
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

E.l. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys

Sequencing and scheduling:
Algorithms and complexity

Department of Operations Research, Statistics, and System Theory Report BS-R8909 June

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, wt1ich was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Sequencing and Scheduling:
Algorithms and Complexity

Eugene L. Lawler
University of California, Berkeley

Jan Karel Lenstra
Centre for Mathematics and Computer Science, Amsterdam

Erasmus University, Rotterdam

Alexander H.G. Rinnooy Kan
Erasmus University, Rotterdam

David B. Shmoys
Massachusetts Institute of Technology, Cambridge

Sequencing and scheduling as a research area is motivated by questions that arise in production

planning, in computer control, and generally in all situations in which scarce resources have to be

allocated to activities over time. In this survey, we concentrate on the area of deterministic machine

scheduling. We review complexity results and optimization and approximation algorithms for prob

lems involving a single machine, parallel machines, open shops, flow shops and job shops. We also

pay attention to two extensions of this area: resource-constrained project scheduling and stochas

tic machine scheduling.

1980 Mathematics Subject Classification (1985 Revision): 90835.
Key Words & Phrases: deterministic machine scheduling, single machine, parallel machines, open

shop, flow shop, job shop, resource-constrained project scheduling, stochastic scheduling, com

plexity, polynomial-time solvability, 'JL'!l'-hardness, optimization, approximation.

Note: This paper will appear in the Handbooks in Operations Research and Management Science,

Volume 4. Logistics of Production and Inventory, edited by S.C. Graves, A.H.G. Rinnooy Kan and P.

Zipkin, and to be published by North-Holland.

Report B&-R8909
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

TABLE OF CONTENTS

PART I. PRELIMINARIES

1. SEQUENCING AND SCHEDULING PROBLEMS

2. ALGORITHMS AND COMPLEXITY

3. A CLASS OF DETERMINISTIC MACHINE SCHEDULING

PROBLEMS

3.1.Jobdata
3.2. Machine environment
3.3.J ob characteristics
3.4. Optimality criteria
3.5. Three examples
3.6. Reducibili~y among scheduling problems

PART II. THE SINGLE MACHINE

4. MINMAX CRITERIA

4.0. Lawler's algorithm for 11 prec If max

4.1. Maximum cost
4.2. Maximum lateness
5. TOTAL WEIGHTED COMPLETION TIME

5.0. Smith's ratio rule for 11 I :£w1Ci
5 .1. Decomposable precedence constraints
5 .2. General precedence constraints, release dates and

deadlines ~
6. WEIGHTED NUMBER OF LATE JOBS

6.0. Karp, Lawler & Moore on l j I ~wj uj
6.1. Further results
7. TOTAL TARDINESS AND BEYOND

7.0.A branch and bound algorithm for 111 :£fj
7. I. Further results

PART III. PARALLEL MACHINES

8. MINSUM CRITERIA

8.0.A bipartitematchingformulationfor R 11 ~C;
8.1. Unit-length jobs on uniform machines
8.2. Minsum criteria without preemption
8.3. Minsum criteria with preemption
9. MINMAX CRITERIA WITHOUT PREEMPTION

9 .o. The performance of list schedulingfor P r I c max

9 .1. Identical machines
9.2. Uniform machines
9.3. Unrelated machines
10. MlNMAX CRITERIA WITH PREEMPTION

l 0.0. McNaughton's wrap-around rule for
P I pmtn I C max

10.1. Maximum completion time on uniform and
unrelated machines

10.2. Release dates, due date'1~ and other
complications

11. PRECEDENCE CONSTRAINTS

11.0.An <JU'J-hardness proof for P lprec,p1 = l IC max

11.1. Unit-length jobs on identical machines
11.2. Precedence constraints and no preemption

11.3. Precedence constraints and preemption

PART IV. MULTI-OPERATION MODELS

12. OPEN SHOPS

12.0. Gonzalez & Sahni's algorithm for 0 21 I c max

12.1. The nonpreemptive open shop
12.2. The preemptive open shop
13. FLOW SHOPS

13.0.Johnson's algorithm for F2 I IC max

13.1. Two or three machines
13.2. The permutation flow shop
13.3. No wait in process
14. JOB SHOPS

14.0. ThedisjunctivegraphmodelforJ 11 Cm.,.
14.1. Two or three machines
14.2. General job shop scheduling
14.3. 10 x 10 = 930

PART V. MORE SEQUENCING AND SCHEDULING

15. RESOURCE-CONSTRAINED PROJECT SCHEDULING

15.0.A matchingformulationfor P2 lp1=11 C max with
resource constraints

15.1. Machines and resources
15.2. Classification and complexiry
15.3. Two optimization models
16. STOCHASTIC MACHINE SCHEDULING

16.0. List schedulingfor PI p1-exp(ll1) I ECmax•E:£C1
16.1. Deterministic and stochastic data
16.2. The single machine
16.3. Parallel machines
16.4. Multi-operation models

ACKNOWLEDGEMENTS

REFERENCES

3

PART I. PRELIMINARIES

Sequencing and scheduling is concerned with the optimal allocation of scarce resources to activi

ties over time. Of obvious practical importance, it has been the subject of extensive research

since the early l 950's, and an impressive amount of literature has been created. Any discussion

of the available material has to be selective. We will concentrate on the area of deterministic

machine scheduling. We will also pay attention to two extensions of this area that are of partic

ular interest in the context of production planning, namely resource-constrained project

scheduling and stochastic machine scheduling.
The chapter is organized as follows. Part I gives a brief overview of the many types of

sequencing and scheduling problems that have been investigated, and then describes the types

of algorithms and the concepts of complexity theory that we will use throughout. Next, the

class of deterministic machine scheduling problems that we will consider is introduced. Parts

II, III and IV deal with the single machine, parallel machine and multi-operation problems in

this class, respectively. Finally, Part Vis devoted to the two generalizations of the deterministic

machine scheduling model.-
Each of the thirteen sections in Parts II-V starts with the full treatment of a relatively simple

but crucial result. After this highlight, we review the other results that have been obtained for

the subclass under consideration, in the style of two previous surveys by Graham, Lawler,

Lenstra & Rinnooy KanJ 1979] and Lawler, Lenstra & Rinnooy Kan [1982].

1. SEQUENCING AND SCHEDULING PROBLEMS

The theory of sequencing and scheduling, more than any other area in operations research, is

characterized by a virtually unlimited number of problem types. Most research has tradition

ally been focused on deterministic machine scheduling. Our presentation reflects this emphasis.

It already allows for more than enough variety, as the reader will soon realize, but it is also

based on some restrictive assumptions.
The first restriction concerns the type of resource. A machine is a resource that can perform

at most one activity at any time. The activities are commonly referred to as jobs, and it is also

assumed that a job is worked on by at most one machine at any time. It is not hard to think of

more general scheduling situations in which, at one point in time, a resource serves several jobs

and a job uses several resources. That leads us into the area of resource-constrained project

scheduling, which is the subject of Section 15.
The second restriction concerns the deterministic nature of the problems. AU the information

that defines a problem instance is known with certainty in advance. Deterministic scheduling is

part of combinatorial optimization. Indeed, all the techniques of combinatorial optimization

have at some point been applied to scheduling problems. It is an obvious extension to assume

that some of the problem data are subject to random fluctuations. The area of stochastic

machine scheduling is briefly reviewed in Section 16.
In studying the allocation of machines to jobs, we are concerned with scheduling at the

detailed, operational level. We will pay no attention to tactical decisions, such as the determina

tion of due dates, or to strategical decisions, such as the acquisition of machines.

Further, we will restrict ourselves to the minimization of a single optimali~y criterion which is

nondecreasing in each of the job completion times. This excludes non-regular criteria, which

involve, e.g., the earliness of the jobs or the number of setups, and multicriteria scheduling,

4

which is a relatively unexplored area.
We also have to exclude a number of other areas, each of which would be worth a survey of

its own: periodic scheduling, cyclic scheduling, scheduling with fixed starting times, and
scheduling with sequence-dependent processing times. The latter area is closely related to the
traveling salesman problem and its extensions.

General references on sequencing and scheduling are the classic book by Conway, Maxwell
& Miller [1967], the introductory textbooks by Baker [1974] and French [1982], the expository
articles collected by Coffman [1976], and the proceedings volume edited by Dempster, Lenstra
& Rinnooy Kan [1982]. There are several survey papers that complement the present chapter.
We mention the review of the broad area of production planning by Graves [1981], the intro
ductory survey of precedence-constrained scheduling by Lawler & Lenstra [1982], the tutorial
on machine scheduling by Lawler (1983], the ~'31-completeness column on multiprocessor
scheduling by Johnson (1983], the annotated bibliography covering the period 1981-1984 by
Lenstra & Rinnooy Kan [1985], the discussions of new directions in scheduling by Lenstra &
Rinnooy Kan [1984], Blaz>-wicz [1987] and Blazewicz, Finke, Haupt & Schmidt (1988], and the
recent overviews of single-machine scheduling by Gupta & Kyparisis [1987] and of multipro
cessor and flow shop scheduling by Kawaguchi & K yan [1988].

References on resource-constrained project scheduling and stochastic scheduling will be
given in Sections 15 and 16. For the scheduling areas that are not covered in this chapter, we
refer to the bibliography by Lenstra & Rinnooy Kan [1985]. In addition, we mention the sur
vey of due date determination rules by Cheng & Gupta [1989], the reviews on scheduling with
non-regular criteria by Raghavachari [1988] and Baker & Scudder [1990], the results in that
area by Garey, Tarjan & Wilfong [1988], the survey on bicriterion single-machine scheduling
by Dileepan & Sen [1988], and the book on the traveling salesman problem edited by the
present authors [Lawler, Lenstra, Rinnooy Kan & Shmoys, 1985].

2. ALGORITHMS AND COMPLEXITY

Practical experience makes it clear that some computational problems are easier to solve than
others. For some scheduling problems, algorithms have been known for decades that are capa
ble of solving instances with thousands of jobs, whereas for other problems, the best algorithms
strain to cope with only a handful of jobs. Complexity theory provides a mathematical frame
work in which computational probl~ms can be studied so that they can be classified as 'easy' or
'hard'. In this section, we will review the main points of this theory. The reader is referred to
the survey articles by Karp [1975], Lenstra & Rinnooy Kan [1979], Shmoys & Tardos [1989],
and Stockmeyer [1990], and to the textbook by Garey & Johnson [1979] for a more extensive
treatment of this subject.

A computational problem can be viewed as a function f that maps each input x in some
given domain to an output f (x) in some given range. Although there may be many ways to
represent the input domain for a particular problem, these specifics will be largely unimpor
tant. We will be interested in studying the time required to compute f (x) as a function of the
length of the encoding of the input x, denoted Ix I· For a more precise discussion, a
mathematical model of an algorithm, a Turing machine, is commonly used, but it will suffice to
think in terms of any standard programming language. In considering an algorithm that com
putes f (x) on input x, we will measure its efficiency by an upper bound T(n) on the number of

5

steps that the algorithm takes on any input x with I x I = n. We will not be concerned with the
precise form of the function T but rather with its asymptotic order. For this purpose, we say
that T(n)=O(g(n)) if there exist constants c and n 0 such that T(n)e;;;;;;_cg(n) for all n~no. We
will consider a problem 'easy' if there exists an algorithm for its solution which has running
time T(n)=O(nk) for some constant k; that is, T(n) is bounded by a polynomial function of
n.

Most of the problems in which we are interested are optimization problems, where, for input
x, the output J (x) is the smallest value in a range of feasible integral values. It will be con
venient to focus on decision problems, where the output range is {yes, no}. For any minimiza
tion problem J, there is an associated decision problem, the output of which answers the ques
tion 'Is f (x)e;;;;;;_k?' for any given k. If the decision problem is easy, then one can typically apply
binary search over k to obtain an algorithm for f with polynomially bounded running time. Let
0' denote the class of decision problems that can be solved in polynomial time.

Unfortunately, for a majority of the problems that we shall encounter, no polynomial-time
algorithm is known. It is all-important open question if any of these problems can be solved in
polynomial time. Nonetheless, a beautiful theory developed by Cook [1971], Karp [1972] and
Levin [1973] has provided a means of giving strong evidence that no such algorithm exists for a
particular problem.

When a scheduling problem is formulated as a decision problem, e.g., 'Is there a feasible
schedule that completes within the deadline cl!', there is an important asymmetry between
those inputs whose output is 'yes' and those whose output is 'no'. Note that a 'yes' answer can
be certified by a small amount of information: the schedule that meets the deadline. Given this
certificate, the 'yes' answer can be verified in polynomial time. Let <JL<?Jl denote the class of deci
sion problems where each 'yes' input x has a certificate y, such that IY I is bounded by a poly
nomial in Ix I and there is a polynomial-time algorithm to verify that y is a valid certificate for
x. The class <JL<?Jl contains an enormous number of problems from a wide range of fields, includ
ing optimization, number theory, coding theory, and graph theory. Many of these problems are
not known to be solvable in polynomial time. One of the major open problems of modern
mathematics is whether 0' equals <JL<?Jl, and it is generally conjectured that this is not the case.

An <Jl<?J'-complete problem is, roughly speaking, a hardest problem in <JL<?Jl, in that if it would
be solvable in polynomial time, then each problem in <JL<?Jl would be solvable in polynomial
time, so that 0' would be equal to 9J.,0'. Thus, the <JL<?Jl-cornpleteness of a particular problem is
strong evidence that a polynomial-time algorithm for its solution is unlikely to exist. The prin
cipal notion in defining CJU~P-cornpleteness is that of a reduction. For two decision problems P

and Q, we say that P reduces to Q (denoted Pa:. Q) if there exists a polynomial-time comput
able function T that transforms inputs for Pinto inputs for Q such that x is a 'yes' input for P if
and only if T(x) is a 'yes' input for Q. A problem is ~IL<?Jl-complete if it is in <JL<?Jl and every prob
lem in <Jlqp reduces to it. An optimization problem will be called <Jl~P-hard if the associated deci
sion problem is <JL<?Jl-complete.

Cook showed that a natural problem from logic is <JL'81-complete by exhibiting a 'master
reduction' from each problem in ivt0~ to it. Given one ivt0'-complete problem P, it is a much
easier task to prove the <JL'81-completeness of the next one, say, Q: one need only prove that
Q E'JL'3' and that P o:Q. The clique problem is the following problem from graph theory: given
a graph G = (V, E) and an integer k, does there exist a set of vertices Cc V such that I C I = k

6

and for each distinct pair u, v EC, { u, v} EE? Cook showed that the clique problem is CX'Jl
complete. The wide applicability of the notion of CX'Jl-completeness was observed by Karp, who
proved that 21 basic problems are 91.,'Jl-complete.

Although we have thus far ignored all questions of encoding the inputs, there is one distinc
tion that will play an important role in our discussion. The natural way to encode integers is to
use a binary notation; e.g., 5 = < l 01 >. However, one may also consider a unary notation;
e.g., 5 = < 11111 >. There is an exponential gap between the lengths of both encodings. In the
clique problem, there are no large integers to be encoded, and so this distinction is unimpor
tant, but this is not always the case. In the partition problem, the input consists of n numbers
a 1' ... , an, and the question is if there exists a subset Sc {I, ... , n} such that '21 ES a1 =
'21 a1I2. This problem is CX'Jl-complete under a binary encoding. On the other hand, it can be
solved by dynamic programming in 0 (n'1:.1 aj) time, which is polynomial under a unary encod
ing; the method is therefore called a pseudopo{ynomial-time algorithm. There are also 'number
problems' that are 'JL'Jl-complete, even when the numbers are encoded in unary. In the 3-
partition problem, the input consists of 3n integers a i. ... , a 3n, and the question is if there
exists a partition of {1, ... ,3n} into n 3-element sets S 1, •.• ,Sn such that '1:.1Es,a1='2-1 a11n
for i = 1, ... , n. This problem remains 'JL'Jl-complete under a unary encoding and is therefore
called strongly CX'Jl-complete.

The CX'Jl-hardness of an optimization problem suggests that it is impossible to always find an
optimal solution quicklj. However, it may still be possible to use an approximation algorithm to
find solutions that are provably close to the optimum. For a minimization problem/, a p
approximation algorithm (p > 1) delivers a solution with value at most pf (x) for each input x.
Some CX'Jl-hard problems have a porynomial approximation scheme, which is a family of algo
rithms {Ac} such that, for each t:>O, Ac is a polynomial-time (1 +E)-approximation algorithm.
The running time of Ac may depend not only on the input size but also on the value of E:. If it is
bounded by a polynomial in Ix I and 1 I E:, then the family is called a ful?y porynomial approxi
mation scheme.

The notions presented thus far have all been based on a worst-case analysis of the running
time or the quality of the solution delivered. It would be desirable to understand the behavior
for 'typical' inputs. To do this it appears necessary to assume a probability distribution over
the inputs. We shall also discuss results that can be obtained through this sort of probabilistic
analysis.

3. A CLASS OF DETERMINISTIC MACHINE SCHEDULING PROBLEMS

Suppose that m machines M 1 (i=1, ... , m) have to process n jobs J1 (j=1, ... , n). A schedule
is an allocation of one or more time intervals on one or more machines to each job. A schedule
is feasible if no two time intervals on the same machine overlap, if no two time intervals allo
cated to the same job overlap, and if, in addition, it meets a number of specific requirements
concerning the machine environment and the job characteristics. A schedule is optimal if it
minimizes a given optimality criterion. The machine environment, the job characteristics and
the optimality criterion that together define a problem type are specified in terms of a three
field classification al {J I y, which is introduced in this section.

3.1. Job data
In the first place, the following data may be specified for each job Jj:
- a number of operations mj;

7

- a processing requirement Pj in the case of single-operation models, or a collection of process-
ing requirements Pij in the case of multi-operation models;

- a release date rj, on which Ji becomes available for processing;
- a nondecreasing real cost function fj, measuring the cost fj(t) incurred if Ji is completed at

time t;
- a due date dj and a weight wi, that may be used in definingfj.
In general, mj, Pi• Pij• ri, dj and wi have integral values.

3.2. Machine environment
We now describe the first field a=a1a2 specifying the machine environment. Let 0 denote the
empty symbol.

If a1 E{ 0 ,P,Q,R}, eachJj consists of a single operation that can be processed on any M;;
the processing time of Jj on M; will be denoted by Pij· The four values are characterized as fol
lows:
- a 1 =0 : singlemachine;plj=pi;
- a1 =P: identicalparc:.llel machines;pij=pj for all M;;
- a1 =Q: uniform parallel machines;pij =p/s; for a given speeds; of M;;
- a 1 = R: unrelated parallel machines; Pij =p/ sij for given job-dependent speeds sij of M;.
If a1 = 0, we have an open shop, in which each Ji consists of a set of operations
{ 0 Ii• ... , Omi}. OiJ has to be processed on M; duringp;i time units, but the order in which the
operations are executed is immaterial. If a1 E{F,J}, an ordering is imposed on the set of
operations corresponding to each job. If a1 = F, we have a flow shop, in which each Ji consists
of a chain (0 1i, ... , Omi). OiJ has to be processed on M; duringp;i time units. If a 1 =J, we
have a job shop, in which each Ji consists of a chain (0 Ii• ... , Omji). OiJ has to be processed on

a given machine µ.iJ duringp;i time units, with µ.;,j-=/=µ.; + 1.i for i = 1, ... , mi-1.
If a2 is a positive integer, then m is a constant, equal to a2 ; it is specified as part of the prob

lem type. If a 2 = o, then m is a variable, the value of which is specified as part of the problem
instance. Obviously, a 1 =0 if and only if a2 = l.

3.3. Job characteristics
The second field f3c{/31' ... , ,84 } indicates a number of job characteristics, which are defined
as follows.
1. fi1 E {pmtn, 0 }.

,81 =pmtn: Preemption Gob splitting) is allowed: the processing of any operation may be
interrupted and resumed at a later time.
/l1 = 0 : No preemption is allowed.

2. /l2 E {prec, tree, o}.
,82 =prec: A precedence relation~ between the jobs is specified. It is derived from an acyclic
directed graph G with vertex set { 1, ... , n}. If G contains a directed path from j to k, we
write lr7h and require that J1 is completed before h can start.
/32 =tree: G is a rooted tree with either outdegree at most one for each vertex or indegree at

8

most one for each vertex.
/32 = 0 : No precedence relation is specified.

3./33 E{r1,o}.
/33 = r1: Release dates that may differ per job are specified.
/33 = 0 : All r1 =O.

4. f34 E fpj = l,pij = 1, o }.

/34 =p1 =I: Each job has a unit processing requirement. This will occur only if a1 E { 0 ,P,Q}.
/34 = PiJ = I: Each operation has unit processing requirement. This will occur only if
a1 E{O,F,J}.
/34 = 0 : All PJ or PiJ are arbitrary nonnegative integers.

Occasionally, this field will contain additional characteristics such as m1~2 or PiJ E { 1,2}. The
interpretation of these should be obvious.

There are many more types of precedence relations than suggested above. We will encounter
generalizations of a rooted tree, such as series-parallel constraints and opposing forests, special
cases of a tree, such as intrees, outtrees and chains, and other types, such as interval orders and
level orders.

3.4. Optimality criteria
The third field y E {f max.J ".£Jj} refers to the optimality criterion. Given a schedule, we can com
pute for each J1:
- the completion time c1;
- the lateness L · = C · - d · · '} J }'
- the tardiness T1 = max { 0, CJ - d1};
- the unit penalty u1=0 if c1 ~d1, u1 = 1 otherwise.
The optimality criteria most commonly chosen involve the minimization of

J max E {Cmax' Lmax}

where/ max =maxi~J~nfj(Cj) withfj(C1)= c1,L1, respectively, or of

".£Jj E {~C1 , '2:.T1, ~U1 , ~w1C1, '2:.w1T1, ~w1 l0}

where 2.Jj =2.J = 1 Jj(C1) withfj(C1)= c1, T1, u1, w1c1, w1T1, w1u1, respectively.
It should be noted that 2:..w1c1 and "'2.w1L1 differ by a constant 2:..w1d1 and hence are

equivalent. Furthermore, any schedule minimizing Lmax also minimizes T max and U max• but
not vice versa.

The optimal value of y will be denoted by y •, and the value produced by an (approximation)
algorithm A by y(A). If a known upper bound p on y(A)ly • is best possible in the sense that a
class of instances exists for which y(A)/y • equals or asymptotically approaches p, this will be
denoted by a dagger (t).

3.5. Three examples
11 prec I Lmax is the problem of minimizing maximum lateness on a single machine subject to

general precedence constraints. It can be solved in polynomial time (Section 4).
R I pmtn J 2:..C1 is the problem of minimizing total completion time on an arbitrary number of

unrelated parallel machines, allowing preemption. Its complexity is unknown (Section 8).

9

prec ~w1c1

~ IP~}! 1 I
'2.CJ

Cmax

G3 G4 Gs

FIGURE l. Problem classification: the graphs Gi (i =O, ... , 5).

J 3 I PiJ = 1 I C max is the problem of minimizing maximum completion time in a three

machine job shop with unit processing times. It is ~'31-hard (Section 14).

3.6. Reducibility among scheduling problems

Each scheduling problem in the class outlined above corresponds to a six-tuple (u 0 , ••• , u 5),

where u; is a vertex of the graph Gi shown in Figure 1 (i =O, ... , 5). For two problems

P = (u 0 , ••• , u 5) and Q =(v 0, •.. , v5), we write p_,.Q if either ui = v; or G; contains a directed

path from ui to vi, for i =O, ... , 5. The reader should verify that p_,.Q implies that the decision

version of P reduces to the decision version of Q. For example, deciding if L~ax ~k can be

reduced to the special case where k =O, and this is equivalent to deciding if "2:,Tj =O. The

graphs thus define elementary reductions between scheduling problems. It follows that if P _,.Q

and Q is solvable in polynomial time, then P is solvable in polynomial time, and if P _,.Q and P

is ~'31-hard, then Q is ~'31-hard.
These types of reductions play an instrumental role in the computer program MSPCLASS

[Lageweg, Lawler, Lenstra & Rinnooy Kan, 1981, 1982]. The program records the complexity

status of scheduling problems on the basis of known results and employing simple inference

10

rules as given above. The main application of MSPCLASS concerns a collection of 4,536 prob
lems, which only differs from the class described in this section in that a2 is restricted to values
from { 1,2,3, 0 }, /3 1 =pmtn excludes /34 =p(i)J=1, and f1 also allows the specification of dead
lines, i.e., strict upper bounds on job completion times. At present, 416 of these problems are
known to be solvable in polynomial time, 3,817 have been proved ~0>-hard, and 303 are still
open. With respect to a unary encoding, 463 are solvable in pseudopolynomial time, 3,582 are
strongly 'JL~-hard, and 491 are open.

11

PART II. THE SINGLE MACHINE

The single machine case has been the object of extensive research ever since the seminal work

by Jackson (1955] and Smith [1956]. We will survey the principal results, classifying them

according to the optimality criterion in question. As a general result, we note that, if all r1=0,

then only schedules without preemption and without machine idle time need be considered

[Conway, Maxwell & Miller, 1967].

4. MINMAX CRITERIA

4.0. Lawler's algorithm for 1 I prec If max
The problem 11 prec If max has a particulary simple and elegant solution. Note that the cost

functions of the jobs can be quite arbitrary and different from one another, provided only that

they are nondecreasing.
Let N = { 1,2, ... , n} be index set of all jobs, and let L <;;;;N be the index set of jobs without

successors. For any subset S<;;;;N, letp(S)="2'..JESPJ and let/max(S) denote the cost of an

optimal schedule indexed by S. Clearly, fmax (N) satisfies the following two inequalities:

fmax (N) ~ mini ELJ}(p (N)),

fmax (N) ~ fmax (N -U}) for all} EN.

Now IetJ1 with I EL be.such that

Ji(p (N)) = min1 EL/j(p (N)).

We have

/max (N) ~ max{fi(p (N)),/max (N -{!})}.

But the right-hand side of this inequality is precisely the cost of an optimal schedule subject to

the condition that J1 is processed last. It follows that there exists an optimal schedule in which

J 1 is in the last position. By repeated application of this rule, one obtains an optimal schedule

in 0 (n 2) time. This algorithm is due to Lawler [1973].

4.L Maximum cost

Lawler's algorithm has been generalized by Baker, Lawler, Lenstra & Rinnooy Kan [1983] to

an O(n 2) algorithm for 1 lpmtn,prr;c,r1 If max· First, the release dates are modified such that

r1 +p1 ~rk whenever lr-"'h· Next, the jobs are scheduled in order of nondecreasing release

dates; this creates a number of blocks that can be considered separately. From among the jobs

without successors in a certain block, a job J k that yields minimum cost when finishing last is

selected, the other jobs in the block are rescheduled in order of nondecreasing release dates,

and J k is assigned to the remaining time intervals. By repeated application of this procedure to

each of the resulting subblocks, one obtains an optimal schedule with at most n -1 preemp

tions in 0 (n 2) time.
Monma [1980] considers a generalization of 1 I I/ max. Let c1 indicate the amount of a

resource consumed (or, if c1 <0, contributed) by J1. The problem is to find a job permutation

minimizing the maximum cumulative cost, max1 frr<J)(:2:.{ ~} c ?T(i)). An Ci)L0Jl-hardness proof and

polynomial-time algorithms for special cases are presented.

