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Abstract 

Termination for direct sums of left-linear complete 
term rewriting systems 

Y. Toyama 
NTI Basic Research Laboratories 

3-9-11 Midori-cho, Musashino-shi, Tokyo 180, Japan 

J.W. Klop 
Centre for Mathematics and Computer Science 

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; 
Free University, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands 

H.P. Barendregt 
Faculty of Mathematics and Computer Science, Catholic University, 

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands 

A Term Rewriting System is called complete if it is confluent and terminating. We prove that 
completeness of TRSs is a 'modular' property (meaning that it stays preserved under direct sums), 
provided the constituent TRSs are left-linear. Here the direct sum R0 E9 R1 is the union of TRSs 
R0, R1 with disjoint signature. The proof hinges crucially upon the (non)deterministic collapsing 
behaviour of terms from the sum TRS. 

Key Words & Phrases: term rewriting systems, termination, confluence, left-linearity 
1985 Mathematical Subject Classification: 68Q50 
1987 CR Categories: F.4.2 
Note: The second author was partially supported by ESPRIT project 432, An Integrated Formal 
Approach to Industrial Software Development (METEOR). 

Introduction 

An important concern in building algebraic specifications is their hierarchical or mcxlular structure. 
The same holds for term rewriting systems (see Huet & Oppen [80], Klop [89] or Dershowitz & 

Jouannaud [88]) which can be viewed as implementations of equational algebraic specifications. 
Specifically, it is of obvious interest to determine which properties of term rewriting systems 
(TR.Ss) have a 'modular' character, where we call a property 'modular' if its validity for a TRS, 
hierarchically composed of some smaller TR.Ss, can be inferred from the validity of that property 
for the constituent TR.Ss. Naturally, the first step in such an investigation considers the most basic 
properties of TR.Ss: confluence, termination, unique normal form property, and similar 
fundamental properties as well as combinations thereof. 

As to the modular structure of TR.Ss, it is again natural to consider as a start the most simple 
way that TR.Ss can be combined to form a larger TRS: namely, as a disjoint sum. This means that 
the alphabets of the TRSs to be combined are disjoint, and that the rewrite rules of the sum TRS are 
the rules of the summand TRSs together. (Without the disjointness requirement the situation is even 
more complicated- see for some results in this direction: Dershowitz [81], Toyama [88].) A 
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disjoint union of two TRSs Ro· R1 is called in our paper a direct sum, notation R0 ED R1. 

Another simplifying assumption that we will make, is that Ro· R 1 are homogeneous TRSs, 

i.e. their signature is one-sorted (as opposed to the many-sorted or heterogeneous case; for results 

about direct sums of heterogeneous TRSs, see Ganzinger & Giegerich [87)). 

The first result in this setting is due to Toyama [87], where it is proved that confluence is a 

modular property. (I.e. R0 ED R1 is confluent <=> R0 and R1 are confluent. Here"~" is trivial; 

"~"is what we are interested in.) To appreciate the non-triviality of this fact, it may be contrasted 

with the fact that another fundamental property, termination, is not modular, as the following 

simple counterexample in Toyama [87a] shows: 

R0 = {F(O,l,x) ~ F(x,x,x)} 

R1 = {G(x,y) ~ x, G(x,y) ~ y}. 

It is trivial that R0 and R1 are terminating. However, Ro EB R1 is not terminating, because Ro EB R1 

has the infinite reduction sequence: 

F(G(O,l), G(O,l), G(0,1)) ~ F(O, G(O,l), G(O,l)) ~ F(O,l, G(0,1))) 

~ F(G(0,1), G(O,l), G(O,l)) ~ ... 

However, this counterexample uses a non-confluent TRS R1. A more complicated counterexample 

to the modularity of 'termination', involving only confluent TRSs, was given by Barendregt and 

Klop (for ground terms only). For this counterexample as well as for some improved versions, 

holding for open terms as well, and even using TRSs which are 'irreducible', see Toyama [87a]. 

Rephrased, this means that the important property of 'completeness' of TRSs (a TRS is complete if 

it is both confluent and terminating) is not modular, i.e. there are complete TRSs R0, R1 such that 

R0 EB R1 is not complete (in fact, not terminating; confluence of Ro ED R1 is ensured by the theorem 

in Toyama [87]). This counterexample, however, uses non-left-linear TRSs. 

The point of the present paper is that left-linearity is essential; if we restrict ourselves to 

left-linear TRSs, then completeness is modular. Thus we prove: IfR0, R1 are left-linear (meaning 

that the rewrite rules have no repeated variables in their left-hand sides), then Ro ED R1 is complete 

iff R0, R1 are so. As left-linearity is a property which is so easily checked, and many equational 

algebraic specifications can be given by TRSs which are left-linear, we feel that this result is 

worth-while. 

The proof, however, is rather intricate and not easily digested. A crucial element in the proof, 

and in general in the way that the summand TRSs interact, is how terms may 'collapse' to a 

subterm. The problem is that this collapsing behaviour may exhibit a 'nondeterministic' feature, 

which is caused by ambiguities among the rewrite rules. We hope that the present paper is of value 

not only because it establishes a result that in itself is simple enough, but also because of the 

analysis necessary for the proof which gives a kind of structure theory for disjoint combinations of 

TRSs and which may be of relevance in other, similar, studies. 

Regarding the question of modular properties in the present simple set-up, we mention the 

recent results by Rusinowitch [87) and Middeldorp [89); these papers, together, contain a complete 

analysis of the cases in which termination for Ro EB R1 may be concluded from termination of R0, 
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R1, depending on the distribution among Ro· R1 of so-called collapsing and duplicating rules. 

Another useful fact is established in Middeldorp [89a], where it is proved that the 'unique 

normal form property' is a modular property. 

CONTENTS 
Introduction 
1. Preliminaries 
2. Underlined reductions and frozen subtenns 
3. Mixed terms 
4. Deterministic terms 
5. Termination for the direct swn 
References 

1. Preliminaries 

We assume that the reader is familiar with the basic concepts and notations concerning term 

rewriting systems (TRSs); otherwise, see the basic references mentioned in the Introduction. In 

this section we exhibit the notions and concepts which are specific for the present paper, and we 

briefly recapitulate some of the more basic concepts. 

(i) A term rewriting system R has an alphabet consisting of a set j=' of function symbols F, G, 

H, ... , each having an 'arity', i.e. the number of arguments that the function symbols requires, 

and a set of variables x,y,z, .... So if F is n-ary, then F(t1 , ... ,tn) is a term, for terms t1 , ... ,tn. 

Constants are 0-ary function symbols. The set of terms of R, notation Ter(R), contains the terms 

which are inductively generated from the constant symbols, the variables x,y,z, ... and the other 

function symbols. Terms are denoted by t, s, ... but occasionally also by M, N, ... . 

(ii) Furthermore, a TRS R has a set Red(R) of reduction or rewrite rules r: t ~ s, or t ~r s. Here 

r is the name of the rewrite rule. A rewrite step has the form C[tcr] ~r C[scr], where cr is a 

substitution and C[] a context, i.e. a term with a 'hole' D. The transitive reflexive closure of ~r is 

-->>r; the transitive closure of ~r is~/. The reflexive closure of ~r is ~t- The convertibility 

(i.e. equivalence relation) generated by ~r is =r- Often the subscript r is omitted. Convertibility ( =) 

should not be confused with e, which denotes syntactical equality. The notation t -->> n s is short for 

t ~ ... ~ s (n steps). 

