weight-function is well-defined:
if weight(p) is defined in terms of weight(q), then (q,p) e Dp *, hence weight(q)
is not defined in terms of weight(p). Intuitively, the weight of a goal G majorizes
the length of all goals which appear in an SLD-derivation of Pu{G} using
leftmost selection rule. More precisely, we have the following lemma's.

LEMMA 4.12. /G/ :5weight(G).

PROOF. Let G = +-Ai, ... ,An (n~l). Then weight(G) ~ weight(rel(A1))+n-l ~ n

= IGI. o

29

LEMMA 4.13. Let G ~C H be a derivation step w.r.t. P. Then weight(G);;::

weight(H).

PROOF. Since the weight of a goal depends only on the predicates appearing in
it, and not on the arguments of these predicates, we prove this fact for the case of
programs written in the propositional logic. Let G = +-A 1, ... ,An; then
weight(G) = max{weight(Ai)+n-i I i=l, ... ,n}, and let C = Al+-B1, ... ,Bm.
Then the goal H = +-B 1, ... ,Bm,A2, ... ,An and therefore weight(H) =
max({weight(Bi)+m+n-1-i I i=l, ... ,m} u {weight(Ai-m+t)+m+n-1-i I i=m+l,
... ,m+n-1}) = max({weight(Bi)+m+n-1-i I i=l, ... ,m} u {weight(Ai)+n-i I
i=2, .. .,n}). Two cases arise.

i) weight(H) = max{weight(Ai)+n-i I i=2, ... ,n}.

Then clearly weight(H) s weight(G).

ii) weight(H) = max{weight(Bi)+m+n-1-i I i=l,. .. ,m} (hence m>O). We show
that in this case weight(H) s weight(A1)+n-l (which is s weight(G)).
Subtracting n-1, it suffices to show that max{weight(Bi)+m-i I i=l, ... ,m} s
weight(A1). Again two cases arise.
iia) (rel(Bm),rel(A1)) e Dp*. Then because of the existence of C, weight(A1)

~ weight(+-B1, ... ,Bm) = max{weight(Bi)+m-i I i=l,. .. ,m}.

30

iib) (rel(Bm),rel(A1)) e Dp*. Then weight(A1);;::: l+weight(t-B1, ... ,Bm-1) =

l+max{weight(Bi)+m-1-i I i=l, ... ,m-1} = max{weight(Bi)+m-i I
i=l, ... ,m-1 }. Also weight(Bm)+m-m = weight(A1), since rel(Bm) e

clp(rel(A1)). This proves the claim that max{weight(Bi)+m-i I i=l, ... ,m}

~ weight(A1). D

COROLLARY 4.14. Let D =Go~ GJ ~ G2 ~ ... ~ Gi ~ ... be an SLD­

derivation. Then for every goal Gi in D: /Gil ::;weight(Go).

PROOF. By induction on i. The induction basis is provided by Lemma 4.12, the

induction step by Lemma 4.13. D

So weight(Go) is indeed the desired maximum length of goals occurring in

any Sill-derivation of Pu{ Go}.

We now present a formalization of the 'being a variant of' relation on

resultants. Our presentation here is more general than needed for the

completeness proof for the equality checks. However, we need these results in

full generality to prove the completeness of the subsumption checks and the

context checks.

DEFINITION 4.15.

Let X be a set of variables. We define the relation -x on resultants as R 1 -x R2 if

for some renaming p, Rip= R1 and for every x e X, xp = x. Now let G be a

goal and let k;?:l. Then the relation -x,G,k stands for the restriction of the relation

-x to resultants G1t-G2 such that 01 is an instance of G and 1021 ~ k. D

LEMMA 4.16. For every set of variables X, goal G and k~l, -x,G.k is an

equivalence relation.

PROOF. Straightforward. D

For a resultant R, the equivalence class of R w.r.t. the relation -x,G,k will

be denoted as [R]x,o,k, or just [R] whenever X, G and k are clear from the

context. The following lemma is crucial for our considerations.

31

LEMMA 4.17. Suppose that the language L has no function symbols and finitely

many predicate symbols and constants. Then for every finite set of variables

X, goal G and k2:1, the relation -x.G,k has only finitely many equivalence
classes.

PROOF. Let C be the number of constants in L, R the number of predicate

symbols and let a be the maximum arity of the predicate symbols in L. Let G be a

goal of the form f--P1(...),p2(...), ... ,pm(...) with m ~ 1 and let V be the number

of distinct variables in G.

A resultant in an equivalence class of -x,G,k is then of the form

P1(...),p2(...), ... ,pm(...) f-- qi(...),q2(...), ... ,qn(...) with 0 $ n $ k. An

equivalence class of -x,G,k is completely described by the predicate symbols

qi, ... ,qn, the arguments of pi, ... ,pm (in accordance with G) and the arguments

of qi, ... ,qn.

The number of arguments that must be specified in this resultant is V for

pi, ... ,pm, plus at most n·a for qi, ... ,qn. For every argument we may choose
either a constant, a variable from X or another (fresh) variable. However, we

need at most V +n·a different fresh variables. Therefore the choice of the
arguments is limited to (C+#X+ V +n·a) V +n·a possibilities.

Since for a fixed n, the choice of the predicate symbols qi, ... ,qn is limited to
k

Rn possibilities, we have at most L RD·(C+#X+ V +n·a) V +n·a equivalence
n=O

classes of -x,G,k· D

We can now prove the desired theorem.

THEOREM 4.18. The loop check EVRL is complete w.r.t. the leftmost selection

rule for functionfree restricted programs.

PROOF. Let P be a function-free restricted program and let Go be a goal in Lp.
Let k = weight(Go). Consider an infinite SLD-derivation D = Go =>c 1,e 1 01

=> ... => Gi-1 =>ci,ei Gi => ... of Pu{ Go}. By Corollary 4.14 for every i ~ 0: IGil

$ k. Every goal Gi is a goal in Lp and hence every resultant Go81 ... 8if--Gi
belongs to an equivalence class of -0,Go,k· Since Lp satisfies the conditions of

Lemma 4.17, -0,Go,k has only finitely many equivalence classes, so for some i ~

O andj > i, (Go81 ... 6if--Gi) and 0081 ... Sjf--Gj are variants. This implies thatD

is pruned by EVRL. D

32

COROLLARY 4.19 (Equality Completeness). All equality checks are complete

w.r.t. the leftmost selection rule for function-free restricted programs.

PROOF. By Theorem 4.18 and the Relative Strength Theorem 3.9. O

Now combining Corollary 3.6 and Corollary 3.7 with the Equality

Soundness Corollary 4.7 and the Equality Completeness Corollary 4.19, we

conclude that all equality checks lead to an implementation of CW A for function­

free restricted programs. Moreover, a depth first interpreter augmented by any of

the equality checks based on resultants yields an implementation of query

processing for these programs.