12

4.2. Maximum lateness
Although Lenstra, Rinnooy Kan & Brucker [1977] show that the general 11 ri I Lmax problem is
strongly CX~-hard., polynomial algorithms exist for the cases that all ri are equal, all di are
equal or all Pi are equal, and for the preemptive problem. The first case is solved by a speciali
zation of Lawler's method, known as Jackson's rule [Jackson, 1955]: schedule the jobs in order
of nondecreasing due dates. This rule, which minimizes the maximum tardiness as well, is also
referred to as the earliest due date (EDD) rule. Note that, if any sequence completes all jobs by
their due dates, an EDD sequence does. The second case is solved similarly by scheduling the
jobs in order of nondecreasing release dates.

Hom (1974] observes that 11ri,pi=1 I Lmax and 11 pmtn,ri I Lmax are solved by the extended
Jackson's rule: at any time, schedule an available job with smallest due date. Frederickson
[1983] gives an O(n) algorithm for the case of unit-time jobs. Simons (1978] presents a more
sophisticated approach to solve the problem 11 ri•Pi =p I Lmax, where p is an arbitrary integer.
Let us first consider the simpler problem of finding a feasible schedule with respect to given
release dates ri and deadlines di. If application of the extended Jackson's rule yields such a
schedule, we are finished; otherwise, let J1 be the first late job and let J k be the last job preced
ing J1 such that dk>d1• If Jk does not exist, there is no feasible schedule; otherwise, the only
hope of obtaining such a schedule is to postpone J k by forcing it to yield precedence to the set
of jobs currently between Jk and J1• This is achieved by declaring the interval between the
starting time of h and tpe smallest release date of this set to be a forbidden region in which no
job is allowed to start and applying the extended Jackson's rule again subject to this constraint.
Since at each iteration at least one starting time of the form ri + kp (1 ~j,k ~n) is excluded, at
most n 2 iterations will occur and the feasibility question is answered in O(n 3logn) time.
Garey, Johnson, Simons & Tarjan [1981] give an improved implementation that requires only
0 (nlog n) time. Bisection search over the possible Lmax values leads to a polynomial-time algo
rithm for 1 lri,pi=p ILmax·

These three special cases as well as the preemptive variant remain well solved in the presence
of precedence constraints. It suffices to update release and due dates such that ri<rk and
di<dk whenever Jr~h. as described by Lageweg, Lenstra & Rinnooy Kan (1976]. Monma
[1982] gives a linear-time algorithm for I I prec,p i = 1 I L max.

Various elegant enumerative methods exist for solving 11 prec,ri I Lmax· Baker & Su [1974]
obtain a lower bound by allowing preemption; their enumeration scheme simply generates all
active schedules, i.e., schedules in which one cannot decrease the starting time of a job without
increasing the starting time of another one. McMahon & Florian [1975] propose a more ingeni
ous approach. Lageweg, Lenstra & Rinnooy Kan [1976] slightly modify this method to obtain
very fast solution of quite large problems. Their algorithm makes use of an equivalent formula
tion in which due dates are replaced by delivery times qi, and if a job completes at time Ci, it is
delivered at time Ci+qi; the aim is to minimize maxi Ci+qi. The role of release times and
delivery times is completely symmetric. One can take advantage of this fact and obtain supe
rior performance by interchanging release times and delivery times under certain conditions.
Carlier [1982] and Larson, Dessouky & Devor [1985] propose different branching rules, which
yield more efficient algorithms for this relatively easy CX~-hard problem. Nowicki & Zdtzalka
[1986] observe that in the approach suggested by Carlier, the proof of optimality may be some
what more elusive than originally believed. Nowicki & Smutnicki [1987] provide alternative

13

lower bound procedures. ZdrLalka & Grabowski [1989] consider extensions of these methods

to 11 prec,r1 If max·

Dominance results among the schedules may be used in the obvious way to speed up

enumerative procedures. Erschler, Fontan, Merce & Roubellat [1982, 1983] introduce domi

nance based on the (r1,d1) intervals, assuming that the objective is simply to meet all due dates.

Little work has been done on the worst-case analysis of approximation algorithms for single

machine problems. For 11 r.J I Lmax, one must be careful in specifying the problem, in order to

obtain reasonable approximation results. First, it is possible that L:Uax =O, and any algorithm

that may err in such a case will have unbounded relative error. In fact, deciding if L:nax ~O is

9L01-complete, and so it is probably impossible to completely remove this curious technicality.

Note that by focusing on the special case that r1 ~O and d1 ~O for all j, this difficulty is

avoided. This is identical to viewing the problem in the delivery time model, since if q1 = -d1,

then c1 + q1 = c1 - d1. Kise, Ibaraki & Mine [1979] provide another justification for studying

this case, by arguing that the guarantee should be invariant under certain simple transforma

tions of the input data. Six approximation algorithms are considered, and the extended

Jackson's rule (EJ) is shown to guarantee

Lmax(EJ)I L':nax ~ 2. (t)

Potts [1980B] presents an iterative version of the extended Jackson's rule (IJ), and proves that

* 3
LmaxUJ)/ Lmax ~ 2· (t)

Although interchanging the roles of the release times and delivery times does not improve the

performance guarantee of algorithms EJ and IJ, Hall & Shmoys [1988] use it as the essential

element of a modification of the latter algorithm (MIJ) that guarantees

• 4
Lmax(M!J)/ Lmax ~ 3· (t)

The technique of Lageweg, Lenstra & Rinnooy Kan [1976] implies that the results above

extend to the case of precedence constraints. Hall & Shmoys [1988] also present two algorithms

A 1k and A 2k that guarantee

* · 1
Lmax(A1k) I Lmax ~ 1 + k for I= 1,2; (t)

A lk nms in O(nlogn +nk 16k 2 ~ 8k) time, whereasA 2k runs in 0(24k(nk)4k + 3) time.

5. TOTAL WEIGHTED COMPLETION TIME

5 .0. Smith's ratio rule for 11 I 2.w1c1
For the problem l I j 2.w.JC.J, any sequence is optimal that puts the jobs in order of nondecreas

ing ratios PJh'.i [Smith, 1956]. This rule is established by a simple interchange argument. Con

sider a sequence in which the jobs are not in order of nondecreasingp/tt.j. Then there is a job

h that is immediately preceded by a job 11, with p/tt-j>pklwk. If h completes at time Ck>

then J1 completes at time Ck -Pk· The effect of interchanging these two jobs in the sequence is

14

to decrease its cost by a positive amount:

[w/Ck-pk)+wkCk]-[wk(Ck-PJ)+w1Ckl = wkpJ-wJPk

= w1wk(p11w1-pklv.•k) > 0.

Hence the sequence cannot be optimal. This confirms Smith's rule.
In the special case 111 ~c1 , any sequence is optimal that places the jobs in order of nonde

creasingp1. This shortest processing time or SPT rule is one of the most celebrated algorithms in
sequencing and scheduling. It is often used for more complicated problems, sometimes without
much theoretical support for its superior performance.

5 .1. Decomposable precedence constraints
Smith's rule can be viewed as an instance of a more general phenomenon. Consider the follow
ing very general problem. Given a set of n jobs and a real-valued function/that assigns a value
f (?T) to each permutation ?T of the job indices, find a permutation 'TT• such that

f (w*) = min'ITf fu).
If we know nothing about the structure of the function f, there is little that we can do, except to
evaluate f ('77') for each of then! permutations '71'. However, it may be that we are able to estab
lish that there is a transitive and complete relation :s;;;, a quasi-total order, on the index set of
the jobs, with the property that for any two jobs Jb, Jc and any permutation of the form abcl3,
we have

b :s;;; c =:> f (abcl3) :s;;;f (acbS).

If such a job interchange relation :s;;; exists, an optimal permutation 'TT'* can be found by simply
ordering t~e jobs according to :s;;;, with O(nlogn) comparisons of jobs with respect to :s;;;.
Smith's rule for 1 I I 2:w1c1 and Jackson's rule for 11 I Lmax can be seen to be special cases.

In fact, there has been a great deal of work in using this general framework to provide
polynomial-time algorithms for special classes of precedence constraints. For tree-like pre
cedence constraints, results of Hom [1972], Adolphson & Hu (1973] and Sidney [1975] give
O(nlogn) algorithms.

The decomposition approach of Sidney [1975] is applicable to a much broader setting. Most
typical is the case of series-parallel precedence constraints, for which Lawler [1978A] gives an
0 (nlog n) algorithm. The crucial observation for each of these cases is that the precedence
graph can be broken down into modules, such that an optimal solutions for each module can
be extended to an optimal solution for the entire instance. (For example, a module can be
defined as a set of jobs where each job in the module has the same relation to jobs outside it.)
In order to handle precedence constraints, we introduce the notion of a string interchange rela
tion that generalizes a job interchange relation by letting b and c, in the implication above,
represent disjoint strings of jobs indices. We will focus on objective functions that admit of a
string interchange relation; one such function is 2:w1c1.

Given a decomposition tree representing the way in which the modules of the precedence
graph are composed, an ordered set of strings is computed for each node in the tree, and the
ordering at the root yields the optimal solution. In fact, Buer & Mohring [1983] give an O(n 3)
algorithm that computes the decomposition, and Muller & Spinrad [1989] improve the running

15

time to O(n 2). For series-parallel graphs, each leaf of the decomposition tree corresponds to a

single job, and each internal node corresponds to either a series operation, where all jobs in the

first module must precede all jobs in the second, or a parallel operation, where no precedence

constraints are added between the two modules.

The algorithm works from the bottom of the tree upward, merging sets of strings in the

appropriate way. The one remaining observation needed is that for a series operation, if the

largest string o1 in the first set (with respect to ::;;;;;) is bigger than the smallest string a2 in the

second, then there exists an optimal ordering which contains a1 a2, and so the two strings can

be concatenated. By iterating this argument, the two sets of strings can be merged correctly.

Lawler [1978A, 1978B], Monma & Sidney [1979], Monma [1981], Sidney [1981], Lawler &

Lenstra [1982] and Monma & Sidney [1987] describe several axiomatic settings for characteriz

ing results of this sort.
Series-parallel graphs can also be viewed as graphs that are iteratively built up by substitu

tion from the two-element chain and from two incomparable elements. Mohring & Rader

macher [1985A] generalize this by considering graphs whose prime (undecomposable) modules

are of size k, giving an Ofnk2
) algorithm to minimize, for example, ~w1c1 subject to such pre

cedence constraints. Sidney & Steiner [1986] improve the running time to 0(nw+ 1), where w

denotes the maximum width of a prime module, by applying a more sophisticated dynamic

programming procedure within the decomposition framework. Monma & Sidney [1987] give a

partial characterizatiQn of objectives for which this combination of decomposition and

dynamic programming can be applied.

5.2. Arbitrary precedence constraints, release dates and deadlines

Lawler [l 978A] and Lenstra & Rinnooy Kan [1978] show that adding arbitrary precedence

constraints results in ~01-hardness, even if all p 1 = 1 or all w1 = 1. Potts [1980C, 1985C] consid

ers branch ·and bound methods for 11 prec I ~w1c1 and provides empirical evidence that a sim

ple lower bound heuristic based on Smith's rule pales in comparison to Lagrangean techniques.

Lenstra, Rinnooy Kan & Brucker [1977] show that if release dates are specified, 1 I r1 I '2..C1 is

already strongly ~01-hard. Gazmuri [1985] gives a probabilistic analysis of this problem under

the assumption that the processing times and release times are independently and identically

distributed. For each of two cases characterized by the relation between expected processing

time and expected interarrival time, a heuristic is developed whose relative error tends to 0 in

probability.
In the preemptive case, 11 pmtn,r1 I ~c1 can be solved by a simple extension of Smith's rule

[Baker, 1974], but, surprisingly, 11 pmtn,ri I '2..w1c1 is strongly ~01-hard [Labetoulle, Lawler,

Lenstra & Rinnooy Kan, 1984].

If a deadline 'd1 on the completion of each job J1 is introduced, I I 'd1 I '2..C1 can be solved by

another simple extension of Smith's rule [Smith, 1956], but the weighted case l I J'J I !.w1c1 is

strongly ~01-hard [Lenstra, Rinnooy Kan & Brucker, 1977]. Du & Leung [1988B] establish

~01-hardness of 1 I pmtn,r1,J1 j "i.C1.
For 1 j j "Zw1c1 with either release times or deadlines, several elimination criteria and branch

and bound algorithms have been proposed. Potts & Van Wassenhove [1983] apply Lagrangean

relaxation to the problem with deadlines, and dualize the constraints Ci ::;;;;J1. The Lagrangean

multipliers are adjusted so that a simple heuristic for the original problem provides an optimal

16

solution to the relaxed problem. Hariri & Potts [1983] consider the variant with release times,
and dualize the constraints C/~r1 +p1 instead. Rinaldi & Sassano [1977], Bianco & Ricciar
delli [1982], and Dessouky & Deogun [1981] give other branch and bound procedures for this
problem, based on a variety of lower bound methods and dominance relations. Posner [1985]
and Bagchi & Ahmadi [1987] give improvements on the lower bound method of Potts & Van
W assenhove [1983], where in each case, the new heuristic is proved to dominate the previous
methods. Belouadah, Posner & Potts [1989] extend this approach and use it within a branch
and bound algorithm.

6. WEIGHTED NUMBER OF LATE JOBS

6.0. Karp, Lawler & Moore on 11 I ~wJ f1i
Karp [1972] included the decision version of 1112:w1 f11 in his list of 21 ~01-complete problems.
His proof is based on an idea that has been applied to many other scheduling problems.

Recall the ~01-complete partition problem from Section 2: given n numbers a 1, ••• , an with
2:) = 1 a1=2b, does there exist a set S C{l, ... , n} such that ~JES a1=b? For any instance of
this problem, we define an instance of 1 I I 2:w1 u1 with n jobs and
p1=w1 =a1, d1 =b (j= I, ... , n). Consider any schedule, where we may assume that all the pro
cessing is done in the interval [0,2b]. The jobs that are completed by time b are on time, the
others are late, and the 2::w1 u1 value of the schedule is equal to the total processing requirement
of these late jobs. It follows that, for any schedule, 2:w1u1'";pb. Equality can be achieved if and
only if there exists a set of jobs of total length b, i.e., if and only if the original instance of the
partition problem is a 'yes' instance.

Given the complexity status of the partition problem, we know that l I I ~w1 u1 is ~01-hard in
the ordinary sense, and not in the strong sense. In fact, the latter result is unlikely to hold, as
the problem is solvable in pseudopolynomial time. This was proved by Lawler & Moore [1969],
who proposed a dynamic programming approach.

We may assume that any schedule is of the following form: first, the on-time jobs are pro
cessed in order of nondecreasing due dates; next, the late jobs are processed in an arbitrary
order. Now suppose that d 1 ~ • • • ~dn, and let Fj(t) denote the minimum criterion value for
the first j jobs, subject to the constraint that the total processing time of the on-time jobs is at
most t. Initializing the recursion by

Fj(t) = oo for t<O, j=O: ... , n,

F 0(t) = 0 fort '";pQ,

we have that

-{min{F1 _ 1(t-p1),F1 _ 1(t)+w1} for0~t~d1,}
Fj(t) - Fj(d1) for t>d1, J= l, · · · 'n.

The problem is solved by computing Fn('2-Jp), which requires 0 (n'J:.Jp) time.

6.1. Further results
An algorithm due to Moore & Hodgson [Moore, 1968] allows the solution of 11 I ~ uj in
0 (nlog n) time: jobs are added to the set of on-time jobs in order of nondecreasing due dates,

17

and if the addition of J1 results in this job being completed after d1, the scheduled job with the
largest processing time is marked to be late and removed. Maxwell [1970] gives an alternative
derivation of this algorithm based on ideas from linear and integer programming. Sidney

[1973] extends the procedure to cover the case in which certain specified jobs have to be on
time. The further generalization in which jobs have to meet given deadlines occurring at or
after their due dates is shown to be 'j[,0'-hard by Lawler [1982B]. Lawler [1976A] shows that the

Moore-Hodgson algorithm is easily adapted to solve l I I :£w1 u1 in O(nlogn) time if processing

times and weights are oppositely ordered (i.e.,p1 <pk~w1 ;;.wk)-
Not surprisingly, 11 r1 I "i-U1 is strongly 'j[,0'-hard, but Lawler [1982B, -] shows how to apply

dynamic programming techniques to solve 11pmtn,rj12: uj in 0 (n 5) time and
1 I pmtn,r1 I :£w1 Uj in 0 (n 3(2:w1)2) time. Kise, Ibaraki & Mine [1978] provide an 0 (n 2) algo
rithm for 1 I r1 I ~ u1 in the case that release dates and due dates are similarly ordered (i.e.,
r1 <rk~df';o;;;_dk); Lawler [1982B] shows that a variation of the Moore-Hodgson algorithm

solves this problem in O(nlogn) time. Lawler [-] also obtains O(nlogn) solutions for
11 pmtn,r1 I "i-w1 u1 in the case that the (r1,d1) intervals are nested and in the case that release
dates and processing times-ate similarly ordered and in opposite order of job weights.

Monma [1982) gives an 0 (n) algorithm for 1lp1=lI2:U1. However, Garey & Johnson [1976]

prove that 1 I prec,p j = 1 12: uj is 'j[,0'-hard, and Lenstra & Rinnooy Kan [1980] show that this is
true even for chain-like precedence constraints.

Villarreal & Bulfin [l.983] present a branch and bound procedure for 1 I I 2:w1u1. Two lower
bounds are obtained by applying the algorithms Moore-Hodgson and Lawler as if, respec
tively, the weights and processing times are identical. (Note that in the case of identical pro
cessing times, any set of weights is oppositely ordered.) Potts & Van Wassenhove [1988] give an
O(nlogn) algorithm to solve the linear relaxation of a natural integer programming formula
tion of 11 I ~w1 u1. Computational experiments coniHm that this is an extremely effective lower
bound.

Sahni [1976] gives a pseudopolynomial-time algorithm for l I I "2w1u1 that requires O(n"2w1)

time and uses this to derive an approximation algorithm Ak with O(n 3k) running time such

that

"'w·U·(Ak)l"'w·U· ;;.1-J_
k.J J J k.J J J k'

where u1=1- u1. For reasons similar to those discussed in Section 4.2 for 11 r1 I Lmax• it is
easier to design approximation algorithms with respect to this complementary objective.
Unlike that case, however, it is possible to decide in polynomial time whether 2':w1uj =O. Gens
& Levner [1978] exploit this to give an algorithm Bk with running time 0 (n 3k) such that

~w1 U1(Bk)l~w1 uj ~ l+ !·
By obtaining a preliminary upper bound on the optimum that is within a factor of 2, Gens &

Levner [1981] improve the running time of a variant of Bk to O(n 2Iogn+n 2k). For
II tree 12':w1u1, Ibarra & Kim [1978] give algorithms Dk of order O(knk+ 2) with the same
worst-case error bound as the algorithm Ak due to Sahni [1976].

18

7. TOTAL TARDINESS AND BEYOND

7.0. A branch and bound algorithm for 111 "2.Jj
Let us first consider the problem with unit processing times, 1 IPi = 1 I "2.Jj. In this case, the cost
of scheduling Ji in position k is given by Jj(k), irrespective of the ordering of the other jobs.
The problem is therefore equivalent to finding a permutation 'Tr of {I, ... , n} that minimizes
"2.ifj('Tr(j)). This is a weighted bipartite matching problem, which can be solved in 0 (n 3) time.

For the case of arbitrary processing times, Rinnooy Kan, Lageweg & Lenstra [1975] applied
the same idea to compute a lower bound on the costs of an optimal schedule. Suppose that
p 1 ~ • • • ~n and define tk =p 1 + · · · +pk fork= 1, ... , n. Then f./(tk) is a lower bound on
the cost of scheduling Ji in position k, and an overall lower bound is obtained by solving the
weighted bipartite matching problem with coefficients Jj(tk).

They also derived a number of elimination criteria. These are statements of the following
form: if the cost functions and processing times of Ji and J k satisfy a certain relationship, then
there is an optimal schedule in which Ji precedes h·

Lower bounds and elimination criteria are used to discard partial schedules that are gen
erated by an enumeration scheme. For l I I "2.fj, it is customary to generate schedules by building
them from back to front. That is, at the Ith level of the search tree, jobs are scheduled in the
(n -I+ l)th position. The justification for this is that, since the cost functions are nondecreas
ing, the larger terms of ~the optimality criterion are fixed at an early stage while the smaller
terms are estimated by the lower bound.

7 .1. Further results
Lawler [1977] gives a pseudopolynomial algorithm for the problem 1 I I 2:Ti that runs in
0 (n 4"2.p) #me. Recently, Du & Leung [1989B] have shown that the problem is c:JL0>-hard in the
ordinary sense.

Lenstra & Rinnooy Kan [1978] prove that 1Iprec,pi=11 "2.Ti is c:JL0>-hard, and Leung &
Young (1989] show that this is true even for chain-like precedence constraints. If we introduce
release dates, 11ri,Pi=11 "2.»]Ti can be solved as a weighted bipartite matching problem,
whereas 11 ri I "'2-Ti is obviously strongly c:JL0>-hard.

Lawler [1977] and Lenstra, Rinnooy Kan & Brucker [1977] show that 111 ~wiTi is strongly
c:JL0>-hard. Various enumerative solution methods have been proposed for this problem.
Elmaghraby [1968] presents the first elimination criteria for the problem, including the obser
vation that any job with due date exceeding the total processing time can be scheduled last in
an optimal schedule. Emmons [I 969] and Shwimer [1972] develop other elimination criteria,
and Rinnooy Kan, Lageweg & Lenstra [1975] extend these to the ea":''.' of arbitrary nondecreas
ing cost functions. Rachamadugu [1987] gives an elimination criterion that generates an
optimal schedule if there is one in which all jobs are late.

A variety of lower bounds have been studied. As already discussed in Section 7.0, Rinnooy
Kan, Lageweg & Lenstra [1975] use a linear assignment relaxation based on an underestimate
of the cost of assigning Ji to position k, and Gelders & Kleindorfer [1974, 1975] use a fairly
similar relaxation to a transportation problem. Fisher [1976] proposes a method in which the
requirement that the machine can process at most one job at a time is relaxed. In this
approach, one attaches 'prices' (i.e., Lagrangean multipliers) to each unit-time interval, and

19

looks for multiplier values for which a cheapest schedule does not violate the capacity con

straint. The resulting algorithm is quite successful on problems with up to 50 jobs. Potts & Van

Wassenhove [1985] observe that a more efficiently computable but weaker bound may be

preferable. They apply a multiplier adjustment method similar to the one mentioned in Section

5 .2; the constraints T/~ c1 -d1 are relaxed while associated prices for violating these con

straints are introduced.
Algorithms based on straightforward but cleverly implemented dynamic programming offer

a surprisingly good alternative. Baker & Schrage [1978] and Schrage & Baker [1978) suggest

compact labeling schemes that can handle up to 50 jobs. Lawler [1979B] gives a more efficient

implementation of this approach; Kao & Queyranne [1982] describe carefully designed experi

ments which confirm that this method is a practical improvement as well. Potts & Van

Wassenhove [1982] consider the unweighted problem, and use a combination of the Baker

Schrage algorithm and a decomposition approach implied by the algorithm of Lawler [1977].

Potts & Van Wassenhove [1987] compare the dynamic programming algorithms of Schrage &

Baker [1978] and Lawler [1979B], and then consider the relative merits of the decomposition

approach when used in a_dynamic programming framework or in an algorithm that, as in their

previous work, resembles branch and bound.
Abdul-Razaq & Potts [1988] consider 111 I,Jj where the costs are no longer assumed to be

nondecreasing functions of completion time; however, the constraint that a schedule may not

contain idle time is added. Since the straightforward dynamic programming formulation has

an unmanageable nm~ber of states, a lower bound is computed by recursively solving a formu

lation with a smaller state space, and then used within a branch and bound procedure.

Using his pseudopolynomial algorithm for 11 I I.T1 mentioned above, Lawler [1982C] presents

a fully polynomial approximation scheme, such that algorithm Ak runs in O(n 7 k) time and

guarantees·

"" • 1 ~T1(Ak)I £.JTJ ~ 1 + k.

Fisher & Krieger [1984] study the following general problem: let P1 be a nonincreasing and

concave profit function of the starting time of J1; maximize the total profit. They use a heuristic

based on a generalization of Smith's rule (GS) to get provably good solutions:

"" "" • 2 . £.JP/ GS) I £.Jp J ~ 3.

20

PART III. PARALLEL MACHINES

Recall from Section 3 the definitions of identical, uniform and unrelated machines, denoted by
P, Q and R, respectively.

Section 8 deals with minsum criteria. We will be able to review some interesting polynomial
time algorithms, especially for the minimization of '2.C1. We then tum to minmax criteria. Sec
tion 9 considers the nonpreemptive case with general processing times. The simplest problem
of this type, P 21 I C maio is already 0t?J>-hard, and we will concentrate on the analysis of
approximation algorithms. Section 10 considers the preemptive case. The situation is much
brighter here, and we will mention a number of polynomial-time algorithms for the minimiza
tion of C max and Lmax• even subject to release dates. Finally, Section 11 deals with the pres
ence of precedence constraints, with an emphasis on unit-time or preemptable jobs. The more
general problems in this section are 0t?Jl-hard and will lead us again to investigate the perfor
mance of approximation algorithms. However, several special cases tum out to be solvable in
polynomial time.

8. MINSUM CRITERIA

8.0. A bipartite matchingformulationfor R I I ~CJ
Horn [1973] and Bruno, Coffman & Sethi [1974] formulated R I I "2-C1 as an integer program
ming problem. The structure of this program is such that it can be solved in polynomial time.

Consider the jobs that are to be performed by a single machine M;, and for simplicity sup
pose that these are J 1 ,J 2 , ••• ,J1 in that order. For these jobs we have ~CJ=
lpil + (l - l)p;2 + · · · +fit· In general, '2.C1 is a weighted sum of fiJ values, where the weight of
fiJ is equal to the number of jobs to whose completion time it contributes. We now describe
schedules in terms of 0-1 variables x (ik),J• where x (ik),J = l if JJ is the kth last job processed on
M;, and x (ik),J = 0 otherwise. The problem is then to minimize

~i,k~J kpiJx(ik).J

subject to

"" xc·k) · = l ior;· = 1 n £.lj k I ,j 1, • • • ' >

~Jx(ik),J ~ 1 for i = 1, ... ,m, k = 1, ... ,n,

x (ik),J E {O, 1} for i = 1, ... , m, j,k = I, ... , n.

The constraints ensure that each job is scheduled exactly once and that each position on each
machine is occupied by at most one job. This is a weighted bipartite matching problem, so that
the integrality constraints can be replaced by nonnegativity constraints without altering the
feasible set. This matching problem can be solved in 0 (n 3) time.

A similar approach yields O(nlogn) algorithms for P 11 '2-C; and Q 11 '2-C;. In the case of
identical machines, '2.C1 is a weighted sum of PJ values, where each weight is an integer between
1 and n, and no weight may be used more than m times. It is obviously optimal to match the
smallest weights with the largest processing requirements. This is precisely what the general
ized SPT rule of Conway, Maxwell & Miller [1967] accomplishes: schedule the jobs in order of
nondecreasing processing times, and assign each job to the earliest available machine.

21

In the case of uniform machines, ~CJ is a weighted sum of PJ values, where each weight is of

the form k I si (k indicating the position and si the speed of M;), and no weight may be used

more than once. Once again, we want to select then smallest of these mn weights and to match

the smallest weights with the longest jobs. Horowitz & Sahni [1976] propose to maintain a

priority queue of the smallest m unused weights and to build the schedule backwards by

assigning the next longest job to the machine associated with the smallest available weight.

This algorithm can be implemented to run in O(nlogn) time.