(iii) The concepts of confluence and termination are as usual. A TRS is 'complete' if its reduction 

relation is confluent and terminating (this is also called in the literature: canonical). A TRS R is 

left-linear if R contains no rewrite rule t ~ s such that t contains two or more occurrences of the 

same variable. 

(iv) We write t ~ s to indicate that t is a subterm of s. Always we will have a specific occurrence 

of sin tin mind; we will however not need a more precise formalism to indicate occurrences (e.g. 

as sequence numbers). If t ~ s and t ;,;e s, we write t c s, and call t a proper subterm of s. 

(v) In this paper every TRS will be terminating; hence every term has a normal form. The normal 

form of a term t is denoted by t-L. 
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2. Underlined reduction and frozen subterms 

Consider the TRS with set of reduction rules {F(x, C) ~ x, F(C, x) ~ x, H(x) ~ x, G(x) ~ x} 

and the term M = F(H(C), G(C)). Figure 2. l(a) displays the node-Iabeled tree corresponding to M. 

The term M has the following reductions to its normal form: 

(1) M ~ F(C, G(C)) ~ G(C) ~ C 

(2) M ~ F(H(C), C) ~ H(C) ~ C. 

Although both reductions end in C, the two C's are different with respect to their occurrence in M. 

This is graphically expressed in Figure 2.l(b) where the arrows indicate to which occurrence of C 

the term M is 'collapsed'. 

F F 

rl~r 
c c 

/'\ 
H G 

! ! 
(a) (b) 

Figure 2.i 

In the sequel we will need to be precise about such reductions to occurrences of subterms, rather 

than mere subterms. Therefore we introduce the concepts of "underlined" reductions and "frozen" 

subterms, as follows. 

2.1. DEFINITION. (i) Let R be some TRS. Then Re is the TRS with alphabet that of R together with 

a new unary function symbol 'e', not occurring in R, and with rules: those of R together with 

e(x) ~ x. 

(ii) Reduction according to the rule e(x) ~ x is called e-reduction; notation: ~ e for one 

e-reduction step. Thus: C[e(M)] ~e C[M] for a context C[] and a term Min Re. 

(iii) For terms Mi, M2 of Re we write Mi ~f M2 ('f' for 'frozen') if the redex contracted is not 

an e-redex nor in the scope of some 'e'. So if C[e(P)] ~f s N where S is the contracted redex, 

then it is not the case that S ~ e(P). 

2.2. NOTATION. (i) For notational ease we will henceforth write M instead of e(M) and R instead 

of Re. Terms from R are "underlined" terms (even if they contain no actual underlining). 

(ii) We write--+> for the transitive-reflexive closure of --+>r u --+> e· (This is in fact an ambiguous 

use of--+>, since it was already in use for not underlined terms. But the present extension of the old 

--+> to the case of underlined terms will cause no confusion.) 

(iii) In the sequel, Cr£i , .... i;i1 denotes a term such that all underlinings are displayed, i.e. 

C[Pi, ... ,PP] contains no underlined subterm. 

2.3. EXAMPLE. (i) Let R be the TRS as in the introduction of this section. Then the R-term 
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F( HCC), G(Q ) (in thee-notation: F(e(H(C)), e(G(e(C))))) has the reduction: 

F( l!(Q, G(C)) ~e F( H(C), G(C)) ~rF( C, G(C)) ~f 

G(C) ~e G(C) ~f .C. ~e C. 

(ii) Note that the tenns FC HCC). GCC) ) and F( HCC), GCC) ) are nonnal fonns with respect to 

~f (f-nonnal fonns). 

2.4. PROPOSITION. Let R be a confluent and left-linear TRS. Then: 

(i) In R, the reduction ~f is confluent. (See diagram in Figure 2.2( a).) 

(ii) In&. the reductions ~e and ~f commute. (See diagram in Figure 2.2(b).) 

f i f If 
e 

f 
t~: ::l 

~ O ···· ··········f .. !~::=·--§~='~ M4 M3 O·············e·· .. t:=·--:ii=~·~ M4 

(a) (b) 

Figure 2.2 

PROOF. (The shading of the arrows denotes that such arrows can be found, given the others.) 

(i) Consider in M1 the maximal underlined (occurrences ot) subtenns. Here 'maximal' refers to the 

subtenn ordering~.) Replace these subtenns by mutually different fresh variables, in order to 

"code" these subtenns. Do this everywhere in the reductions M 1 ~>r Mi, i = 2,3. The resulting 

reductions M 1* ~>Mi*• i = 2,3, are 'ordinary' (not underlined) reductions in R. Take the common 

reduct M4* according to R; and replace in Mi*~> M4* (i = 2,3) the coding variables by the 

original underlined subtenns. 

(ii) It suffices to prove the statement for the case that M1 ~> e M2 is one step M 1 ~e M2. Let this 

step be in fact M 1 = C[N] ~e C[N] = M2. Then M3 = C'[N, ... ,NJ where all descendants ofN are 

displayed. Now take M4 = C'[N, ... ,N]. D 

We will be especially interested in reductions of the fonn M = C[f] ~> f where f is the only 

underlined subtenn in C[f]. (Here and in the sequel we will pennit ourselves a slight abuse of 

notation by letting stand "M = C[ f] ~> f" for "M = C[P] and C[ f] ~> f".) Graphically, the 

existence of such a reduction is indicated by an arrow as in Figure 2.3. Cf. the arrows in Figure 

2.l(b). Indeed the two arrows there correspond with the ~rreductions: 

M = F( H(C), G(C) ) ~f F(C, G(C)) ~f G(C) ~f C. 
M = F( H(C), G(C) ) ~f F(H(C), C) ~f H(C) ~f C.. 
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Figure 2.3 

In the situation of Figure 2.3 we will sometimes say that (the displayed occurrence of) P can 

be "pulled up from M". We will also say that M "collapses to (the displayed occurrence of) P". 

2.5. REMARK. Since in C~ ~> f the subterm P initially is "frozen", it might be thought that C~ 

~> f implies C[z] ~> z for a fresh variable z. This is not the case as .the following example shows: 

Let R have the reduction rules 

F(x) ~ G(x, x) 

G(C, x) ~ x 

H(x) ~ x. 

Then F( HCC))~> HCC) in view of the reduction sequence 

F( HCC) ) ~ G( HCC), HCC) ) ~ G( H(C), HCC) ) ~ G( C, HCC) ) ~ ll[Q. 

However, F(z) ~> z does not hold. The explanation is that in a reduction C[;e.J ~> f not all 

descendants of the initial f need to remain frozen; only the f on the 'main line' of descendants 

leading to the ultimate E in the right-hand side of C[p] ~> f must be frozen. As the above 

reduction sequence shows, some descendants of the initial fin C[£], not in the main line of 

descendants, may actually play a necessary role in the collapse to the ultimate f. (What does hold 

is the implication C[ f] - ff :::) C[z] - z for a fresh variable z. The next proposition (part (i)) 

generalizes this obvious fact.) 

2.6. PROPOSITION. 

(i) C[;e_] - f C'[f, ... ,f.] (::} 

C[z] ~> C'[z, ... ,z]for afresh variable z (::} 

C[ Q] ~>r C'[Q, ... ,Q]for all Q. 

(ii) Let C[£] ~>r C'[f, ... ,f] and P = C"[Q]. Then C[C"[ Q ]] ~>r C'[C"[ Q ],. . .,C"[ Q ]]. 