5. Subsumption checks

As already stated, there are eight subsumption checks. We shall define them by

means of two parametrized def~itions, again trusting that the reader is willing to

understand our notation. The inclusion relation between goals regarded as lists is

denoted by CL; similarly ~for multisets. Note: Li ~ L1 if all elements of Li

occur in the same order in L1; they need not to occur on adjacent positions. For

example, (a,c) kL (a,b,c).

5.1. Definitions

DEFINITION 5.1 (Subsumption checks for Goals).

For Type e {L,M}, the Subsumes Variant/Instance of Goalrype check is the set

of SLD-derivations

SVG/SIGType = RemSub({ DID= (Go=>c1,e1 G1 => ... => Gk-1 =>ck.Ok Gk)

such that for some i, 0 :::;; i < k, there is a

renaming/substitution 't with 0)(=>Type Grt }). D

DEFINITION 5.2 (Subsumption checks for Resultants).

For Type E {L,M}, the Subsumes Variant/Instance ofResultantTypecheck is the

set of SW-derivations

33

SVR/SIRType = RemSub({ DID= (Go ~ci,e 1 Gl ~ ... ~ Gk-1 ~Ck,ak Gk)

such that for some i, 0 ~ i < k, there is a

renaming/ substitution 't with Gk ~ype Gi't and

Go81 ... ek = Go81 ... 8j't }). o

LEMMA 5.3. All subsumption checks are simple loop checks.

PROOF. Straightforward. D

The following example shows the differences between the behaviour of

various subsumption checks and the equality checks.

EXAMPLE 5.4.

Let P = { A(y) f-A(O),C(y) (C 1),

A(O) f- (C2),

B(l) f- (C3),

C(z) f- B(z),A(w) (C4) },

and let G = f-A(x).

Figure 5.1 shows an SLD-tree of Pu{G} using the leftmost selection rule.

It also shows how this tree is pruned by different loop checks. First we explain

the behaviour of the loop checks with respect to this tree. Then we shall make

some generalizing comments on this behaviour. In this example, the distinction

between list versus multiset based loop checks does not play a role.

Starting at the root, the first loop check that prunes the tree is the SIG check.

It prunes the goal f-A(O),C(x), because it contains A(O), an instance of A(x).

Following the leftmost infinite branch two steps down, the SVG check prunes

the goal f-B(x),A(w), because it contains A(w), a variant of A(x). One step

later, the atom B(x) is resolved, so the BIG and EVG checks prune the goal

f-A(w) for the same reason.

However, the loop checks based on resultants do not yet prune the tree. The

computed answer substitution built up so far maps x to x after the first three

steps and to 1 later on. This is clearly different from the substitutions {x/O} and

{x/w}, which are used to show that A(O) resp. A(w) are an instance resp. a

variant of A(x).

34

rA(x)

{x/? ~x}
({xlO}) O rA(O),C(x)

I SIG 1-I ---------------

(C2v ~1)'
/ ~/O}

rC(x) rA(O),C(O),C(x)

{z/xV
rB(x),A(w)

SVG 1-------------
(C3) I

{x/l}+

rA(w)
IEIG,EVG1-l -------

(~1y '\C2)

{y'/wy ~w/0}

rA(O),C(w) D ({x/l 1)

(C4)' ~

{z'/w} j
(C2) l "·,· (Cl)"'

. ·

·ff:
rB(w),A(w')

SVR i------
(C3) i

{w/1} !

rA(w')
IEIR,EVR 1-I --

rC(6),C(w)

(C4r:

{z'/O}j
-:~\t

· ...
·· ..

rB(O),A(w'),C(w)

FIGURE 5.1

~ ...

(C2) i <\ .. (Cl)"
~ ····

::~w·

rC(O),C(x)

(C4) [

{ztO} .. ,L.
·::::·

rB(O),A(w),C(x)

35

Now the derivation repeats itself, but with x replaced by w. Therefore the

loop checks based on resultants prune the tree during this second phase, exactly

there where the corresponding loop checks based on goals pruned during the

first phase.

The side branch that is obtained by repeatedly applying the first clause (and

corresponding side branches later on) is pruned by the subsumption checks at the

goal f-A(O),C(O),C(x). This goal contains the previous goal f-A(O),C(x).

Therefore both the resultant based and the goal based loop checks prune this

goal. In contrast, the equality checks do not prune this infinite branch because

the goals in it become longer in every derivation step (analogously to Example

4.8).

The loop checks based on goals all prune the solution {x/1}, so they are not

sound. Among these loop checks, the SIG check prunes as soon as possible for

a weakly sound loop check. Conversely, the SIR check prunes this tree as soon

as possible for a shortening loop check. So on this tree, it behaves exactly like

STRONG, which exhibits such a behaviour by definition. 0

Another example shows that there can be a non-trivial difference between the

behaviour of subsumption checks based on list subsumption and those based on

multiset subsumption.

EXAMPLE 5.5.
Let P = { A(x) f- A(y),S(x),T(y) }. (Note the similarity between this clause and

the clause A(x) f- A(y),S(x,y) in Theorem 3.10.)

Let G = f-A(xo),B(xo).
An SLD-derivation (and SLD-tree) of Pu{G} via the leftmost selection rule is

depicted in Figure 5.2. This infinite SLD-derivation is pruned by the SVRM

check at the goal f-A(x2),S(x1),T(x2),S(xo),T(x1),B(xo), since a variant of an

earlier goal, namely (f-A(x1),S(xo),T(x1),B(xo)){x1/x2}, is 'multiset­

contained' in it.

36

~A(xo),B(xo)

.u.
~ A(x 1),S(xo),T(x1),B(xo)

.u.
~ A(x2),S(x 1), T(x2),S(xo), T(x 1),B (xo)

.u.
~A(x3),S(x2),T(x3),S(x1),T(x2),S(xo),T(x1),B(xo)

.u.

