
.

Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

G.A.P. Kindervater, J.K. Lenstra

An introduction to parallelism in combinatorial optimization

Department of Operations Research and System Theory

a~
~vocrWiskur.deenmforrn'!ll;lq

Amsterda(n

Report OS~R8501 February

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam ,,

An Introduction to Parallelism in
Combinatorial Optimization

G.A.P. Kindervater, J.K. Lenstra
Centre for Mathematics and Computer Science, Amsterdam

This is a tutorial introduction to the literature on parallel computers and algorithms that is relevant for

combinatorial optimization. We briefly discuss theoretical as well as realistic machine models and the

complexity theory for parallel computations. Some examples of polylog parallel algorithms and log space

completeness results for '!P are given, and the use of parallelism in enumerative methods is reviewed.

1980 Mathematics Subject Classification: 90Cxx, 68A05, 68C25, 68Exx.

Key Words & Phrases: parallel computer, computational complexity, polylog parallel algorithm, sorting,

scheduling, log space completeness for '!P, linear programming, dynamic programming, knapsack, branch

and bound, traveling salesman.
Note: This paper will be published elsewhere.

Parallel computing is receiving a rapidly increasing amount of attention. In theory, a collection of

processors that operate in parallel can achieve substantial speedups. In practice, technological
developments are leading to the actual construction of such devices at low cost. Given the inherent

limitations of traditional sequential computers, these prospects appear to be very stimulating for

researchers interested in the design and analysis of combinatorial algorithms.
In this paper, we attempt to give a tutorial introduction to the literature on parallel computers and

algorithms that is relevant for the area of combinatorial optimization. For a more complete survey

which is reasonably up to date until July 1983, we refer to our annotated bibliography [Kindervater &

Lenstra 1985].
The organization of the paper is as follows.
Section 1 is concerned with machine models designed for parallel computations. Theoretical as well as

practical models are described. While in many theoretical models the processors communicate through

a common memory without delay, in more realistic models the communication is achieved through a

specific interconnection network. Such networks are illustrated on the problems of matrix

multiplication, determining a transitive closure, and finding a minimum spanning tree. In later sections,

we will restrict ourselves to theoretical models, which can usually be simulated fairly efficiently by

models with a specific interconnection network.
Section 2 deals with the complexity theory for parallel computations. Given the basic distinction

between membership of 0' and completeness for 'J<,<?J> in sequential computations, we consider the

speedups possible due to the introduction of parallelism. Within the class 0', this leads to a distinction
between 'very easy' problems, which are solvable in polylogarithmic parallel time, and the 'not so easy'

ones, which are log space complete for 0'.
Section 3 gives examples of polylog parallel algorithms for elementary problems like finding the

maximum and sorting and for two problems from scheduling theory.
Section 4 discusses the log space completeness for 0' of the linear programming problem and the

maximum network flow problem.
Section 5 reviews the use of parallelism in enumerative methods for 'J<,0'-hard problems, such as

dynamic programming for the knapsack problem and branch and bound for the traveling salesman

problem.

Report OS-R8501
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam

2

The reader will not fail to observe that the algorithms presented in this paper do not rely on the
sophisticated refinements for ·sequential algorithms developed in the past two decades but go back to
the simple and explicit basic principles of combinatorial computing. In that sense (and recent, more
advanced achievements notwithstanding), parallelism in combinatorial optimization is still in its infancy
and holds many promises for a further development in the near future.

1. MACHINE MODELS

Many architectures for parallel computations have been proposed in the literature. Some of these
machines actually exist or are being built. Other models are useful for the theoretical design and
analysis of parallel algorithms, while their realization is not feasible due to physical limitations.

The most widely used classification of parallel computers is due to [Flynn 1966]. Flynn distinguishes
four classes of machines (cf. Figure I).

(I) SISD (single instruction stream, single data stream). One instruction is performed at a time, on
one set of data. This class contains the traditional sequential computers.

(2) SIMD (single instruction stream, multiple data stream). One type of instruction is performed at a
time, possibly on different data. An enable/ disable mask selects the processing elements that are
allowed to perform the operation on their data. The ICL/DAP (Distributed Array Processor) belongs
to this class.

(3) MISD (multiple instruction stream, single data stream). Different instructions on the same data
can be performed at a time. This class has received very little attention so far.