PROOF. Routine. D 

2.7. PROPOSITION. Let C[f,. . .,f] ~>k f. (I.e. a reduction ofk steps ~e or ~f.) Then for some 

occurrence off in C[f,. . .,f] and some k' ~ k: 
k' C[P , .. .,f,. . .,P] ~> f. 
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PROOF. Consider a reduction C~ •... ,f] -+>k £.Now the final£ can be traced back to a unique 

ancestor £in C~ •... ,£.]. Removing the underlining of the other£ in C~ .... ,£.] we obtain 

C[P, ... ,f, ... ,P]. Clearly, there is now a reduction C[P, ... ,f, ... ,P] -+> £ which is the 'same' as 

the original reduction C~ •... ,f, ... ,f] -+> £ except that we possibly gain some e-steps (removals 

of underlinings). D 

2.8. LEMMA. Let C[.e.J -+> £and Q-+> P. Then C[ Q] -+> Q. 

PROOF. Suppose C[£.] -+>k £.We will prove the lemma by induction on k. The case k = 0 is 

trivial. Now let 

C[.e.J ~ C'[ £, ... , £] -+>k-1 £. 

By Proposition 2. 7 we have for some occurrence of£ in C'[ £, ... , £ ] and some k' ~ k - 1: 

C'[ P, ... , £, ... , p ] -+>k' £. 

By the induction hypothesis C'[ P, ... , Q, ... , P]-+> Q. So we have 

C[ Q] ~ C'[ Q, ... , Q, ... , Q] -+> C'[ Q, ... , Q, ... , Q ] -+> C'[ P, ... , Q, ... , P ] -+> Q. 

D 

2.9. PROPOSITION. Let C[.e.J -+>£and let C[.e.J -+>r C'[ £, ... ,£]where all occurrences of£ in 

C'[ £ , ... , £] are displayed. 

Then C'[ £, ... ,£]contains at least one occurrence of£, and C'[ £ , ... , £] -+> £(see 

Figure 2.4 ). 

C[£] 

" C'[£, ... '£] 

Figure 2.4 

PROOF. That C'[ £, ... ,£]contains some occurrence of£ follows immediately from 

C'[ £ , ... , £] -+> £, since underlinings cannot be created during a reduction. 

The proof of C'[ £ , ... , £] -+> £follows from the diagram in Figure 2.5. Note that the 

given reduction C[.e.J -+> £ consists of some sequence of-+> f and -+> e reductions; it is displayed in 

the upper part of the diagram in Figure 2.5. 
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C'[ f. ' ... ' f. 
Figure 2.5 

This diagram construction is possible by Proposition 2.4. Note that the right-hand side of the 

diagram is the empty reduction f ~>ff (i.e. consisting of zero steps), since f is an f-nonnal fonn. 

Hence the lower side of the reduction diagram gives us a reduction C'[ f , ... , f] ~>f . D 

2.10. LEMMA. If C[f] ~> f and P ~> Q then C[ Q] ~> Q. 

PROOF. Suppose C[f] ~>k f. We will prove the proposition by induction on k. The case k = 0 is 

trivial: then C[f] = f and indeed Q-+> Q. Induction hypothesis: the statement holds fork - 1 (k > 

0). Now let C[f] ~>k f.. So C[E] ~ C'[f, ... , f] ~>k - l f.. By Proposition 2.7, we have a 

reduction C'[P, ... , f , ... , P] ~>k' f for some k' ~ k -1 and for some occurrence of P. Hence, by 

the induction hypothesis , C'[P, ... ,Q, ... ,P] ~> Q. 

By Proposition 2.9, since C'[P, ... ,Q., ... ,P] ~>r C'[Q, ... , Q., ... , Q] we have 

C'[Q, ... ,Q, ... ,Q] ~> Q.. Concatenating this reduction with C[ Q.] ~ C'[ Q., ... , Q, ... ,Q.]-+> 

C'[Q,. . .,Q,. . .,Q] we have indeed C[ Q] ~> Q. O 

2.11. REMARK. From the preceding propositions we see that the relation C[f] ~> f is preserved 

under convertibility (=, the equivalence generated by~>, i.e. by ~e• ~f.). For, combining 

Lemma's 2.8 and 2.10 we have: 

C[f] ~> f & P = Q => C[Q] ~> Q. 

Moreover, C[E] ~> f is preserved under any reduction of C[f] which leaves f unaffected, as 

Proposition 2.9 states (f may be multiplied, though.) 

3. Mixed terms 

We will now consider disjoint unions, or as we will call them, direct sums R0 ED R1 of TRSs R0, 

R1 having disjoint alphabets. These are defined as follows. Let '.F be a set of function and constant 

symbols, and let V be a countably infinite set of variables. Then Ter('.F, V) is the set of tenns 

constructed from '.F and V. If Ri (i = 0,1) are TRSs with rule sets Red(Ri), terms Ter('.Fi , V) such 

that '.F 0 and '.F 1 are disjoint, then R0 Ef> R1 is the TRS with tenns Ter('.F 0 u :F 1, V) and reduction 

rules Red(R0) u Red(R1). Instead of Ter(:f 0 u :F1, V) we will also write Ter<Ro ED R1). 

For mnemotechnical reasons we will call the function and constant symbols of R0: black and 
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those of R1: white. To distinguish in print between them, the black symbols are capitals and the 

white symbols are lower case. Thus a term M E Ter(R0 EB R1), in its tree notation, is a 

constellation of black and white "triangles", as in Figure 3.1. Here the root of M is the leading 

symbolofM. 

M 

..._----principal subterms 

Figure 3.1 

Note that ifRo and R1 are complete (as always assumed in this paper), every term in 

Ter(R0 Ee R1) has a normal form; this can easily be proved using innermost reductions (in which 

by definition only redexes are reduced containing no proper subredexes). Moreover, the normal 

form is unique, since Ro EB R1 is confluent (by the main theorem in Toyama [87]). The normal 

form of term twill be denoted by t.!.. 

3.1. DEFINITION. (i) Let M = C[B1,. .. ,Bn] E Ter(R0 EB R1) and C[] iiE D. Then we write M = 
C[B 1,. . .,Bn] if C[ ,. . ., ] is a context of R0 and root(Bi) E :F 1 for i = l ,. . .,n. (Likewise with 0, 1 

interchanged.) The Bi are called the principal subtenns of M. 

(ii) The set 8(M) of special subterms (more precisely, subterm occurrences) is inductively 

defined as follows: 

(iii) 8d(M) = {NINE 8(M) & root(N) E :Fd} (d = 0,1). 

(iv) G.iM) ={NIM-+> N & root(N) E :Fd}. 

3.2. DEFINITION. Let M E Ter(Ro EB Rl). Then: 
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rank(M) = { 
1 

maxi { rank(Bi)} + 1 

if ME Ter(Rd) (d = 0,1) 

if M = C[B 1, •.. ,Bn] (n > 0) 

The following fact (where ~ is reduction in R0 E9 R1) has a routine proof which is omitted. 

3.3. PROPOSITION. /fM ~ N then rank(M) ~ rank(N). D 

3.4. PROPOSITION. Let M -+> N where both M, N have a black root. Then there exists a reduction 

M = M0 ~ M1 ~ M2 ~ ... ~ ~ = N such that all Mi (i = O, ... ,n) have a black root. 