FIGURE 5.2

However, this derivation is not pruned by the SVRL check, nor by the

stronger SIGL check. For, assume that the SIGL check prunes this derivation at

the goal Gk = ~A(xk),S(xk-1),T(xk),S(xk-2),T(xk-1), ... ,S(xo),T(x1),B(xo),

because Grc = (~A(xi),S(xi-1),T(xi),S(xi-2),T(xi-1), ... ,S(xo),T(x1),B(xo))-c,

an instance of an earlier goal Gi. is list-contained in it

Clearly, the presence of the B-atoms in Gi"C and ~requires xo-c = xo. So the

atom S(xo)t in Git corresponds to the atom S(xo) in Gk. Then, because Grr is

list-contained in Gk, T(x1)t can only correspond to T(x1), the only atom between

S(xo) and B(xo). Therefore x1t = x1. Using induction, we can derive x2"C = x2,

... , Xi't = Xi. However, the presence of the A-atoms in Gi"C and Gk requires Xi"C

= Xk. Since i < k, this is a contradiction. So the assumption that the SI°'L check

prunes the derivation is refuted. O

The above examples suggest some 'stronger than' relationships (although an

example can only prove the absence of such a relationship). Figure 5.3 shows

the relationships between the subsumption checks, the equality checks, VA and

IA. The arrows between the 'cubes' mean that every subsumption check is

stronger than the corresponding equality check in the other 'cube'. So the

structure of 'stronger than' relations between equality checks and subsumption

checks is a four-dimensional hypercube. Again, proving these 'stronger than'

relations is straightforward.

37

...
- EVGL

~
EVRL

~
EIRL : EIGL

H

...
EVGM -

H ~1,

EIRM - EIGM ~

i i i i i i i
....

SVGL ~

~
SIRL ~ SIGL

~,

- SVGM -
~, ~,,

SIRM ~ SIGM
weakly sound

s hortening
H

not weakly sound
VA

~,,
IA

FIGURE 5.3

5.2. Soundness

To prove the desired soundness results, we prove that the SIRM check is

shortening and that the SIGM check is weakly sound, since these are the

strongest loop checks based on resultants, respectively goals, in our scheme.

First we need the following lemma.

38

LEMMA 5.6. Let P be a program. Let G 1 and G2 be goals such that G2 CAf G 1 ·

Suppose Dis an SW-derivation of Pu{G 1) with computed answer

substitution a. Then every SLD-tree of Pu{G2) contains a successful

branch of length S/D/ with a computed answer substitution more general

than a.
PROOF. Let D = (Gi =>ci,e1 ... =>en.en D) and let Cn1, ... ,Cnm be those clauses

from C1, ... ,Cn that are used (directly or indirectly) to resolve atoms belonging to

G2, with 1 :S nl < . . . < nm :S n. Then there exists an unrestricted (in the

sense of [15]) SLD-derivation G28J ... 8n1-l =>cn1.en1 ... en2-1 ··· =>cnm,enm· .. en

o. Now apply the Mgu Lemma, the Lifting Lemma of [15] and the independence

of the computation rule. 0

We can now prove the desired theorem.

THEOREM 5.7. i) The SIRM check is shortening.

ii) The SIGM check is weakly sound.

PROOF. Let P be a program and let Go be a goal.

i) Let D be an Sill-refutation of Pu{ Go} with a computed answer substitution

cr. If D is pruned by SIRM, then we must find in every SLD-tree containing D an

SLD-refutation D' of Pu{ Go} with computed answer substitution cr' such that

cr' :S cr, JD'I < JDI and D' is not pruned by SIRM. We prove that D' exists by

induction on the length l of the refutation D.

We have l ~ 1. For l = 1, D cannot be pruned by SIRM. Now suppose the

theorem is true for every refutation of Pu{ Go} of length :SI. Let D be a refutation

of length l+l. Suppose that D is pruned by SIRM. Then we have D = (Go

=>C\S\00 2(1),0\S\DO 2(1) G 1 => ... =>- Gi-1 =>C\S\DO 2(i),0\S\DO 2(i) G i =>C\S\DO

2(i+l),0i+l Gi+l => ... => Gk-1 =>ck,ek Gk =>ck+l.ek+l Gk+l => ... => D), with Gk

;;;;2M Grc and Go81 ... ek = Go81 ... ere for some substitution t.

We now proceed as follows.

1. Thus there exists an SLD-refutation of Pu{Gk} with the computed answer

substitution Sk+ 1 · .. Sz, of length l-k+ 1. Git ~ Gk, so we conclude using

Lemma 5.6 that there exists an SLD-refutation of Pu{Grc} with a computed

answer substitution cr1 :S Sk+l···St, of length at most l-k+l.

2. Replacing Gi-1 =>ci,Eli Gi by Gi-1 =>ci.Eli't Grc, we get an unrestricted SLD­

derivation D1 = (Gi-1 => ... => D) with a computed answer substitution 0j't0"1:::;

0tc0k+l · . . ez.
3. Using the Mgu Lemma, this yields an SLD-derivation D2 = (Gi-1 => ... => D)

with a computed answer substitution 0"2:::; erm1:::; errek+l· .. e/ and ID2I ~ /-k+2
s /-i+ 1 (since k > i).

4. There exists an SLD-derivation D3 =(Go=> ... => D) with a computed answer

substitution cr3 s 91 ... ei-10"2 s 91 ... ei-18rr8k+I···ez and ID2I s l (combining Go
=> ... => Gi-1 of D with D2). Indeed, Lemma 4.5, Lemma 5.6 and the proofs of
the Mgu Lemma and the Lifting Lemma show that for every SLD-tree containing
D, such a derivation D3 can be constructed.

5. By induction hypothesis, either D3 is not pruned by SIRM or an SLD­
refutation D4 of Pu{ Go} exists with a computed answer substitution cr4 such
that Gocr4 $ Gocr3, ID4I < ID3I and D4 is not pruned by SIRM. In the first case,
we take D' = D3, in the second case D' = D4.

6. Gocr' s Gocr3::; Go81 ... errek+l···ez = Go81 ... ez = Gocr, so cr'::; cr.

39

ii) Note that the additional condition Go81 ... ek = Go81 ... 8(t was only used
~s~p6. D

COROLLARY 5.8 (Subsumption Soundness).
i) All subsumption checks based on resultants are shortening. A fortiori

they are sound.

ii) All subsumption checks based on goals are weakly sound.

PROOF. By Theorem 5.7 and the Relative Strength Theorem 3.9. D

5.3 Completeness
We now shift our attention to completeness issues. From the results of the
previous section we can immediately deduce the following result.

COROLLARY 5.9 (Subsumption Completeness 1). All subsumption checks are
complete w.r.t. the leftmost selection rule for function-free restricted

programs.
PROOF. By the Equality Completeness Corollary 4.19 and the Relative Strength

Theorem 3.9. D

40

However, the subsumption checks are stronger than the corresponding

equality checks. So we can try to find other classes of programs for which the

subsumption checks are complete. We know that the subsumption checks are not

complete for all programs, not even for all function-free programs. For P =
{A(x)<E--A(y),S(y,x)}, a derivation of Pu{ <E--A(x),B(x)} is not pruned by any of

the subsumption checks, as was shown in Theorem 3.10.