(4) MIMD (multiple instruction stream, multiple data stream). Different instructions on different data
can be performed at a time. There are two types of MIMD computers: the processors of a
synchronized MIMD machine perform each successive set of instructions simultaneously; the processors
of an asynchronous MIMD machine run independently and wait only if information from other
processors is needed. The Denelcor/HEP (Heterogeneous Element Processor) is an example of an
asynchronous MIMD machine.

single instruction stream
single data stream

single instruction stream
multiple data stream

multiple instruction stream
single data stream

multiple instruction stream
multiple data stream

+~1 SISD I ·a +b
a ,b~ __ __,l

+~a a,b~ SIMD a +b
c,d~ c +d

+~ga+b
-~ MISD a-b

a,b~

+~B -~MIMD a+b
a,b~ c-d
c,d~

FIGURE I. The classification of Flynn.

If one considers the many types of algorithms that are suitable for execution on parallel computers,
then both ends of the spectrum can be characterized in a way that resembles the above distinction
between the two types of MIMD machines. Systolic algorithms lead to highly synchronized
computations, where the processing elements act rhythmically on regular streams of data passing
through the (SIMD or synchronized MIMD) machine. Typical examples are the matrix multiplication
algorithm introduced later in this section and the dynamic programming recursions in Section 5.
Distributed algorithms lead to asynchronous processes, in which the processors perform their own local
computations and communicate by sending messages every now and then. Branch and bound (see
Section 5) lends itself to this approach.

3

Flynn's classification is not concerned with the way in which information is transmitted between the
processors. This is dealt with by Schwartz [Schwartz 1980], who distinguishes between paracomputers
and ultracomputers ..

In a paracomputer, the processors have simultaneous access to a shared memory, which allows for
communication between any two processors in constant time. A further distinction is based on the way
in which shared memory computers handle read and write conflicts, which occur when several
processors try to read from or to write into the same memory location at the same time.
Paracomputers are of great theoretical interest, but current technology prohibits their realization.

In an ultracomputer, the processors communicate through a fixed interconnection network. Such a
network can be viewed as a graph with vertices corresponding to processors and (undirected) edges or
(directed) arcs to interconnections. Two parameters of the graph are important in this context: the
maximum vertex degree d I> which should be bounded by a constant on grounds of practical feasibility,
and the maximum path length d2 (the 'diameter'), which should grow at most logarithmically in the
number p of processors to ensure fast communication.

(i) Mesh connected
network, q = 4.

(iv) Perfect shuffle
network, d = 3.

(ii) Cube connected
network, d = 3.

(iii) Cube connected cycles
network, d = 3.

(v) Binary trees
network, d = 3.

FIGURE 2. Five interconnection networks.

Of the many interconnection networks that have been proposed, five are briefly described below.
They are illustrated in Figure 2.

(i) Two-dimensional mesh connected network [Unger 1958]. Each processor is identified with an
ordered pair (i,j) (i,j = l, ... ,q), and processor (i,j) is connected to processors (i+lJ) and (i,j+l),
provided they exist. Note that d 1 = 4 and d2 = 2(q -1) = 8(Vp).

(ii) Cube connected network [Squire & Palais 1963]. This can be seen as a d -dimensional hypercube
with 2d processors at the vertices and interconnections along the edges. Note that
d 1 = d 2 = d = logp . (All logarithms in this paper have base 2.)

(iii) Cube connected cycles network [Preparata & Vuillemin 1981]. This is a cub_e connected network
with each of the 2d processors replaced by a cyclicly connected set of d processors; each of them has
two cycle Q:>nnections and one edge connection. This yields d 1 = 3 and d2 = E>(logp).

(iv) Perfect shuffle network [Stone 1971]. There are p = 2d processors with interconnections

4

(i,2i-l), (i+pl2,2i), (2i-l,2i) for i = l, ... ,p/2. The first two types of interconnections imitate a
perfect shuffle of a deck of cards. Here, d 1 = 3 and d 2 = 2d - 1 = E>(logp).

(v) Binary trees network [Bentley & Kung 1979]. There are p = 3· 2d - 2 processors, interconnected
by two binary trees· with common leaves. The 2d processors corresponding to these leaves perform the
actual computations. The other 2d -1 processors in the first tree (an out-tree) send the data down to
their descendants, and those in the second tree (an in-tree) combine the results from their ancestors. An
additional 'master processor' controls the network by providing the input for one root and receiving
the output from the other. Note that d 1 = 3 and d 2 = E>(logp).
· All these networks can simulate each other quite efficiently; see [Siegel 1977, 1979] for details. Still, it

appears that the cube connected cycles and perfect shuffle networks are reasonably versatile, while the
mesh connected and binary trees networks have been designed for more restricted types of
computations. Their suitability for their limited purpose will be demonstrated on some examples below.

The quality of the parallelization of an algorithm will be judged on the resulting speedup, which is
the running time of the best sequential implementation of the algorithm divided by the running time of
the parallel implementation using p processors, and the processor utilization, which is the speedup
divided by p. The best one can hope to achieve is a speedup of p and a processor utilization of 1. Note
that these concepts are defined here relative to a given algorithm, irrespective of the possible existence
of more efficient sequential algorithms for the problem at hand.