PROOF. Let M -+>k N (k ~ 0). We will prove the proposition by induction on k. The case k = 0 is 

trivial. Now let M ~ M' -+>k-l N. If the root of M' is black, we are through, using the induction 

hypothesis. If the root of M' is white, then there exists a context C[ ] with black root such that M 

= C[M'] and C[ ] ~ D, the trivial context. Thus, we have a reduction M = C[M'] -+> C[N] ~ N 

in which all terms have black root. D 

p ~ Q' = Q 

(a) 

P:: Q 

(b) 

p~ Q 

(c) 

Figure 3.2 
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3.5. LEMMA. Let M ~ N where M, N have black roots. Let Q be a special subterm ofN with 

white root. Then there is a special subterm P ofM with white root such that P = Q or P ~ Q. 

PROOF. Consider the (white) root symbol of Q c N and trace it back to its ancestor symbol in M. 

Of course the ancestor symbol is in some white 'triangle' of M. In case it is not the root of the 

white triangle (as in Figure 3.2(a)), which is the top triangle of the special subterm Pc M, then 

clearly P collapses to Q' = Q. So P ~ Q' = Q. 

In case the root of Q traces back to the root of some special subterm P of N with white root, 

there are two possibilities. Either in the reduction step M ~A N a redex A has been contracted 

whose root (indicated with an arrow in the figure) is below the root of P, in which case P ~ Q; or 

the root of A was above that of P or incomparable with that of P, in which case P = Q. These cases 

are illustrated by Figures 3.2(c),(b) respectively. D 

3.6. LEMMA. Let M have a black root (E :F 0) and suppose M --+> N where N has a white root. 

Then M has a special subterm P with white root such that M = C[e] --+> £and P --+> N. 

(See Figure 3.3.) 

Figure 3.3 

PROOF. Suppose M -+>k N. We will prove the proposition by induction on k. The case k = 1 is 

trivial; then N must be in fact one of the principal subterms ~of M = C'[M 1 ,. ... ~ •...• ~] and 

we can take P = ~ 

Induction hypothesis: suppose the statement is proved fork - 1. Now consider M -+>k N, i.e. 

M ~ M' -+>k-l N for some M'. 

Case 1. The root of M' is white. Then M = C'[M 1 ,. ... ~,. . .,Mn] ~ M' =Mr for some r. Take P 

=~. 

Case 2. The root of M' is black. According to the induction hypothesis M' has a special subterm P' 

with white root such that M' = C[£'] --+> £' and P' --+> N. By Lemma 3.5 there is a special subterm 

P E S 1 (M) such that P ~ P' or P = P'. We distinguish two subcases: 

Case 2.1. P ~ P'. Then M = C[P] ~ M' = C[P']. By Lemma 2.8 M = C[£] --+> £. Since P ~ P' 

--+> N the statement is proved for this case. 

Case 2.2. P = P'. Then M = C[£] ~ C*[£,. . .,f,. . .,£] -+>e C*[P,. . .,£.,. . .,P] = M' = C[£] = 

C[£'] --+> £' = £ .. D 

___ -:__. ___ ~:..,;_. 
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3. 7. Essential sub terms. 

As the last lemma (3.6) states, if M has a black root all reductions of M to a tenn with white root 

can be 'factored through' reductions of M to its special subtenns with white root. Of these special 

subtenns with white root, some are even more special: the essential subtenns of M . As we will 

see, every collapse reduction of M to a special subtcnn Q with white root can be factored as a 

collapse of M to an essential subtenn P followed by a collapse of P to Q. 

Figure 3.4 

3. 7 .1. DEFINITION. Let M have black root. Let P be a special subtenn of M with white root such 

that M collapses to P. Then P is an essential subtenn (occurrence) of M if there is no special 

subterm P' with white root such that P ;!!: P', M collapses to P', P' collapses to P. The set of 

essential subtenns of M is :E(M). (Likewise with colors interchanged.) 

In other words: Let root(M) E f' 0 . Then the essential subtenns of M are the maximal 

elements in the set {NE 8 1(M) IM collapses to N}, partially ordered by the relation' ... collapses 

to ... '. 

3.7.2. LEMMA. Let M have black root, and suppose M-+> N where N has white root. Then for 

some essential subterm P ofM: P--+> N. 

PROOF. Immediately by Lemma 3.6 and Definition 3.7.1. D 

4. Deterministic terms 

In the preceding section we have already set up some notions to discuss the 'collapsing behaviour' 

of mixed terms. We will now introduce an important property of this collapsing behaviour- first 

for the case of a single TRS. 

4.1. DEFINITION. Let R be a TRS and M E Ter(R). Then M is a nondeterministic term if 
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(a) (b) 

Figure 4.1 

(i) M = C[P, Q] and C[£, Q] --+> £, C[P, Q] --+> Q, or 

(ii) M = C[P], P = C'[Q], C[£] --+> £, C[C'[ Q]] --+> Q but not C'[ Q] --+> Q. 

An example of a nondetenninistic tenn was given in the introduction of Section 2, for 

nondetenninism of type (i). As an example of nondeterminism of type (ii) consider 

R = {F(x) -7 G(x,x), G(D,x) -7 x, G(H(y),D) -7 y, H(D) -7 D, C -7 D}. This TRS is left-linear 

and complete. Now take M = F(H(C)); then F(lliQ) --+> HCC), F(H( C )) --+> C, but not 

H( C )--+>C. 

4.2. REMARK. The phenomenon of nondetenninistic tenns is caused by ambiguities between the 

rewrite rules (i.e. the presence of 'critical pairs'). Indeed, one can prove: In a left-linear, 

non-ambiguous TRS (called 'regular' in Klop [89]) all tenns are deterministic. The proof is rather 

lengthy and since we have no need for this fact here, not included in this paper. 

4.3. DEFINITION. Let R0, R1 be arbitrary TRSs and let M e Ter(R0 E9 R1). Then Mis a mixed 

nondeterministic term if M has at least two essential subtenn occurrences. (See Figure 4.2.) 

(a) 

Figure 4.2 
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4.3.1 . REMARK. There are tenns M, M' with M -7 M' such that M' is mixed nondetenninistic, but 

Mis not. Example: consider Ro= {G(x) -7 F(x,x), F(x,C) -7 x, F(C,x) -7 x}, R 1 = {g(x) -7 x} 

and M = G(g(C)) -7 F(g(C), g(C)) = M'. 

Clearly, a mixed nondeterministic tenn is nondetenninistic in the sense of Definition 4.1. 

4.4. PROPOSITION. Let C[M1, ... ,MP, ... ,Mm] -+> Mp where all Mi (i = 1, ... ,m) are normal forms . 

Then C[z1 ,. . .,zp, ... ,zm] -+> zp (for fresh variables z1 , ... ,zmJ. 

PROOF. An obvious consequence of the definition of direct sum. O 

In the sequel we will say that a term has colour change if root(M) is black and root(M J,) is 

white, or vice versa. 

4.5. PROPOSITION. Let the root ofM be black and suppose M has color change (i.e. the root of 

MJ. is white). Let M = C[M1 , •.. ,~, ...• ~]where~ is an essential subterm of M. 

(i) Then M cannot have an essential subterm Q c ~· 

(ii) No Mq with q * p is an essential sub term of M. 