8.1. Unit-length jobs on uniform machines

The problems QI PJ= 1I2:fj and QI PJ= l I/ max are easily solved in polynomial time. First,

observe that there exists an optimal schedule in which the jobs are executed in the time periods

with the n earliest possible completion times. These completion times can be generated in

O(nlogm) time: initialize a priority queue with completion times 1 / si (i = 1, ... , m); at a gen

eral step, remove the smallest completion time from the queue and, if this time is kl si, insert

(k + l) Is; into the queue. Lett 1, ... , t 11 denote then smallest completion times, in nondecreas

ing order.
Q I PJ = 112:.fj is now solved by finding an optimal assignment of the jobs to these comple

tion times. This amounts to formulating and solving an n X n weighted bipartite matching

problem with cost coefficients cJk = fj(tk); this requires 0 (n 3) time. Various special cases can

be solved more efficiently. Thus Q I PJ = 11 "2.wJCJ is solved by assigning the job with the kth

largest weight to tk, and Q I PJ = l j "2.TJ is solved by assigning the job with the kth smallest due

date to tk; the time required is O(nlogn), the time needed to sort weights or due dates.

Q IPJ= 11 '2-wJUJ is solved by considering the completion times from largest to smallest and

scheduling, from among all unassigned jobs that would be on time (if any), a job with maximal

weight; with appropriate use of priority queues, this can again be done in O(nlogn) time. In

the presence of release dates, dynamic programming can be applied to solve Q I r1,pJ = 1 I "2-CJ

in O (m 2 n 2m _,_ 1 logn) time, which is polynomial only for fixed values of m.

Q I PJ = 11/ max is solved by a method that resembles Lawler's algorithm for 111/ max (see
Section 4.0). Consider the completion times from largest to smallest and, at each successive

completion time t, schedule a job JJ for which fj(t) is minimal; this yields an optimal schedule

in O(n 2) time.QI PJ = l I Lmax and QI rJ•PJ = 1 j Cmax can be solved in O(niogn) time by sim
ply matching the kth smallest due date, or release date, with tk.

These results are due to Lawler.[-], Lenstra [-], and Dessouky, Lageweg and Van de Velde

[1989]. Lawler [1976A] shows that the special case P IPJ=1 j2:UJ can be solved in O(nlogn)

time.
Complexity results for the precedence-constrained problem P jprec,pJ = 11 "2.CJ and its spe

cial cases will be mentioned in Section 11.1.

8.2. Minsum criteria without preemption

We have seen that R I I ~CJ is solvable in polynomial time. Meilijson & Tamir [1984] show that

the SPT rule remains optimal for identical machines that increase in speed over time. On the

other hand, if the speed decreases, then the problem is ~U!P-hard.
In the case of arbitrary processing requirements, it seems fruitless to attempt to find polyno

mial algorithms for more general criteria or for "2.C1 problems with additional constraints, even

22

when there are only two identical machines. P2 I I "2-w1c1 is already ~0'-hard [Bruno, Coffman
& Sethi, 1974; Lenstra, Rinnooy Kan & Brucker, 1977], and so is P2 I tree I "2-C1, for intrees as
well as outtrees [Sethi, 1977] and even for chains [Du, Leung & Young, 1989]. The specification
of due dates or release dates does not leave much hope either, as both P2 I IC max and
1 I r1 I "2.C1 are ~<J>-hard. In this section, we will therefore be concerned with approximation in
polynomial time and with optimization by implicit enumeration.

With respect to P I I 2=w1c1, an obvious idea is to list the jobs according to nondecreasing
ratios PJ I w1, as specified by Smith's rule for the single-machine case (see Section 5.0), and to
schedule the next job whenever a machine becomes available. Eastman, Even & Isaacs [1964]
show that this largest ratio (LR) rule gives

~w1CJCLR)-;~JWJPJ;;;:. ~(~;= 1 ~{= 1 wjpk-;~;=iwipi). (t)

It follows from this inequality that

~ c* 2 m + n ~ n ~ j
kAW) j ,;;- m (lt-=t-1) kA j =I kA k =I WJPk·

This lower bound has been the basis for the branch and bound algorithms of Elmaghraby &
Park [1974], Barnes & Brennan [1977], and Sarin, Ahn & Bishop [1988]. Kawaguchi & Kyan
[1986] have refined the analysis of these bounds to prove that

~ .:5::\/2+1
~w1Cj(LR)I ~w1c1 ~ 2 . (t)

Sahni [1976] constructs algorithms Ak (in the same spirit as his approach for 1 I I 2:w1 u1 men
tioned in Section 6.1) with 0 (n (n 2kr- 1) running time for which

. • 1
~»;CJ(Ak)/ ~wjcj ~I+ k"

Form = 2, the running time of Ak can be improved to 0 (n 2 k).
A general dynamic programming technique of Rothkopf [1966] and Lawler & Moore [1969)

is applicable to special cases of R 11 "'2:.fj and R I If max in which the following condition is satis
fied: it is possible to index the jobs in such a way that the jobs assigned to a given machine can
be assumed to be processed in order of their indices. For example, this condition holds in the
case of R 11 C max (any indexing is satisfactory), R 11 I.w1 u1 (index in order of due dates), and
Q I I "2.w1c1 (index in order of the ratios Pi I w1).

Given an appropriate indexing of the jobs, define Fj(t 1, .•. , tnJ as the minimum cost of a
schedule without idle time for J 1, ••• , J1 subject to the constraint that the last job on Mi is
completed at time t;, for i =I, ... , m. Then, in the case off max criteria,

Fj(t 1, ... ,tm) = min1..;;; .,,;;m max{Jj(t;),F1 -1(t1' ... ,t; -pi)• ... , tm)},

and in the case of "'2:.Jj criteria,

Fj(t 1, ... , tm) = min1 .,,;;; .,,;;m (fj(tJ +Fi -1(t1, ... ,l; -piJ• ... , tn.J).

In both cases, the initial conditions are

{
0 if ti = 0 for i = 1, ... , m,

F o(t 1 • • • • 'tm) = oo otherwise.

23

These equations can be solved in 0 (mnCm) time, where C is an upper bound on the comple

tion time of any job in an optimal schedule. If the machines are uniform, then only m - I of

the values t 1, ••• , tm in the equation for F/t 1, ..• , tm) are independent. This means, for exam

ple, that the time bound for Q I j "l..wjCj can be reduced by a factor of C to 0 (mncm - l).

One variation of the above technique solves Q I rj I C mm and another variation solves

Q I j "l..wj Uj in 0 (nm (maxjdj t1) time. Still other dynamic programming approaches can be

used to solveP 11 "l..fj andP 11/max in O(m·min{3n,n2nc}) time.

8.3. Minsum criteria with preemption

A theorem of McNaughton [1959] states that for P I pmtn I '2-wjCj there is no schedule with a

finite number of preemptions which yields a smaller criterion value than an optimal

nonpreemptive schedule. The finiteness restriction can be removed by appropriate application

of results from open shop theory. It therefore follows that the procedure of Section 8.0 solves

P I pmtn j '2.Cj in 0 (nlog n) time, and that P 21 pmtn j "i.wjCj is m,'5'-hard. Du, Leung & Young

[1989] extend McNaughton's theorem to the case of chain-like precedence constraints, which

implies that P2 lpmtn,tree I "'i.Cj is strongly m,'5'-hard.
McNaughton's theorem does not apply to uniform machines, as can be demonstrated by a

simple counterexample. There is, however, a polynomial algorithm for QI pmtn j 'i.Cj. Lawler

& Labetoulle [1978] show that there exists an optimal preemptive schedule in which Cj ~Ck if

pj<pk· This result is the essence of the correctness proof of the following algorithm of Gon

zalez [1977]. First place the jobs in SPT order. Then obtain an optimal schedule by preemp

tively scheduling each successive job in the available time on the m machines so as to minimize

its completion time. This procedure can be implemented to run in O(nlogn +mn) time and

yields an optimal schedule with no more than (m - l)(n -l/2m) preemptions. Gonzalez also

extends it to cover the case in which '2.Cj is to be minimized subject to a common deadline for

all jobs. McCormick & Pinedo [1989) extend this to handle the problem of minimizing

wC max + '2.Cj for an arbitrary weight w ;;;;.o.
Very little is known about R I pmtn I "2.Cj. This remains one of the more vexing questions in

the area of preemptive scheduling. One approach has been to apply the techniques of Lawler &

Labetoulle [1978] to show that if the optimal order of completion times is known, then an

optimal solution can be constructed in polynomial time.
The problems 11 pmtn I 'i.ttj uj (see Section 6.0) and p I pmtn I~ uj are both m,<;'Jl-hard in the

ordinary sense; the latter result is due to Lawler [1983]. Lawler [I979A] also shows that, for

any fixed number of uniform machines, Qm I pmtn I 2:wj Uj can be solved in pseudopolynomial

time: O(n 2('i.wj)2) if m=2 and O(n 3m- 5("i.wj)2) if m~3. Hence, Qm lpmtn j2:Uj is solvable

in strictly polynomial time. Lawler & Martel [1989] give an improved algorithm for m = 2 that

runs in O(n 22:w) time, and also use this algorithm to derive a fully polynomial approximation

scheme for Q 21 pmtn I "i.»] Uj. The remaining minimal open problems are R 21 pmtn J 2: u1 and,

only with respect to a unary encoding, PI pmtn j 2:Uj.

We know from Section 7.1 that 11 pmtn j 2:T1 and 11 pmtn j "i.wj Tj are 0t'5'-hard in the ordi

nary sense and in the strong sense, respectively. With respect to a unary encoding,

P2 I pmtn I ~Tj is open.

24

In the presence of release dates, £JLg>-hardness has been established for P 21 pmtn, r1 I 2:C1
[Du, Leung & Young, 1988], P2jpmtn,1;j2:U1 and R jpmtn,r1 12:U1 [Du, Leung & Wong,
1989].

9. MINMAX CRITERIA WITHOUT PREEMPTION

9.0. The peiformance of list scheduling for P 11 C max
Although P 11 C maxis strongly £JLg>-hard [Garey & Johnson, 1978], there are simple procedures
to construct schedules that are provably close to optimal. Consider the list scheduling (LS) rule,
which schedules the next available job in some prespecified list whenever a machine becomes
idle.

In the earliest paper on the worst-case analysis of approximation algorithms, Graham [1966]
proves that, for any instance,

• l
Cmax(LS)/Cmax ~2- -.

m (t)

To see this, let J1 be the last job to be completed in a list schedule, and note that no machine
can be idle before time t = C max (LS)-p1, when J1 starts processing. Intuitively, the perfor
mance guarantee follows from the observation that both t and p1 are lower bounds on the
length of any schedule. ~ore formally, we have 2:J=falPJ ';:!:mt and therefore

l I m -1
Cmax(LS) = t +Pt~-}.: ._,_1P1 +Pt=-}.: -Pi+ --pi. m Jr m J m

The observations that

C• :::;,,, l 'Ii;'
max ~ -..:d PJ• m J

now yield the desired result.

C• :::;,,,
max ,,___. Pl>

The bound is tight for any value of m, as is shown by the following class of instances. Let
n =m (m -1)+ 1, p 1 = · · · =pn -1 = l, Pn =m, and consider the list (J 1,J 2, ••• Jn)· It is not
hard to see that C max (LS)= 2m - 1 and C~ax = m.

The worst-case analysis also gives insight into the average-case performance of list schedul
ing. We know that, for any instance,

Cmax(LS)/C~ax ~I+(~ -1)max1p1 1}.:.pi"
J

In order to give a probabilistic analysis of list scheduling, we assume that the processing times
PJ are selected from a given probahility distribution, and we study the error term under this
distribution. (Note that random variables are printed in boldface.) For the case that the PJ are
independently and uniformly distributed over the interval [O, 1], Bruno & Downey [1986] show
that

limn_, 00 Pr[max1p112.:.P1>41n] = 0.
J

In other words, as long as n grows faster than m, list schedules are asymptotically optimal in
probability.

25

9.1. Identical machines

By far the most studied scheduling model from the viewpoint of approximation algorithms is

P I I C max. Garey, Graham & Johnson [1978] and Coffman, Lueker & Rinnooy Kan [1988] give

easily readable introductions into the techniques involved in, respectively, the worst-case and

probabilistic analysis of approximation algorithms.

In the previous section, we have seen that list scheduling is guaranteed to produce a schedule

with maximum completion time less than twice the optimal. Since there always is a list order

ing for which this simple heuristic produces an optimal schedule, it is natural to consider

refinements of the approach. Graham [1969] shows that, if the jobs are selected in longest pro

cessing time (LP1) order, then the bound can be considerably improved:

• 4 1
Cmax(LPT)!Cmax :o;:;.;;3- 3m. (t)

A somewhat better algorithm, called multifit (MF) and based on a completely different prin

ciple, is due to Coffman, Garey & Johnson [1978]. The idea behind MF is to find (by binary

search) the smallest 'capachy' that a set of m 'bins' can have and still accommodate all jobs

when the jobs are taken in order of nonincreasing PJ and each job is placed into the first bin

into which it will fit. The set of jobs in the ith bin will be processed by Mi. Coffman, Garey &

Johnson show that, if k packing attempts are made, the algorithm (denoted by MFk) runs in

time 0 (nlogn + kniogm) and satisfies

Cmax(MFk)IC~ax,,;:;;; 1.22+2-k.

Friesen [1984] subsequently improves this bound from 1.22 to 1.2. The procedure executed

within the binary search 'loop' can be viewed as an approximation algorithm for packing a set

of jobs in the fewest number bins of a given capacity. If a more primitive algorithm is used for

this, where the jobs are not ordered by decreasingp1, then all that can be guaranteed is

* 2
Cmax(MF)/Cmax :o;:;.;;2---1 . (t)

m+

Friesen & Langston [1986] refine the iterated approximation algorithm to provide algorithms

MFk' with running time O(nlogn +knlogm) (where the constant embedded within the 'big

Oh' notation is big indeed) that guarantee

' * 72 -k
Cmax(MFk)!Cmax ,,;:;;;6}+2 ·

Although the bounds for MFk and MF/ are not tight, there are examples for both that achieve

a ratio of 13111.
The following algorithm Zk is due to Graham [1969]: schedule the k largest jobs optimally,

then list schedule the remaining jobs arbitrarily. Graham shows that

* 1 k
Croax(Zk)/Cmax,,;:;;; 1+(1--)/(1+ L-J),

m m

and that when m divides k, this is best possible. By selecting k =m!f., we obtain an algorithm

with worst-case performance ratio less than 1 +f.. Unfortunately, the best bound on the run

ning time is 0 (n km). Thus, for any fixed number of machines, this family of algorithms is a

26

polynomial approximation scheme. Sahni [1976] has improved this result, by devising algo
rithms Ak with O(n(n 2kr - 1) running time which satisfy

• I
C max(Ak)! Cmax ~ 1 + k"

For any fixed number of machines, these algorithms constitute a fully polynomial approxima
tion scheme. For m=2, algorithmAk can be improved to run in time O(n 2k). As in the cases
of 111 }:w1 ~ (Section 6.1) and P 11 }:li)CJ (Section 8.2), the algorithms Ak are based on a
clever combination of dynamic programming and rounding and are beyond the scope of the
present discussion.

Hochbaum & Shmoys [1987] use a variation on the multifit approach to provide a polyno
mial approximation scheme for P 11 C max, which replaces a (traditional) approximation algo
rithm in the binary search with a dual approximation algorithm. Given a capacity d and a set of
jobs to pack, a p-dual approximation algorithm (p> I) produces a packing that uses at most the
minimum number of bins of capacity d, but the packing may use bins of capacity pd. Using a
p-dual approximation al~rithm within binary search for k iterations, one obtains a (p + 2-k)
approximation algorithm for P I I C max. Hochbaum & Shmoys further provide a family of
algorithms Dk, such that Dk is a (1 +I I k)-dual approximation algorithm and has running time
O((knl\ Leung [1989] improves the running time to O((knl1ogk). Fork =5 and k =6,
Hochbaum & Shmoys refine their approach to obtain algorithms with O(nlogn) and
0 (n (m 4 +log n)) runrting times, respectively. Since P I I C max is strongly 'VL0'-hard, there is no
fully polynomial approximation scheme for it unless 0'='VL0'.

Several bounds are available which take into account the processing times of the jobs. Recall
that the probabilistic analysis discussed in Section 9.0 relies on such a (worst-case) bound for
list scheduling. Achugbue & Chin [1981] prove two results relating the performance ratio of list
scheduling·to the value of '1T=max1p1 I min1p1. If '1T~3, then

5/3 if m =3,4,
Cmax(LS)/C~ax ~ 17/10 ifm=5,

2- 1 if m~6,
3Lm!3J

and if '1T~2,

• { 3/2 C max(LS)! Cmax ~ 1

sn- 3Lm12J

if m =2,3,

if m~4.

For the case of LPT, Ibarra & Kim [1977] prove that

C max(LPT)! C~ax ~ 1 + 2(m - l) for n ~ 2(m -1)'1T.
n

(t)

Significantly less is known about the worst-case performance of approximation algorithms
for other minmax criteria. Gusfield [1984] considers the problem PI r1 I Lmax• and proves that

27

for the EDD rule (see Section 4.1),

* 2m -1
Lmax.(EDD)- Lmax. ~ maxJPJ·

m
(t)

As in the single machine case, it is natural to consider the relative error in the delivery time

model. The translation of the previous bound into this setting provides an unnecessarily weak

guarantee. By using a simple extension of the argument of Graham [1966], Hall & Shmoys [-]

observe that

Lmax.(LS)I L:nax < 2. (t)

They also develop a polynomial approximation scheme for this problem. Carlier [1987] gives

an enumerative method for P I r1 I Lmax. Simons [1983] shows that an interesting special case,

P lr1,p1=p ILmax• can be solved in polynomial time. Simons & Warmuth [1989] give an

improved 0 (mn 2) algorithm based on a generalization of the approach of Garey, Johnson,

Simons & Tarjan [1981]. No approximation results are known for minimizing C max with both

release times and deadlines; Bradey, Florian & Robillard [1975] give an enumerative method

for this problem. -

The simple probabilistic analysis of list scheduling that was discussed in Section 8.0 is also just

a first step in a series of results in this area. For example, the bounds of Bruno & Downey

[1986] were refined and extended to other distributions by Coffman & Gilbert [1985].

Probabilistic analysis also supports the claim that the LPT heuristic performs better than

arbitrary list scheduling. Unlike the relative error of list scheduling, the absolute error

C max(LS)- C~ax does not tend to 0 as n-HJJ (with m fixed). Coffman, Flatto & Lueker [1984]

observe that, if I (LPT) denotes the total idle time in an LPT schedule, then the absolute error

is at most I (LPT) Im. For processing times selected independently and uniformly from [O, l],

they prove that E[I(LPT)]~cmm 2 I(n+1), where Cm is bounded and limm~ooCm = L

Loulou [1984] and Frenk & Rinnooy Kan [1987] both base their analyses of LPT on the

difference Cmax.(LPT)-"i.1p11m, which is an upper bound on Cmax.(LPT)-C~ax.· Loulou

shows that, if the processing times are independent and identically distributed with finite

mean, then, for any fixed m ~ 2, the absolute error of LPT is stochastically smaller than a fixed

random variable that does not depend on n. Frenk & Rinnooy Kan consider the general situa

tion where the processing times are independently drawn from a distribution that has finite

second moment and positive density at zero. They prove that the absolute error converges to 0

not only in expectation but even almost surely; that is, Pr[limn_. 00 Cmax.(LPT)-C~ax =O]= L

Given that the absolute error of the LPT rule approaches 0, a further issue is the rate at

which the error converges to 0. Boxma [1984] and Frenk & Rinnooy Kan [1986] show that

under a broad range of distributions, the expected absolute error is 0 (n -c) for some positive

constant c. Karmarkar & Karp [1982] suggest an entirely different approach, the differencing

method, and prove that with probability approaching l, the difference between the completion

times of the last and first machines is O(n -clogn) for some positive c. Fischetti & Martello

[1987] give a worst-case analysis of this heuristic for P 21 I C max and prove that it is a 7 I 6-

approximation algorithm.

28

9.2. Uniform machines
Many of the results in the previous section can be generalized to the uniform machine model.
The initial work in this area is due to Liu & Liu [1974A, 1974B, 1974C], who consider arbitrary
list scheduling as well as a natural extension of the scheme of Graham that optimally schedules
the k longest jobs and then uses list scheduling on the remaining jobs. The performance of
these algorithms on uniform machines is significantly worse; for example,

(t)

The most natural way to implement list scheduling on uniform machines is to assign the next
job on the list to any machine that becomes idle. However, this produces schedules without
unforced idleness, and the optimal schedule might require such idle time. Another implementa
tion LS' is studied by Cho & Sahni [1980], where the next job in the list is scheduled on the
machine on which it will finish earliest. They prove that

{
(1 + Vs)/2 form =2,

Cmax(LS')I c;;,ax ~ (1 +(Y2m -2)12 form >2.

The bound is tight form ~6, but in general, the worst known examples have a performance
ratio of L (log2 (3m - 1) + I) I 2 J. This approach followed the work of Gonzalez, Ibarra & Sahni
[1977], who consider the analogous generalization LPT' of LPT and show that .

Cmax(LPT')!C"n,ax ~ 2--2- 1 . m+
Dobson [1984] and Friesen [1987] improve this analysis to obtain an upper bound of 19/12,
and also provide examples that have performance ratio 1.52. Morrison [1988] shows that LPT
is better that LS, in that

C max(LPT)/ c;;,ax ~ max{max;s; I (2minis;),2}. (t)
Friesen & Langston [1983] extend the multifit approach to uniform processors. They prove

that, if the bins are ordered in increasing size for each iteration of the binary search, then

Cmax(MFk)!C:Uax ~ 1.4+2-k,

and that there exists an example that has performance ratio 1.341. Kunde & Steppat [1985]
show that the decision to order the bins by increasing size is the correct one, since for decreas
ing bin sizes there exist examples with performance ratio 312.

Horowitz & Sahni [1976] give a family of algorithms Ak wit11 running time O(n 2mkm-I)

such that

• l
C max(Ak)/ Cmax ~ 1 + k'

so that for any fixed value of m, this is a fully polynomial approximation scheme. Extending
their dual approximation approach for identical machines, Hochbaum & Shmoys [1988] give a
polynomial approximation scheme, where algorithm Dk has running time 0 (mn IOk 2 + 3) and

• I
C max(Dk)! Cmax ~ 1 + k'

29

For small values of k, the efficiency of this scheme can be improved; Hochbaum & Shmoys

provide algorithms with performance guarantee arbitrarily close to 3/2 that run in

O(nlogn +m) time.

The probabilistic results of Frenlc & Rinnooy Kan [1986, 1987] also extend to the case of uni

form machines. In fact, the naive implementation of the LPT rule (as opposed to the algorithm

LPT' that was discussed above) produces schedules in which the absolute error converges in

expectation and almost surely to 0.

9.3. Unrelated machines
Unrelated parallel machine problems are perceived to be significantly harder than uniform

machine problems, and results concerning the worst-case analysis of approximation algorithms

substantiate this distinction. Lenstra, Shmoys & Tardos [1989] show that it is 0t0'-complete to

decide if there is a feasible schedule of length 2 for instances of R I I C max. This implies that

there does not exist a polynomial-time p-approximation algorithm with p<3!2 unless 0'=0t0'.

Although this excludes the- possibility of a polynomial approximation scheme, Horowitz &

Sahni [1976] show that for any fixed number of machines, there is a fully polynomial approxi

mation scheme.
Ibarra & Kim [1977] show that a variety of simple algorithms perform discouragingly

poorly; in fact, they w~re only able to prove that these methods were m-approximation algo

rithms. The first substantial improvement of this bound is due to Davis & Jaffe [1981], who

give a variant of a. list scheduling algorithm for which

Cmax(LS')/ C~ax ~ 2.5Vm + l + _ 1r-,
2vm

and also provide examples that show that this analysis is tight up to a constant factor.

Potts [1985A] proposes an algorithm based on linear programming (LP), the running time of

which is polynomial only for fixed m. He proves

C max(LP)! C~ax ~ 2. (t)

In contrast to the scheme of Horowitz & Sahni, this is a practical algorithm for a modest

number of machines, since the space requirements do not grow exponentially in the number of

machines. Lenstra, Shmoys & Tardos [1989] extend this approach in two ways. First, they give

a modified algorithm LP' that runs in polynomial time and still satisfies

C max(LP')! C~ax < 2. (t)

Second, for a fixed number of machines, they give a polynomial approximation scheme, based

on a combination of enumeration of partial schedules and linear programming, which has only

modest space requirements.

30

10. MINMAX CRITERIA WITH PREEMPTION

10.0. McNaughton's wrap-around rule for PI pmtn I Cmax
McNaughton's [1959] solution of P I pmtn I C max is probably the simplest and earliest instance
of an approach that has been successfully applied to other preemptive scheduling problems: we
first provide an obvious lower bound on the value of an optimal schedule and then construct a
schedule that matches this bound.

In this case, we see that the maximum completion time of any schedule is at least

max{max1p1,(~ .p1)1m }.
J

A schedule meeting this bound can be constructed in 0 (n) time: just fill the machines succes
sively, scheduling the jobs in any order and splitting a job whenever the above time bound is
met. The number of preemptions occurring in this schedule is at most m -1, and it is possible
to design a class of problems for which any optimal schedule has at least this many preemp
tions. It is not hard to see that the problem of minimizing the number of preemptions is CJL<?P
hard.

l 0.1. Maximum completion time on uniform and unrelated machines
For Q I pmtn IC max• the length of any schedule is at least

max{max1~k.;;;m - 1~: = 1p1I ~~= 1 s;,~;=iPJI ~7~ 1 s;},
where p 1 ~ • • · ~Pn and s 1 ~ • • • ~sm. This generalizes the lower bound given in the previous
section.

Horvath, Lam & Sethi [1977] prove that this bound is met by a preemptive variant of the
LPT rule, which, at each point in time, assigns the jobs with the largest remaining processing
requirement to the fastest available processors. The algorithm runs in O(mn 2) time and gen
erates an optimal schedule with no more than (m - 1)n 2 preemptions.

Gonzalez & Sahni [l 978B] give a more efficient algorithm. It requires 0 (n) time, if the jobs
are given in order of nonincreasingp1 and the machines in order of nonincreasing s;; without
this assumption, the running time increases only to 0 (n + m log m). The procedure yields an
optimal schedule with no more than 2(m -1) preemptions, which is a tight bound.

Lawler & Labetoulle [1978] show that many preemptive scheduling problems involving
independent jobs on unrelated machines can be formulated as linear programming problems.
For R I pmtn I C mm the length of any schedule is at least equal to the minimum value of C
subject to

~;xiJlp;1 =1

~;xiJ ~ C

~)Xij ~ C

xij~o

for}= I, ... ,n,

for j = 1, ... , n,

for i = 1, ... , m,

for i = 1, ... , m, j = 1, ... , n.

In this formulation, x 11 represents the total time spent by J1 on M;. The linear program can be
solved in polynomial time [Khachiyan, 1979]. A feasible schedule for which C max equals the

31

optimal value of C can be constructed in polynomial time by applying the algorithm for

0 I pmtn I C max, discussed in Section 12.2. This procedure can be modified to yield an optimal

schedule with no more than about 7 m 2 I 2 preemptions. It. remains an open question as to

whether there is some constant c >0 such that cm 2 preemptions are necessary for an optimal

preemptive schedule.
For fixed m, it seems to be possible to solve the linear program in linear time. Certainly,

Gonzalez, Lawler & Sahni [1981] show how to solve the special case R 2 j pmtn I C max in 0 (n)

time.

10.2. Release dates, due dates, and other complications

Hom [1974] gives a procedure to solve P lpmtn ILmax and P jpmtn,r11Cmax in O(n 2) time.