B: b44

b43 b34

b42 b33 b24

b41 b32 b23 b14

b31 b22 b13

b21 b12

b11
+

A: a14 a13 a12 a11

a14 a13 a12 a11 -
a34 a33 a32 a31

a44 a43 a42 a41

FIGURE 3. Matrix multiplication on a mesh connected network.

ExAMPLE 1. Matrix multiplication. Two n Xn matrices A = (aij) and B = (bij) can be multiplied in
0 (n) time on an n X n mesh connected network. The basic idea is the use of the skewed input scheme
illustrated in Figure 3. At each step of the computation, matrix A makes one step to the right, matrix
B goes one step down, and each processing element (i ,j} multiplies its current values a;k and bkj and
adds the result into its accumulator (which starts at 0). It is easily verified that after 2n -1 stages
processor (i ,j) contains the required value ~k a;k bkj and that the procedure is best possible in terms of
speedup and processor utilization. This is a typical example of a systolic algorithm performed on an
SIMD machine and suitable for VLSI implementation.

EXAMPLE 2. Transitive closure [Guibas, Kung & Thompson 1979]. The transitive closure of a directed
graph G has an arc (i ,j) if and only if G has a path from i to j. If G has n vertices, the algorithm

5

from Example I can be applied to find the transitive closure in O(n) time using n2 mesh connected
processors. Starting with A given by the adjacency matrix of G (i.e., aij = I if G has an arc (i ,j) and
a;j = 0 otherwise) and B =A, one executes the matrix multiplication algorithm three times, with the
modifications that ·addition is replaced by maximization and that any element aij or bij that passes
through processor (i ,J) is updated with the value of the accumulator. A correctness proof of this
procedure can be found in the above reference.

EXAMPLE 3. Membership testing. Given a set S of n elements and an element e, one can test whether
e ES in O(logn) time on a binary trees network with d = !logn l · Denote the processors
corresponding to the common leaves by P; (i = l, ... ,2d) and suppose that P; stores the ith element e;
of S (i .s;;;n). It takes d steps for the processors in the top tree to send e down, one step for the P; 's to
check whether e; = e, and d steps for the processors in the bottom tree to compute the disjunction of
the results.

As an extension, one can test the membership of S form elements e(l>, ... ,e<m> in O(m + logn) time
by pipelining the flow of information through the network. As soon as e<1> leaves the first processor, e<2>
is sent to it; and, in general, at each step all data are going down one level.

By asking the processors in the bottom tree to do a bit more than computing logical disjunctions,
one can use the same model to find the minimum of n elements and to compute the rank of a given
element in O(logn) time. We leave details to the reader.

EXAMPLE 4. Minimum spanning tree [Bentley 1980]. Given a complete undirected graph G with vertex
set { l, ... ,n } and a length c;j for each edge { i ,J}, a spanning tree of G of minimum total length can be
found in O(n 2) time by an algorithm from [Prim 1957; Dijkstra 1959]. The algorithm is based on the
following principle. Let T (V) be the collexion of edges in a minimum spanning tree of the subgraph of
G induced by the subset V of vertices. If i* ~ V and j* E V are such that C;•j• = min; Ii!' v,j E v { cij } ,
then T(V LJ {i*}) = T(V) LJ { {i* ,J*} }.

The algorithm starts with T({l}) = 0. At each iteration, a minimum spanning tree on a certain
vertex set V with edge set T(V) has been constructed and, for each i ~ V, a 'closest tree vertex'}; E V
and a corresponding distance I; are known, i.e., I; = cij, = minj E v { cij } . One selects an i* ~ V for
which I;• = min; Ii!' v { /;}, adds i* to V and { i* ,);• } to T (V), and updates the values }; and I; for the
remaining vertices i ~ V. There are n - 1 iterations, each requiring 0 (n) time.

It is not hard to implement the algorithm on a binary trees network with d = flogn l · The master
processor stores the set T of spanning tree edges. Processor P; keeps track of }; and I; and is able to
compute any c;. in constant time. Each command that is sent down the tree is executed only by those
P; 's that are turned on.

We initialize by setting T = 0 and, for i = 2, ... ,n , turning on P; and setting }; = 1 and I; = cn.
In each of the n - I iterations, we first apply the minimum-finding procedure to determine i* and add
{i* ,);•} to T; we next send i* down in order to tum off P;• forever (since now i* E V) and to tum off
each P; with I; .s;;;cu• temporarily for the rest of this iteration (since no update is necessary); and we
finally instruct all remaining P; 's to set}; = i* and I; = Cu•.