A close analysis of the proof of this theorem shows that the problem is

caused by three 'events' occurring simultaneously, namely:

1. A new variable, y, is introduced by a 'recursive' atom, A(y).

2. There is a relation between this new variable, y, and an old variable, x,

namely via the atom S(y ,x).

3. The 'recursive' atom A(y) is selected before the 'relating' atom S(y,x).

It appears that, in order to obtain the completeness of the subsumption

checks, it is enough to prevent any of these events. Clearly, the use of restricted

programs and the leftmost selection rule prevents the third event. We now

introduce two new classes of programs, preventing the first and the second

event, respectively.

DEFINITION 5.10 (Nvi Program).

A clause C is non-variable introducing (in short nvi) if every variable that

appears in the body of C also appears in the head of C.

A program P is nvi if every clause in P is nvi. 0

DEFINITION 5.11 (Svo Program).

A clause C has the single variable occurrence property (in short is svo) if in the

body of C, no variable occurs more than once.

A program P is svo if every clause in P is svo. 0

Clearly, in nvi programs the first event cannot occur, whereas in svo

programs the second event is prevented. We would rather have used the

terminology right-linear instead of svo, which is common in the area of term

rewriting systems. However, in the area of deductive databases this term is

already in use for a completely different notion.

41

EXAMPLE 5.12.

The following program is an nvi program and a svo program, but not a restricted

program. It computes in the relation 'add' the sum of two two-digit binary

numbers (the first four arguments of 'add'); this sum is a three-digit binary

number, stored in the last three arguments of 'add'.

ADD= { add(0,0, A,B,

add(A,B, 0,0,

add(A,B, A,B,

add(Ai,B1, A1,B2,

0,A,B)

0,A,B)

A,B,O)

C,A3,B3)

f- .
'

f- .
'

f- .
'

f- add(O,Bi, O,B2, O,O,B3),

add(O,A1, O,A2, O,C,A3) ;

add(Ai,1, A1,l, 1,0,0) <t- add(O,A1, O,A2, 0,0,1) }.

The first three clauses are evidently correct; every addition of the form OX + OY

is taken care of by them. The fourth clause deals with the case where adding the

last digits of both numbers does not give a carry (ensured by the first atom in the

body). The fifth clause deals with the case where there is such a carry. Only the

case Ai~ A1 (or equivalently, Ai+ A1= 1) has to be considered there: if Ai=

A1 then the third clause applies.

Note that this program yields infinite derivations that are not pruned by any

of the equality checks. Indeed, starting with the goal f- add(O,B 1,0,B2,0,0,B3),

the first recursive clause applies, giving the goal f- add(O,Bi,O,B2,0,0,B3),

add(0,0,0,0,0,0,0). Repeatedly selecting add(O,B1,0,B2,0,0,B3) and applying

the first recursive clause yields an infinite derivation containing goals of

increasing length., which is not pruned by any of the equality checks. D

We now prove that the weakest of the subsumption checks, the SVRL

check, is complete for function-free nvi programs. To this end we use the

following (weakened) version of Kruskal's Tree Theorem, called Higman's

Lemma. (See [12]; for a formulation of the full version of Kruskal's Tree

Theorem, see [9] or [13].)

LEMMA 5.13 (Higman's Lemma). Let wo,w1,wz, . .. be an infinite sequence of

(finite) words over a finite alphabet 1:. Then for some i and k > i, Wi Q Wk. D

In order to prove that the SVRL check is complete for function-free nvi

programs, we prove that, in the absence of function symbols, infinite derivations

42

in which no new variables are introduced are pruned by the SVRL check. Then

we prove that every derivation of a function-free nvi program (and an arbitrary

goal) has a variant that indeed does not introduce new variables.

DEFINITION 5.14.
An SLD-derivation D =(Go ~c 1 ,e 1 G1 ~ ...)is non-variable introducing (in

short nvi) if var(Go) ~ var(G1) ~ var(G2):::) D

LEMMA 5.15. /n the absence of function symbols, every infinite nvi SLD-

derivation is pruned by SVRL.
PROOF. Let D =(Go ~c1,e 1 01 ~- ..)be an infinite nvi SLD-derivation.

We take for I. the set of equivalence classes of -var(Go),Go,l as defined in

Definition 4.15. By Lemma 4.17, I. is finite. To apply Higman's Lemma 5.13

we represent for j ~ 0 a goal Gj = f-A1j, .. .,An~ (or rather the corresponding

resultant Go01 ... 8jf-Gj) as the word [Go81 ... 8jf-A1j],. .. ,[Go81 ... 0jf-An~]

over :I.. (Recall that for a resultant R, [R] denotes its equivalence class.) The

sequence of representations of Go, G1, G2, ... yields an infinite sequence of

words wo, w1, w2, ... over :I..

Now by Higman's Lemma 5.13, for some j and k > j: [Go81 ... 8jf-A1j], ... ,

[Go81 ... 8jf-An~J g_, [Go01 ... ekf-A1k],. . .,[Go81 ... ekf-Ankk]. So by the

definition of -var(Go),Go,l, there exist renamings p1,. .. ,pnj which do not act on

the variables of Go such that (Go81 ... 0jf-A1j)P1, ... ,(Goe1 ... ejf-An~)pnj CL

(Go81 ... Okf-A lk),. .. ,(Go81 ... Okf-Ankk).

However, D is nvi, so var(Gj) c var(Go) and therefore the renamings Ph do

not act on the atoms Aij of Gj (1 :::; h,i :::; Ilj). Thus Gj = GjPl CL Gk and

Go81 ... 8jPl = Go81 ... ek- So Dis pruned by SVRL. D

LEMMA 5.16. Let P be a function-free nvi program and let Go be a goal in Lp.

Let D be an infinite SLD-derivation of Pu{Go}. Then a variant D' of Dis

an infinite nvi derivation.

PROOF. Suppose that D =(Go ~c1 ,e 1 G1 ~c2,e2 G2 ~ ...). We show that there

exists an infinite nvi derivation D' =(Go' ~c1 ,e 1 · G1' ~c2,e2' G2' ~ ...) that is

a variant of D. Note that D' uses the same input clauses as D.

We give an inductive construction of D'. By definition, Go'= Go. Suppose

we have constructed D' up to a goal Gi-1' (i > 0). Gi-1' and Gi-1 are variants, say

Gi-1 = Gi-1'p. Go'= Go and the clauses C1, ... ,Ci-l are the same as in D, so Ci

is well standardized apart and we may assume that Cip = Cj. Therefore pSip-1 is

an applicable (idempotent) mgu.

Now we obtain Si' by replacing every pure variable binding x/y within

pSip-1 by y/x whenever x E var(Gi-1') and ye var(Cj), and replacing for such x

and y every other binding z/y within pSjp-1 by z/x.