Gonzalez & Johnson [1980] give a more efficient algorithm that uses only 0 (mn) time.

More generally, Hom [1974] shows that the existence of a feasible preemptive schedule with

given release dates and deadlines can be tested by means of a network flow model in 0 (n 3)

time. A binary search can then be conducted on the optimal value of Lmax• with each trial

value of Lmax inducing deadlines that are checked for feasibility by means of the network com

putation. Labetoulle, Lawler, Lenstra & Rinnooy Kan [1984] show that this yields an

O(n 3min{n 2,Iogn + logmax1p1}) algorithm.
Other restrictions on allowable preemptive schedules have been investigated. Schmidt [1983]

considers the case whe!e the machines are only available in certain given time intervals, and

shows that the existence of a feasible preemptive schedule can be tested in polynomial time.

Rayward-Smith [1987B] studies the situation where a delay of k time units is incurred when a

job is preempted from one machine to another. He observes that imposing such delays on

identical machines increases c:nax by at most k - 1. Thus, for k = l, the problem is solvable in

polynomial time by McNaughton's rule. Surprisingly, for any fixed k ~2, the problem is CJCB'
hard.

In the case of uniform machines, Sahni & Cho [1980] show how to test the existence of a

feasible preemptive schedule with given release dates and a common deadline in

0 (nlog n + mn) time; the algorithm generates 0 (mn) preemptions in the worst case. More gen

erally, Sahni & Cho [1979B] and Labetoulle, Lawler, Lenstra & Rinnooy Kan (1984] show that

Q lpmtn,r1 1Cmax and, by symmetry, Q lpmtn ILmax are solvable in O(nlogn+mn) time,

where the number of preemptions generated is 0 (mn).
The feasibility test of Horn mentioned above has been adapted by Bruno & Gonzalez [1976]

to the case of two uniform machines and extended to a polynomial-time algorithm for

Q 21 pmt1i,r1 I Lmax by Labetoulle, Lawler, Lenstra & Rinnooy Kan [1984].

Martel [1982] presents a polynomial-time algorithm for QI pmtn,r1 I Lmax· His method is in

fact a special case of a more general algorithm of Lawler & Martel [1982] for computing maxi

mal polymatroidal network flows. Federgruen & Groenevelt [1986) give an improved algorithm

for the problem by reducing it to the ordinary maximum flow problem; if there are machines

oft distinct speeds (and sot ~m), their algorithm runs in 0 (tn 3) time.

The technique of Lawler & Labetoulle [1978] also yields a polynomial-time algorithm based

on linear programming for R I pmtn, rJ I L max.

32

11. PRECEDENCE CONSTRAINTS

11.0. An q}(,~-hardness proof for P lprec,pi = 11 C max

The first q}(,~-hardness proof for p lprec,pj = I I c max is due to Ullman [1975). Lenstra & Rin
nooy Kan [1978) show that even the problem of deciding if there exists a feasible schedule of
length at most 3 is ~~-complete; the proof is given below. This result implies that, for
P lprec,p1 = l IC max• there is no polynomial p-approximation algorithm for any p<4/3, unless
~=q]t~. Note that it is trivial to decide if a feasible schedule of length 2 exists.

G = (V,E):

k=3

(a) Instance of the
clique problem.

m=6

(b) Corresponding instance
of P I prec,pi =I IC max·

J2 Jb la

J3 Jc le

J4 Jd Z1

X1 J1 Z2

X2 Js Z3

X3 Y1 Z4

(c) Feasible schedule for
PI prec,p1= 11 Cmax·

FIGURE 2. The clique problem reduces to P lprec,p1=11 C max·

Recall the ':?t~-complete clique pr.oblem from Section 2: given a graph G =(V,E) and an
integer k, does G have a clique (i.e., a complete subgraph) on k vertices? We denote the number
of edges in a clique of size k by l=k(k-1)12, and we define k'= IV 1-k, I'= IE I-/. For
any instance of the clique problem, we construct a corresponding instance of
P lprec,p1= I I Cmax· The number of machines is given by m =max{k,l +k',l'}+ l. We intro
duce a job lv for every vertex v E Vanda job le for every edge e EE, withlv~le whenever vis
an endpoint of e. We also need dummy jobs Xx (x = 1, ... ,m -k), Yy (y = 1, ... ,m -1-k')
and Zz (z = 1, ... , m -!'),with Xx~ Yy~Z= for all x,y,z. Note that the total number of jobs is
3m.

The reduction is illustrated in Figure 2. The basic idea is the following. In any schedule of
length 3 for the dummy jobs, there is a certain pattern of idle machines that are available for
the vertex and edge jobs. This pattern is chosen such that a complete feasible schedule of

33

length 3 exists if and only if there is a clique of size k.

More precisely, suppose that a clique on k vertices exists. We then schedule the k jobs

corresponding to the clique vertices and them -k jobs Xx in the first time slot. In view of the

precedence constraints, we can schedule the I jobs corresponding to the clique edges and the

m - I - k' jobs Yy. in the second time slot; we also schedule the k' remaining vertex jobs there.

We finally schedule the /' remaining edge jobs and the m -l' jobs Zz in the third time slot.

This is a feasible schedule of length 3.
Conversely, suppose that no clique of size k exists. In any schedule of length 3, exactly k ver

tex jobs are processed in the first time slot. However, any set of k vertex jobs releases at most

I - I edge jobs for processing in the second time slot. Since at that point only m - I other jobs

are available for processing, the schedule cannot be feasible.

1 L l. Unit-length jobs on identical machines

We have seen that P I prec,p J = 1 I C max is ~'3'-hard. It is an· important open question whether

this remains true for any constant value of m ;;;a: 3. The problem is well solved, however, if the

precedence relation is of tnetree type or if m = 2.
Hu [1961] gives a polynomial-time algorithm to solve P I tree,p1=11 C max· Hsu [1966] and

Sethi [1976A] give improvements that lead to an O(n) time procedure. We will describe a pro

cedure for the case of an intree (each job has at most one successor); an alternative algorithm

for the case of an outtree (each job has at most one predecessor) is given by Davida & Linton

[1976]. The level of a job is defined as the number of jobs in the unique path to the root of the

precedence tree. At the beginning of each time unit, as many available jobs as possible are

scheduled on them machines, where highest priority is granted to the jobs with the largest lev

els. Thus, Hu's algorithm is a nonpreemptive list scheduling algorithm (cf. Section 9.0). It can

also be viewed as a critical path scheduling algorithm: the next job chosen is the one which

heads the longest current chain of unexecutedjobs. Marcotte & Trotter [1984] show that Hu's

algorithm can also be derived from a minmax result of Edmonds [1965] on covering the ele

ments of a matroid by its bases; in this application, the elements correspond to jobs, and a

transversal matroid is obtained with bases corresponding to feasible machine histories.

Brucker, Garey & Johnson [1977] show that, if the precedence constraints are in the form of

an intree, then Hu's algorithm can be adapted to minimize Lmax; on the other hand, if the pre

cedence constraints form an outtree, then the Lmax problem turns out to be ~'3'-hard. Monma

[1982] improves the former result by giving a linear-time algorithm.
Garey, Johnson, Tarjan & Yannakakis [1983] consider the case in which the precedence

graph is an opposingforest, that is, the disjoint union of an inforest and an outforest. They show

that if m is arbitary, then minimizing C max is 0L'3'-hard, but if m is fixed, then the problem can

be solved in polynomial time. Papadimitriou & Y annakakis [1979] consider the case in which

the precedence graph is an interval order and give an 0 (n + m) list scheduling rule that delivers

optimal schedules. Bartusch, Mohring & Radermacher [1988A] give an algorithm that unifies

many of the special cases previously known to be polynomially solvable.
In addition to proving interesting structural theorems about optimal schedules, Dolev &

Warmuth [1984, 1985A, 1985B] give polynomial-time algorithms for a number of special cases

of Pm I prec,p1 = 1 I C max. Dolev & Warmuth [1985 B] give an algorithm for opposing forests

with substantially improved running time, that also uses substantially more space. In an

34

arbitrary precedence graph, the level of a job is the length of the longest path that starts at that
job. A level order is a precedence graph in which each pair of incomparable jobs with a com
mon predecessor or successor have identical sets of predecessors and successors. Dolev & War
muth [1985B] also show that level orders can be solved in 0 (nm - 1) time. For precedence
graphs in which the longest path has at most h arcs, Dolev & Warmuth [1984] give an
O (n h (m - I)+ 1) algorithm. Note that the proof given above shows that the problem is already
~0>-hard for h =2. Dynamic programming can be used to obtain a polynomial-time algorithm
for the case where the width of the precedence graph is bounded; this is one of the many poly
nomially solvable special cases surveyed by Mohring [1989].

Fujii, Kasami & Ninomiya [1969, 1971] present the first polynomial-time algorithm for
P 21 prec,p1 = I I C max. An undirected graph is constructed with vertices corresponding to jobs
and edges {j,k} whenever J1 and h can be executed simultaneously. An optimal schedule is
then derived from a maximum cardinality matching in the graph, and so the algorithm runs in
O (n 3) time [Lawler, 1976B).

Coffman & Graham [1972] give an alternative approach that leads to an 0 (n 2) list schedul
ing algorithm. First the jobs are labeled in the following way. Suppose labels 1, ... , k have
been applied and S is the subset of unlabeled jobs all of whose successors have been Iabeled.
Then a job in Sis given the label k + 1 if the labels of its immediate succesors are lexicographi
cally minimal with respect to all jobs in S. The priority list is given by ordering the jobs accord
ing to decreasing labels. Sethi [1976B] shows that it is possible to execute this algorithm in time
almost linear in n plus tbe numbers of arcs in the precedence graph, if the graph is given in the
form of a transitive reduction.

Gabow [1982] presents an algorithm which has the same running time, but which does not
require such a representation of the precedence graph. The running time of the algorithm is
dominated by the time to maintain a data structure that represents sets of elements throughout
a sequence of so-called union-find operations, and Gabow & Tarjan [1985] improve the run
ning time to linear by exploiting the special structure of the particular union-find problems
generated in this way. Consider the following procedure to compute a lower bound on the
length of an optimal schedule. Delete jobs and precedence constraints to obtain a precedence
graph that can be decomposed into t sets of jobs, S 1, ••• , S1, such that for each pair of jobs
h ES;, J, ES;+}, h precedes J,; then r Is I I 121 + ... + r I St I 121 is clearly a lower bound.
Gabow's proof implies the duality result that the maximum lower bound that can be obtained
in this way is equal to C~ax. _

Garey & Johnson [1976, 1977] present a polynomial algorithm for this problem where, in
addition, each job becomes available at its release date and has to meet a given deadline. In this
approach, one processes the jobs in order of increasing modified deadlines. This modification
requires 0 (n 2) time if all rj = 0, and 0 (n 3) time in the general case.

The reduction given in Section 1 LO also implies that P I prec,p1=11 ~CJ is ~0>-hard. Hu's
algorithm does not yield an optimal J:.C1 schedule in the case of intrees, but in the case of out
trees, Rosenfeld H has observed that critical path scheduling minimizes both C max and J:.C1.
Similarly, Garey[-] has shown that the Coffman-Graham algorithm minimizes "J.C1 as well.

As far as approximation algorithms for P I prec,p1=1 IC max are concerned, we have already
noted in Section 11.0 that, unless 0>= ~<J>, the best possible worst-case bound for a

35

polynomial-time algorithm would be 4/3. The performance of both Hu's algorithm and the

Coffman-Graham algorithm has been analyzed.
When critical path (CP) scheduling is used, Chen [1975), Chen & Liu [1975] and Kunde

[1976] show that

{

4
• 3

Cmax(CP)/Cmax,,;;;; 2--1-

m -l

for m=2,

form~3.

Lam & Sethi [1977] use the Coffman-Graham (CG) algorithm to generate lists and show that

• 2
Cmax(CG)/Cmax .;;;;2-- form~2.

m

(t)

(t)

If MS denotes the algorithm which schedules as the next job the one having the greatest

number of successors, then Ibarra & Kirn [1976] prove that

Cmax(MS)/C~x,,;;;;; form=2. (t)

Examples show that this bound does not hold for m~3.

Finally, we mention some results for related models.

Ullman [1975] and Lenstra & Rinnooy Kan [1978] show that both P2 I prec,p1 E { 1,2} IC max

and P2 I prec,p1 E { 1,2} I ~CJ are ~'3'-hard. Nakajima, Leung & Hakimi [1981] give a compli

cated 0 (nlogn) algorithm to find the optimal solution for P2 I tree,p1 E{l,2} IC max; for prac

tical purposes, a heuristic due to Kaufman [1974] which has a worst-case absolute error of 1,

may be more attractive. Du & Leung [1989A] give an O(n 21ogn) algorithm to solve

P21tree,p1 E{1,3} ICmax to optimality. On the other hand, Du & Leung [1988A] show that

P I tree,p1 E { 1,k} IC max (where k is input) is strongly ~'3'-hard, and that

P21tree,p1 E{k 1 :l~O}JCmax is ~'3'-hard in the ordinary sense for any integer k>L For

P 21 prec,p1 E { 1, k} IC max• Goyal [l 977] proposes a generalized version of the Coffman

Graham algorithm (GCG) and shows that

{

4 for k=2,

C max (GCG) I C:Uax ,,;;;; o~ __ l
for k~3.

2 2k

Rayward-Smith [1987A] considers a model similar to one discussed in Section 10.2, where

there is a unit-time communication delay between any pair of distinct processors. For unit

time jobs, the problem is shown to be ~.:P-complete. The performance of a greedy (G) algo

rithm is analyzed, where first a list schedule is generated, and then a local interchange strategy

tries to improve the schedule. The algorithm produces schedules such that

• 2
Cmax(G)/Cmax .;;;;3--. (t)

m

Approximation algorithms in a similar model are also considered by Papadimitriou &

Yannakakis [1988].

36

11.2. Precedence constraints and no preemption
The list scheduling rule performs surprisingly well on identical machines, even in the presence
of precedence constraints. Graham [1966] shows that precedence constraints do not affect its
worst-case performance at all; that is,

• l t Cmax{LS)/Cmax ~2--. ()
m

Now, consider executing the set of jobs twice: the first time using processing times p1, pre
cedence constraints, m machines and an arbitrary priority list, the second time using process
ing times p/~1, weakened precedence constraints, m' machines and a (possibly different)
priority list. Graham [1966] proves that, even then,

m-1
C'max(LS)I Cmax(LS) ~ 1 +--,-.

m
(t)

Note that this result implies the previous one. Even when critical path (CP) scheduling is used,
Graham [-] provides examples for which

• 1
Cmax(CP)/Cmax = 2--.

m

Kunde [1981] shows that for tree-type and chain-type precedence constraints, there are slightly
improved upper bounds for CP of 2-2/(m + 1) and 5/3, respectively. For now, let
c:nax (pmtn) denote the optimal value of C max if preemption is allowed. Kaufman [1974] shows
that for tree-type precedence constraints,

(t)

Du, Leung & Young [1989] prove that P 21 tree I C max is strongly ~'3'-hard, even for chains.
Graham[-] shows that for general precedence constraints

• I C max(LS)/ Cmax (pmtn) ~ 2- -. (t)
m

For P I prec,r1 I L 01ax, Hall & Shmoys [-] observe that in the delivery time model, the same
proof technique again yields

L 01ax(LS)/ L~ax < 2. (t)

As remarked above, it is an open question whether Pm lprec,p1 = 11 C max (i.e., with m fixed) is
solvable in polynomial time. In fact, it is a challenging problem even to approximate an
optimal solution appreciably better than a factor of 2 in polynomial time for fixed values of m.

Even less is known about approximation algorithms for uniform machines. Liu & Liu
[1974B] also consider Q I prec I C max and show that

(t)

Note that this yields the result of Graham [1966] when all speeds are equal. As above, similar
bounds can be proved relative to the preemptive optimum, or relative to an altered problem.

Jaffe [1980A] shows that using all of the machines in list scheduling may be wasteful in the

37

worst case. The arguments of Liu & Liu are generalized to show that by list scheduling on the l

fastest machines (LS1), ifs 1 ~ • · · ~sm,

c max(LS1)/ c:nax ~ ~r=IS; I~~ =IS;+ S1 I St - s 1 I ~~=/i·

By minimizing this quantity, Jaffe derives an algorithm Ls• for which

Cmax(LS*)1c:nax ~ Vm + O(m 114).

(t)

This bound is tight up to a constant factor. The surprising aspect of this algorithm is that the

decision about the number of machines to be used is made without the knowledge of the pro

cessing requirements.
Gabow [1988] considers Q 21 prec,p J = 1 I C max and analyzes two approximation algorithms.

The algorithm P2, which ignores the machine speeds and finds an optimal solution to the

resulting problem on two identical machines, guarantees

Cmax(P2)/C~ax ~2--min{s1,s2}/max{sbs2}. (t)

The highest level first (H LF) algorithm is shown to be slightly better in special cases: . {! ifmin{s 1,s2}/max{si.s2}= ~'
C max.(HLF)/ C max ~ 6 . . 2

~ 5 1f rrnn{s i,s2} I max{si.s2} = 3·
(t)

Gabow also gives an 0 ((n +a)2') algorithm to find an optimal solution if I l / s 1 - l/ s 2 I = 1,

where 1 / s 1 and 1 / s 2 are relatively prime integers, a is the number of arcs and l is the number

of levels in the precedence graph.
Nothing is known about approximation algorithms for unrelated machines with precedence

constraints.

1] .3. Precedence constraints and preemption

Ullman [1976] shows that P I pnatn,prec,p1=11 C max is 'Jt'§l-hard, but P I pmtn,tree IC max and

P 21 pmtn,prec I C max can be solved by a polynomial-time algorithm due to Muntz & Coffman

[1969, 1970].

The Muntz-Coffman algorithm can be described as follows. Define &Ct) to be the level of a J1

wholly or partly unexecuted at time t, where the level now refers to the length of the path in the

precedence graph with maximum total processing requirement. Suppose that at time t, m'

machines are available and that n' jobs are currently maximizing lit). If m'<n', we assign

m 'In' machines to each of the n' jobs, which implies that each of these jobs will be executed at

speed m 'In'. If m' ~ n ', we assign one machine to each job, consider the jobs at the next highest

level, and repeat. The machines are reassigned whenever a job is completed or threatens to be

processed at a higher speed than another one at a currently higher level. Between each pair of

successive reassignment points, jobs are finally rescheduled by means of McNaughton's algo

rithm for PI pmtn I Cmax· Gonzalez & Johnson [1980] give an implementation of the algorithm

that runs in 0 (n 2) time.
Gonzalez & Johnson [1980] have developed a totally different algorithm that solves

P I pmtn,tree IC max by starting at the roots rather than the leaves of the tree and determines

38

priority by considering the total remaining processing time in subtrees rather than by looking
at critical paths. The algorithm runs in O(nlogm) time and introduces at most n -2 preemp
tions into the resulting optimal schedule.

This approach can be adapted to the case Q 21 pmtn, tree I C max. Horvath, Lam & Sethi
[1977] give an algorithm to solve Q21pmtn,prec I Cmax in O(mn 2) time, similar to the result
mentioned in Section 10.1.

Lawler [l 982A] shows that some well-solvable problems involving the nonpreemptive
scheduling of unit-time jobs turn out to have well-solvable counterparts involving the preemp
tive scheduling of jobs with arbitrary processing times. The algorithms of Brucker, Garey &
Johnson [1977] for PI intree,p1=IILmax and of Garey & Johnson [1976, 1977] for
P2 I prec,p1 =I I Lmax and P2jprec,1;,p1=11 Lmax (see Section 11.1) all have preemptive coun
terparts. For example, P jpmtn,intree ILmax can be solved in O(n 2) time. For uniform
machines, Lawler shows that Q2 I pmtn,prec I Lmax and Q2 I pmtn,prec,r1 I Lmax can be solved
in O(n 2) and O(n 6) time, respectively. These results suggest a strong relationship between the
two models.

It is not hard to see that -R:2 I pmtn,tree IC max is 0C0>-hard in the strong sense, even for chains
[Lenstra, -].

As to approximation algorithms, Lam & Sethi [1977], much in the same spirit as their work
mentioned in Section 1 l.l, analyze the performance of the Muntz-Coffman (MC) algorithm for
P I pmtn,prec I C max. They show

• 2
C max(MC) IC max ~ 2- - form ;;;:;:2. (t)

m

For QI pmtn,prec I c max• Horvath, Lam & Sethi [1977] prove that the Muntz-Coffman algo
rithm guarantees

Cmax(MC)/C~ax ~ V3m/2,

and examples are given to prove that this bound is tight within a constant factor. Jaffe [1980B]
studies the performance of maximal usage schedules (MUS) for QI pmtn,prec IC mm i.e.,
schedules without unforced idleness in which at any time the jobs being processed are assigned
to the fastest machines. It is shown that

• - r- 1
Cmax(MUS)/Cmax ~ vm + 2'

and examples are given for which the bound 0n--=T is approached arbitrarily closely. A
slightly weaker bound on these schedules can also be proved using the techniques of Jaffe
[1980A].

39

PART IV. MULTI-OPERATION MODELS

We now pass on to problems in which each job requires execution on more than one machine.

Recall from Section 3 that in an open shop (denoted by 0) the order in which a job passes

through the machines is immaterial, whereas in a flow shop (F) each job has the same machine

ordering (M 1, ..• , Mm) and in a job shop (J) the jobs may have different machine orderings.

We survey these problem classes in Sections 12, 13 and 14, respectively. Our presentation

focuses on the C max criterion. A few results for other optimality criteria will be briefly men

tioned.
Very few multi-operation scheduling problems can be solved in polynomial time; the main

well-solvable cases are F21 I Cmax [Johnson, 1954], 0211 Cmax [Gonzalez & Sahni, 1976], and

0 lpmtn I Cmax [Gonzalez & Sahni, 1976; Lawler & Labetoulle, 1978]. General flow shop and

job shop scheduling problems have earned a reputation for intractability. We will be mostly

concerned with enumerative optimization methods for their solution and, to a lesser extent,

with approximation algorithms. An analytical approach to the performance of methods of the

latter type is badly needed.

12. OPEN SHOPS

12.0. Gonzalez & Sahni's algorithm for 0 211 C max.

The problem 0 211 C max admits of an elegant linear-time algorithm due to Gonzalez & Sahni

[1976].
For convenience, let a1=p 11 , b1=p 21 , a="2.1 a1, b='J.1 b1. An obvious lower bound on the

length of any feasible schedule is given by

.max{a, b, max1 a1+b1}.

We will show how a schedule matching this bound can be constructed in 0 (n) time.

Let A = {J1 I a1 ~bi} and B = {J1 I a1 <b1 }. Choose J,. and J1 to be any two distinct jobs,

whether in A or B, such that

Let A '=A - {J,.,Jl}, B' = B - {Jr,]1 }. We assert that it is possible to form feasible schedules

for B'U{Jt} and for A'U{J,} as indicated in Figure 3(a), where the jobs in A' and B' are

ordered arbitrarily. In each of these separate schedules, there is no idle time on either machine,

from the start of the first operation on that machine to the completion of its last operation.

Suppose a -a1 ~b -br (the case a -a1 <b-br being symmetric). We then combine the two

schedules as shown in Figure 3(b), pushing the jobs in B'U {J1} on M 2 to the right. Again,

there is no idle time on either machine, from the start of the first operation to the completion

of the last operation.
We finally propose to move the processing of Jr on M 2 to the first position on that machine.

There are two cases to consider. First, if ar~b-b,, then the resulting schedule is as in Figure

3(c); the length of the schedule is max{a, b}. Secondly, if a,.>b--b,, then the schedule in Fig

ure 3(d) results; its length is max {a, a,+ br}. Since, in both cases, we have met our lower

bound, the schedules constructed are optimal.

40

M1 I J, I B' A' lr

I J, I M2 B' A' J1 I
(a)

M1 I JI I B' A' lr

f J, I M2 I 11 I B' A'

(b)

(c) M1 I J, I B' I A' I 1r

M2 J, I J, I B' A'

(d) J,
B' A'

FIGURE 3. Solving the two-machine open shop scheduling problem.

12.l. The nonpreemptive open shop
There is little hope or finding polynomial-time algorithms for nonpreemptive open shop
scheduling problems beyond 0 21 I C max. Gonzalez & Sahni [1976] show that 0 31 I C max is
~0'-hard in the ordinary sense. ~0'-hardness in the strong sense has been established for
021 ILmax and 02lr1 1Cmax [Lawler, Lenstra & Rinnooy Kan, 1981, 1982], 02l j2:C1
[Achugbue & Chin, 1982A], 0 21 tree IC max and 0 11 C max [Lenstra, -], and for a number of
m-machine multi-operation problems with 0-1 processing times [Gonzalez, 1982].

We mention a few positive results. Adiri & Aizikowitz [1986] investigate machine domi
nance, which occurs if minJPhJ;;;. max1piJ for some Mh and Mi with h-=/=i; under this condition,
03 I I Cmax is well solvable. Fiala [1983] uses results from graph theory to develop an O(m 3n 2)

algorithm for 011 Cmax if max.;'2:.Jfij;;;. (16m'logm'+5m') max;,JfiJ• where m' is the roundup
of m to the closest power of 2. As to approximation algorithms, Achugbue & Chin [1982A]
derive tight bounds on the length of arbitrary schedules and SPT schedules for 0 I I C max.

12.2. The preemptive open shop
The result on 0 211 C max presented in Section 12.0 also applies to the preemptive case. The
lower bound on the schedule length remains valid if preemption is allowed. Hence, there is no
advantage to preemption for m = 2, and 0 21 pmtn I C max can be solved in 0 (n) time.

More generally, 0 I pmtn IC max is solvable in polynomial time as well [Gonzalez & Sahni,
1976]. We had already occasion to refer to this result in Section 10.1. An outline of the algo
rithm, adapted from Lawler & Labetoulle [1978), follows below.

Let P = (p;1) be the matrix of processing times, and let

C = max{max1}:;fiJ,max;}:1p;1}.

Call row i (column j) tight if '2.JPiJ = C ('2:.ifiJ = C), and slack otherwise. Clearly, we have

41

C~ax ~C. It is possible to construct a feasible schedule for which C max = C; hence, this

schedule will be optimal.
Suppose we can find a subset S of strictly positive elements of P, with exactly one element of

S in each tight row and in each tight column, and at most one element of S in each slack row

and in each slack column. We call such a subset a decrementing set, and use it to construct a

partial schedule of length o, for some o >0. The constraints on the choice of o are as follows:

- If PiJ ES and row i or column j is tight, then fJ~iJ·
- If piJ ES and row i (column}) is slack, then o~iJ+ C-°'2kPik (o~iJ+C-!.hPhi).

- If row i (column j) contains no element in S (and is therefore necessarily slack), then

o~C-°'ikPik (o~C-°'2.hPhJ).
For a given decrementing set S, let 8 be the maximum value subject to these constraints. Then

the partial schedule constructed is such that, for each Pu ES, M; processes J1 for min{pu,8}

units of time. We then obtain a matrix P' from P by replacing each Pu ES by max{O,pu-o},

with a lower bound C -8 on the schedule length for the remaining problem. We repeat the

procedure until after a finite number of times, P'=(O). Joining together the partial schedules

obtained for successive decrementing sets then yields an optimal schedule for P.