Since each iteration takes O(logn) time, this parallel version of the algorithm has a running time of
O(nlogn) using O(n) processors and hence a processor utilization of only 0(1/logn). We cannot
improve on this by pipelining the loop, since each iteration needs information from the previous one.
However, we can use a smaller network with d = !log(n /logn)1, in which each P; takes care of
!logn 1 vertices and performs all computations for them sequentially. This modified algorithm still runs
in O(n logn) time, but now using O(n !logn) processors with a processor utilization of 0(1).

In the remaining sections, we will restrict ourselves to the paracomputer model, which lends itself
better to complexity considerations and to the explanation of parallel algorithms. The implementation
of such algorithms on a specific ultracomputer model is usually straightforward.

6

2. COMPLEXITY THEORY
The purpose of this section is to present an informal introduction to those concepts from the
complexity theory for parallel computing that may have some impact on the theory of combinatorial
optimization. The mterested reader is referred to [Cook 1981] for a more thorough exposition and to
[Johnson 1983, Section 2] for a very readable review {on which this section is largely based).

Central to this area is a hypothesis known as the parallel computation thesis [Chandra, Kozen &
Stockmeyer 1981; Goldschlager 1982]: time bounded parallel machines are polynomially related to space
bounded sequential machines. That is, for any function T of the problem size n , the class of problems
solvable by a machine with unbounded parallelism in time T(n)°<1> (i.e., polynomial in T(n)) is equal
to the class of problems solvable by a sequential machine in space T(n)0 <1>. This thesis is a theorem for
several 'reasonable' parallel machine models and several 'well-behaved' time bounds; see [Van Emde
Boas 1985] for a survey.

The parallel computation thesis holds, for examgle, in the case that the machine model is a PRAM
(Parallel Random Access Machine) and T(n) = n (I) (i.e., a polynomial function of problem size). The
PRAM is a synchronized machine with an unbounded number of processors and a shared memory,
which allows simultaneous reads from the same memory location but disallows simultaneous writes into
the same memory location. The computation starts with one processor activated; at any step, an active
processor can do a standard operation or activate another processor; and the computation stops when
the initial processor halts.

According to the parallel computation thesis, the class of problems solvable by a PRAM in
polynomial time is equal to '!JlsPACE, the class of problems solvable by a sequential machine in
polynomial space. In view of the apparent difficulty of many problems in '!J>SPACE (such as the '!J>SPACE
complete and '!JL'!Jl-complete ones), the PRAM is an extremely powerful model. It is of interest to see
how it affects the complexity of the problems in '!Jl, which are solvable by a sequential machine in
polynomial time.

It turns out that many problems in '!Jl can be solved in polylog parallel time (logn)0 (1>, i.e., in time
that is polynomially bounded in the logarithm of the problem size n . Some examples are given in
Section 3; other, more complicated, examples are finding a maximum flow in a planar graph [Johnson
& Venkatesan 1982] and linear programming with a fixed number of variables [Megiddo 1982]. By the
parallel computation thesis, these problems would form the class POLYLOGSPACE of problems solvable
in polylog sequential space. They can be considered to be among the easiest problems in '!Jl, in the sense
that the influence of problem size on solution time has been limited to a minimum. It should be noted
here that a further reduction to sublogarithmic solution time is generally impossible. One reason for
this is that a PRAM needs O(logn) time to activate n processors; a similar reason is that in any
realistic model of parallelism a constant upper bound on the maximum 'fan out' d 1 implies a
logarithmic lower bound on the minimum 'communication time' d 2•

On the other hand, '!Jl contains problems that are unlikely to admit solution in polylog parallel time.
These are the problems that have been shown to be log space complete for '!P, i.e., that belong to '!Jl and
to which any other problem in '!Jl is reducible by a transformation using logarithmic work space.
Examples will be discussed in Section 4; they include general linear programming and finding a
maximum flow in an arbitrary graph. If any such problem would belong to POLYLOGSPACE, then it
would follow that '!Jl ~ POLYLOGSPACE, which is not believed to be true. Hence, their solution in
polylog sequential space or, equivalently, polylog parallel time is not expected either. Any solution
method for these hardest problems in '!Jl is likely to require superlogarithmic time and is, loosely
speaking, probably 'inherently sequential' in nature.

We have thus arrived at a distinction within '!Jl between the 'very easy' problems, which can be solved
in polylog parallel time, and the 'not so easy' ones, for which a dramatic speedup due to parallelism is
unlikely.