Since no function symbols appear in P, this yields that for every variable x e

var(Gi-1') either x8i' E var(Gi-1') or x8i' is a constant. Hence var(Gi-1'8i') c

var(Gi-1'). Now let A be the selected atom in Gi-1', let R be the rest of Gi-1' and

let x e var(Gi'). Two cases arise.

- x is introduced by Ci, that is x e var(body(Ci)Si'). Then, since P is an nvi

program, x e var(head(Ci)Si'). Si' is a unifier of head(Ci) and A, so x E

var(A9i') c var(Gi-1Si') c var(Gi-1').

- x is introduced by Gi-1 ', that is x E var(RSi'). Then x E var(Gi-1 Si') k.:

var(Gi-1 ').

This proves the induction hypothesis for D' up to the goal Gi'· D

43

THEOREM 5.17. The SVRL loop check is complete for function-free nvl

programs.

PROOF. By Lemma 5.3, 5.15 and 5.16. D

COROLLARY 5.18 (Subsumption Completeness 2). All subsumption checks are

complete for functionjree nvi programs.

PROOF. By Theorem 5.17 and the Relative Strength Theorem 3.9. D

We now prove that the SVRL check (and hence all subsumption checks) are

complete for function-free svo programs. By a construction similar to the one

used in the proof of Lemma 5.16, we may assume that in an SLD-derivation D =
(Go ::::}c 1 ,e1 G1::::} ...), var(Go8i) c var(Go) for i > 0. (Note that for this

construction, only the absence of function symbols was needed, and not the nvi

property.) Under this assumption we can prove the following lemma.

44

LEMMA 5.19. Let P be a function-free svo program and let Go be a goal in Lp.
Let D = (Go ~C i .£JJ G I ~c2 .ei G2 ~ .. .) be an SLD-derivation of

Pu{Go}. Then for every goal Gi (i ~ 0): if x occurs more than once in Gi,

then x E var(Go).

PROOF. By induction. For i=O, the claim is trivial.

Now suppose x occurs more than once in Gi+l (i ~ 0) and x e var(Go).

Let Gi = (A,S), where A is the selected atom (not necessarily the leftmost

atom) and let Ci+l = Hf-X. Then Si+l is an idempotent mgu of A and Hand

Gi+l = (X,S)Si+l· There are two ways in which we can obtain a variable x

occurring more than once in Gi+l·

1. A variable y occurs more than once in (X,S) and ySi+l = x.
By standardizing apart, var(S) n var(X) = 0, so y occurs either only in S or

only in X. Since Ci+l is svo, y does not occur more than once in X. Therefore y

occurs more than once in S. Then by the induction hypothesis, y E var(Go). But

then x = ySi+l e var(GoSi+l) ~ var(Go).

2. There are two variables Yl and Y2 in (X,S) such that y10i+l = y20i+l = x and

YI'* Y2·
In this case Yl.Y2 e var(A,H), since dom(Si+l) c var(A,H).

If YI e var(S), then by standardizing apart Yl e var(H), so Yl e var(A).

Therefore Yl occurs more than once in Gi (in A and in S), and we can apply the

induction hypothesis again. Since the same argument holds for Y2 E var(S), only

the case y1,Y2 e var(X) is left. In this case, since y1,y2 E var(A,H), by

standardizing apart y i,y2 e var(H).

Since y1Si+l = Y28i+l = x, the sets

Z1 = { z e var(A) I z occurs in A at the position of an occurrence of Yl in H} and

Z2 = { z e var(A) I z occurs in A at the position of an occurrence ofy2 in H} are

not disjoint. (Otherwise, a more general unifier of A and H than 8 would exist,

mapping YI to an element of Z1 and Y2 to an element of Z2.) Let z E Z1 n Z2. z

occurs at least twice in A, so z e var(Go). Thus x = z8i+l e var(Go8i+1) c
var(Go). o

We can now prove the desired theorem.

45

THEOREM 5.20. The SVRL loop check is complete for function-free svo

programs.

PROOF. Let P be a function-free svo program and let Go be a goal in Lp. Let
D =(Go =>c1,e1 Gi =>c2,e2 G2 => ...)be an infinite SLD-derivation of Pu{ Go}.

Again, we take for L. the set of equivalence classes of -var(Go),Go, l as

defined in Definition 4.15. By Lemma 4.17, 1: is finite. To apply Higman's
Lemma 5.13 we represent a goal Gj = A1j, ... ,A0 _p in Das the word Wj =
[0081 ... 8jrA1jJ, ... ,[0081 ... 8jf-An_p1 over I:. The sequence of representations

of Go, G1, G1, ... yields an infinite sequence of words wo, w1, w2, ... over 1:.

Now by Higman's Lemma 5.13, for some j and k > j: [Go01 ... 8jt-A1j], ... ,
[Go81 ... 8jt-An_pl CL [Go81 ... 8kt-A1k], ... ,[Go81 ... ekt-Ankk]. So there are

renamings pi, ... ,pnj such that (Go81 ... 8jt-A1j)pi, .. .,(Go81 ... 8jf-An_p)Pnj kL

(0081 ... 8krA1k), ... ,(0081 ... 0krAnkk).

Now we can define the renaming p by

xp = - x if x E var(Go) or x e var(Gj),

- xpk if x E var(Akj),

since by Lemma 5.19, if x e var(Go), x occurs at most once in Gj, and therefore

k is uniquely defined. Applying Lemma 5.19 on Gk yields that p is again a

renaming.

We have assumed that var(Go81 ... 8j) c var(Go82 ... Sj) c ... c var(Go8j) k

var(Go), and since by the definition of -var(Go),Go.i. the renamings Pi do not act

on variables in var(Go), we have ((Go81 ... 8jt-A1j), .. .,(Go81 ... 0jf-An_p))p

CL (GoE)i ... 8kt-A1k), ... , (Go81 ... 0krAnkk). So Gjp kL Gk and Go81 ... 0jp =
D

COROLLARY 5.21 (Subsumption Completeness 3). All subsumption checks are

complete for function-free svo programs.

PROOF. By Theorem 5.20 and the Relative Strength Theorem 3.9. D

Now combining Corollary 3.6 and Corollary 3.7 with the Subsumption

Soundness Corollary 5.8 and the Subsumption Completeness Corollaries 5.9,

5.18 and 5.21, we conclude that all subsumption checks lead to an

implementation of CW A for restricted programs, nvi programs and svo

programs without function symbols. Moreover, the subsumption checks based

46

on resultants also lead to an implementation of query processing for these

programs.