By suitably embedding Pin a doubly stochastic matrix and appealing to the Birkhoff-Von

Neumann theorem, one can show that a decrementing set can be found by solving a linear

assignment problem; see Lawler & Labetoulle [1978] for details. Other network formulations

of the problem are pessible. An analysis of various possible computations reveals that

0 I pmtn I C max is solvable in 0 (r + min { m 4 • n 4, r 2 }) time, where r is the number of nonzero

elements in P [Gonzalez, 1979].
Similar results can be obtained for the minimization of maximum lateness. Lawler, Lenstra

& Rinnooy Kan [1981, 1982] give an O(n) time algorithm for 02lpmtn ILmax and, by sym

metry, for 02jpmtn,r1 1Cmax· For 0 lpmtn,rilLmm Cho & Sahni [1981] show that a trial

value of Lmax can be tested for feasibility by linear programming; bisection search is then

applied to minimize L max in polynomial time.
The minimization of total completion time appears to be much harder. Liu & Buifin [1985]

provide ~L'~l'-hardness proofs for 0 31 pmtn I ~CJ and 0 21 pmtn,di I 't.C1, where di is a deadline

for the completion of Ji. 0 21 pmtn I "'1:.C1 remains an open problem.

13. FLOW SHOPS

13.0. J ohnson's algorithm for F2 J I C max

In one of the first papers on deterministic machine scheduling, Johnson [1954] gives an

O(nlogn) algorithm to solve F2 I IC max· The algorithm is surprisingly simple: first arrange the

jobs with p 11~ 21 in order of nondecreasingp 11 , and then arrange the remaining jobs in order

of nonincreasingp 21 .

The correctness proof of this algorithm is also straightforward. Notice that the algorithm

produces a permutation schedule, in which each machine processes the jobs in the same order.

An easy interchange argument shows that there exists an optimal schedule that is a permuta

tion schedule. We now make three observations. For a permutation schedule, C max is deter

mined by the processing time of some k jobs on M 1, followed by the processing time of

n + l - k jobs on M 2 • This implies that, if all Pi; are decreased by the same value p, then for

42

each permutation schedule, C max decreases by (n + 1)p. Finally, if p lj = 0, then J1 is scheduled
first in some optimal schedule, and similarly, if p 21 =O, then J1 is scheduled last in some
optimal schedule. Putting these pieces together, we see that an optimal schedule can be con
structed by repeatedly finding the minimum Pu value among the unscheduled jobs, subtracting
this value from all processing times, and scheduling the job with a zero processing time. This
algorithm is clearly equivalent to the one given above.

13.1. Two or three machines
As a general result, Conway, Maxwell & Miller [1967] observe that there exists an optimal
F 11 C max schedule with the same processing order on M 1 and M 2 and the same processing
order on Mm_ 1 and Mm. Hence, if there are no more than three machines, we can restrict our
attention to permutation schedules. The reader is invited to construct a four-machine instance
in which a job necessarily 'passes' another one between M 2 and M 3 in the optimal schedule.

F3 I IC max is strongly 0?.,0>-hard [Garey, Johnson & Sethi, 1976]. A fair amount of effort has
been devoted to the identification of special cases and variants that are solvable in polynomial
time. For example, Johnson [1954] already shows that the case in which max1p 21 ~
max{min1plJ,min1p 31 } is solved by applying his algorithm to processing times (p 11 +p 21 ,
p ZJ + p 3). Conway, Maxwell & Miller [1967] show that the same rule works if M 2 is a non
bottleneck machine, i.e., is a machine that can process any number of jobs at the same time. A
two-machine variant involves time lags 11, which are minimum time intervals between the com
pletion time of Jj on MI and its starting time on M 2 [Mitten, 1958; Johnson, 1958;
Nabeshima, 1963; Szwarc, 1968]; these lags can be viewed as processing times on a non
bottleneck machine inbetween M 1 and M 2 , so one has to apply Johnson's algorithm to pro
cessing times (p IJ +11,11 +p 21) [Rinnooy Kan, 1976]. Monma & Rinnooy Kan [1983] put many
results of this kind in a common framework. Their discussion includes results for problems
with an arbitrary number of machines, such as some of the work by Smith, Panwalkar &
Dudek [1975, 1976] on ordered flow shops and by Chin & Tsai [1981] on J-maximal and J
minimal flow shops. In the latter case, there is an Mi for which Pu= maxhPhJ for all j or
Pu=minhPhJ for all j. Achugbue & Chin [1982B] analyze F3 I J Cmax in which each machine
may be maximal or minimal in this sense and derive an exhaustive complexity classification. It
should be noted that, in all this work, there is an implicit restriction to permutation schedules.
This is justified for special cases of F3 I IC max• but not necessarily for its variants. Indeed, the
unrestricted F3 J IC max problem wi~h a nonbottleneck M 2 is strongly 0?.,0>-hard [Lenstra, -].

0?.,0>-hardness in the strong sense has also been established for F2 I r1 IC max• F2 j J Lmax
[Lenstra, Rinnooy Kan & Brucker, 1977] and F2 J I J..C1 [Garey, Johnson & Sethi, 1976]. Potts
[1985B] investigates the performance of five approximation algorithms for F2 I r1 IC max· The
best one of these, called RJ', involves the repeated application of a dynamic variant of
Johnson's algorithm to modified versions of the problem, and satisfies

(t)

Grabowski [1980] presents a branch and bound algorithm for F2 I r1 I Lmax· Ignall & Schrage
[1965], in one of the earliest papers on branch and bound methods for scheduling problems,
propose two lower bounds for F2 I I 2:C1, Kohler & Steiglitz [1975] report on the

43

implementation of these bounds, and Van de Velde [1988] shows that both bounds can be

viewed as special cases of a lower bound based on Lagrangean relaxation.
Gonzalez & Sahni [1978A] and Cho & Sahni [1981] consider the case of preemptive flow

shop scheduling. Since preemptions on M 1 and Mm can be removed without increasing C max,

Johnson's algorithm solves F2 I pmtn IC max as well. F3 I pmtn IC max• F2 I pmtn,ri IC max and
F2 I pmtn I Lmax are strongly ~01-hard. So is F3 J pmtn I "i.Ci [Lenstra, -]; F2 I pmtn I "'2:,Ci

remains open.
As to precedence constraints, F2 I tree IC max is strongly ~01-hard [Lenstra, Rinnooy Kan &

Brucker, 1977], but F2 I tree,pi = 11 C max and F2 I tree,pi = 11 "'2:,Ci are solvable in polynomial
time [Lageweg, -]. We note that an interpretation of prect.:dence constraints that differs from

our definition is possible. If Ji-'h only means that oij has to precede oik• for i = 1,2, then
F2 I tree' I C max and even the problem with series-parallel precedence constraints can be solved
in O(nlogn) time [Sidney, 1979; Monma, 1979]. The arguments used to establish this result are
very similar to those referred to in Section 5.1 and apply to a larger class of scheduling prob
lems. The general case F2 I prec' IC max is strongly ~01-hard [Monma, 1980]. Hariri & Potts
[1984] develop a branch and bound algorithm for this problem, using a lower bound based on
Lagrangean relaxation.

13.2. The permutation flow shop

We know from Section)3.1 that, for the general F 11 C max problem, permutation schedules are
not necessarily optimal. Nevertheless, it has become a tradition in the literature to assume

identical processing orders on all machines and to look for the best permutation schedule.
Most research in this area has focused on enumerative optimization methods. The usual

enumeration scheme generates schedules by building them from front to back. That is, at a
node at the.Ith level of the search tree, a partial schedule (J o(I)• ..• ,J o(l)) has been formed and
the jobs with index set S = { 1, ... , n)-{ o{l), ... , a(l)) are candidates for the(/+ 1)th posi
tion. One then needs to find a lower bound on the length of all possible completions of the par
tial schedule. Almost all lower bounds developed so far are captured by the following bound
ing scheme due to Lageweg, Lenstra & Rinnooy Kan [1978].

Let us relax the constraint that each machine can process at most one job at a time, for all

machines but at most two, say, Mu and Mv (1 ~u ~v ~m). We then obtain the following prob

lem. Each job Ji (j ES) has to be processed on five machines N.u, Mu, Nuv• Mv, Nv• in that
order. N.u, Nuv and Nv• are nonbottleneck machines, of infinite capacity; if C(a,i) denotes the

completion time of J o(l) on Mi, then the processing times of Ji (j ES) on N.u, N uv and Nv• are
defined by

q•ui = maX1,,;;;;,,;;;u(C(a,i) + ~~ :J hi),

quvi = ~~ ::P 1Phi•

qv•i = ~zi=v + iPhi·

respectively. M 11 and Mv are ordinary machines of unit capacity, with processing times Pui and
Pvi• respectively. We wish to find a permutation schedule that minimizes C max· We can inter
pret N. 11 as yielding release dates q.i on Mu and Nv• as setting due dates -qv•i on Mv, with
respect to which Lmax is to be minimized. Note that we can remove any of the nonbotdeneck

44

machines from the problem by underestimating its contribution to the lower bound to be its
minimum processing time; valid lower bounds are obtained by adding these contributions to
the optimal solution value of the remaining problem.

If we choose u = v and remove both N *U and Nu• from the problem, we obtain the machine
based bound proposed by Ignall & Schrage [1965]:

max1,,;;u,;;;m(minjESq•uj + ~JESPuJ + minjESqu.)·

Removal of either N. 11 or N 11• results in a 111 Lmax or I I r1 IC max problem on Mu. Both prob
lems are solvable in O(nlogn) time (see Section 4.2) and provide slightly stronger bounds.

If u=;f=v, removal of N •11 , N 11v and N v• yields an F2 I I C max problem, which can be solved by
Johnson's algorithm. As pointed out in Section 13.1, we can take Nuv fully into account and
still solve the problem in 0 (nlog n) time. The resulting bound dominates the job-based bound
proposed by McMahon [1971] and is currently the most successful bound that can be com
puted in polynomial time.

All other variations on this theme lead to CVL~-hard problems. However, this does not neces
sarily preclude their effectivity for lower bound computations, as will become clear in Section
14.2.

In addition to lower bounds, one may use elimination criteria in order to prune the search
tree. In this respect, particular attention has been paid to conditions under which all comple
tions of (J a(l)• ... ,J a(nJ) can be eliminated because a schedule at least as good exists among
the completions of (J cr(J), •.• ,J a(f),h,Jj). If all information obtainable from the processing
times of the other jobs is disregarded, the strongest condition under which this is allowed is the
following: J1 can be excluded for the (l + l)th position if

max{ C(akj,i -1)-C(aj,i -1),C(akj,i)-C(aj,i)} ~PiJ for i =2, ... , m

[McMahon, 1969; Szwarc, 1971, 1973). Inclusion of these and similar dominance rules can be
very helpful from a computationa;. point of view, depending on the lower bound used
[Lageweg, Lenstra & Rinnooy Kan, 1978]. It may be worthwhile to consider extensions that,
for instance, take the processing times of the unscheduled jobs into account [Gupta & Reddi,
1978; Szwarc, 1978].

A number of alternative and more efficient enumeration schemes has been developed. Potts
[1980A] proposes to construct a schedule from the front and from the back at the same time.
Grabowski's [1982] block approach obtains a complete feasible schedule at each node and bases
the branching decision on an analysis of the transformations required to shorten the critical
path that determines the schedule length. Grabowski, Skubalska & Smutnicki [1983] extend
these ideas to the FI r1 I Lmax problem.

Not much has been done in the way of worst-case analysis of approximation algorithms for the
permutation flow shop scheduling problem. It is not hard to see that for any active schedule
(AS)

Cmax(AS)!C:Uax ~ maxi.JPi/min1,JPiJ·

Gonzalez & Sahni [1978A] show that

C max(AS)/C~ax ~ m.

(t)

(t)

45

This bound is tight even for LPT schedules, in which the jobs are ordered according to nonin
creasing sums of processing times. They also give an O(mnlogn) heuristic H based on
Johnson's algorithm, with

• ni
Cmax(H)/Cmax ~ f 2l

Rock & Schmidt [1982] analyze the performance of aggregation heuristics, where the m

machines are replaced by two machines and the new processing times are given by certain sums
of the original processing times. The worst-case performance ratios are, again, proportional to
m. Barany [1981] uses geometrical arguments to develop an O(m 3n 2 +m 4n) algorithm B,

which has an absolute error bound that is independent of n:

_ * (m - 1)(3m - 1)
C max(B) Cmax ~ 2 max;,JPi.j·

For the formulation and empirical evaluation of various rules for the construction and itera
tive improvement of flow shop schedules, we refer to Palmer [1965), Campbell, Dudek & Smith
[1970], Dannenbring [1977], Nawaz, Enscore & Ham [1983], Turner & Booth [1987], and
Osman & Potts [1989]. The current champions are the fast insertion method of Nawaz, Enscore
& Ham and the less efficient but more effective simulated annealing algorithm of Osman &

Potts. Simulated annealing is a randomized variant of iterative improvement, which accepts
deteriorations with a small and decreasing probability in an attempt to avoid bad local optima
and to get settled in a global optimum. In the experiments of Osman & Potts, the neighbor
hood of a permutation schedule contains all schedules that can be obtained by moving a single
job to another position.

13.3. No wait in process
In a variation on the flow shop problem, each job, once started, has to be processed without
interruption until it is completed. This no wait constraint may arise out of certain job charac
teristics (such as in the 'hot ingot' problem, where metal has to be processed at a continuously
high temperature) or out of the unavailability of intermediate storage in between machines.

The resulting F I no wait I C max problem can be formulated as a traveling salesman problem

with cities 0, 1, ... , n and intercity distances

Cjk = max1~;,,;,;m(~~~ ~ 1PhJ - ~~ -:,.\Phk) for j,k =O, 1, ... ,n,

where Pio =O for i = 1, ... , m [Piehler, 1960; Reddi & Ramamoorthy, 1972; Wismer, 1972].

For the case F2 I no wait IC max• the traveling salesman problem assumes a special structure,
and results due to Gilmore & Gomory [1964] can be applied to yield an O(n 2) algorithm; see
Reddi & Ramamoorthy [1972] and also Gilmore, Lawler & Shmoys [1985]. In contrast,
F 41 no wait I C max is strongly ~0'-hard [Papadimitriou & Kanellakis, 1980], and so is
F3 I no wait IC max [Rock, 1984A]. The same is true for F2 I no wait I Lmax and
F2 I no wait I "2:.C1 [Rock, l 984B], and for 0 21 no wait I C max and J 21 no wait IC max [Sahni &

Cho, 1979A). Goyal & Sriskandarajah [1988] review complexity results and approximation
algorithms for this problem class.

46

The no wait constraint may lengthen the optimal flow shop schedule considerably. Lenstra [-]
shows that

C:'nax (no wait)IC~ax < m form ~2. (t)

14. JOB SHOPS

14.0. The disjunctive graph model for J I I C max
The description of J I I C max in Section 3 does not reveal much of the structure of this problem
type. An illuminating problem representation is provided by the disjunctive graph model due
to Roy & Sussmann [1964].

Given an instance of J 11 C max' the corresponding disjunctive graph is defined as follows.
For every operation 0;1, there is a vertex, with a weight Pu· For every two consecutive opera
tions of the same job, there is a (directed) arc. For every two operations that require the same
machine, there is an (undirected) edge. Thus, the arcs represent the job precedence constraints,
and the edges represent the-machine capacity constraints.

The basic scheduling decision is to impose an ordering on a pair of operations on the same
machine. In the disjunctive graph, this corresponds to orienting the edge in question, in one
way or the other. A schedule is obtained by orienting all of the edges. The schedule is feasible if
the resulting directed graph is acyclic, and its length is obviously equal to the weight of a max
imum weight path in this graph.

The job shop scheduling problem has now been formulated as the problem of finding an
orientation of the edges of a disjunctive graph that minimizes the maximum path weight. We
refer to Figure 4 for an example.

14.1. Two or three machines
A simple extension of Johnson' s algorithm for F2 I I C max allows solution of J 21 m J ~21 C max
in O(nlogn) time [Jackson, 1956]. Let :h be the set of jobs with operations on M; only (i = 1,2),
and let ihi be the set of jobs that go from Mh to M; ({ h, i} = {I, 2}). Order the latter two sets by
means of Johnson's algorithm and the former two sets arbitrarily. One then obtains an optimal
schedule by executing the jobs on M 1 in the order (;h2,i1,h1) and on M 2 in the order
~1.h,i12).

Hefetz & Adiri [1982] solve another special case,J 2 IPu = 11 C mm in time linear in the total
number of operations, through a rule that gives priority to the longest remaining job. Brucker
[1981, 1982] extends this result toJ21pu= 1 I Lmax·

This, however, is probably as far as we can get. J 21 m1 ~3 IC max and J 31 m1~2 IC max are
0L0'-hard [Lenstra, Rinnooy Kan & Brucker, 1977; Gonzalez & Sahni, 1978A],
J21puE{l,2}ICmax and J3lpu=IICmax are strongly 01,~P-hard [Lenstra & Rinnooy Kan,
1979], and these results still hold if preemption is allowed. Also, J 2 lpmtn I '2.C1 is strongly
0L0'-hard [Lenstra, -]; recall that the corresponding open shop and flow shop problems are
open.

47

Ji mi 1-Lli Jl.2i Jl.3i f.L4i p Ii P2i P3i P4i

11 3 M1 M2 M3 - 2 8 4 -

12 4 M2 M1 M3 M4 7 3 6 3

J3 3 M1 M2 M4 - 5 9 1 -

(a) Instance .

. . ··
7-:·.

012 :: ~
···:·

(b) Instance, represented as a disjunctive graph.

(c) Feasible schedule, represented as an acyclic directed graph.

FIGURE 4. A job shop scheduling problem.

14.2. General job shop scheduling

Optimization algorithms for the J I I C max problem proceed by branch and bound. We will

describe methods of that type in terms of the disjunctive graph (f!,A,E), where(') is the set of

operations, A the arc set, and E the edge set.
A node in the search tree is usually characterized by an orientation of each edge in a certain

subset E' cE. The question then is how to compute a lower bound on the value of all comple

tions of this partial solution. Nemeti [1964], Charlton & Death [1970] and Schrage [1970] are

among the researchers who obtain a lower bound by simply disregarding E - E' and comput

ing the maximum path weight in the directed graph (fJ,A U E'). A more sophisticated bound,

due to Bratley, Florian & Robillard [1973], is based on the relaxation of the capacity con

straints of all machines except one. They propose to select a machine M' and to solve the job

48

shop scheduling problem on the disjunctive graph (G,A u E', { { oij, oi'j'} I P.ij = P.i'j' = M'}). This
is a single-machine problem, where the arcs in A U E' define release times and delivery times
for the operations that are to be scheduled on machine M'. This observation has spawned the
subsequent work on the 11 r1 I Lmax problem which was reviewed in Section 4.2 and which has
led to fast methods for its solution. As pointed out by Lageweg, Lenstra & Rinnooy Kan
[1977], the lower bound problem is, in fact, I lprec, r1 I Lmaxo since A U E' may define pre
cedence constraints among the operations on M'. Again, most other lower bounds appear as
special cases of this one, by relaxing the capacity constraint of M' (which gives Nemeti's long
est path bound), by underestimating the contribution of the release and delivery times, by
allowing preemption, or by ignoring the precedence constraints. These relaxations, with the
exception of the last one, turn an ~0'-hard single-machine problem into a problem that is solv
able in polynomial time.

Fisher, Lageweg, Lenstra & Rinnooy Kan [1983] investigate surrogate duality relaxations, in
which either the capacity constraints of the machines or the precedence constraints among the
operations of each job are weighted and aggregated into a single constraint. In theory, the
resulting bounds dominare- the above single-machine bound. Balas [1985] describes a first
attempt to obtain bounds by polyhedral techniques.

The usual enumeration scheme is due to Giffler & Thompson [1960]. It generates all active
schedules by constructing them from front to back. At each stage, the subset (9' of operations
Oij all of whose predecessors have been scheduled is determined and their earliest possible
completion times riJ + PiJ are calculated. It suffices to consider only a machine on which the
minimum value of riJ + PiJ is achieved and to branch by successively scheduling next on that
machine all operations in (9' for which the release time is strictly smaller than this minimum. In
this scheme, several edges are oriented at each stage.

Lageweg, Lenstra & Rinnooy Kan [1977] and earlier & Pinson [1988] describe alternative
enumeration schemes whereby at each stage, a single edge is selected and oriented in either of
two ways. Barker & McMahon [1985] branch by rearranging the operations in a critical block
that occurs on the maximum weight path.

We briefly outline three of the many implemented branch and bound algorithms for job
shop scheduling. McMahon & Florian [1975] combine the Giffler-Thompson enumeration
scheme with the 1111 I Lmax bound, which is computed for all machines by their own algorithm.
Lageweg [1984] applies the same branching rule, computes the 1 lprec,r1 I Lmax bound only for
a few promising machines using earlier's [1982] algorithm, and obtains upper bounds with a
heuristic due to Lageweg, Lenstra & Rinnooy Kan [1977]. earlier & Pinson [1988] implement
their novel enumeration schemes, the 1 lpmtn,prec,r1 I Lmax bound (which can be computed in
polynomial time), and a collection of powerful elimination rules for which we refer to their
paper.

Most approximation algorithms for job shop scheduling use a dispatch rule, which schedules the
operations according to some priority function. Gonzalez & Sahni [I978A] observe that the
performance guarantees for the flow shop algorithms AS and LPT (see Section 13.2) also apply
to the case of a job shop. A considerable effort has been invested in the empirical testing of
rules of this type [Gere, 1966; Conway, Maxwell & Miller, 1967; Day & Hottenstein, 1970;
Panwalkar & Iskander, 1977: Haupt, 1989].

49

Adams, Balas & Zawack [1988] develop a sliding bottleneck heuristic, which employs an

ingenious combination of schedule construction and iterative improvement, guided by solu

tions to single-machine problems of the type described above. They also embed this method in

a second heuristic that proceeds by partial enumeration of the solution space.

Matsuo, Suh & Sullivan [1988] and Van Laarhoven, Aarts & Lenstra [1988] apply the princi

ple of simulated annealing (see Section 13.2) to the job shop scheduling problem. In the latter

paper, the neighborhood of a schedule contains all schedules that can be obtained by inter

changing two operations Oij and O;'J' on the same machine such that the arc (OiJ,Oi'J') is on a

maximum weight path. In the former paper, the neighborhood structure is more complex.

14.3. 10 x 10 = 930
The computational merits of all these algorithms are accurately reflected by their performance

on the notorious 10-job 10-machine problem instance due to Fisher & Thompson [1963].

The single-machine bound, maximized over all machines, has a value of 808. McMahon &

Florian [1975] found a schedule of length 972. Fisher, Lageweg, Lenstra & Rinnooy Kan [1983]

applied surrogate duality -relaxation of the capacity constraints and of the precedence con

straints to find lower bounds of 813 and 808, respectively; the computational effort involved

did not encourage them to carry on the search beyond the root of the tree. Lageweg [1984]

found a schedule of length 930, without proving optimality; he also computed a number of

multi-machine lower bounds, ranging from a three-machine bound of 874 to a six-machine

bound of 907. Carlier & Pinson [1988] were the first to prove optimality of the value 930, after

generating 22021 nodes and five hours of computing. The main drawback of all these enumera

tive methods, besides the limited problem sizes that can be handled, is their sensitivity towards

particular problem instances and also towards the initial value of the upper bound.

The computational experience with polyhedral techniques that has been reported until now

is slightly disappointing in view of what has been achieved for other hard problems. However,

the investigations in this direction are still at an initial stage.
Dispatch rules show an erratic behavior. The rule proposed by Lageweg, Lenstra & Rinnooy

Kan [1977] constructs a schedule of length 1082, and most other priority functions do worse.

Adams, Balas & Zawack [1988] report that their sliding bottleneck heuristic obtains a

schedule of length 1015 in ten CPU seconds, solving 249 single-machine problems on the way.

Their partial enumeration procedure succeeds in finding the optimum, after 851 seconds and

270 runs of the first heuristic.
Five runs of the simulated annealing algorithm of Van Laarhoven, Aarts & Lenstra [1988],

with a standard setting of the cooling parameters, take 6000 seconds on average and produce

an average schedule length of 942.4, with a minimum of 937. If 6000 seconds are spent on

deterministic neighborhood search, which accepts only true improvements, more than 9000

local optima are found, the best one of which has a value of 1006. Five runs with a much slower

cooling schedule take about 16 hours each and produce solution values of 930 (twice), 934, 935

and 938. In comparison to other approximative approaches, simulated annealing requires

unusual computation times, but it yields consistently good solutions with a modest amount of

human implementation effort and relatively little insight into the combinatorial structure of

the problem type under consideration.

50

PART V. MORE SEQUENCING AND SCHEDULING

In the preceding sections, we have been exclusively concerned with the class of deterministic
machine scheduling problems. Several extensions of this class are worthy of further investiga
tion. A natural extension involves the presence of additional resources, where each resource
has a limited size and each job requires the use of a part of each resource during its execution.
The resulting resource-constrained project scheduling problems are considered in Section 15. We
also may relax the assumption that all problem data are known in advance and investigate sto
chastic machine scheduling problems. This class is the subject of Section 16. We will not enter
the area of stochastic project scheduling, which is surveyed by Mohring & Radermacher [1985 B].

15. RESOURCE-CONSTRAINED PROJECT SCHEDULING

15.0. A matchingformulationfor P2 lpj= 11 C max with resource constraints
Consider a single-operation model, and suppose there are I additional resources
Rh (h = l, ... , /).For each resource Rh, there is a size sh, which is the amount of Rh available at
any time. For each resourc~Rh and each job Jj, there is a requirement rhj• which is the amount
of Rh required by Jj at all times during its execution. A schedule is feasible with respect to the
resources if at any time t the index set 11 of jobs being executed at time t satisfies ~j EJ,rhj~sh,
for h = 1, ... , l.

In the case P2lpj=11 C max• Garey & Johnson [1975] propose to represent the resource con
straints by a graph with vertex set {1, ... , n} and an edge LJ,k} whenever rhj + rhk ~sh for
h = 1, ... , I. That is, vertices j and k are adjacent if and only if Jj and h can be processed
simultaneously. A matching M in the graph obviously corresponds to a schedule of length
n - IM I, and an optimal schedule is obtained by computing a maximum cardinality match
ing.

15. J. Machines and resources
Sequencing and scheduling is concerned with the optimal allocation of scarce resources to
activities over time. So far, the resources and the activities have been of a relatively simple
nature. It was assumed that an activity, or job, requires at most one resource, or machine, at a
time. Also, a machine is able to process at most one job at a time. This unit-capacity is con
stant, and not affected by its use.

It is obvious that scheduling situations of a more general nature exist. Certain types of
resources are depleted by use (e.g., money or energy) or are available in amounts that vary over
time, in a predictable manner (e.g., seasonal labor) or in an unpredictable manner (e.g., vulner
able equipment). At one point in time, a resource may be shared among several jobs, and a job
may need several resources. The resource amounts required by a job may vary during its pro
cessing and, indeed, the processing time itself could depend on the amount or type of resource
allocated, as in the case of uniform or unrelated machines.

Through these generalizations, the domain of deterministic scheduling theory is considerably
extended. Usually referred to as resource-constrained project scheduling, the area covers a
tremendous variety of problem types.

51

15.2. Classification and complexity
To approach this area in the best tradition of deterministic scheduling theory would require the

development of a detailed problem classification, followed by a complexity analysis involving

polynomial-time algorithms and ~<:P-hardness proofs.

A modest attempt along these lines was made by Blazewicz, Lenstra & Rinnooy Kan [1983].