The picture of the PRAM model as sketched above is in need of some qualification. The model is
theoretically very useful, but its unbounded parallelism is hardly realistic. The reader will have no
difficulty in verifying that a PRAM is able to activate a superpolynomial number of processors in
subpolynomial time. If a polynomial time bound is considered reasonable, then certainly a polynomial
bound on the number of processors should be imposed. It is a trivial observation, however, that the
class of problems solvable if both bounds are respected is simply equal to '!Jl. Within this more

7

reasonable model, hard problems remain as hard as they were without parallelism.
Discussions along these lines have led to the consideration of simultaneous resource bounds and to the

definition of new complexity classes. For example, Nick (Pippenger)'s Class me contains all problems
solvable in polylog parallel time on a polynomial number of processors, and Steve (Cook)'s Class £8
contains all problems solvable in polynomial sequential time and polylog space. Some sort of extended
parallel computation thesis might suggest that me = £8. This is a major unresolved issue in
complexity theory, and outside the scope of this introductii,on. We refer to [Johnson 1983, Section 21 for
further details and more references.

3. POLYLOG PARALLEL ALGORITHMS
We will now describe polylog parallel algorithms for five problems. Examples 5, 6 and 7 deal with
basic operations on a set of numbers. Examples 8 and 9 are concerned with the scheduling of a set of
jobs on identical parallel machines. Other problems that are solvable in polylog parallel time have been
mentioned in Section 2 and will return in Section 4.

The algorithms will be designed to run on an SIMD machine with a shared memory. Simultaneous
reads are permitted and simultaneous writes are prohibited; the former assumption is not essential but
simplifies the exposition. We note that the poly log parallel algorithms referred to in this paper require a
polynomial number of processors, so that the problems in question belong to me.

In the PIDGIN ALGOL procedures in this section, we write

par [a ~i~zl si

to denote that the statements s; are to be executed in parallel for all values of the index i in the given
range.

EXAMPLE 5. Maximum finding. Given n numbers, one wishes to find their maximum. We assume, for
convenience, that n = 2m for some integer m and that the numbers are given by an ,an+ I>····a 2n - I·

Consider the following procedure:

for l~m -1downto0 do
par [21 ~1~21 + 1 -11 a1 ~max{a21,a21+1}.

The computation is illustrated by means of a binary tree in Figure 4. At step /, the values
corresponding to the nodes at level I of the tree are calculated. At the end, a 1 is equal to the desired
maximum.

The algorithm requires 0 (log n) time and n /2 processors. We can improve on this by applying a
device similar to the one used in the last paragraph of Example 4: each processor has logn data
assigned to it and computes their maximum sequentially, before the above procedure is executed. The
resulting algorithm still runs in O(logn) time, but now using only r n !logn l processors with a
processor utilization of 0 (1).

EXAMPLE 6. Partial sums [Dekel & Sahni 1983al. Given n numbers an ,an+ 1, ... ,a 2n - I with n = 2m, one
wishes to find the partial sums an + ... +an+ 1 for 1 = O, ... ,n - 1. Consider the following procedure:

for /~m -1downto0 do
par [21 ~l ~2'+ 1 -11 a1 ~a21 +a21+1;

b1~a1;
for 1~ 1 tom do

par [21 ~1~2'+ 1 -11 b1~ ifl odd then b<J-1)12 else b112-a1+1·

The computation is illustrated in Figure 5. In the first phase, represented by the solid arrows, the sum
of the a1 's is calculated in the same way as their maximum was calculated in Example 5. Note that the
a -value corresponding to a non leaf node is set equal to the sum of all a -values corresponding to the
leaves descending from that node. In the second phase, represented by the dotted arrows, each parent
node sends a b-value (starting with b 1 = a 1) to its children: the right child receives the same value, the
left one rt;ceives that value minus the a-value of his brother. The b-value of a certain node is therefore
equal to the sum of all a -values of the nodes of the same generation, except those with a higher index.

8

l=O

8

I= I

6 8

/=2

4 6 8 7

1=3

2 4 3 6 8 5 7

FIGURE 4. Maximum finding: an instance with n = 8.

l=O

I= I

/=2

9 24 12 36

2 2 4 6 3 9 6 15 I 16 8 24 5 29 7 36

FIGURE 5. Partial sums: an instance with n = 8.

This implies, in particular, that at the end we have bn + j = an + ... +an+ j for j = O, ... ,n - I.
The algorithm requires 0 (log n) time and n processors. As before, this can be improved to 0 (log n)

time and O(n /logn) processors.

EXAMPLE 7. Sorting [Muller & Preparata 1975]. Given n numbers a 1, ••• ,an, one wishes to renumber
them such that a 1 ~ ••• ~an. We assume, for simplicity, that ai =I= aj if i =I= j. Consider the following
procedure:

par [1 ~i ,j ,;;;;;;n] Pij ~ if a; ~a1 then 1 else O;
par [l~j~n] wj~sum{Pij j 1,;;;;;;i~n };
par [l~j~n] a.,,~aj.