6. Context checks

The problem with the Instance of Atom check is that it does not take into account

the context of the atom. This is incorrect: whereas solving t-A(x) or t-A(y)

makes no difference, solving t-A(x),B(x) is essentially more difficult than

solving t-A(y),B(x). To remedy this problem we should keep track of the links

between the variables in the atom and those in the rest of the goal.

Roughly speaking, the IA check prunes a derivation as soon as a goal Ok

occurs that contains an instance A 't of an atom A that occurred in an earlier goal

Gi. But when a variable occurs both inside and outside of A in Gi, we should

not prune the derivation if this link has been altered. Such a variable x in Gi is

substituted by xSi+l···ek when Gkis reached. Therefore t and Si+l···Sk should

agree on x. This leads us to a loop check introduced by Besnard [3].

6.1. Definitions

DEFINITION 6.1 (Context checks for Goals).

The Variant/Instance Context check on Goals is the set of SID-derivations

CVG/CIG = RemSub({ DID= (Go ::)ci,01 01 :::) ... :::) Gk-1 ::)Ck,ek Ok)

such that for some i and j, O~~j<k, there is a renaming/substitution 't

such that for some atom A in Gi: At appears in Gk as the result of

resolving ASi+l···Sj in Gj and for every variable x that occurs both

inside and outside of A in Gi> x0i+l· .. Sk=X't }). O

Besnard describes the condition on the substitutions as follows: 'When A't is

substituted for ASi+l···Sk in GiSi+l···Sk, this should give an instance of Gj.'

We show that this formulation is equivalent to ours. Let Gi = (A,S), that is A

occurs in Gi and S is the list of other atoms in Gi. Then (A 't,SSi+ l · .. Sk) should

be an instance of (A,S), say (Acr,Scr).

Clearly, xcr = - xt for x e var(A)

- xSi+I· .. ek for x e var(S),

so for x e var(A) n var(S), x't = xSi+l···Sk.

47

The following example clarifies the use of the context checks.

EXAMPLE 6.2.

We use the program P and the goal G of Variant of Atom check Example 2.5 and

apply the CIG check on two SLD-trees of Pu{G}, via the leftmost and

rightmost selection rule, respectively. This yields the trees in Figure 6.1.

f- c
i(C4)

A(x),B(x)

f- c
+(C4)

f- A(x),B(x)

"\l~'/x} CIG prunes here I (C2)
t{x/l}

f- B(O) f- A(y'),B(x)

cr;l)/ \.cc3)"
{y'1ov '\{x"/y'}

f- B(x) f- A(y"),B(x)

I (C2) (Cl~/ \CC3)"'
t{x/1} {y"/O/ ~{x'"/y"}

0

FIGURE 6.1

f- A(l)

I (C3)'
t{x'/l}

f- A(y')

(C3[/ ~SI)
{x"/y'-V ~y·10}

f-- A(y")
0

The goal G3 = f-A(y') in the rightmost tree that was incorrectly pruned by

the VA check, is not pruned by the CIG check. Certainly, A(y') is the result of

resolving A(l) in G2, the further instantiated version of A(x) in 01. But

replacing A(x)8283 by A(y') in G18283 yields f--A(y'),B(l), which is not an

instance of f-A(x),B(x). D

CLAIM 6.3. CVG and CIG are weakly sound simple loop checks.

Proving that CVG and CIG are simple loop checks is straightforward. Besnard

claims that CIG is weakly sound. From this it follows that the weaker CVG

check is also weakly sound. See also Theorem 6.6. D

48

In Example 4.3, the context checks act exactly in the same way as the
corresponding equality checks. This shows that CVG and CIG are not sound.
Again we can obtain sound, even shortening, versions by using resultants

instead of goals.

DEFINITION 6.4 (Context checks for Resultants).
The Variant/Instance Context check on Resultants is the set of SLD-derivations

CVR/CIR= RemSub({ D I D = (Go =>c1,e1 G1 => ... => Gk-1 =>ck,ek Gk)

such that for some i and j, Q::;i::;j<k, there is a renaming/substitution 't

such that Go81 ... ek = Go81 ... Srt and for some atom A in Gi: A't appears
in Gk as the result of resolving A0i+l · .. 8j in Gj and for every variable x
that occurs both inside and outside of A in Gi: xSi+l · .. ek = x't }). D

Using Besnard's phrasing, the conditions on the substitutions can be
summarized as: 'When A't is substituted for A0i+l··· ek in the resultant

Ri8i+l···ek, this should give an instance of Ri.'

LEMMA 6.5. CVR and CIR are simple loop checks.

PROOF. Straightforward.

6.2. Soundness

0

Now we shall prove that the CIR check is shortening. From this it follows that
the weaker loop check CVR is also shortening.

THEOREM 6.6. The CIR check is shortening.

PROOF. Let P be a program and let Go be a goal. Let D be an SLD-refutation of
Pu{Go} with a computed answer substitution cr. If Dis pruned by CIR, then we
must find in every SLD-tree containing Dan SLD-refutation D' of Pu{ Go} with
computed answer substitution a' such that a' :::; a, ID'l<IDI and D' is not pruned
by CIR. We prove the existence of such a refutation by induction on the length l
of the refutation D.

We have l ~ 1. For l = 1, D cannot be pruned by CIR. Now suppose the
theorem is true for every refutation of Pu{Go} of length :::;/. Let D be a refutation
of length !+ 1. Suppose that D is pruned by CIR. Then we have

D =(Go =>c1.e1 Gi => ... => Gi-1 =>cj,0j Gi =>Ci+i.0i+l Gi+l => ... => Gt-1 ~Ck,0Jc
Gk => ... => D), with for some t: Gi = (A,Si), Gk = (At,Sk), Si0i+l···ek =Sit

and Go81 ... ek = Go81 ... 8it.

Therefore Si CM Gi and {At} CM Gk. By Lemma 5.6 we have SLD­

refutations Dt of Pu{ f-Si} and D2 of Pu{ f-At} via every selection rule. An

inspection of the proof of Lemma 5.6 shows that every derivation step in D1 and

D2 has a corresponding derivation step in the tail (Gi ~ ... ~ D) of D. This tail

consists of /-i derivation steps. On the other hand, at least one step in this tail has

no corresponding step in D1 or D2: the step in which A0i+l · .. Sj is selected.

Therefore ID1l+ID2I </-i.

49

D 1 has a computed answer substitution more general than

Si+l· .. ekek+l···ez. So there exists an SLD-refutation D1' of Pu{ f-Si0i+1···0kl

with ID1 'I = ID1 I and a computed answer substitution more general than

9k+1···9z. The computed answer substitution of D2 is also more general than

ek+l · .. ez. So we can combine D1 I and D2 into an SLD-refutation D3 of

Pu{ ~(A,Si)t}.