PROOF. (i) Since by confluence MPJ. = MJ., the root of ~J, is white. Thus we can write 

C[M1 J.,. .. ,MPJ.,. . .,Mm J.] = C'[N 1,. .. ,Nk_1,MPJ.,Nk+l '"""'Nn] where Ni is a nonnal form for all 

i. (Note the brackets [ ] in the last context.) 

By Proposition 2.9 and Lemma 2.10 we have 

(a) 

Figure 4.3 
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Hence C[M 1, ... ,Mp-i•Mp·~+i•···•Mm] -+>tMp· (1) 

Now put~= C"[Q], where C"[] iiE D, and suppose Q is an essential subterm of M. Then 

Now from (1) we have 

From (2) and (3) it follows by Proposition 2.9 that C"[ Q] -+> Q. But this contradicts the fact that 

Q is an essential subterm of M. This ends the proof of (i). 

(ii). Suppose both~· Mq (p "* q) are essential subterms of M. Since MJ- = ~J, = MqJ-, it follows 

that the roots of~· Mq are white. Thus we can write 

C[M1..J.., ... , ~J-, ... , MqJ-, ... , MmJ-J = 

C'[N1•···•Nk-l• ~J,,Nk+l•···•Ns-1• MqJ-,Ns+1•···•Nn] 