The algorithm is based on enumeration sort: the position ?Tj in which aj should be placed is calculated
by counting the ai 's that are no greater than aj. There are three phases:

(i) computation of the relative ranks pij: n2 processors, 0(1) time - or rn 2/lognl processors,
0 (log n) time;

(ii) computation of the positions wj: n r n !Iogn l processors, O(logn) time (by application of the
first phase of the algorithm of Example 6);

(iii) permutation: n processors, 0 (1) time.

9

The algorithm requires O(logn) time and O(n2/logn) processors. Simultaneous reads occur in the
first phase, but there is a way to avoid them within the same time and processor bounds. As sequential
enumeration sort takes O(n 2) time, the processor utilization is 0(1).

ExAMPLE 8. Preemptive scheduling [Dekel & Sahni 1983b]. Given m machines M; (i = l, ... ,m) and n

jobs Jj, each with a processing time pj (j = l, ... ,n), one wishes to find a preemptive schedule of

minimum length. A preemptive schedule assigns to each Jj a number of triples (M; ,s ,t), where
I ~i ~m and O~s ~t, indicating that Jj is to be processed by M; from time s to time t. A preemptive
schedule is feasible if the processing intervals on M; are nonoverlapping for all i, and the processing
intervals of Jj are nonoverlapping and have total length pj for all j. It is optimal if the maximum
completion time of the jobs is minimum.

An optimal schedule can be found in O(n) time by the classical wrap around rule from [McNaughton
1959]. The algorithm first computes a value t* which is an obvious lower bound on the minimum
schedule length. It then constructs a schedule of length t* by considering the jobs in an arbitrary order
and scheduling them in the m periods (0,t*), carrying over the part of a job that does not fit at the end

of the period on M; to the beginning of the period on M; + 1• More formally:

t*~max{max{pj I l~j~n},sum{pj I l~j~n}/m};
s~o; i~ I;
forj~l ton do

ifs +pj~t*
then assign (M; ,s ,s + Pj) to Jj,

s~s+pj

else assign (M; ,s ,t*) and (M; + 1>0,Pj -(t* -s)) to Jj,
s ~ pj -(t* -s), i ~ i + 1.

An example is given in Figure 6. There are two global parameters that are updated sequentially as the
job index j increases: the starting time s and the machine index i of Jj. We can calculate all starting
times and machine indices simultaneously in logarithmic time, using the parallel procedures for finding
the maximum and the partial sums from Examples 5 and 6 as subroutines:

t* ~max{max{pj I l~j o;;;;;;n },sum{pj I l~j ~n }Im};
par[l~j~n] qj~sum{pk I l~k~j-1};
par [l~j~n]

sj~qj mod t*, ij~Lqjlt* J + 1,
if sj +pj ~t*
then assign (M;, ,sj ,sj + pj) to Jj
else assign (M;,.Sj,t*) and (M;,+1>0,Pj -(t* -sj)) to Jj.

This algorithm can be implemented to require O(logn) time and O(n /logn) processors with a
processor utilization of 0 (1).

t* = 5

2 3 4 5

2 3 4 5

0 I 2 3 4

FIGURE 6. Preemptive scheduling: an instance with m = 3 and n = 5.

5

EXAMPLE 9. Scheduling fixed jobs [Dekel & Sahni 1983b]. Given n jobs Jj, each with a starting time sj

and a completion time tj (j = l, ... ,n), one wishes to find a schedule on a minimum number of
machines. A schedule assigns to each Jj a machine M; . It is feasible if the processing intervals (sj ,tj)

on M; are nonoverlapping for all i; it is optimal if the number of machines that process jobs is
minimum~ The problem is also known as the channel assignment problem: n wires are to be laid out

10

between given points in a minimum number of parallel channels, each of which can carry at most one
wire at any point.

An optimal schedule can be found in O(nlogn) time by the following simple rule. First, order the
jobs according to nondecreasing starting times. Next, schedule each successive job on a machine, giving
priority to a machine that has completed another job before. It is not hard to see that, at the end, the
number of machines to which jobs have been assigned is equal to the maximum number of jobs that
require simultaneous processing. This implies optimality of the resulting schedule.

For a polylog parallel implementation, we need a more detailed sequential description of the
algorithm [Gupta, Lee & Leung 1979]. We introduce an array u of length 2n containing all starting
and completion times in nondecreasing order; the informal notation 'uk, sj' ('uk, tj ') will serve to
indicate that the kth element of u corresponds to the starting (completion) time of Jj. We also use a
stack S of idle machines; on top of S is always the machine that has most recently completed a job, if
such a machine exists.

sort (s l>t 1, ••• ,sn ,tn) in nondecreasing order in (u 1, ••• ,u2n) whereby,
if tj = sk for some j & k, tj precedes sk ;

S ~ stack of n machines;
fork~ 1 to 2n do

if uk "" sj then take machine from top of S and assign it to Jj,
if uk, tj then put machine assigned to Jj on top of S .