Finally we combine Go~ ... => Gi-1 from D, the unrestricted derivation step
Gi-1 =>Cj,0i't Git and D3 into an unrestricted SLD-refutation D4 of Pu{ Go}.

ID4I = i+l+ID1l+ID2I < i+l+/-i = l+l.

By the Mgu Lemma, an SLD-refutation Ds exists with IDsl = ID4l and a

computed answer substitution cr5 s; 01 ... ei-18it8k+l···ez. D5 is an SLD­

refutation of Pu{ Go} which is shorter than D, so by the induction hypothesis

there exists an Sill-refutation D' of Pu{Go} with computed answer substitution

cr' such that Gocr' s; Gocrs and D' is not pruned by CIR. Now we have Gocr' s;

Gocrs s; Go81 ... ejt8k+l···ez = Go81 ... 81 = Gocr, so cr' s; cr. o

COROLLARY 6.7 (Context Soundness).

i) The context checks based on resultants are shortening. A fortiori they are

sound.

ii) The context checks based on goals are weakly sound.

PROOF. By Theorem 6.6 and the Relative Strength Theorem 3.9. Note that

omitting the considerations about computed answer substitutions from this proof

yields a proof for ii), i.e. for Claim 6.3. D

50

For derivations via certain selection rules (including leftmost and rightmost

selection rule), a much easier soundness proof exists. Namely, w.r.t. these

selection rules, the subsumption checks are stronger than the corresponding

(w.r.t. variant vs. instance and goal vs. resultant distinctions) context checks.

DEFINITION 6.8.

(This definition is equivalent to the definition of local selection functions in

[22].) A selection rule R is most recent if every SLD-derivation D =(Go =>c1,e 1

G1 => ...) via R satisfies the following property. If in a goal Gi, an atom A is

selected and in a goal Gj U>i) the further instantiated version B8i+l·· .ej of the

atom Bin Gi is selected, then A is resolved completely between Gi and Oj. D

LEMMA 6.9. The subsumption checks are stronger than the corresponding

context checks w.r.t. most recent selection rules.

PROOF. Suppose D =(Go =>ci,e1 G1 => ... =>ck,ek Gk) is pruned at Ok by a

context check. We show that Dis pruned by the corresponding subsumption

check based on lists at Gk (or earlier).

We have an atom A in Gi, A8i+l·· .ej in Oj as the selected atom and A't as

the result of resolving A8i+l· .. ej- Let Gi = (A,S,T), where S consists of those

atoms in Gi that are completely resolved between Gi and Gj- The use of a most

recent selection rule yields that Gj = (A8i+l··· 8j,T8i+l··· Sj) and Ok=

(A1:,U,T8i+1···8k) (U consists of the other atoms in Ok that are the result of

resolving A8i+1···8j). Finally (S,T)Si+l···ek = (S,T)'t.

G.
1

G.
J

i \
H u 1

T

TS. 1 ... 8.
1+ J Context check

FIGURE 6.2

51

First we show that for every x,y, if x0i+1···0j = yOi+1 ... 0j then xt = y't.

Suppose x0i+1 ... 0j = y0i+l ... ej and x ;;i!: y. Then clearly x,y e var(S). So xt =

xei+l···ek = y0i+1 ... ek = y't.

Now we can define a on var(Gj) as follows:

- if x E var(A0i+l · .. Oj) then xcr = y't, where y e var(A) such that

y0i+l· .. 0j = x. (Although y may not be unique, y't is.) (case a),

- if x e var(T0i+1···0j) then xcr = x0j+l· .. ek. (Hence for some

ye var(T) such that y0i+i ... 0j = x, we have xcr= y0i+l···ek = y't. (case b),

and we show that :

1) Gjcr Q.. Gk.

We show that A0i+1···0j0' = A't and T0i+l· .. 0jcr = T0i+l···ek.

If ye var(A), then eithery0i+1 ... 0j e var(AOi+l···Oj), so y0i+1 ... 8j0" = yt, or

y0i+1 ... 0j is a constant, so y0i+l· .. 0jcr = y8i+1- .. 0j = yi,

since in this case y e var(S).

Ify e var(T), then if ye var(A), y0i+l···ejcr = y't = y0i+l···ek,

otherwise y0i+l·· .0jcr = y0i+1···0j0j+1 ... 0k = y0i+1 ... ek.

2) If Go01 ... ek = Go01 ... 0i't then 0081 ... ek = Go01 ... 8jcr (goal vs. resultant).

Let x e var(Go81 ... 0j).

In case a, x = y8i+l · .. 0j for some y e var(Go81 ... 0i). Then xcr = y't =

y8i+l• .. 0k = X0j+t ... 0k.

In case b, xcr = x0j+l· .. ek by definition.

3) If t is a renaming, then cr is a renaming (variant vs. instance).

For every x e var(Gj) there exists a y E var(A,T) such that y0i+1···0j = x and

XO'= y't. 0

The following example shows that the previous result does not hold for

selection rules that are not most recent.

EXAMPLE 6.10 (based on Example 10 in [3]).

LetP = {A~ B (Cl),

B~A

C~D

and let G = ~A,C.

(C2),

(C3) },

Then the derivation ~A,C ~(Cl) ~B • .C. ~(C3) ~B.D ~(C2) ~A,D (in which

the selected atoms are underlined) is pruned by the context checks (the A in the

52

fourth goal is the result of resolving the A in the first goal), but not by the

subsumption checks. D

shortening weakly sound

EVRL------l.._..EVGL

~ ~
EIRL EIGL

EVRM-~-+-~-+--~EVGM

~ ~
EIRM EIGM

__,,.,.~ SVRL------4_... SVGL ~---........;)~ CVG

~ ~ t
---i.--_..;m,... SIR L SIGL .q-CIG

SVRM-~+-~-+--~svoM

~ ~
SIRM_...,__-+--..a.

VA

not weakly sound

FIGURE 6.3

53

Now we can add the context checks to our 'stronger than' scheme. The

dotted arrows are only valid for most recent selection rules.

6.3. Completeness

Again we shift our attention to completeness issues. Besnard [3] claims without

a proof that his loop check is complete for function-free nvi programs.

CLAIM 6.11 (Context Completeness 1).

The CJG check is complete for function1ree nvi programs. D

We conjecture that even the weakest of the four context checks, CVR, is

complete for function-free nvi programs. We now prove that, like the equality

checks and the subsumption checks, the context checks are complete w.r.t. the

leftmost selection rule for function-free restricted programs.

THEOREM 6.12. The CVR check is complete w.r.t. the leftmost selection rule for

function-free restricted pro grams.