They consider resource constraints of the type defined in the first paragraph of Section 15.0,

and propose to include these in the second field of the problem classification through a param

eter resA.op, where A., a, and p specify the number of resources, their sizes, and the amounts

required. More precisely,
- if A. is a positive integer, then I is a constant, equal to A.; if A.= ·, then I is specified as part of

the input;
- if a is a positive integer, then all sh are constants, equal to a; if a= ·, then the sh are part of

the input;
- if p is a positive integer, then all rhJ have a constant upper bound, equal to p; if p = ·, then no

such bounds are specified.
Blazewicz, Lenstra & -Rinnooy Kan investigate the computational complexity of

Q I res···,prec,p1=11 C max and its special cases. The resulting exhaustive complexity classifica

tion is presented in Figure 5. We have already seen in Section 15.0 that P2 I res···,p1 =I IC max

is solvable by matching techniques. Also note that P 31res1 ·-,p1 = l I C max is an immediate gen

eralization of the 3-par~tition problem and thereby strongly ~<:P-hard; see Section 2 and Garey

& Johnson [1975].
These results are not encouraging, in that virtually all except the simplest resource

constrained project scheduling problems turn out to be ~<:P-hard. In the next section, we abol

ish the search for special structure and review two optimization models of a fairly general

nature.

15.3. Two optimization models
The early literature on optimization and approximation in resource-constrained project

scheduling is reviewed by Davis [1966, 1973). Optimization models are traditionally cast in

term of integer programming. We start by presenting one such formulation, due to Talbot &

Patterson [1978] and Christofides, Alvarez-Val des & Tamarit [1987].

For simplicity, we consider the P I res···,prec IC max problem, i.e., P lprec IC max with

resource constraints as described in the first paragraph of Section 15.0. We also suppose that

m ~n and that one job, lm succeeds all others. The problem is then to find nonnegative job

completion times c1, which define index sets / 1 of jobs executed at time t, such that Cn is

minimized subject to precedence constraints and resource constraints:

c1 + PJ ~ Ck whenever lr~h,

"1 rh · ~ sh for all Rh and all t.
£.A} El, 1

To convert the latter set of constraints into linear form, we introduce 0-1 variables y11 , with

YJt = l if and only if c1 = t. Obviously, c1 = ~t~YJt• and the resource constraints can be rewritten

as

~t +p -I
"1 n rh1· 1 v11 ~ sh for all h and t .
.t::.A;=I u=t ·

52

r----------------1

I

I

Q

L----------------

r----------------,
P2 I chain

L----------------

D <:'Jt0'-hard minimally <:'Jt0'-hard

Q solvable in polynomial time 0 maximally solvable in polynomial time

FIGURE 5. Complexity of scheduling unit-time jobs on parallel machines
subject to resource constraints.

53

Branch and bound algorithms using bounds based on the linear relaxation, cutting planes, and
Lagrangean relaxation of the resource constraints are reasonably effective for problems with

up to three resources and 25 jobs.
An entirely different approach was taken by Bartusch, Mohring & Radermacher [l 988B].

Recall the formulation of the J I I C max problem in terms of a disjunctive graph, where each
edge corresponds to a pair of operations that cannot be processed simultaneously since they
require the same machine. Following earlier work by Balas [1970], Bartusch, Mohring &

Radermacher generalize this idea, by defining resource constraints in the form of a family
lJC= { N 1, ••• , N1} of forbidden subsets. Each Nh is a subset of jobs that cannot be executed
simultaneously because of its collective resource requirements; this presupposes constant
resource availability over time. In addition, they generalize the traditional precedence con
straints of the form

C1+P1 ~Ck wheneverJr-~h

to temporal constraints of the form

c1 +dJk ~Ck for all J1,h,

where dJk is a (possibly negative) distance from J1 to I;.;. The resulting model is quite general. It
allows for the specification of job release dates and deadlines, of minimal and maximal time
lags between jobs, and of time-dependent resource consumption per job.

The investigation of this model leads to structural insights as well as computational methods.

This is also true for the related model involving traditional precedence constraints [Rader
macher, 1985/6] and for the dual model in which resource consumption is to be minimized
subject to a common job deadline [Mohring, 1984]. The approach leads to new classes of poly
nomially solvable problems that are characterized by the structure of the family of forbidden

subsets [Mohring, 1983). For the general model, it can be shown that for any optimality cri
terion that is nondecreasing in the job completion times, attention can be restricted to left
justified schedules. Enumerative methods can be designed that, as in the case of J I I C ma1o con
struct feasible schedules by adding at least one precedence constraint among the jobs in each
forbidden subset.

In the case of job shop scheduling, the number of edges is 0 (n 2). Similarly, the present
model is only computationally feasible when the number of forbidden subsets is not too large.
It is sufficient if lJl contains only those forbidden subsets that are minimal under set inclusion.
A branch and bound method that branches by successively considering all possibilities to elim
inate a particular forbidden subset and obtains lower bounds by simply computing a longest

path with respect to the augmented temporal constraints, compares favorably with the integer
programming algorithm of Talbot & Patterson [1978].

16. STOCHASTIC MACHINE SCHEDULING

16.0. List scheduling.for PI Pj' ... ·'exp(A.) I ECmax•E"J:,CJ
Suppose that m identical parallel machines have to process n independent jobs. In contrast to
what we have assumed so far, the processing times are not given beforehand but become

known only after the jobs have been allocated to the machines. More specifically, each

54

processing time PJ follows an exponential distribution with parameter A.1, for j= 1, ... ,n. We
want to minimize the expected maximum completion time ECmax or the expected total comple
tion time E"2.C1. (As noted before, random variables are printed in boldface.)

Results of Bruno & Downey [1977] form =2 and of Bruno, Downey & Frederickson [1981]
for arbitrary m state that these problems are solved by simple list scheduling policies. The long
est expected processing time (LEPD rule, which schedules the jobs in order of nonincreasing
values l!A.1, minimizes ECmax; the shortest expected processing time (SEPD rule, which
schedules the jobs in the reverse order, minimizes E"'2.C1.

We will sketch a proof of the optimality of the LEPT rule for minimizing ECmax· This proof,
which is due to Weiss & Pinedo [1980), relies on the formulation of the preemptive version of
the problem in terms of a semi-Markov decision process. Note, however, that the LEPT rule
will never preempt a job, because of the memoryless property of the exponential distribution.

Let N = { 1, · · · ,n} be the index set of all jobs, and let F w(S) denote the minimum expected
maximum completion time for the jobs indexed by S c;;;_N under a scheduling policy 'TT. Con
sider a policy 'TT that at time 0 selects a set Sw c;;;_N to be processed, preempts the schedule at
time t >0, and applies the_LEPT rule from time t onwards. By time t, a job JJ is completed
with probability A/+ o (t), and two or more jobs are completed with probability o (t), for t _,.o.
It now follows from Markov decision theory that

F w(N) = t + ~. s i\1-tFLEPT(N -U})+(l - ~. s i\1-t)FLEPT(N)+o(t), t_,.0.
jE • jE ,

Without loss of generality, we assume that I Sw I =m<n. If 'TT is not the LEPT policy, then
there exist jobs h, J 1 with A.k <A.1 such that k f1. S w• l ES w. Now define another policy '11'1 that at
time 0 selects a set S w' = S w U { k} - {I} and applies LEPT from time t onwards. We have that

Fw(N)-Fw'(N) =
t[A.k(FL£pr(N)- FLEPT(N -{k }))-A.,(FLEn(N)-FLEPT(N -{l}))]+o(t), t~O.

Lengthy but rather straightforward calculations, which are not given here, show that the
expression within square brackets is positive. The argument is by induction on n and uses the
following simple recursion:

FLEn(N) = (1 + ~J·Es A.jFLEn(N-U}))I ~J·Es ~'
LEPT LEPT

where SLEPT contains the smalles.t m i\'s. It follows that, if t is small enough, then
F w(N)>F w'(N). After at most m interchanges, the policy applied at time 0 is the LEPT rule,
and we have that F w(N)>FLEPT(N).

It is interesting to note that, while P J I C max is ':'JL~-hard, a stochastic variant of the problem
is solvable in polynomial time. As observed above, LEPT should be viewed as an algorithm for
the preemptive problem, and preemptive scheduling in a deterministic setting is not hard
either. Indeed, for the case of uniform machines, Weiss & Pinedo [1980] prove that a preemp
tive LEPT (SEP'J) policy, which allows reallocation of jobs to machines at job completion
times, solves Q I pmtn, PJ,...._,exp(A.j) I ECmax (E:.~::Cj)·

55

16.1. Deterministic and stochastic data
The scheduling models discussed in the earlier sections are based on the assumption that all

problem data are known in advance. This assumption is not always justified. Processing times

may be subject to fluctuations, and job arrivals and machine breakdowns are often random

events.
A substantial literature exists in which scheduling problems are considered from a proba

bilistic perspective. A deterministic scheduling model may give rise to various stochastic coun

terparts, as there is a choice in the parameters that are randomized, in their distributions, and

in the classes of policies that can be applied. A characteristic feature of these models is that the

stochastic parameters are regarded as independent random variables with a given distribution

and that their realization occurs only after the scheduling decision has been made.

Surprisingly, there are many cases where a simple rule which is merely a heuristic for the

deterministic model has a stochastic reformulation which solves the stochastic model to

optimality; we have seen an example in the previous section. In the deterministic model, one

has perfect information, and capitalizing on it in minimizing the realization of a performance

measure may require exponential time. In the stochastic model, one has imperfect information,

and the problem of minimizing the expectation of a performance measure may be computa

tionally tractable. In such cases, the scheduling decision is based on distributional information

such as first and second moments. In general, however, optimal policies may be dynamic and

require information on~the history up to the current point in time.
Results in this area are technically complicated; they rely on semi-Markovian decision

theory and stochastic dynamic optimization. Within the scope of this section, it is not possible

to do full justice to the literature. We present some typical results for the main types of

machine environments below, concentrating on scheduling models with random processing

times. We refer to Pinedo [1983] for scheduling with random release and due dates, to Pinedo

& Rammouz [1988] and Birge, Frenk, Mittenthal & Rinnooy Kan [1989] for single-machine

scheduling with random breakdowns, and to the surveys by Pinedo & Schrage [1982], Weiss

[1982], Forst [1984], Pinedo [1984], Mohring, Radermacher & Weiss [1984, 1985], Mohring &

Radermacher [1985B] and Frenk [1988] for further information.

16.2. The single machine

In stochastic single-machine scheduling, Gittins' work on dynamic allocation indices initiated

an important line of research. A prototypical result is the following. One machine has to pro

cess n jobs. The job processing times p1 are independent, nonnegative and identically distri

buted random variables, whose distribution function F has an increa~n[i completion rate

(dF(t)!dt)/(1-F(t)). If job J1 completes at time c1, then a reward a1e 11 1 is incurred. The

objective is to maximize the total expected reward. It is achieved by scheduling the jobs in

order of nonincreasing ratios a1Ee - f1P1 I (1- Ee -/1p1). This ratio can be interpreted as the

expected reward for J1 per unit of expected discounted processing time. The increasing comple

tion rate of F ensures that there is no advantage to preemption.
This result follows from the mathematical theory of bandit processes. Subsequent work by

Gittins & Glazebrook has led to many extensions. Forst [1984] present a survey of this part of
the literature.

Another class of results concerns the situation in which the PJ are independent, nonnegative

56

random variables, and the objective is to minimize the expected maximum job completion cost
subject to precedence constraints. Hodgson [1977] generalizes the algorithm of Lawler [1973]
for 1 lprec If max (see Section 4.0) to solve this problem. The result subsumes earlier work
involving deterministic due dates, such as the minimization of the maximum probability of
lateness [Banerjee, 1965], the maximization of the probability that every job is on time [Crabill
& Maxwell, 1969], and the minimization of the maximum expected weighted tardiness [Blau,
1973].

16.3. Parallel machines
Research in stochastic parallel machine scheduling has focused on extending the results quoted
in Section 16.0 beyond the realm of exponential distributions. Weber has shown that, as a
necessary condition, the processing time distributions have to be consistent in terms of comple
tion rates (i.e., either all decreasing or all increasing) or in terms of likelihood rates (i.e., the
logdF1!dt either all convex or all concave). Weiss [1982) reviews this work. Weber, Varaiya &
W alrand [1986] show that SEPT minimizes the expected total completion time on identical
machines if the processing-times are stochastically comparable.

The extension to uniform machines has been explored by Agrawala, Coffman, Garey & Tri
pathi [1984], Kumar & Walrand [1985], Coffman, Flatto, Garey & Weber [1987] and Righter
[1988].

For the case of intre~ precedence constraints and exponential processing times, Pinedo &
Weiss [1985] prove that HLF minimizes the expected maximum completion time on two identi
cal machines if all the jobs at the same level have the same parameter. Frostig [1988] extends
this work.

Pinedo & Weiss [1987] investigate the case of identical expected processing times. Their
result confirms the intuition that, at least for some simple distributions, the jobs with the larg
est variance should be scheduled first.

16.4. Multi-operation models
Pinedo's [1984] survey is a good source of information on stochastic shop scheduling. Most
work has concentrated on flow shops; Pinedo & Weiss [1984] deal with some stochastic vari
ants of the Gonzalez-Sahni [l Q76] algorithm for 0 211 C max (see Section 12.0).

Brumelle & Sidney [1982] show that Johnson's [I 954] algorithm for F2 I I C max also applies
to the exponential case. If p1r-,exp (A.1) and p21 ,....,exp (Jl), then sequencing in order of nonin
creasing A.1 - µ1 minimizes the expected maximum completion time.

For F 11 C max• it is usually assumed that the Pu are independent random variables whose
distributions do not depend on i. Weber [1979] shows that, in the exponential case, any
sequence minimizes ECmax· Pinedo [1982] observes that, under fairly general conditions, any
sequence for which EpiJ is first nondecreasing and then nonincreasing is optimal; as a rule of
thumb, jobs with smaller expected processing time and larger variance should come at the
beginning or at the end of a schedule, with the others occupying the middle part. These obser
vations carry over to the model in which no intermediate storage is available, so that a job can
only leave a machine when its next machine is available. We refer to Foley & Suresh [1986] and
Wie & Pinedo [1986] for more recent work on the latter model, and to Boxma & Forst [1986]
for a result on a stochastic version of F 11 ~ ~-

57

Not surprisingly, job shops pose even greater challenges. The only successful analysis has
been carried out by Pinedo [1981] for an exponential variant of J 21 mj ~21 C max (see Section
14.1).

The results in stochastic scheduling are scattered, and they have been obtained through a con
siderable and sometimes disheartening effort. In the words of Coffman, Hofri & Weiss [1989],
'there is a great need for new mathematical techniques useful for simplifying the derivation of
results.'

58

ACKNOWLEDGEMENTS

We gratefully acknowledge the contribution of Leen Stougie to Section 16.0, the comments and
suggestions of Ben Lageweg, Joseph Leung, Rolf Mohring, Michael Pinedo, Chris Potts, Steef
van de Velde, and Gideon Weiss, and the help of Gerard Kindervater in preparing the figures.
The research of the first author was partially supported by the National Science Foundation
under grant CCR-8704184. This paper was written when the second author was visiting the
Sloan School of Management of the Massachusetts Institute of Technology. The research of
the second and fourth authors was partially supported by the Presidential Young Investigator
Award of the fourth author, with matching support from IBM, Sun Microsystems, and UPS.
The research of the fourth author was also supported by Air Force contract AFOSR-86-0078.

REFERENCES
T.S. ABDUL-RAZAQ, C.N. Porrs (1988). Dynamic pro

gramming state-space relaxation for single-machine
scheduling.J. Oper. Res. Soc. 39, 141-152. [7.1]

J.O. ACHUGBUE, F.Y. CHIN (1981). Bounds on
schedules for independent tasks with similar execu
tion times.J. Assoc. Comput. Mach. 28, 81-99. [9.l]

J.0. ACHUGBUE, F.Y. CHIN (1982A). Scheduling the
open shop to minimize mean flow time. SIAM J.
Comput. 11, 709-720. [12.1]

J.0. ACHUGBUE, F.Y. CHIN (1982B). Complexity and
solution of some three-stage flow shop scheduling
problems. Math. Oper. Res. 7, 532-544. [13.1]

J. ADAMS, E. BALAS, D. ZAWACK (1988). The shifting
bottleneck procedure for job shop scheduling.
Management Sci. 34, 391-401. [14.2,3]

I. ADIRI, N. AIZIKOWITZ (1986). Openshop Scheduling
Problems with Dominated Machines, Operations
Research, Statistics and Economics Mimeograph
Series 383, Technion, Haifa. [-li-.1]

D. ADOLPHSON, T.C. Hu (1973). Optimal linear order
ing. SIAM J. Appl. Math. 25, 403-423. (5.1]

A.K. AGRAWALA, E.G. COFFMAN, JR., M.R. GAREY,
S.K. TRIPATHI (1984). A stochastic optimization
algorithm minimizing expected flow times on uni
form processors. IEEE Trans. Comput. C-33, 351-
356.(16.3]

u. BAGCHI, R.H. AHMADI (1987). An improved lower
bound for minimizing weighted completion times
with deadlines. Oper. Res. 35, 311-313. [5.2]

K.R. BAKER (1974). Introduction to Sequencing and
Scheduling, Wiley, New York. [I; 5.2]

K.R. BAKER, E.L. LAWLER, J . .K. LENSTRA, A.H.G.
RINNOOY KAN (1983). Preemptive scheduling of a
single machine to minimize maximum cost subject
lo release dates and precedence constraints. Oper.
Res. 31, 381-386. (4.1]

K.R. BAKER, L.E. SCHRAGE (1978). Finding an optimal
sequence by dynamic programming: an extension to
precedence-related tasks. Oper. Res. 26, 111-120.
[7.1]

K.R. BAKER, G.D. SCUDDER (1990). Sequeilcing with
earliness and tardiness penalties: a review. Oper.
Res., to appear. [I]

K.R. BAKER, Z.-S. Su (1974). Sequencing with due
dates and early start times to minimize maximum
tardiness. Naval Res. Logist. Quart. 21, 171-176. (4.2]

E. BALAS (1970). Project scheduling with resource con
straints. E.M.L. BEALE (ed.) (1970). Applications of
Mathematical Programming Techniques, The
English Universities Press, London, 187-200. [15.3]

E. BALAS (1985). On the facial structure of scheduling
polyhedra. Math. Programming Stud. 24, 179-218.
[14.2]

B.P. BANERJEE (1965). Single facility sequencing with
random execution times. Oper. Res. 13, 358-364.

59

(16.2]
I. BARA.NY (1981). A vector-sum theorem and its appli

cation to improving flow shop guarantees. Math.
Oper. Res. 6, 445-452. [13.2]

J.R. BARKER, G.B. McMAHON (1985). Scheduling the
general job-shop. Management Sci. 31, 594-598.
[14.2]

J.W. BARNES, J.J. BRENNAN (1977). An improved algo
rithm for scheduling jobs on identical machines.
AIIE Trans. 9, 25-31. [8.2]

M. BARTUSCH, R.H. MOHRING, FJ. RADERMACHER
(1988A). M-machine unit time scheduling: a report
of ongoing research. A. KURZHANSKI, K. NEU
MANN, D. PALLASCHKE (eds.) (1988). Optimization,
Parallel Processing, and Applications, Lecture Notes
in Economics and Mathematical Systems 304,
Springer, Berlin, 165-212. [11.1]

M. BARTUSCH, R.H. MOHRING, FJ. RADERMACHER
(1988B). Scheduling project networks with resource
constraints and time windows. Ann. Oper. Res. 16,
201-240. [15.3]

H. BELOUADAH, M.E. PosNER, C.N. Porrs (1989). A
Branch· and Bound Algorithm for Scheduling J ohs
with Release Dates on a Single Machine to Minimize
Total Weighted Completion Time, Preprint OR14,
Faculty of Mathematical Studies, University of
Southampton. [5.2]

L. BIANCO, s. RICCIARDELLI (1982). Scheduling of a
single machine to minimize lotal weighted comple
tion time subject to release dates. Naval Res. Logist.
Quart. 29, 151-167.[5.2]

J. BIRGE, J.B.G. FRENK, J. MITIENTHAL, A.H.G. RIN
NOOY KAN (1989). Single machine scheduling sub
ject to stochastic breakdowns. Naval Res. Logist., to
appear. [16.1]

R.A. BLAU (1973). N-job, one machine sequencing
problems under uncertainty. Management Sci. 20,
101-109. (16.2)

J. BLAZEWICZ (1987). Selected topics in scheduling
theory.Ann. Discrete Math. 31, 1-60.(1]

J. BLAZEWICZ, G. FINKE, R. HAUPT, G. SCHMIDT
(1988). New trends in machine scheduling. European
J. Oper. Res. 37, 303-317. [l]

J. BLAZEWICZ, J.K. LENSTRA, A.H.G. RINNOOY KAN
(1983). Scheduling subject to resource constraints:
classification and complexity. Discrete Appl. Math.
5, 11-24. [15.2]

O.J. BoXMA (1984). Probabilistic analysis of the LPT
scheduling rule. E. GELENBE (ed.) (1984). Perfor·
mance '84, North-Holland, Amsterdam, 475-490.
(9.1]

O.J. BoXMA, F.G. FORST (1986). Minimizing the
expected weighted number of tardy jobs in stochas
tic flow shops. Oper. Res. Lett. 5, 119-126. [16.4]

P. BRATLEY, M. FLORIAN, P. ROBILLARD (1973). On

60

sequencing with earliest starts and due dates with
application to computing bounds for the
(n I rn I G IF max) problem. Naval Res. Logist. Quart.
20, 57-67. [14.2]

P. BRATLEY, M. FLORIAN, P. ROBILLARD (1975).
Scheduling with earliest start and due date con
straints on multiple machines. Naval Res. Logist.
Quart.22, 165-173.[9.l]

P. BRUCKER (1981). Minimizing maximum lateness in
a two-machine unit-time job shop. Computing 27,
367-370.[14.l]

P. BRUCKER (1982). A linear time algorithm to minim
ize maximum lateness for the two-machine, unit
time, job-shop, scheduling problem. R.F. DRENICK,
F. KozIN (eds.) (1982). System Modeling and Optim
ization, Lecture Notes in Control and Information
Sc,1.ences 38, Springer, Berlin, 566-571. [14. l]

P. BRUCKER, M.R. GAREY, D.S. JOHNSON (1977).
Scheduling equal-length tasks under tree-like pre
cedence constraints to minim~maximum lateness.
Math. Oper. Res. 2, 275-284. [11.1,3]

S.L. BRUMELLE, J.B. SIDNEY (1982). The Two Machine
Makespan Problem with Stochastic Flow Times,
Technical report, University of British Columbia,
Vancouver. [16.4]

J.L. BRUNO, E.G. COFFMAN, JR., R. SETHI (1974).
Scheduling independent tasks to reduce mean fin
ishing time. Comm. ACM 17, 382-387. [8.0,2]

J.L. BRUNO, P.J. DOWNEY (1977). Sequencing Tasks
with Exponential Service Times on Two Machines,
Technical report, Department of Electrical
Engineering and Computer Science, University of
California, Santa Barbara. [16.0]

J.L. BRUNO, P.J. DOWNEY (1986). Probabilistic
bounds on the performance of list scheduling. SIAM
J. Comput. 15, 409-417. [9.0, l]

J.L. BRUNO, P.J. DOWNEY, G.N. FREDERICKSON
(1981). Sequencing tasks with exponential service
times to minimize the expected flowtime or mak
espan.J. Assoc. Comput. Mach. 28, 100-113. [16.0]

J.L. BRUNO, T. GONZALEZ (1976). Scheduling Indepen
dent Tasks with Release Dates and Due Dates on
Parallel Machines, Technical Report 213, Computer
Science Department, Pennsylvania State University.
[10.2]

H. BUER, R.H. MOHRING (1983). A fast algorithm for
the decomposition of graphs and posets. Math.
Oper. Res. 8, 170-184.[5.I]

H.G. CAMPBELL, R.A. DUDEK, M.L. SMITH (1970). A
heuristic algorithm for the n job, m machine
sequencing problem. Management Sci. 16, B630-
637. [13.2]

J. CARLIER (1982). The one-machine s1:quencing prob
lem. EuropeanJ. Oper. Res. 11, 42-47. [4.2; 14.2]

J. CARLIER (1987). Scheduling jobs with release dates
and tails on identical machines to minimize

makespan. EuropeanJ. Oper. Res. 29, 298-306. [9.1]
J. CARLIER, E. PINSON (1988). A method for the job

shop problem. Management Sci., to appear. [14.2,3]
J.M. CHARLTON, C.C. DEATH (1970). A generalized

machine scheduling algorithm. Oper. Res. Quart. 21,
127-134. [14.2]

N.-F. CHEN (1975). An Analjisis of Scheduling Algo
rithms in Multiprocessing Computing Systems,
Technical Report UIUCDCS-R-75-724, Depart
ment of Computer Science, University of Illinois at
Urbana-Champaign. [11.1]

N.-F. CHEN, C.L. LIU (1975). On a class of scheduling
algorithms for multiprocessors computing systems.
T.-Y. FENG (ed.) (1975). Parallel Processing, Lec
ture Noles in Computer Science 24, Springer, Berlin,
1-16. [11.1]

T.C.E. CHENG, M.C. GUPTA (1989). Survey of schedul
ing research involving due date determination deci
sions. European J. Oper. Res. 38, 156-166.[l]

F.Y. CHIN, L.-L. TSAI (1981). On J-maximal and J
minimal flow-shop schedules. J. Assoc. Comput.
Mach. 28, 462-476. [13.1]

Y. Cno, S. SAHNI (1980). Bounds for list schedules on
uniform processors. SIAM J. Comput. 9, 91-103.
[9.2]

Y. Cuo, S. SAHNI (1981). Preemptive scheduling of
independent jobs with release and due times on
open, flow and job shops. Oper. Res. 29, 511-522.
[12.2; 13.1 J

N. CHRISTOFIDES, R. ALY AREZ-V ALOES, J.M. T AMARIT
(1987). Project scheduling with resource constraints:
a branch and bound approach. European J. Oper.
Res. 29, 262-273. [15.3]

E.G. COFFMAN, JR. (ed.) (1976). Computer &Job! Shop
Scheduling Theory, Wiley, New York. [1; Refer
ences]

E.G. COFFMAN, JR., L. FLATTO, M.R. GAREY, R.R.
WEBER (1987). Minimizing expected makespans on
uniform processor systems.Adv. in Appl. Probab. 19,
177-201. [16.3]

E.G. COFFMAN, JR., L. FLATTO, G.S. LUEKER (1984).
Expected makespans for largest-fit multiprocessor
scheduling. E. GELENBE (ed.) (1984). Performance
'84, North-Holland, Amsterdam, 491-506. [9.1]

E.G. COFFMAN, JR., M.R. GAREY, D.S. JOHNSON
(1978). An application of bin-packing to multipro
cessor scheduling. SIAM J. Comput. 7, 1-17.[9.l]

E.G. COFFMAN, JR., E.N. GILBERT (1985). On the
expected relative performance of list scheduling.
Oper. Res. 33, 548-561. [9.1]

E.G. COFFMAN, JR., R.L. GRAHAM (1972). Optimal
scheduling for two-processor systems. Acta Infor
mal. 1, 200-213. [11.I]

E.G. COFFMAN, JR., M. HoFRI, G. WEiss (1989).
Scheduling stochastic jobs with a two point distribu
tion on two parallel machines. Probab. Engrg. lnfor.

Sci., toappear.[16.4]
E.G. COFFMAN, JR., 0.S. LUEKER, A.H.0. RINNOOY

KAN (1988). Asymptotic methods in the probabilis

tic analysis of sequencing and packing heuristics.

Management Sci. 34, 266-290. (9 .1]
R.W. CONWAY, W.L. MAXWELL, L.W. MILLER (1967).