Figure 7 illustrates the algorithm as well as its parallelization, which is described below. There are four
phases.

(i) First, we calculate the number aj of machines that are busy directly after the start of Jj and the
number 'Tj of machines that are busy directly before the completion of Jj, for j = l, ... ,n :

sort (s l>t 1, ••• ,sn ,tn) in nondecreasing order in (u b···,u2n) whereby,
if tj = sk for some j & k, tj precedes sk ;

par [1-s;;k os;;2n] ak~ if uk,sj then 1 else -1;
par [los;;kos;;2n] Pk~sum{a1j1-s;;/os;;k};
par [1-s;;k os;;2n]

if uk, sj then aj ~Pk,
if uk, tj then 'Tj ~Pk + 1.

Note that the number of machines we need is equal to maxj { aj }.
(ii) For each Jj, we determine its immediate predecessor J 'IT(j) on the same machine (if it exists). The

stacking mechanism implies that this must be, among the Jk satisfying 'Tk = aj, the one that is
completed last before the start of Jj ; if no such job exists, then it is convenient to take Jj as its own
predecessor:

par [1-s;;jos;;n]
find k such that 'Tk = aj & tk = max{t1 I t1-s;;sj,'Tt =aj },
7T(j) ~ if k exists then k else j .

(iii) For each Jj, we now turn J w(j) into its first predecessor on the same machine. This is done by
simultaneously collapsing the chains formed by the arcs (j ,7T(j)) in a logarithmic number of steps (cf.
Figure 8):

for l ~ 1 to r1ogn l do par [l os;;j os;;n] 7r(j) ~ 7r(7r(j)).

(iv) Finally, we use the 7r(j)'s to perform the actual machine assignments:

par [1-s;;j os;;n] assign M "ofJ' to Jj.

Using the maximum, partial sums and sorting routines from Examples 5, 6 and 7, we can implement
this algorithm to require O(logn) time and O(n 2/logn) processors.

j: 1

sj: 0
tj: :i

(Jj: I
'Tj: 2

l
'TT(j): 1

2 3 4 5 k: 2 3 4 5 6 7 8 9

1 3 4 7 - uk: 0 2 3 4 5 6 7 8
8 5 6 9 ~

ak: 1 1 -1 1 1 -1 -1 1 -1
2 2 3 2 - l3k: 1 2 1 2 3 2 1 2 1
2 3 2 1

2 1 4 4 - M1 J1 ~~~0. J3

M1 ~~~~ J2

M3 ~t~~t!~~1~~1!Jr3.~t;if.1i.f $ J4 ~~;jJ~ J5
0 2 3 4 5 6 7

FIGURE 7. Scheduling fixed jobs: an instance with n = 5.

(ii)

(iii), I

(iii), I = 2

(iii), I = 3

FIGURE 8. Scheduling fixed jobs: finding the first preceding job
on the same machine.

8

4. LOG SPACE COMPLETENESS FOR 'fP

11

10

9

-1
0

9

The first log space complete problem in <?P was identified by Cook [Cook 1974]. It involves the
solvability of a path system and is proved log space complete by a 'master reduction' in the same spirit
as Cook's ~'fJl-completeness proof for the satisfiability problem. We will not define the path problem
here and prefer to start from a different point.

ExAMPLE 10. Circuit value [Ladner 1975; Goldschlager 1977]. Given a logical circuit consisting of input
gates, AND gates, OR gates, NOT gates, and a single output gate, and given a truth value for each input,
is the output TRUE or FALSE? Cf. Figure 9.

The circuit value problem is trivially in 'fJl. Ladner indicated how to simulate any polynomial time
deterministic Turing machine by a combinatorial circuit with only AND and NOT gates in logarithmic
work space. It follows that the problem is log space complete for 'fJl.

Goldschlager extended this result to the cases of monotone circuits, which have only AND and OR
gates, and planar circuits, which have a cross free planar embedding, by giving log space
transformations from the circuit value problem.

EXAMPLE 11. Linear programming [Dobkin, Lipton & Reiss 1979; Valiant 1982]. Given a finite system
of linear equations and inequalities in real variables, does it have a feasible solution?

Linear prograniming is known to be in 'fP [Khachian 1979]. Dobkin, Lipton & Reiss established log
space completeness for 'fP of the problem by giving a log space transformation from the unit resolution
problem, a"variant of the satisfiability problem, that was already known to be log space complete for 'fJl.