where Ni is a normal form for all i. By a similar argument as in (i), we have 

and also-+> z
8

• But this contradicts the confluence property of~- D 

4.6. PROPOSITION. Let M = C[M1, ...• ~] where Mi (i = 1, ... ,m) is in normal form. Let M' = 

C[z1, ... ,zm] where z1, ... ,zm are fresh variables not in M. !JM has an infinite reduction M 

~~~ ... ,then M' has an infinite reduction M' ~~~ .... 

PROOF. An obvious consequence of the definition of direct sum. D 

4.7. PROPOSITION. Let M = C[M1, ... ,~, ... ,Mm] have co/or change. Let Q c MP be an essential 

but not principal subterm of M. Then: 

(i) ~has co/or change; 

(ii) ~ has an essential subterm P :::> Q such that Q is again an essential subterm in 

M' = C[M1, ... ,P, ... ,Mml = [~~P] M, i.e. M after collapsing MP to P. 

(See Figure 4.4.) 

PROOF. Suppose M has a black root, as in Figure 4.4. First we note that~ is not an essential 

subterm of M, by Proposition 4.S(i). 

Given is that M -+> Q. We will now define an actual reduction from M to Q where~ is used 

'as late as possible', as if one were reluctant to actually use ~- First ~ is frozen; result 
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If such that 

Figure 4.4 

C[M1, ... ,MP,. . .,Mm]. This tennis reduced as far as possible in the sense of-+>c; i.e. it is reduced 

to its f-nonnal fonn A0 = C0CMp •...• Mp] where all occurrences of MP are displayed. Note that 

there is at least one such occurrence, and that C0[Mp•···•Mp] -+> Q. Exactly one of the MP 

occurrences will contain an ancestor of Q. This occurrence of ~ we underline: A0' = 

C0[Mp•····Mii·····~] and again we take the f-nonnal fonn, result A1 = C11Mp•···•Mpl This 

procedure is repeated, leading to a sequence A0, Ao'· A1, A1', Ai .... 

Claim. The procedure generating A0, A1, A2, ... stops at some n such that An= Cn[MP], 

containing exactly one occurrence ofMp. 

Proof of the claim. Suppose an infinite sequence Ao· A1, ... , Ai, ... is generated. Then in Ai = 

Ci[ Mp•···• MP] there are at least two occurrences of MP. This means that we have an infinite 

reduction 

Ao-+>e Ao' ~f+ A1 -+>e A1' ~t A1-+>e ··· · 

We want to prove that this gives rise to an infinite reduction B0 ~+ B1 ~+ B2 ~+ ... where Bi= 

Ci[~!, ...• ~!]. Since B0 = C0[~!, ...• ~!] has all its principal subtenns in nonnal fonn, this 

contradicts termination of Rd (d = 0,1), using Proposition 4.6. Hence the sequence A0, Al' ... 

must stop. Clearly, the sequence stops in some~= Cnl:Mpl where Mp occurs just once. 

Now we construct the following diagram (see Figure 4.5): 

ei°~fif. A,~--f _ _._+eA; 

t /Dof3 
Figure 4.5 
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Here 

In the diagram of Figure 4.5 the subdiagrams (a) 'follow' from confluence of--+>r (Proposition 

2.4(i)) and the fact that Ai is an f-normal form. Further, the '+' in~·~+ Ai+l follows since an 

underlined subterm is (at least) doubled. 

We wish to show B0 ~+ B1 ~+ B2 ~+ ... . Consider to this end the subdiagrams (j3): 

Di= ci[MP!, ... ,MP, ... ,MP!J ~r+ ci+ilMp····· MPJ 
! 
! 

=~+l 
! 
! 

and in particular the reduction Di ~ + ~+ 1. Copy this reduction, now replacing each Mp by ~ ! . 
Clearly, this is just the reduction Bi~+ Bi+l we are looking for. Dclairn 

Now consider~= Cn~]. Observe that Cn[ ] is not the trivial context, i.e.~" MP; 

otherwise we would have established that ~ is an essential subterm of M, which is not the case as 

we remarked earlier. Also observe that Cn[ ] is in normal form. 

Oearly, ~is still a principal subterm of CnlMp)- no white symbol can have settled 'above' 

the white root of~· Let Cn[MP] be in fact C'[Pl' ... ,Pk,Mp,Pk+l'""''Pr]. Now what is the color 

of the root of~!? If it is white, then Cn[~!] is a normal form, with black root. But Cn[~!] is 

in fact M !--contradicting the assumption that M has col or change. Hence ~ has color change, 

and we have proved (i) of the lemma. 

(ii) So we have Cn [Mp] = C'[P 1, ... ,Pk,Mp,Pk+l •···•Pr] = C'[P 1, .. . ,Pk,C 0 [Q],Pk+l•· ··•Pr] and 

C'[P1 , . .. ,Pk,C0
[ Q ],Pk+l•··· •Pr] --+> Q (by Proposition 2.9). The root of Cn[MP] is black, the 

root of Q is white and~[ ] is in normal form. Therefore the only way to "get at" Q is that~ 

reduces to a term with a black top, say P', where P' contains an ancestor of Q. 

Since~ reduces to P' with black root, by Lemma 3.7.2 there is an essential subterm P of 

~ such that P -+> P' and also containing an ancestor of Q. (To see that P also contains an ancestor 

of Q: underline Qin M, or equivalently, replace Q by e(Q). Oearly, P' contains e(Q), since P' -+> 

e(Q) by a slight abuse of notation. Now since P -+> P', P must contain the symbol e. Hence P 

contains an ancestor of Q.) 

It remains to prove that in[~~ P] M = M' the subterm Q is still essential. By Proposition 

2.9 we have indeed M' = C"[ Q] -+> Q. It might be however that Q is not an essential subterm of 

M', because of a situation as in Figure 4.6(a). But then it is evident that "similar" arrows as in 

Figure 4.6(b) would have existed before the collaps, in contradiction with the fact that Q is an 

essential subterm of M. D 
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(a) 

Figure4.6 

4.8. MAIN LEMMA. Let M be a term with color change. Then M has exactly one essential subterm. 

PROOF. For a proof by contradiction, suppose that there exists a tenn with color change but having 

more than one essential subterm. Let M be such a term with minimal length (i.e. the total number 

of symbols in M). 

By Proposition 4.5(ii), M must have an essential subtenn Q which is not principal. (See 

Figure 4.7.) Let~ be the principal subterm such that~:::> Q. 

(b) 

Figure 4.7 

By Proposition 4.7, ~has color change, and moreover~ has an essential subtenn P :::> Q. 

Because of the minimality property of M, P is also the unique essential subtenn of~-

Claim. M', originating from M by collapsing~ to Q (see Figure 4.7(b)), has at least as many 

essential subterms as M. 
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If this Claim is true we are done, because it yields a contradiction with the minimality 
property of M. Actually, M' has just as many essential subterms as M, but we will not need that. 

Proof of the claim. As indicated in Figure 4. 7(b), Qin M' is still an essential subterm. We have to 
show that none of the essential subterms of Mis 'lost' in the collapse to M'. So let us inspect all 

essential subterms of Mand see that they are preserved as essential subterms in M'. Figure 4.8(a) 

gives a catalogue of possible and impossible positions of th~ essential subterms of M. 

Arrows of type 1, leading to an essential subterm of M not in ~· stay preserved by 
Proposition 2.9 (see Figure 4.8(b)).The same holds for arrows of type 2,3 leading to subterms of 

P, the unique essential subterm of~· 

However, what about possible arrows of type 4, to a subterm intermediate between ~ and 

P, or arrow 5, to~ itself? Or arrows of type 6? Such arrows seem to get lost in the collapse to 
M'. Fortunately, they do not exist: arrow 5 is forbidden by Proposition 4.5(i), and arrow 4 cannot 
exist by the unicity of P. (More explicitly: suppose arrow 4 to Q" exists. Then by Proposition 4.7, 

there is an essential subterm P' of~ with P' :::> Q". 1bis contradicts the unicity of P and Pc Q".) 
Finally, an arrow of type 6 cannot exist by the same reasoning as for type 4. D 

(b) 

Figure 4.8 

As an example, Figure 4.9 shows how M can be collapsed to yield the impossible situation 
as in Proposition 4.5(ii). 

--.. - - =--~ -
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Figure 4.9 

5. Termination for the direct sum 

In this section we will finally prove the main result, i.e. the tennination property for the direct sum 

R 0 Ea R 1 of left-linear and complete R0 , R1. To this end, we define for each tenn M E 

Ter(R0EBR1) two tenns: the black projection M0 E Ter(Ro) of M, and the white projection M 1 E 

Ter(R1) ofM. Roughly, the black/white projections of M contain precisely the 'infonnation' in the 