Theory of Scheduling, Addison-Wesley, Reading,

MA.[l; II; 8.0; 13.l; 14.2]

S.A. CooK (1971). The complexity of theorem-proving

procedures. Proc. 3rd Annual ACM Symp. Theory of

Computing, 151-158. [2]
T.B. CRABILL, W.L. MAXWELL (1969). Single machine

sequencing with random processing times and ran

dom due-dates. Naval Res. Logist. Quart. 16, 549-

554. [16.2]
D.G. DANNENBRING (1977). An evaluation of flow

shop sequencing heuristics. Management Sci. 23,
1174-1182. [13.2]

OJ. DAVIDA, D.J. LINTON (1976). A new algorithm for
the scheduling of tree structured tasks. Proc. Conf

Inform. Sci. and Syst., Baltimore, MD, 543-548.

[11.1]
E. DAVIS, J.M. JAFFE (1981). Algorithms for scheduling

tasks on unrelated processors. J. Assoc. Comput.

Mach. 28, 721-736. [9.3) ~

E.W. DAVIS (1966). Resource allocation in project net

work models - a survey. J. Indust. Engrg. 17, 177-

188. [15.3]
E.W. DAVIS (1973). Project scheduling under resource

constraints - historical review and categorization of

procedures.A/I£ Trans. 5, 297-313. [15.3)

J. DAY, M.P. HOTTENSTEIN (1970). Review of schedul

ing research. Naval Res. Logist. Quart. 17, 11-39.

[14.2]
M.A.H. DEMPSTER, J.K. LENSTRA, A.H.0. RlNNOOY

KAN (eds.) (1982). Deterministic and Stochastic

Scheduling, Reidel, Dordrecht. [l; References]

MJ. DESSOUKY, J.S. DEOGUN (1981). Sequencingjobs

with unequal ready times to minimize mean flow

time. SIAM J. Comput. 10, 192-202. [5.2)

MJ. DESSOUKY, B.J. LAGEWEG, S.L. VAN DE VELDE

(1989). Scheduling Identica/Jobs on Uniform Parallel

Machines, Report BS-89xx, Centre for Mathematics

and Computer Science, Amsterdam. [8.1]

P. DILEEPAN, T. SEN (1988). Bicriterion static schedul

ing research for a single machine. Omega 16, 53-59.

[lJ
G. DOBSON (1984). Scheduling independent tasks on

uniform processors. SIAM J. Comput 13, 705-716.

[9.2]
D. DoLEv, M.K. WARMUTH (1984). Scheduling pre

cedence graphs of bounded height..!. Algorithms 5,

48-59. [11.1]
D. DoLEV, M.K. WARMUTH (1985A). Scheduling flat

graphs. SIAM J. Comput. 14, 638-657. [11.1]

D. DoLEV, M.K. WARMUTH (1985B). Profile

61

scheduling of opposing forests and level orders.

SIAM J. Algebraic Discrete Methods 6, 665-687.

[11.1]
J. Du, J.Y.-T. LEUNG (1988A). Scheduling tree

structured tasks with restricted execution times.

Iriform. Process. Lett. 28, 183-188.[11.l]

J. Du, J.Y.-T. LEUNG (1988B). Minimizing Mean Flow

Time with Release Time and Deadline Constraints,

Technical report, Computer Science Program,

University of Texas, Dallas. [5.2]

J. Du, J.Y.-T. LEUNG (1989A). Scheduling tree

structured tasks on two processors to minimize

schedule length. SIAM J. Discrete Math. 2, 176-196.

[11.1]
J. Du, J.Y.-T. LEUNG (1989B). Minimizing total tardi

ness on one machine is NP-hard. Math. Oper. Res.,

to appear. [7.1]
J. Du, J.Y.-T. LEUNG, C.S. WONG (1989). Minimizing

the Number of Late Jobs with Release Time Con·

straints, Technical report, Computer Science Pro

gram, University of Texas, Dallas. [8.3]

J. Du, J.Y.-T. LEUNG, O.H. YOUNG (1988). Minimiz

ing Mean Flow Time with Release Time Constraint,

Technical report, Computer Science Program,

University of Texas, Dallas. [8.3]

J. Du, J.Y.-T. LEUNG, 0.H. YOUNG (1989).Scheduling

chain-structured tasks to minimize makespan and

mean flow time. Iriform. and Comput., to appear.

[8.2,3; 11.2]
W.L. EASTMAN, S. EVEN, LM. ISAACS (1964). Bounds

for the optimal scheduling of n jobs on m processors.

Management Sci. 11, 268-279. [8.2)
J. EDMONDS (1965). Minimum partition of a matroid

into independent subsets. J. Res. Nat. Bur. Stan·

dards 69B, 67-72. [11.l]
S.E. ELMAGHRABY (1968). The one-machine sequenc

ing problem with delay costs. J. Jndust. Engrg. 19,

105-108. [7.1]
S.E. ELMAGHRABY, S.H. PARK (1974). Scheduling jobs

on a number of identical machines. AJJE Trans. 6,

1-12. [8.2)
H. BVJMONS (1969). One-machine sequen1.,-ing to

minimize certain functions of job tardiness. Oper.

Res. 17, 701-715. [7.1]
J. ERSCHLER, G. FONTAN, C. MERCE, F. ROUBELLAT

(1982). Applying new dominance concepts to job

schedule optimization. European J. Oper. Res. 11,

60-66. [4.2]
J. ERSCHLER, G. FONTAN, C. MERCE, F. ROUBELLAT

(1983). A new dominance concept in scheduling n

jobs on a single machine with ready times and due

dales. Oper. Res. 31, 114-127. [4.2]

A. FEDERGUEN, H. 0ROENEVELT (1986). Preemptive

scheduling of uniform machines by ordinary net

work flow techniques.Management Sci. 32, 341-349.

[10.2]

62

T. FIALA (1983). An algorithm for the open-shop prob
lem. Math. Oper. Res. 8, 100-109. [12.1]

M. FISCHETTI, S. MARTELLO (1987). Worst-case
analysis of the differencing method for the partition
problem.Math. Programming 37, 117-120. [9.1]

H. FISHER, G.L. THOMPSON (1963). Probabilistic
learning combinations of local job-shop scheduling
rules. J.F. MUTH, G.L. THOMPSON (eds.) (1963).
Industrial Scheduling, Prentice-Hall, Englewood
Cliffs, NJ, 225-251. [14.3] .

M.L. FISHER (1976). A dual algorithm for the one
machine scheduling problem. Math. Programming
11, 229-251. [7.1]

M.L. FISHER, A.M. KRIEGER (1984). Analysis of a
linearization heuristic for single-machine scheduliag
to maximize profit. Math. Programming 28, 218-
225. [7.1]

M.L. FISHER, B.J. LAGEWEG, J.K. LENSTRA, A.H.G.
RINNOOY KAN (1983). Surrogate duality relaxation
for job scheduling. Discrete Appl. Math. 5, 65-75.·
[14.2,3]

R.D. FOLEY, S. SURESH (1986). Scheduling n nonover
lappingjobs and two stochastic jobs in a flow shop.
Naval Res. Logist. Quart. 33, 123-128. [16.4]

F.G. FORST (1984). A review of the static, stochastic
job sequencing literature. Opsearch 2I, 127-144.
[16.1,2]

G.N. FREDERICKSON (1983). Scheduling unit-time
tasks with integer release times and deadlines.
lriform. Process. Lett. I6, 171-173.[4.2]

S. FRENCH (1982). Sequencing and Scheduling: an
Introduction to the Mathematics of the Job-Shop,
Horwood, Chichester. [l]

J.B.G. FRENK (1988). A General Framework for Sto
chastic One-Machine Scheduling Problems with Zero
Release Times and No Partial Ordering, Report
8819, Econometric Institute, Erasmus University,
Rotterdam. [16.1)

J.B.G. FRENK, A.H.G. RINNOOY KAN (1986). The rate
of convergence to optimality of the LPT rule.
DiscreteAppl. Math. I4, 187-197.[9.l,2]

J.B.G. FRENK, A.H.G. RlNNOOY KAN (1987). The
asymptotic optimality of the LPT rule. Math. Oper.
Res.12,241-254.[9.I,2]

D.K. FRIESEN (1984). Tighter bounds for the multifit
processor scheduling algorithm. SIAM J. Comput.
13, 170-181.[9.I]

D.K. FRIESEN (1987). Tighter bounds for LPT schedul
ing on uniform processors. SIAM J. Comput. I6,
554-560. [9.2]

D.K. FRIESEN, M.A. LANGSTON (l 983). Bounds for
multifit scheduling on uniform processors. SIAM J.
Compul. 12,60-70.[9.2]

D.K. FRIESEN, M.A. LANGSTON (1986). Evaluation of
a MUL TIFIT-based scheduling algorithm. J. Algo
rithms 7, 35-59. [9.1)

E. FROSTIG (1988). A stochastic scheduling problem
with intree precedence constraints. Oper. Res. 36,
937-943. [16.3]

M. Fum, T. KAsAMI, K NINOMIYA (1969, 1971).
Optimal sequencing of two equivalent processors.
SIAM J. Appl. Math. 17, 784-789; Erratum. SIAM
J. Appl. Math. 20, 141. [11.1]

H.N. GABOW (1982). An almost linear-time algorithm
for two-processor scheduling. J. Assoc. Comput.
Mach. 29, 766-780. [11.1]

, H.N. GABOW (1988). Scheduling UET systems on two
uniform processors and length two pipelines. SIAM
J_. Comput. 17,.810-829. [l 1.2]

H.N. GAB.OW; R:.E. T ARJAN (1985). A linear-time algo
rithm fo_~ a special case of disjoint set union. J. Com
put .. $)!:Steni_Sci. 30, 209-221. [11.1]

M.R. G'AREY (-).Unpublished. [11. l J
M.R. GAREY, R.L. GRAHAM, D.S. JOHNSON (1978).

Performance guarantees for scheduling algorithms.
Oper. Res. 26, 3-21. [9.1]

M.R. GAREY, D.S. JOHNSON (1975). Complexity
results for multiprocessor scheduling under resource
constraints. SIAM J. Comput. 4, 397-411. [15.0,2]

M.R. GAREY, D.S. JOHNSON (1976). Scheduling tasks
with nonuniform deadlines on two processors. J.
Assoc. Comput. Mach. 23, 461-467. [6.1; 11.l,3]

M.R. GAREY, D.S. JOHNSON (1977). Two-processor
scheduling with start-times and deadlines. SIAM J.
Comput. 6, 416-426. [11.1,3]

M.R. GAREY, D.S. JOHNSON (1978). Strong NP
completeness results: motivation, examples and
implications. J. Assoc. Comput. Mach. 25, 499-508.
[9.0]

M.R. GAREY, D.S. JOHNSON (1979). Computers and
Intractability: a Guide to the Theory of NP
Completeness, Freeman, San Francisco. [2]

M.R. GAREY, D.S. JOHNSON, R. SETHI (1976). The
complexity of flowshop and jobshop scheduling.
Math. Oper. Res. 1, 117-129. [13.1]

M.R. GAREY, D.S. JOHNSON, B.B. SIMONS, R.E. TAR
JAN (1981). Scheduling unit-lime taks with arbitrary
release times and deadlines. SIAM J. Comput. JO,
256-269. [4.2: 9.1]

M.R. GAREY, D.S. JOHNSON, R.E. TARJAN, M. YAN
NAKAKIS (1983). Scheduling opposing forests. SIAM
J. Algebraic Discrete Methods 4, 72-93.Jl 1.1]

M.R. GAREY, R.E. TARJAN, G.T. WILFONG (1988).
One-processor scheduling with symmetric earliness
and tardiness penalties. Math. Oper. Res. 13, 330-
348. [1]

P.O. GAZMURI (1985). Probabilistic analysis of a
machine scheduling problem. Math. Oper. Res 10,
328-339. [5.2]

L. GELDERS, P.R. KLEINDORFER (1974). Coordinating
aggregate and detailed scheduling decisions in the
one-machine job shop: part I. Theory. Oper. Res. 22,

46-60. [7.1]
L. GELDERS, P.R. KLEINDORFER (1975). Coordinating

aggregate and detailed scheduling in the one
machine job shop: II - computation and structure.

Oper. Res. 23, 312-324. [7.1]
G.V. GENS, E.V. LEVNER (1978). Approximation algo

rithm for some scheduling problems. Engrg. Cyber
netics 6, 3S-46. [6.1]

G.V. GENS, E.V. LEVNER (1981). Fast approximation

algorithm for job sequencing with deadlines.

Discrete Appl. Math. 3, 313-318. [6.1]
W.S. GERE (1966). Heuristics in job shop scheduling.

Management Sci.13, 167-190. [14.2]
B. GIFFLER, G.L. THOMPSON (1960). Algorithms for

solving production-scheduling problems. Oper. Res.
8, 487-503. [14.2]

P.C. GILMORE, R.E. GoMORY (1964). Sequencing a
one-state variable machine: a solvable case of the

traveling salesman problem. Oper. Res. 12, 655-679.

[13.3]
P.C. GILMORE, E.L. LAWLER, D.B. SI-IMOYS (1985).

Well-solvable cases. Lawler, Lenstra, Rinnooy Kan

& Shmoys [1985], Ch. 4. [13.3]
T. GONZALEZ (1977). Optimal Mean Finish Time

Preemptive Schedules, Technical report 220, Com
puter Science Department, Pennsylvania State

University. [8.3]
T. GONZALEZ (1979). A note on open shop preemptive

schedules. IEEE Trans. Comput. C-28, 782-786.

[12.2)
T. GONZALEZ (1982). Unit execution time shop prob

lems.Math. Oper. Res. 7, 57-66. [12.lj
T. GONZALEZ, O.H. IBARRA, s. SAHNI (1977). Bounds

for LPT schedules on uniform processors. SIAM J.
Comput. 6, 155-166. [9.2]

T. GONZALEZ, D.B. JOHNSON (1980). A new algorithm

for preemptive scheduling of trees. J. Assoc. Comput.
Mach. 27, 287-312. [10.2; 11.3]

T. GONZALEZ, E.L. LAWLER, S. SAHNI (1981). Optimal

preemptive scheduling of two unrelated processors.
To appear. [10.1]

T. GONZALEZ, s. SAHNI (1976). Open shop scheduling

to minimize finish time. J. Assoc. Comput. Mach. 23,
665-679. [IV; 12.0, 1,2; 16.4]

T. GONZALEZ, S. SAHNI (1978A). Flowshop and

jobshop schedules: complexity and approximation.

Oper. Res. 26, 36-52. [13.1,2; 14.1,2]
T. GONZALEZ, s. SAHNI (1978B). Preemptive schedul

ing of uniform processor systems. J. Assoc. Comput.
Mach. 25, 92-101. [10.1]

D.K. GOYAL (1977). Non-Preemptive Scheduling of
Unequal Execution Time Tasks on Two Identical Pro
cessors, Technical report CS-77-039, Computer Sci
ence Department, Washington State University,

Pullman. [11.1]
S.K. GOYAL, C. SR!SKANDARAJAH (1988). No-wait

63

shop scheduling: computational complexity and
approximate algorithms. Opsearch 25, 220-244.

[13.3]
J. GRABOWSKI (1980). On two-machine scheduling

with release dates to minimize maximum lateness.

Opsearch 17, 133-154. [13.1]
J. GRABOWSKI (1982). A new algorithm of solving the

flow-shop problem. G. FEICHTINGER, P. KALL (eds.)

(1982). Operations Research in Progress, Reidel,

Dordrecht, 57-75. [13.2]
J. GRABOWSKI, E. SKUBALSKA, C. SMtrrNICKI (1983).

On flow shop scheduling with release and due dates

lo minimize maximum lateness. J. Oper. Res. Soc.
34, 615-620. [13.2]

R.L. GRAHAM (1966). Bounds for certain multiprocess

ing anomalies. Bell System Tech. J. 45, 1563-1581.
[9.0,1; 11.2]

R.L. GRAHAM (1969). Bounds on multiprocessing tim
ing anomalies. SIAM J. Appl. Math. 17, 263-269.

[9.1)
R.L. GRAHAM(-). Unpublished. [11.2]
R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G.

RINNOOY KAN (1979). Optimization and approxi

mation in deterministic sequencing and scheduling:

a survey.Ann. Discrete Math. 5, 287-326. [I]
S.C. GRAVES (1981). A review of production schedul

ing. Oper. Res. 29, 646-675. [1]
J.N.D. GUPTA, S.S. REDDI (1978). Improved domi

nance conditions for the three-machine flowshop

scheduling problem. Oper. Res. 26, 200-203. [13.2]
S.K. GtrPTA, J. KYPARISIS (1987). Single machine

scheduling research. Omega 15, 207-227. [l]
D. GusFIELD (1984). Bounds for naive multiple

machine scheduling with release times and dead
lines.J. Algorithms 5, 1-6. [9.1)

L.A. HALL, D.B. SHMOYS (1988). Jackson'.Y Rule for
One-Machine Scheduling: Making a Good Heuristic
Better, Department of Mathematics, Massachusetts

Institute of Technology, Cambridge. [4.2]
L.A. HALL, D.B. SHMOYS (-).Unpublished. [9.l; 11.2]
A.M.A. HARIRI, C.N. POTTS (1983). An algorithm for

single machine sequencing with release dates to

minimize total weighted completion time. Discrete
Appl. Math. 5, 99-109. [5.2)

A.M.A. HARIRI, C.N. POTTS (1984). Algorithms for

two-machine flow-shop sequencing with precedence

constraints. European J. Oper. Res. 17, 238-248.

[13.1 J
R. HAUPT (1989). A survey of priority rule-based

scheduling. OR Spektrum 11, 3-16. [14.2]

N. HEFETZ, I. ADIRI (1982). An efficient optimal algo

rithm for the two-machines unit-time jobshop
schedule-length problem. Math. Oper. Res. 7, 354-
360. [14.1]

D.S. HocHBAUM, D.B. SHMOYS (1987). Using dual

approximation algorithms for scheduling problems:

64

theoretical and practical results. J. Assoc. Comput.
Mach. 34, 144-162.(9.1]

D.S. HocHBAUM, D.B. SHMOYS (1988). A polynomial
approximation scheme for machine scheduling on
uniform processors: using the dual approximation
approach. SIAM J. Comput. 17, 539-551. (9.2]

S.M. HODGSON (1977). A note on single machine
sequencing with random processing times. Manage
ment Sci. 23, 1144-1146. [16.2]

W.A. HORN (1972). Single-machine job sequencing
with treelike precedence ordering and linear delay
penalties. SIAM J. Appl. Math. 23, 189-202. (5.1]

W .A. HORN (1973). Minimizing average flow time with
parallel machines. Oper. Res. 21, 846-847. (8.0]

W.A. HORN (1974). Some simple scheduling algo
rithms. Naval Res. Logist. Quart. 21, 177-185. [4.2;
10.2]

E. HOROWITZ, s. SAHNI (1976). Exact and approxi
mate algorithms for scheduling nonidentical proces
sors. J. Assoc. Comput. Mach. 23. 317-327. [8.0,
9.2,3] -

E.C. HORVATH, S. LAM, R. SETHI (1977). A level algo
rithm for preemptive scheduling. J. Assoc. Comput.
Mach. 24, 32-43. [10.1; 11.3)

N.C. Hsu (1966). Elementary proof of Hu's theorem
on isotone mappings. PMc. Amer. Math. Soc. 17,
111-114.(11.1]

T.C. Hu (1961). Parallel sequencing and assembly line
problems. Oper. Res. 9, 841-848. [I I.I]

O.H. IBARRA, C.E. KIM (1976). On two-processor
scheduling of one- or two-unit time tasks with pre
cedence constraints.J. Cybernet. 5, 87-109.(11.l]

O.H. IBARRA, C.E. KIM (1977). Heuristic algorithms
for scheduling independent tasks on nonidentical
processors. J. Assoc. Comput. Mach. 24, 280-289.
(9.1,3]

O.H. IBARRA, C.E. KIM (1978). Approximation algo
rithms for certain scheduling problems. Math. Oper.
Res. 3, 197-204. [6.1]

E. IGNALL, L. SCHRAGE (1965). Application of the
branch and bound technique to some flow-shop
scheduling problems. Oper. Res. 13,. 400-412.
[13.1,2]

J.R. JACKSON (1955). Scheduling a Production Line to
Minimize Maximum Tardiness, Research Report 43,
Management Science Research Project, University
of California, Los Angeles. (II; 4.2]

J.R. JACKSON (1956). An extension of Johnson's results
on job lot scheduling. Naval Res. Logist. Quart. 3,
201-203.(14.l]

J.M. JAFFE (1980A). Efficient scheduling of tasks
without full use of processor resources. Theoret.
Comput. Si::i. 12, 1-17.(11.2,3]

J.M. JAFFE (1980B). An analysis of preemptive mul
tiprocessor job scheduling. Math. Oper. Res. 5, 415-
421. [11.3]

D.S. JOHNSON (1983). The NP-completeness column:
an ongoing guide.J. Algorithms 4, 189-203. [l]

S.M. JOHNSON (1954). Optimal two- and three-stage
production schedules with setup times included.
Naval Res. Logist. Quart. 1, 61-68. [IV; 13.0, l; 16.4]

S.M. JOHNSON (1958). Discussion: sequencing n jobs
on two machines with arbitrary time lags. Manage
ment Sci. 5, 299-303. [13.l]

E.P.C. KAo, M. QUEYRANNE (1982). On dynamic pro
gramming methods for assembly line balancing.
Oper. Res. 30, 375-390. [7.1]

N. KARMARKAR, R.M. KARP (1982). The Differencing
Method of Set Partitioning, Report UCB/CSD
82/ 113, Computer Science Division, University of
California, Berkeley. [9.1]

R.M. KARP (1972). Reducibility among combinatorial
problems. R.E. MILLER, J.W. THATCHER (eds.)
(1972). Complexity of Computer Computations, Ple
num Press, New York, 85-103. [2; 6.0]

R.M. KARP (1975). On the computational complexity
of combinatorial problems. Networks 5, 45-68. [2]

M.T. KAUFMAN (1974). An almost-optimal algorithm
for the assembly line scheduling problem. IEEE
Trans. Comput. C-23, 1169-1174.(11.1,2]

T. KAWAGUCHI, S. KYAN (1986). Worst case bound of
an LRF schedule for the mean weighted flow-time
problem. SIAM J. Comput. 15, 1119-1129. [8.2]

T. KAWAGUCHI, S. KYAN (1988). Detenninistic
scheduling in computer systems: a survey. J. Oper.
Res. Soc. Japan 31, 190-217. [I]

L.G. KHACHIYAN (1979). A polynomial algorithm in
linear programming. Soviet Math. Dok/. 20, 191-194.
[10.1]

H. KISE, T. IBARAKI, H. MINE (1978). A solvable case
of the one-machine scheduling problem with ready
and due times. Oper. Res. 26, 121-126. [6.1]

H. KISE, T. lBARAKI, H. MINE (1979). Performance
analysis of six approximation algorithms for the
one-machine maximum lateness scheduling prob
lem wilh ready times. J. Oper. Res. Soc. Japan 22,
205-224. [4.2]

W.H. KOHLER, K. STEIGLITZ (1975). Exact, approxi
mate and guaranteed accura9 algorithms for the
flow-shop problem n 121 FI F. J. Assoc. Comput.
Mach. 22, 106-114. [13.l]

P.R. KUMAR, J. WALRAND (1985). Individually
optimal routing in parallel systems. J. Appl. Probab.
22, 989-995. [16.3)

M. KUNDE (1976). Beste Schranken beim LP
Scheduling, Bericht 7603, Institut flir lnformatik
und Praktische Mathemalik, Universitat Kiel. (11.1]

M. KUNDE (1981). Nonpreemptive LP-scheduling on
homogeneous multiprocessor systems. SIAM J.
Comput.10, 151-173.[ll.2]

M. KUNDE, H. STEPPAT (1985). First fit decreasing
scheduling on uniform multiprocessors. Discrete

Appl. Math. JO, 165-177.[9.2]
J. LABETOULLE, E.L. LAWLER, J.K. LENSTRA, A.H.G.

RINNOOY KAN (1984). Pre.emptive scheduling of
uniform machines subject to release dates. Pulley
blank [1984 J, 245-261.[5.2; 10.2]

B.J. LAGEWEG (1984). Private communication. [14.2,3]
B.J. LAGEWEG (-).Unpublished. [13.1]
B.J. LAGEWEG, E.L. LAWLER, J.K. LENSTRA, A.H.G.

RINNOOY KAN (1981). Computer Aided Complexity
Classification of Deterministic Scheduling Problems,
Report BW 138, Centre for Mathematics and Com
puter Science, Amsterdam. [3.6)

B.J. LAGEWEG, J.K. LENSTRA, E.L. LAWLER, A.H.G.
RINNOOY KAN (1982). Computer-aided complexity
classification of combinatorial problems. Comm.
ACM 25, 817-822. [3.6]

B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN
(1976). Minimizing maximum lateness on one
machine: computational experience and some appli
cations. Statist. N eerlandica 30_,_15-41. [4.2]

B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN
(1977). Job-shop scheduling by implicit enumera
tion. Management Sci. 24, 441-450. [14.2,3]

B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN
(1978). A general bounding scheme for the permuta
tion flow-shop problem. Oper. Res. 26, 53-67. [13.2]

S. LAM, R. SETHI (1977). Worst case analysis of two
scheduling algorithms. SIAM J. Comput. 6, 518-536.
[11.l ,3]

R.E. LARSON, MJ. DESSOUKY, R.E. DEVOR (1985). A
forward-backward procedure for the single machine
problem to minimize maximum lateness. JJE Trans.
17, 252-260. [4.2)

E.L. LAWLER (1973). Optimal sequencing of a single
machine subject to precedence constraints. Manage
ment Sci. 19, 544-546. [4.0; 16.2]

E.L LAWLER (l976A). Sequencing to minimize the
weighted number of tardy jobs. RAJ RO Rech. Oper.
JO, 5 Suppl. 27-33. [6.l; 8.1]

E.L LAWLER (1976B). Combinatorial Optimization:
Networks and Matroids, Holt, Rinehart and Wins
ton, New York. [11.l]

E.L. LAWLER (1977). A 'pseudopolynomial' algorithm
for sequencingjobs to minimize total tardiness. Ann.
Discrete Math. 1, 331-342. [7.1]

E.L. LAWLER (1978A). Sequencing jobs to minimize
tolal weighted completion time subject to pre
cedence constraints. Ann. Discrete Math. 2, 75-90.
[5.1,2]

E.L. LAWLER (1978B). Sequencing Problems with Series
Parallel Precedence Constraints, Unpublished
manuscript.[5. l]

E.L. LAWLER (1979A). Preemptive Scheduling of Uni·
form Parallel Machines to Minimize the Weighted
Number of Late Jobs, Report BW I 05, Centre for
Mathematics and Computer Science, Amsterdam.