PROOF. Let P be a function-free restricted program and let Go be a goal in Lp.
Let k=weight(Go). Consider an infinite SLD-derivation D = Go =>ci,e1 Gt

=> ... => Gi-1 =>ci.ei Gi => ... of Pu{ Go}. By Corollary 4.14 for every i;::: 0:

!Gil~ k. Every goal Gi is a goal in Lp and hence every resultant Go81 ... 8if--Gi
belongs to an equivalence class of-0,Go,k· Lp satisfies the conditions of Lemma

4.17, so -0,Go,k has only finitely many equivalence classes. Thus the set

E = {.e. I .e. is an equivalence class of -0,Go,k and for infinitely many resultants R

in D: Re .e.} is non-empty. For simplicity, we shall say that the goal Gi is in an

equivalence class .e., when in fact (Go81 ... 0if--Gi) e .e..
For every equivalence class .e. of-0,Go,k• we define the length of k• denoted

by l.e.I. as the length of the goals in~· Since E # 0, we can define l = min{ l.e.11 ~ e

E }. Now we choose an equivalence class e e E with lei =l. According to the

choice of e, D contains infinitely many goals in e and a finite number of shorter
goals (since the number of equivalence classes of-0,Go.k is finite).

Let Gi and Gk be (the first) two goals in D that are in e such that no goal

lying in D between them is shorter. Since Gi and Gk are in the same equivalence

class e, we have Gk = Grt and Go81 ... ek = Go81 ... Sit for some renaming t.

54

Let A be the leftmost atom in Gi and let S be the rest of Gi. A is selected in

Gi. However, A is not completely resolved between Gi and Gk, otherwise a goal

shorter than Gi, namely an instance of S, would appear between Gi and Gk in D.

Therefore the atom A't in Ok is the result of resolving A. Furthermore, no atom

of S is selected between Gi and Gb so Gk = (A't,SSi+l ··· Sk). Hence

sei+1 ... ek =St.

When in the resultant RiSi+l···ek, we replace A0i+l· .. ek by A't, we obtain

(Go01 ... 0kt-At,S8i+l···8k) = (Go01 ... 0i'tt-A't,St), which is a variant of Ri.

Therefore D is pruned by the CVR check. D

COROLLARY 6.13 (Context Completeness 2). All context checks are complete

w.r.t. the leftmost selection rule for functionjree restricted programs.

PROOF. By Theorem 6.12 and the Relative Strength Theorem 3.9. D

Now combining Corollary 3.6 and Corollary 3. 7 with the Context

Soundness Corollary 6. 7 and the Context Completeness Corollary 6.13, we

conclude that all context checks lead to an implementation of CW A for restricted

programs without function symbols. Moreover, the context checks based on

resultants also lead to an implementation of query processing for these programs.

Finally, if the Context Completeness Claim 6.11 can be confirmed, the same

holds for function-free nvi programs.

55

References

[1] K.R. APT, R.N. BOL and J.W. KLOP, On the Safe Termination of
PROLOG Programs, in: Proceedings of the Sixth International
Conference on Logic Programming, (G. Levi and M. Martelli eds.), MIT
Press, Cambridge Massachusetts, 1989, 353-368.

[2] K.R. APT and M.H. VAN EMDEN, Contributions to the Theory of Logic

Programming, J. ACM, vol. 29, No. 3, 1982, 841-862.

[3] Ph. BESNARD, Sur la Detection des Boucles Infinies en Programmation

en Logique, in: Actes "Seminaire de Programmation en Logique",

Tregastel, 1985 (in French).

[4] D.R. BROUGH and A. WALKER, Some Practical Properties of Logic

Programming Interpreters, in: Proceedings of the International

Conference on Fifth Generation Computer Systems, (ICOT eds), 1984,

149-156.

[5] K.L. CLARK, Negation as Failure, in: Logic and Data Bases, (H.

Gallaire and J. Minker, eds), Plenum Press, New York, 1978, 293-322.

[6] C.L. CHANG and R.C. LEE, Symbolic Logic and Mechanical Theorem

Proving, Academic Press, New York, 1973.

[7] W. CLOCKSIN and C. MELLISH, Programming in PROLOG, Springer­

Verlag, New York, 1981.

[8] M.A. COVINGTON, Eliminating Unwanted Loops in PROLOG,

SIGPLAN Notices, Vol. 20, No. 1, 1985, 20-26.

[9] N. DERSHOWITZ, A Note on Simplification Orderings, Information

Processing Letters 9, 1979, 212-215.

[10] A. VAN GELDER, Efficient Loop Detection in PROLOG using the

Tortoise-and-Hare Technique, J. Logic Programming 4, 1987, 23-31.

[11] A. VAN GELDER, Negation as Failure Using Tight Derivations for

General Logic Programs, in: Foundations of Deductive Databases and

Logic Programming (J. Minker ed), Morgan Kaufmann, Los Altos,

1988, 149-176.

[12] G. HIGMAN, Ordering by divisibility in abstract algebra's, Proceedings

of the London Mathematical Society (3) 2 (7), 1952, 215-221.

[13] J.B. KRUSKAL, Well-Quasi-Ordering, the Tree Theorem, and

Vazsonyi' s Conjecture, Transactions of the AMS 95, 1960, 210-225.

56

[14] K. KUNEN, Some Remarks on the Completed Database, Technical

report, Computer Sciences Department, University of Wisconsin,

Madison, U.S.A., 1988.

[15] J.W. LLOYD, Foundations of Logic Programming, Second Edition,

Springer-Verlag, Berlin, 1987.

[16] J.W. LLOYD and J.C. SHEPHERDSON, Partial Evaluation in Logic

Programming, Technical Report CS-87-09, Dept. of Computer Science,

University of Bristol, 1987.

[17] J.W. KLOP and J.J.CH. MEYER, Toegepaste Logica dee[I: Resolutie­

logica, Course Notes, Free University of Amsterdam, 1988 (in Dutch).

[18] D. POOLE and R. GOEBEL, On Eliminating Loops in PROLOG,

SIGPLAN Notices, Vol. 20, No. 8, 1985, 38-40.

[19] R. REITER, On Closed World Data Bases, in: Logic and Data Bases, (H.

Gallaire and J. Minker, eds), Plenum Press, New York, 1978, 55-76.

[20] D.E. SMITH, M.R. GENESERETH and M.L. GINSBERG, Controlling

Recursive Inference, Artificial Intelligence 30, 1986, 343-389.

[21] H. SEKI and H. ITOH, A Query Evaluation Method for Stratified

Pro grams under the Extended CW A, in: Proceedings of the Fifth

International Conference on Logic Programming, MIT Press, Cambridge

Massachusetts, 1988, 195-211.

[22] L. VIEILLE, Recursive Query Processing: The Power of Logic,

Theoretical Computer Science 68, No. 2, 1989.