black, respectively white, part of M. In fact we will prove that if Mis a supposed minimal (with 

respect to length) term with white root, admitting an infinite reduction, then the white projection 

M 1 has already an infinite reduction. As M 1 is in Ter(R1), this is in contradiction with the 

tennination property of R1 and we will have proved tennination for Ro Ea R1. 

The definition of the projections is rather subtle and rests heavily upon the Main Lemma 4.8. 

We will prepare the way by an example. Suppose Mis structured as in Figure 5. l(a); a concrete 

example is: M = F(g(C), h(C)) as in Figure 5.l(b) where R0 = {F(x, C) ~ x, F(C, x) ~ x} and 

R 1 = {g(x) ~ x, h(x) ~ x}. So P1 = g(C), P2 = h(C) are the essential subterms of M. Now 

suppose we wish to determine the white projection M1. As M can collapse to P 1 as well as to P2, 

the projection M 1 should convey the information in both P1, P2. The problem is that these 

subterms are disjoint (in this case). Yet, there is a way to combine them into one term: namely by 

piling them with result as in Figure 5. l(c), respectively 5. l(d). Throughout this section the 

variable x will play a special role. 

-I 
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(a) (b) 

g 

+1 h 

+1 
x 

(c) (d) 

Figure 5.1 

Of course, we were lucky in this example, since the white top triangles of P 1, P 2 which we 
wanted to pile, were indeed 'pileable'. In the situation of Figure 5.2, where P1 is supposed to be 
again nondeterministic, the piling would not have succeeded, because triangles 1, 2 can be taken 
such that they cannot be piled. However, our Main Lemma 4.8 says that such a situation does not 
exist and, therefore, piling succeeds as will be proved in more detail below. 

1 2 

Figure 5.2 

5.0.1. VARIABLE CONVENTION. From now on we will assume that every term Me Ter(R0 $ R1) 

has only 'x' as variable occurrences, unless other variables are explicitly displayed. Since R0 $ R1 
is left-linear, this variable convention may be assumed in the sequel without loss of generality. 

5.1. DEFINITION. Let R be a confluent and left-linear 'IRS. Let P1, ... ,P P be a sequence of terms 

of R (p ~ 2). Then the term pile(Pl' ... ,PP) is defined as follows: 

CASE 1. Pi~> x for i = 1,. . .,p. So, Pi= Ci[x] such that Ci[ x_] ~> x_ (there may be other 

occurrences of not underlined x's in Ci[ K ]). 

Then pile(P1, .. .,PP) = C1[C2[ ... CP_1[CP[x]] ... ]]. 

CASE 2. Not case 1: then pile(P1, ... ,PP) is undefined. 

- -- :,..,. 
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5.1.1. EXAMPLE. Note that pile(P1, ... ,PP) does not merely depend on P1, ... ,PP but also on R. If 

R = {F(x,y) -7 x, l(x) -7 x} and P1 = F(x,x), P2 = l(x), then pile(P1,P2) = F(I(x), x). If in R the 

first rule is replaced by F(x,y) -7 y, then pile(P1 ,P2) = F(x, I(x)). 

5.1.2. REMARK. The condition in Definition 5.1, that R is confluent and left-linear, is necessary to 

ensure that pile is a (partial) function. Otherwise, taking R = {F(x,y) -7 x, F(x,y) -7 y, l(x) -7 x} 

and P1 = F(x,x), P2 = l(x), we would have (see the previous example) pile(P1,P2) = F(x, I(x)) as 

well as F(l(x), x). That confluence and left-linearity of R is sufficient to make pile into a function, 

is easily seen. For, it is impossible that then C[ x. x] -+> x as well as C[ x, x ] -+> x. since this 

implies (by left-linearity) that C[x,y] -+> x as well as y, contradicting confluence. 

In the sequel, we will use pile for terms of R0 EE> R1, where R0, R 1 are complete and 

left-linear. Indeed the direct sum is then confluent (and, trivially, left-linear), as guaranteed by the 

theorem in Toyama [87] stating that the direct sum of confluent TRSs is again confluent. Thus the 

operation pile is well-defined. 

5.2. DEFINITION. Let ME Ter(R0 EE> R1). Then the white projection M1 of Mis defined by 

induction on rank(M): 

(1) x1 = x 
(2) root(M) is white: 

(2.1) ME Ter(R1), then Ml = M 

(2.2) M = C[M 1, ... ,Mm] (m > 0), then M1 a C[M1 l, ... ,Mm l] 

(3) root(M) is black: 

(3.1) M has no essential subterm. Then M1 = x. 

(3.2) M has precisely one essential subterm P. Then M1 = p 1. 

(3.3) Mis mixed nondeterministic, with sequence of essential subterms Pl' ... ,PP. Then 

Mt= pile(P11,. .. ,PP1). 

(The black projection M0 is defined by interchanging 0,1 and black, white.) In case (3.3), the 

essential subterm occurrences P 1, ... ,P P may be ordered by precedence of their head symbol. (The 

precise ordering is irrelevant.) Note that M1 may be undefined, due to the possible undefinedness 

of pile(P1
1, ... ,P P 1 ). We will however show that in the present situation, where R0 , R1 are 

left-linear and complete, pile(P1
1, ... ,PP 1) and hence M1 (and likewise Mo) is defined for all M. 

Note further that (3.2) is not a special case of (3.3) since in general pile(N) ;e N. (In fact: pile(N) = 

N <=> pile(N) is defined.) Finally, note that in (3.2), (3.3) we have rank(P1) < rank(M) and 

rank(Pi1) < rank(M) respectively. 

~ 

I 



5 .3. EXAMPLE. 

Figure 5.3 

5.4. EXAMPLE. 

1 
= 

Figure 5.4 
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5.4.1. REMARK. (Cf. Example 5.3.) This remark will be needed in the proof of Proposition 5.13. 

Let M have black root, M = C[M 1, ... ,Mm]. Then, by Definition 5.2, M0 = C[M1°, ... ,Mm 0], i.e. 

the 'projection symbol' 0 is pushed down until it reaches the principal subterms. From this it 

follows that if M = C'[N1, ... ,Nn] where C'[ , ... ,]is all black, then we have also that M0 = 
C'[N1°, ... ,Nn °J. (See Figure 5.5.) 

= 

Figure 5.5 

5.5. EXAMPLE. Consider the TRSs R0 = {F(C(y), x) ~ x, F(x, C(y)) ~ x, C(y) ~ D}, R1 = 

{g(x) ~ x, h(x) ~ x} with R1 containing also a constant 'a'. Then 

( F(g(C(a), h(C(a))) )1 =pile( (g(C(a)))1, (h(C(a)))1) = 
pile( g((C(a))1), h((C(a))1)) = pile(g(x), h(x)) = g(h(x)). 

5.6. EXAMPLE. The black projection of the following term (in Figure 5.6) is undefined; however, 

by the Main Lemma (4.8) such terms cannot exist (when R0, R1 are left-linear and complete). 

= = 

: :-:-. pile~ 'IJ. , undefined 
.J :illf:l:. 

Figure 5.6 

In many cases, the result of projecting M to Mo or M 1 will be a term collapsing to the special 

variable x (I.e. Mo-+> x, respectively M1 -+> x.) See e.g. Example 5.5. We will prove this fact 

now. 

5.7. LEMMA. Md-+> x ~ root(M.!) e :F d (d = 0,1) 

PROOF. We will prove a slightly stronger statement, namely (i) & (ii): 

(i) If root(M.!) e :F d• then Md -+> x 

(ii) If root(M.!) e :F d and M.! = C*[M 1 , ... ,Mm] (m ~ 0), then MdJ. = C*[x, ... ,x]. (Hence: not 

Md-+> x.) 
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We will prove (i) & (ii) by induction on rank(M). 

Basis. rank(M) = 1. 

Case 1. M E Ter(Rd). Then Md = M, by (1) or (2.1) of Definition 5.2. If M! = x, then Md = M --+> 

x, so (i) holds; (ii) holds vacuously. If root(M.!.) e :F d• then (i) holds vacuously; (ii) holds since 

Md.J..::M.J... 

Case 2. Me Ter(R1_d). We may suppose Mee x, since the case M = x was covered in case 1. By 

(3.1) of Definition 5.2, Md = x. So (i) holds. Statement (ii) holds vacuously. 

Induction hypothesis. Assume (i) & (ii) hold for rank(M) < k (k ~ 2). 

Now consider M with rank(M) = k. 

Case 3. root(M) E :F d· Let M = C[M 1 , ••.• ~] (m ~ 1), so Md = C[M1 d, ... ,MmdJ. Without loss of 

generality we may assume that root(Mi!) e :F d for 1 ~ i < p and root(Mj!) E :F d for p ~ j ~ m. So, 

by the induction hypothesis: Mid--+> x (1 ~ i < p), and writing Mj! = Cj "'[Nj,l •···•Nj,nj] 

(nj ~ 0, p ~ j ~ m): Mjd,J.. = Cj "'[x, ... x]. Thus 

M! = C[M1.J.., ...• ~.J..J.J.. 

= C[M 1 .J.., ... ,Mp-l .J.., CP "'[Np,l•···•Np,np] , ... ,Cm "'[Nm,l•···•Nm,nm] ].!. 

and 

Md! = C[M1 d.J.., ... ,Mm d,J.. 1.J.. 

= C[x, ... ,x, CP "'[x, ... ,x], ... , Cm "'[x, ... ,x] ]!. 

Note that M 1 ! , ... ,~_1 !, Np,l •···•Nm,nm are normal forms having roots not in :F d· Therefore, if 

root(M.!.) e :Fd, then 

* * I C[x, ... ,x, CP [x, ... ,x], ... ,Cm [x, ... ,x] ]..i- = x 