65

[8.3]
E.L. LAWLER (1979B). Efficient Implementation of

Dynamic Programming Algorithms for Sequencing
Problems, Report BW 106, Centre for Mathematics
and Computer Science, Amsterdam. [7 .1 J

E.L. LAWLER (1982A). Preemptive scheduling of
precedence-constrained jobs on parallel machines.
Dempster, Lenstra & Rinnooy Kan [1982], 101-123.
[11.3]

E.L. LAWLER (l982B). Scheduling a Single Machine to
Minimize the Number of Late Jobs, Preprint, Com
puter Science Division, University of California,
Berkeley.[6.1]

E.L. LAWLER (1982C). A fully polynomial approxima
tion scheme for the total tardiness problem. Oper.
Res. Lett. J,207-208.[7.l]

E.L. LAWLER (1983). Recent resulls in the theory of
machine scheduling. A. BACHEM, M. GROTSCHEL, B.
KORTE (eds.) (1983). Mathematical Programming:
the State of the Art - Bonn 1982, Springer, Berlin,
202-234. [1; 8.3]

E.LLAWLER(-). Unpublished.[6.l; 8.1]
E.L. LAWLER, J. LABETOULLE (1978). On pre.emptive

scheduling of unrelated parallel processors by linear
programming.J. Assoc. Comput. Mach. 25, 612-619.
[8.3; 10.1,2; IV; 12.2]

E.L. LAWLER, J.K. LENSTRA (1982). Machine schedul
ing with precedence constraints. I. RIVAL (ed.)
(1982). Ordered Sets, Reidel, Dordrecht, 655-675.
[I; 5.1]

E.L. LAWLER, J.K. LENSTRA, A.H.G. R.INNOOY KAN
(1981, 1982). Minimizing maximum lateness in a
two-machine open shop. Math. Oper. Res. 6, 153-
158; Erratum. Math. Oper. Res. 7, 635. [12. l,2].

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN
(1982). Recent developments in deterministic
sequencing and scheduling: a survey. Dempster,
Lenstra & Rinnooy Kan (1982], 35-73. [I]

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN,
D.B. SHMOYS (eds.) (1985). The Traveling Salesman
Problem: a Guided Tour of Combinatorial Optimiza
tion, Wiley, Chichester.[1; References]

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN,
D.B. SHMOYS (1989). Sequencing and Scheduling:
Algorithms and Complexity, Report BS-R8909, Cen
tre for Mathematics and Computer Science, Amster
dam.

E.L. LAWLER, C. U. MARTEL (1982). Computing maxi
mal 'polymatroidal' network flows. Math. Oper. Res.
7, 334-347. [10.2]

E.L. LAWLER, C.U. MARTEL (1989). Preemptive
scheduling of two uniform machines to minimize the
number oflate jobs. Oper. Res. 37, 314-318. [8.3]

E.L. LAWLER, J.M. MOORE (1969). A functional equa
tion and its application to resource allocation and
sequencing problems. Management Sci. 16, 77-84.

66

[6.0; 8.2]
J.K.. LENSTRA (1977). Sequencing by Enumerative

Methods, Mathematical Centre Tracts 69, Centre for
Mathematics and Computer Science, Amsterdam.

J.K..LENSTRA(-). Unpublished.[8.1; 11.3; 12.1; 13.1,3;
14.l]

J.K.. LENSTRA, A.H.G. RINNOOY .KAN (1978). Com
plexity of scheduling under precedence constraints.
Oper. Res. 26, 22-35.[5.2; 7.1; 11.0,l]

J.K.. LENSTRA, A.H.G. RINNOOY .KAN (1979). Compu
tational complexity of discrete optimization prob
lems.Ann. Discrete Math. 4, 121-140.[2; 14.l]

J.K.. LENSTRA, A.H.G. RINNOOY .KAN (1980). Com
plexity results for scheduling chains on a single
machine. European J. Oper. Res. 4, 270-275. [6.1]

J.K.. LENSTRA, A.H.G. RINNOOY KAN (1984). New
directions in scheduling theory. Oper. Res. Lett. 2,
255-259.[l]

J.K.. LENSTRA, A.H.G. RINNOOY .KAN (1985). Sequenc
ing and scheduling. O'hEigeartaigh, Lenstra & Rin
nooy K.an[1985], 164-189.[1] -

J.K.. LENSTRA, A.H.G. RINNOOY .KAN, P. BRUCKER
(1977). Complexity of machine scheduling prob
lems. Ann. Discrete Math. 1, 343-362. (4,2; 5.2; 7.1;
8.2; 13.1; 14.1]

J.K. LENSTRA, D.B. SHMOYS, E. TARDOS (1989).
Approximation algorithms for scheduling unrelated
parallel machines. Math. Programming, to appear.
[9.3]

J.Y.-T. LEUNG (1989). Bin packing with restricted
piece sizes. Inform. Process. Lett., to appear. [9.1]

J.Y.-T. LEUNG, G.H. YOUNG (1989). Minimizing Total
Tardiness on a Single Machine with Precedence Con·
straints, Technical report, Computer Science Pro
gram, University of Texas, Dallas. (7. l]

LA. LEVIN (1973). Universal sequential search prob
lems. Problemy Peredachi Informatsii 9, 115-116. -
English translation (1975). Problems Inform.
Transmission 9, 265-266. [2]

C.Y. LIU, R.L. BULFIN (1985). On the complexity of
preemptive open-shop scheduling problems. Oper.
Res.Lett.4, 71-74.[12.2] .

J.W.S. LIU, C.L. LIU (1974A). Bounds on scheduling
algorithms for heterogeneous computing systems.
J.L. ROSENFELD (ed.) (1974). Information Process
ing 74, North-Holland, Amsterdam, 349-353. [9.2]

J.W.S. LIU, C.L. LIU (1974B). Bounds on Scheduling
Algorithms for Heterogeneous Computing Systems,
Technical report UIUCDCS-R-74-632, Department
of Computer Science, University of Illinois al
Urbana-Champaign, 68 pp. [9.2; 11.2]

J.W.S. LIU, C.L. LIU (1974C). Performance analysis of
heterogeneous multi-processor computing systems.
E. GELENBE, R. MAHL (eds.) (1974). Computer
Architectures and Networks, North-Holland,
Amsterdam, 331-343. [9.2]

R. LoULou (1984). Tight bounds and probabilistic
analysis of two heuristics for parallel processor
scheduling.Math. Oper. Res. 9, 142-150. (9.1]

0. MARCOTTE, L.E. TROTTER, JR. (1984). An applica
tion of matroid polyhedral theory to unit-execution
time, tree-precedence constrained job scheduling.
Pulley blank [1984], 263-271. [11.1]

C.U. MARTEL (1982). Preemptive scheduling with
release times, deadlines and due times. J. Assoc.
Comput. Mach. 29, 812-829. (10.2]

H. MATSUO, C.J. SUH, R.S. SULLIVAN (1988). A Con
trolled Search Simulated Annealing Method for the
General Jobshop Scheduling Problem, Working
paper 03-44-88, Graduate School of Business,
University of Texas, Austin. (14.2]

W.L. MAxWELL (1970). On sequencing n jobs on one
machine to minimize the number of late jobs.
Management Sci. 16, 295-297. [6.1)

S.T. McCORMICK, M.L. PINEDO (1989). Scheduling n
Independent Jobs on m Uniform Machines with Both
Flow Time and Makespan Objectives: a Parametric
Analysis, Department of Industrial Engineering and
Operations Research, Columbia University, New
York.[8.3]

G.B. McMAHON (1969). Optimal production
schedules for flow shops. Canad. Oper. Res. Soc. J. 7,
141-151. [13.2)

G.B. McMAHON (1971). A Study of Algorithms for
Industrial Scheduling Problems, Ph.D. thesis,
University of New South Wales, Kensington. [13.2)

G.B. McMAHON, M. FLORIAN (1975). On scheduling
with ready times and due dates to minimize max
imum lateness. Oper. Res. 23, 475-482. [4.2; 14.2,3)

R. McNAUGHTON (1959). Scheduling with deadlines
and loss functions. Management Sci. 6, 1-12. (8.3;
10.0)

I. MEILIJSON, A. TAMIR (1984). Minimizing flow time
on parallel identical processors with variable unit
processing time. Oper. Res. 32, 440-446. [8.2)

L.G. MITTEN (1958). Sequencing n jobs on two
machines with arbitrary time lags. Management Sci.
5, 293-298. (13.1)

R.H. MOHRING (1983). Scheduling problems with a
singular solution. Ann. Discrete Math. 16, 225-239.
[15.3]

R.H. MOHRING (1984). Minimizing costs of resource
requirements in project networks subject lo a fixed
completion time. Oper. Res. 32, 89-120. (15.3]

R.H. MOHRING (1989). Computationally tractable
classes of ordered sets. I. RIVAL (ed.) (1989). Algo
rithms and Order, Kluwer Academic, Dordrecht,
105-193. [11.l]

R.H. MDHRING, F.J. RADERMACHER (1985A). Gen
eralized results on the polynomiality of certain
weighted sum scheduling problems. Methods of
Oper. Res. 49,405-417.(5.1]

R.H. MOHRING, F.J. RADERMACHER (1985B). An
introduction to stochastic scheduling problems. K.
NEUMANN, D. PALLASCHKE (eds.) (1985). Contribu
tions to Operations Research, Lecture Notes in
Economics and Mathematical Systems 240.
Springer, Berlin, 72-130. [V; 16.l]

R.H. MOHRING, F.J. RADERMACHER, G. WEISS (1984).
Stochastic scheduling problems I: general strategies.
Z. Oper. Res. 28, 193-260. [16.1]

R.H. MOHRING, F.J. RADERMACHER, G. WEISS (1985).
Stochastic scheduling problems II: set strategies. Z.
Oper. Res. 29, 65-104. [16.1]

C.L. MoNMA (1979). The two-machine maximum
flow-time problem with series-parallel precedence
constraints: an algorithm and extensions. Oper. Res.
27, 792-798. [13.l]

C.L. MoNMA (1980). Sequencing lo minimize the max
imum job cost. Oper. Res. 28, 942-951. [4.1; 13. l]

C.L. MoNMA (1981). Sequencing with general pre
cedence constraints. Discrete AJlPl. Math. 3, 137-150.
[5.1)

C.L MONMA (1982). Linear-time algorithms for
scheduling on parallel processors. Oper. Res. 30,
116-124. [4.2; 6.1; 11.l]

C.L. MONMA, A.H.G. RlNNOOY KAN (1983). A concise
survey of efficiently solvable special cases of the per
mutation flow-shop problem. RA/RO Rech. Oper.
17, 105-119.[13.l]

C.L. MONMA, J.B. SIDNEY (1979). Sequencing with
series-parallel precedence constraints. Math. Oper.
Res. 4, 215-224. [5.1]

C.L. MoNMA, J.B. SIDNEY (1987). Optimal sequencing
via modular decomposition: characterizations of
sequencing functions. Math. Oper. Res. 12, 22-31.
[5. l]

J.M. MOORE (1968). An njob, one machine sequencing
algorithm for minimizing the number of late jobs.
ManagementSci. 15, 102cl09.[6.l]

J.F. MORRISON (1988). A note on LPT scheduling.
Oper. Res. Lett. 7, 77-79. [9.2)

J.H. MULLER, J. SPINRAD (1989). Incremental modular
decomposition. J. Assoc. Comput. Mach .. 36, 1-19.
[5.1)

R.R. MUNTZ, E.G. COFFMAN, JR. (1969). Optimal
preemptive scheduling on two-processor systems.
IEEETrans. Comput. C-18, 1014-1020.[ll.3]

R.R. MUNTZ, E.G. COFFMAN, JR. (1970). Preemptive
scheduling of real time tasks on multiprocessor sys
tems.J. Assoc. Comput. Mach. 17, 324-338. [11.3]

I. NABESHIMA (1963). Sequencing on two machines
with start lag and stop lag. J. Oper. Res. Soc. Japan
5, 97-101.[13.1]

K. NAKAJIMA, J.Y.-T. LEUNG, S.L. HAKIMI (1981).
Optimal two processor scheduling of tree pre
cedence constrained tasks with two execution times.
Performance Evaluation l, 320-330. [11. l]

67

M. NAWAZ, E.E. ENSCORE, JR., I. HAM (1983). A
heuristic algorithm for the m-machine, n-job flow
shop sequencing problem. Omega 11, 91-95. [13.2]

L. NEMET! (1964). Das Reihenfolgeproblem in der Fer
tigungsprogrammierung und Linearplanung mit
logischen Bedingungen. Mathematica (Chtj} 6, 87-
99. [14.2)

E. NOWICKI, c. SMUTNICK! (1987). On lower bounds
on the minimum maximum lateness on one machine
subject lo release dale. Opsearch 24, 106-110. [4.2]

E. NOWICKI, S. ZDRZALKA (1986). A note on minimiz
ing maximum lateness in a one-machine sequencing
problem with release dates. European J. Oper. Res.
23, 266-267. [4.2)

M. O'HEIGEARTAIGH, J.K. LENSTRA, A.H.G. RIN
NOOY KAN (eds.) (1985). Combinatorial Optimiza
tion: Annotated Bibliographies, Wiley, Chichester.
[References]

I.H. OSMAN, C.N. POTTS (1989). Simulated Annealing
for Permutation Flow-Shop Scheduling, Preprint
ORI 7, Faculty of Mathematical Studies, University
of Southampton. [13.2)

D.S. PALMER (1965). Sequencingjobs through a mulli
slage process in the minimum total time - a quick
method of obtaining a near optimum. Oper. Res.
Quart. 16, 101-107.[13.2]

S.S. PANWALK.AR, W. IsKANDER (1977). A survey of
scheduling rules. Oper. Res. 25, 45-61. [14.2)

C.H. PAPADIMITRIOU, P.C. KANNELAKIS (1980).
Flowshop scheduling with liinited temporary
storage.J. Assoc. Comput. Mach. 27, 533-549. (13.3)

C.H. PAPADIMITRIOU, M. YANNAKAKIS (1979).
Scheduling interval-ordered tasks. SIAM J. Comput.
8, 405-409. [11.l]

C.H. PAPADIMITRIOU, M. Y ANNAKAKIS (1988).
Towards an architecture-independent analysis of
parallel algorithms. Proc. 20th Annual ACM Symp.
Theory of Computing, 510-513. [11.1)

J. PIEHLER (1960). Ein Beitrag zum Reihenfolgeprob
lem. Unternehmensforschung 4, 138-142. [13.3]

M.L. PINEDO (1981). A note on the two machine job
shop with exponential processing times. Naval Res.
Logist. Quart. 28, 693-696. [16.4]

M.L. PINEDO (1982). Minimizing the expected mak
espan in stochastic flow shops. Oper. Res. 30, 148-
162. [16.4]

M.L. PINEDO (1983). Stochastic scheduling with
release dales and due dales. Oper. Res. 31, 559_r,72_
[16.1]

M.L. PINEDO (1984). Optimal policies in stochastic
shop scheduling.Ann. Oper. Res. 1, 305-329. [16. l,4]

M.L. PINEDO, L. SCHRAGE (1982). Stochastic shop
scheduling: a survey. Dempster, Lenstra & Rinnooy
Kan [1982], 181-196. [16.l]

M.L. PINEDO, E. RAMMOUZ (1988). A note on stochas
tic scheduling on a single machine subject to

68

breakdown and repair. Probab. Engrg. Inform. Sci.
2, 41-49. [16.1]

M.L. PINEDO, G. WEISS (1984). Scheduling jobs with
exponentially distributed processing times on two
machines with resource constraints. Management
Sci. 30, 883-889. [16.4]

M.L. PINEDO, G. WEISS (1985). Scheduling jobs with
exponentially distributed processing times and
intree precedence constraints on two parallel
machines. Oper. Res. 33, 1381-1388. [16.3]

M.L. PINEDO, G. WEISS (1987). The 'largest variance
first' policy in some stochastic scheduling problems.
Oper. Res. 35, 884-891. [16.3]

M.E. POSNER (1985). Minimizing weighted completion
times with deadlines. Oper. Res. 33, 562-574. [5.2]

C.N. Porrs (1980A). An adaptive branching rule for.
the permutation flow-shop problem. European J.
Oper. Res. 5, 19-25. [13.2]

C.N. Porrs (1980B). Analysis of a heuristic for one
machine sequencing with release dates and delivery
times. Oper. Res. 28, 1436-1441. [4.2]

C.N. Porrs (1980C). An algorithm for the single
machine sequencing problem with precedence con
straints. Math. Programming Study 13, 78-87. [5.2]

C.N. Porrs (1985A). Analysis of a linear programming
heuristic for scheduling unfelated parallel machines.
Discrete Appl. Math. 10, 155-164. [9.3]

C.N. Porrs (1985B). Analysis of heuristics for two
machine flow-shop sequencing subject to release
dates.Math. Oper. Res. JO, 576-584. [13.1]

C.N. Porrs (1985C). A Lagrangean based branch and
bound algorithm for single machine sequencing with
precedence constraints lo minimize total weighted
completion time. Management Sci. 31, 1300-1311.
[5.2]

C.N. POTTS, L.N. VANWASSENHOVE (1982). A decom
position algorithm for the single machine total tardi
ness problem. Oper. Res. Lett. 1, 177-181. [7 .1]

C.N. Porrs, L.N. v AN w ASSENHOVE (1983). An algo
rithm for single machine sequencing with deadlines
to minimize total weighted completion time. Euro
pean J. Oper. Res. 12, 379-387. [5.2]

C.N. Porrs, L.N. VANWASSENHOVE (1985). A branch
and bound algorithm for the total weighted tardi
ness problem. Oper. Res. 33, 363-377. [7.l]

C.N. POTTS, L.N. VANWASSENHOVE (1987). Dynamic
programming and decomposition approaches for
the single machine total tardiness problem. Euro
pean J. Oper. Res. 32, 405-414. [7.1]

C.N. POTTS, L.N. VAN WASSENHOVE (1988). Algo
rithms for scheduling a single machine lo minimize
the weighted number of late jobs. Management Sci.
34, 843-858. [6.1]

W.R. PULLEYBLANK (ed.) (1984). Progress in Combina
torial Optimization, Academic Press, New York.
[References]

R.M.V. RACHAMADUGU (1987). A note on the
weighted tardiness problem. Oper. Res. 35, 450-452.
[7.1]

F.J. RADERMACHER (1985/6). Scheduling of project
networks.Ann. Oper. Res. 4, 227-252.(15.3]

M. RAGHAVACHARI (1988). Scheduling problems with
non-regular penalty functions: a review. Opsearc:h
25, 144-164.[l]

V.J. RAYWARD-SMITH (1987A). UET scheduling with
unit interprocessor communication delays. Discrete
Appl Math.18, 55-11. [11.1]

V.J. RAYWARD-SMITH (1987B). The complexity of
preemptive scheduling given interprocessor com
munication delays. Inform. Process. Lett. 25, 123-
125.[10.2]

S.S. REDDI, C.V. RAMAMOORTHY (1972). On the flow
shop sequencing problem with no wait in process.
Oper. Res. Quart. 23, 323-331. (13.3]

R. RIGHTER (1988). Job scheduling to minimize
expected weighted flowtime on uniform processors.
Syst. and Control Lett. 10, 211-216. [16.3]

G. RINALDI, A. SASSANO (1977). On a Job Scheduling
Problem with Different Ready Times: Some Proper
ties and a New Algorithm to Determine the Optimal
Solution, Report R.77-24, Istituto di Automatica,
Universitadi Roma. [5.2]

A.H.G. RINNOOY KAN (1976). Machine Scheduling
Problems: Classification. Complexity and Computa
tions, Nijhoff, The Hague. [13.1]

A.H.G. RINNOOY KAN, B.J. LAGEWEG, J.K. LENSTRA
(1975). Minimizing total costs in one-machine
scheduling. Oper. Res. 23, 908-927. [7.0,l]

H. ROCK (1984A). The three-machine no-wait flow
shop problem is NP-complete. J. Assoc:. Comput.
Mach. 31, 336-345.(13.3]

H. ROCK (1984B). Some new results in flow shop
scheduling. Z. Oper. Res. 28, 1-16. [13.3]

H. ROCK, G. SCHMIDT (1982). Machine Aggregation
Heuristics in Shop Scheduling, Bericht 82-11, Fach
bereich 20 Mathematik, Technische Universitlit Ber
lin. [13.2]

P. ROSENFELD(-). Unpublished. [11.l]
M.H. RoTHKOPF (1966). Scheduling independent tasks

on parallel processors. Management Sci. 12, 437-
447. [8.2]

B. ROY, B. SUSSMANN (1964). Les Problemes
d'Ordonnancement avec Contraintes Disjonctives,
Nole DS no. 9 bis, SEMA, Montrouge. [14.0]

S. SAHNI (1976). Algorithms for scheduling indepen
dent tasks. J. Assoc. Comput. Mach. 23, 116-127.
[6.1; 8.2; 9.1]

S. SAHNI, Y. CHO (1979A). Complexity of scheduling
jobs with no wait in process. Math. Oper. Res. 4,
448-457. [13.3]

S. SAHNI, Y. CHO (1979B). Nearly on line scheduling of
a uniform processor system with release times.

SIAMJ. Comput. 8, 275-285. [10.2]
S. SAHNI, Y. CHO (1980). Scheduling independent

tasks with due times on a uniform processor system.
J. Assoc. Comput. Mach. 27, 550-563. [10.2]

S.C. SARIN, s. AHN, A.B. BISHOP (1988). An improved
branching scheme for the branch and bound pro
cedure of scheduling n jobs on m machines to
minimize total weighted flowtime. Internal. J. Pro
duction Res. 26, 1183-1191. [8.2]

G. SCHMIDT (1983). Preemptive Scheduling on Identical
Processors with Time Dependent Availabilities, Ber
icht 83-4, Fachbereich 20 Informatik, Technische
Universitat Berlin. [10.2]

L. SCHRAGE (1970). Solving resource-constrained net
work problems by implicit enumeration -
nonpreemptive case. Oper. Res. 18, 263-278. [14.2]

L. SCHRAGE, K.R. BAKER (1978). Dynamic program
Ining solution of sequencing problems with pre
cedence constraints. Oper. Res. 26, 444-449. [7.1]

R. SETHI (1976A). Algorithms__ior minimal-length
schedules. Coffman [1976], 51-99. [I I.I]

R. SETHI (1976B). Scheduling graphs on two proces
sors. SIAM J. Comput. 5, 73-82. [I I.I]

R. SETHI (1977). On the complexity of mean flow time
scheduling. l'fath. Oper. Res. 2, 320-330. [8.2]

D.B. SHMOYS, E. TARDOS (1989). Computational com
plexity of combinatorial problems. R.L. GRAHAM,
M. GR6TSCHEL, L. LovAsz (eds.) (1989). Handbook
in Combinatorics, North-Holland, Amsterdam. [2]

J. SHWIMER (1972). On the N-jobs, one-machine,
sequence-independent scheduling problem with tar
diness penalties: a branch-and-bound solution.
Management &i. 18B, 301-313. [7.1]

J.B. SIDNEY (1973). An ex.tension of Moore's due date
algorithm. S.E. ELMAGHRABY (ed.) (1973). Sympo
sium on the Theory of Scheduling and its Applications,
Lecture Notes in Econmnics and Mathematical Sys
tems 86, Springer, Berlin, 393-398. [6.1]

J.B. SIDNEY (1975). Decomposition algorithms for
single-machine sequencing with precedence rela
tions and deferral costs. Oper. Res. 23, 283-298. [5.1]

J.B. SIDNEY (1979). The two-machine maximum flow
time problem with series parallel precedence rela
tions. Oper. Res. 27, 782-791. [13.1]

J.B. SIDNEY (1981). A decomposition algorithm for
sequencing with general precedence constraints.
Math. Oper. Res. 6, 190-204. [5.1]

J.B. SIDNEY, G. STEINER (1986). Optimal sequencing
by modular decomposition: polynomial algorithms.
Oper. Res. 34, 606-612. [5.1]

B. SIMONS (1978). A fast algorithm for single processor
scheduling. Proc. 19th Annual Symp. Foundations of
Computer Science, 246-252. [4.2]

B. SIMONS (1983). Multiprocessor scheduling of unit
time jobs with arbitrary release times and deadlines.
SIAMJ. Comput.12,294-299.[9.I]

69

B. SIMONS, M. WARMUTH (1989). A fast algorithm for
multiprocessor scheduling of unit-length jobs.
SIAMJ. Comput., toappear.(9.1]

M.L. SMITH, S.S. PANWALKAR, R.A. DuoEK (1975).
Flow shop sequencing with ordered processing lime
matrices. Management Sci. 21, 544-549. [13.1]

M.L. SMITH, S.S. PANWALKAR, R.A. DUDEK (1976).
Flow shop sequencing problem with ordered pro
cessing time matrices: a general case. Naval Res.
Logist. Quart. 23,481-486.[13.1)

W.E. SMITH (1956). Various optimizers for single-stage
production. Naval Res. Logist. Quart. 3, 59-66. [II;
5.0,2]

L.J. STOCK.\.IEYER (1990). Complexity theory. E.G.
COFFMAN, JR., J.K. LENSTRA, A.H.G. RlNNOOY
KAN (eds.) (1990). Handbooks in Operations
Research and Management Science; Volume 3: Com
putation, North-Holland, Amsterdam, Chapter 8. [2]

W. SZWARC (1968). On some sequencing problems.
Naval Res. Logist. Quart. 15, 127-155. [13.l]

W. Szw ARC (1971). Elimination methods in the m X n
sequencing problem. Naval Res. Logist. Quart. 18,
295-305. (13.2]

W. SZWARC (1973). Optimal elimination methods in
them Xn sequencing problem. Oper. Res. 21, 1250-
1259. [13.2]

W. SZWARC (1978). Dominance conditions for the
three-machine flow-shop problem. Oper. Res. 26,
203-206. [13.2]

F.B. TALBOT, J.H. PATTERSON (1978). An efficient
integer programining algorithm with network cuts
for solving resource-constrained scheduling prob
lems. Management Sci. 24, 1163-1174. [15.3]

S. TURNER, D. BOOTH (1987). Comparison of heuris
tics for flow shop sequencing. Omega 15, 75-78.
[13.2]

J.D. ULLMAN (1975). NP-Complete scheduling prob
lems.J. Comput. System Sci. 10, 384-393. [11.0, l]

J.D. ULLMAN (1976). Complexity of sequencing prob
lems. Coffman [1976], 139-164. [11.3]

S.L. VANDEVELDE (1988). Minimizing Total Comple
tion Time in the Two-Machine Flow Shop by Lagran
gian Relaxation, Report OS-R8808, Centre for
Mathematics and Computer Science, Amsterdam.
[13.I]

P.J.M. VAN LAARHOVEN, E.H.L. AARTS, J.K. LENSTRA
(1988). Job Shop Scheduling by Simulated Annealing,
Report OS-R8809, Centre for Mathematics and
Computer Science, Amsterdam. [14.2,3]

F.J. VILLARREAL, R.L. .BULFIN (1983). Scheduling a
single machine to minimize the weighted number of
tardy jobs.All£ Trans.15, 337-343. [6.1]

R.R. WEBER (1979). The interchangeability of ·IM I 1
queues in series.J. Appl. Probab. 16, 690-695. [16.4]

R.R. WEBER, P. VARAIYA, J. WALRAND (1986).
Scheduling jobs with stochastically ordered

70

processing times on parallel machines to minimize
expected flowtime. J. Appl. Probab. 23, 841-847.
(16.3]

G. WEISS (1982). Multiserver stochastic scheduling.
Dempster, Lenstra & Rinnooy Kan [1982], 157-179.
(16.1,3]

G. WEISS, M.L. PINEDO (1980). Scheduling tasks with
exponential service times on non-identical proces
sors to minimize various cost functions. J. Appl. Pro
bab. 17, 187-202. [16.0]

S.-H. Wrn, M.L. PINEDO (1986). On minimizing the
expected makespan and flow time in stochastic flow
shops with blocking. Math. Oper. Res. 11, 336-342.
(16.4]

D.A. WISMER (1972). Solution of the flowshop
scheduling problem with no intermediate queues.
Oper. Res. 20, 689-697. [13.3]

S. ZDRZALKA, J. GRABOWSKI (1989). An algorithm for
single machine sequencing with release dates to
minimize maximum cost. Disg_ete Appl. Math. 23,
73-89. [4.2]