and if root(M-1) E :F d• then we have a context C"'[ , ... , ] = C[ , ... , , CP "'[ , ... , ], ... , Cm"'[ , ... , ]].!. 

such that M! = C"'[N1, ... ,Nn] where Nie {M1.J.., ... ,Mp-l,J.., Np,l•···•Nm,nml and Md.J.. = 

C"'[x, ... ,x] ;ex (using Np,l d = ... = Nn,nm d = x by (3.1) of Definition 5.2). 

~. root(M) e :F d· Distinguish the subcases: 

Case 4.1. M has no essential subtenn. Then Md == x, either by (1) of Definition 5.2 or (3.1). Hence 

Md.J.. = x, and (i) & (ii) hold. 

Case 4 .2. M has precisely one essential subtenn P. Then Md =pd. Note that rank(P) < k. Since 

M-1 = P! and Md.J.. = pd,J.., the claim follows by using the induction hypothesis. 

Case 4.3. M has essential subtenns P 1,. .. ,PP (p > 1). Note that rank(Pi) < k for all i. By the Main 

Lemma, root(M!) e :Fd. Since M! =Pi!, also root(Pi!) e :Fd for all i. So, by the induction 

hypothesis, pid--+> x for all i. Now Md = pile(P1 d, ... ,Ppd) and since pid --+> x (i = 1, ... ,p), Md is 

defined. Obviously, Md = pile(P1 d, ... ,P Pd)--+> x. Hence (i) is true and (ii) holds vacuously. D 
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5.7.1. REMARK. Note that the fonnulation of Lemma 5.7 entails: 

5.8. REMARK. From Lemma 5.7 and the Main Lemma 4.8 it follows that the projections M0, M1 

are always defined. For, consider case (3.3) in Definition 5.2 of M 1. So, root(M) is black. Since 

M is nondetenninistic, it cannot have color change, i.e. root(M J.) is black or M J, = x. Now M J, = 
P1 .!. = ... = PPJ. where the Pi (i = l, ... ,p) are the essential subtenns of M. By Lemma 5.7: 

(i = l, ... ,p). Hence pile(P1
1, ... ,PP1) is defined. 

5.9. PROPOsmoN. Let M have a black root and suppose P is an essential subterm ofM. Then M1 

~) pl_ 

PROOF. See Definition 5.2 of M1. The only possible cases are (3.2) and (3.3). In case (3.2), M1 = 
P 1. In case (3.3), M1 =pile(P1

1, ... ,PP1) where P =Pk for some k E { l, ... ,p}. From Remark 5.8 

we know thatPi1 = Ci[x] such that q[ i] ~>~.Hence by definition of 'pile': 

Now we would like to project a supposed infinite reduction M0 ~ M1 ~ M2 ~ ... of some 

M0 E Ter(R0 Et> R1) directly into a reduction Mod~> M1 d ~> M2 d ~> ... containing infinitely many 

proper steps. Unfortunately, a step M ~Nin general does not project into a reduction~~> Nd, 

as the following example shows. 

5 .10. EXAMPLE. Let Ro, R1 be as in Remark 4.3.1: 

R0 = {G(x) ~ F(x,x), F(x,C) ~ x, F(C,x) ~ x} 

R 1 = {g(x) ~ x}. 

Consider M=G(g(C)) ~ F(g(C), g(C)) =N. Then M1 = g(x) and N1 = g(g(x)). So: not M1 ~> N1. 

However, we can translate an infinite reduction in R0 E9 R1 into an infinite reduction in one 

of the components in an indirect way. 

5.11. NOTATION. (i) We write M =
0 

N when M, N have the same outennost-layer context, i.e. M 

= C[M 1, ... ,Mm] and N = C[N 1, ... ,Nm] for some Mi, Ni (i = l, ... ,m). 

(ii) Let M = C[M1, ... ,Mm] and suppose M ~RN. If the redex occurrence R occurs in some 

Mi, we write M ~i N ('inner reduction'); otherwise we write M ~o N ('outer reduction'). 
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5 .12. PROPOSITION. Let M ~ 
0 

N where M, N have white roots. Suppose M =0 
A and A~> i M 

(internal reduction). Then there exists a term B such that N =
0 

B, A ~ 
0 

B, B ~> i N and A 1 ~ B 1. 

(See diagram in Figure 5.7.) 

PROOF. Let A= C[A 1, .. .,Am], M = C[M 1,. .. ,Mm] and N = C'[Mil, .. .,Min] (ij E {l, .. .,m}). 

Take B = C'[Ail, .. .,Ain]. Then A ~o B and B ~>i N. From A1 = C[A1
1, .. .,Am 1] and B1 = 

C'[Ail 1, ... ,Am 1] it follows that A 1 ~ B1. D 

M, white root N, white root 

0 .:::~:,, 

= ~~t· 
0 ................................................. -................................ lt~~:~·o 

1 A1 B 

Figure 5.7 

5 .13. PROPOSITION. Let M -J> N where root(N) is white. Then there exists a term A such that N 

=
0 

A, A ~>i N, M -J> A, and Ml--+> Al. 

(See diagram in Figure 5.8.) 

1 0 ''"'·:·m: .. ,,,,,.""'~~·"·"''.'"'·4~;:;,,~i!l~''"0 1 M ... A 

Figure 5.8 

PROOF. We will prove the proposition by induction on rank(M). 

~: rank(M) = 1. This case is trivial: take A = N. 

Induction hypothesis: the proposition holds for M with rank(M) < k. Now let M have rank k. 

CLAIM. The proposition holds ifM ~>i N. 

PROOF OF THE CLAIM. Let M =: C[M 1, ... ,MmJ ~>i N = C[N1, ... ,Nm] where Mi~> Ni for i = 
l,. .. ,m. Without loss of generality we may assume that N1 = x, ... , Np-l = x, root(Ni) is white 

for p ::;; i < q, and root(Nj) is black for q ::;; j $; m. Thus 

___ _ -;:- ;.~ 
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By the induction hypothesis, for every Mi (p s; i < q) there is a tenn Ai such that we have the 

diagram in Figure 5.9. 

Figure 5.9 

M. 
1 

10 
M. 

1 

(p:5i<q) 

Now take A= C[x, .. . ,x,~, ... ,Aq-l•Mq, ... ,Mm]. Clearly, M -+>A. Since~ =0 Ni (p :5 i < 

q) and both Mj, Nj (q :5 j :5 m) have black root, we have A =0 N. Furthennore, A-+>i N since Ai 

-+> i Ni (p :5 i < q) and by Proposition 3.4 the reductions Mj -+> Nj (q :5 j :5 m) can be taken such 

that every tenn in them has a black root. Now 

Ml= C[M11•····~-11•Mp1, ... ,Mq-l1' Mq1, ... ,Mml] 

A 1 = C[x, ........ ,x, ~ 1, ... , Aq-11' Mq l , ... ,Mm 1] 

(for A1, see Remark 5.4.1). By Remark 5.7.1 we have M/-+> x (1 s; i < p), since Mi-+> x. We 

had already Mi1 -+> ~1 (p :5 i <q). Hence M1 -+> A1. (See Figure 5.10.) Dclairn 

Now we will prove the full proposition (without the additional assumption M -+> i N as in the 

Claim) for rank(M) = k. We distinguish two cases. 

Case 1. The root of M is white. 

So M, N have both white roots. Hence there is, by Proposition 3.4, a reduction M -+> N in which 

every tenn has white root. 111is reduction can be splitted into 
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Figure 5.10 

Now we can construct the diagram as in Figure 5.11 . 

Figure 5.11 

Here subdiagrams a. are justified by the Claim, subdiagrams ~ by Proposition 5.12 and 

subdiagrams y follow by transitivity of~> i. 

~- The root of M is black. 

By Lemma 3.7.2 there is an essential subterm Q of M such that M ~> Q ~> N. By Proposition 5.9, 

M 1 ~> Q1. Obviously, rank(Q) < rank(M) = k. Hence we can construct the diagram in Figure 

5.12, where the triangular subdiagram is obtained by the induction hypothesis applied on Q. 
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M N 

o---• .... •.co 
Ml Ql 

Figure 5.12 

D 

We are now able to state and prove the main result of our paper: 

5.14. THEOREM. Let R0, R1 be left-linear and complete. Then R0 E0 R1 is a terminating TRS. 

PROOF. Let ME Ter(R0 EB R1). We will prove by induction on rank(M) that M does not have an 

infinite reduction. 

The case rank(M) = 1 is trivial, by assumption. Induction hypothesis: if rank(M) < k, M 

cannot have an infinite reduction. Without loss of generality, we may assume that M has a white 

root. Now suppose for a proof by contradiction that there is a term M with rank(M) = k having an 

infinite reduction M = M0 ~ M1 ~ M2 ~ ... . Now rank(M0) ;:::: rank(M1) ;:::: ... ; by the induction 

hypothesis it follows that rank(M0) = rank(M1) = .... Hence the roots of all Mi are white. 

Now infinitely many steps Mi~ Mi+l must be in fact Mi ~0 Mi+l; otherwise we would 

have an infinite internal reduction 

which would yield an infinite reduction of some Mk,p• in contradiction with the induction 

hypothesis. 

So, we can apply the following diagram construction, using Propositions 5.12, 5.13. 

1 

Figure 5.13 

~l 
1 
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But this means that Ml has already an infinite reduction, in contradiction with the termination 

property of R1. D 

5.15. COROLLARY. Let Ro· R1 be left-linear. Then: 

Ro ffi R1 is complete <=> R0 and R1 are complete. 

PROOF.(=>) is trivial.(<=) follows from Theorem 5.14 and the theorem in Toyama [87] stating 

that for all TRSs, R0 EB R1 is confluent iff Ro· R1 are confluent. D 

Acknowledgement. We thank A. Middeldorp for scrutinizing a previous version and suggesting improvements. 
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