12

FIGURE 9. A logical circuit.

Valiant gave a more straightforward transformation, starting from the circuit value problem.
The idea is to associate a variable xj with the jth gate, such that xj = 1 if the gate produces the

value TRUE and xj = 0 otherwise. More explicitly,

if gate j is then we introduce the equations and inequalities

· an input gate with value TRUE, · xj = l,
· an input gate with value FALSE, · xj = 0,
· an AND gate with inputs from gates h and i, · xj :,;;;;; xh, xj :,;;;;; X;, xj ;;;;;., 0, xj ;;;;;., xh + x; -1,
· a NOT gate with input from gate i, · xj = 1 - x;,
· the output gate with input from gate i, · xj = X;, xj = 1.

OR gates may be excluded. We leave it to the reader to verify that each feasible solution is a 0-1 vector,
that there exists a feasible solution if and only if the circuit value is TRUE, and that the transformation
requires logarithmic work space.

Simple refinements of this transformation show that linear programming remains log space complete
for 0' if all coefficients are equal to -1, 0 or 1, and each row and column of the constraint matrix
contains at most three entries.

EXAMPLE 12. Maximum flow [Goldschlager, Shaw & Staples 1982). Given a directed graph with
specified source and sink vertices and with capacities on the arcs, and given a value v, does the graph
have a flow from source to sink of value at least v ?

The maximum flow problem belongs to 0' [Edmonds & Karp 1972). It was shown to be log space
complete for 0' by a transformation from the monotone circuit value problem. The transformation
simulates the implications of boolean inputs through a circuit with n AND and OR gates by integer
flows through a network with the gates and an additional source and sink as vertices and with arc
capacities of 0 (2n).

We conclude this section by mentioning two related results of a more positive nature.
(i) The maximum flow problem is solvable in poly log parallel time in the case of planar graphs, due

to the relation of this case to the shortest path problem [Johnson & Venkatesan 1982).
(ii) The problem is solvable in random polylog parallel time in the case of unit capacities and in the

more general case that the capacities are encoded in unary. This follows, through standard
transformations [Lawler 1976), from the recent result that the maximum cardinality matching problem
is in 131,'?Jte, the class of problems solvable by a randomized algorithm in polylog time on a polynomial
number of processors [Karp, Upfall & Wigderson 1984]. The complexity of the maximum cardinality
matchillg problem with respect to deterministic parallel computations is an open question, even for
bipartite graphs.

13

5. ENUMERATIVE METHODS

The optimal solution to CJL'B'-hard problems is usually found by some form of implicit enumeration of

the set of all feasible solutions. In this section we will consider the parallelization of the two main types

of enumerative methods: dynamic programming and branch and bound. We have already seen that, from

a worst case point of view, intractability and superpolynomiality are unlikely to disappear in any

reasonable machine model for parallel computations. In a more practical sense, parallelism has much

to offer to extend the range in which enumerative techniques succeed in solving problem instances to

optimality. Little work has been done in this direction, but we feel that the design and analysis of

parallel enumerative methods is an important and promising research area.
Dynamic programming algorithms for combinatorial problems typically perform a regular sequence

of many highly similar and quite simple instructions. Hence, they seem to be suitable for

implementation in a systolic fashion on synchronized MIMD or even SIMD machines. This has been

observed in [Casti, Richardson & Larson 1973; Guibas, Kung & Thompson 1979) and will be

illustrated on the knapsack problem in Example 13.
Branch and bound methods generate search trees in which each node has to deal with a subset of the

solution set. Since the instructions performed at a node very much depend on the particular subset

associated with that node, it is more appropriate to implement these methods in a distributed fashion

on asynchronous MIMD machines. An initial analysis of distributed branch and bound, in which the

processors communicate only to broadcast new solution values or to redistribute the remaining work

load, is given in [El-Dessouki & Huen 1980). For almost any specific implementation, one can

construct examples in which p processors together are slower than a single processor, or more than p

times as fast. Such anomalies are analyzed in [Burton, Huntbach, McKeown & Rayward-Smith 1983;

Lai & Sahni 1984) and illustrated on the traveling salesman problem in Example 14.

EXAMPLE 13. Knapsack. Given n items j, each with a profit cj and a weight a1 (j = I, ... ,n), and given

a knapsack capacity b, one wishes to find a subset of the items of maximum total profit and of total

weight at most b. The problem is CJL'B'-hard [Garey & Johnson 1979).
It is convenient to introduce the notation

C(m,n,b) = maxs~{m, ... ,n){~jeSCj l~JESaj-s;;;b}.

According to Bellman's principle of optimality, one attains the maximum profit C(l,n ,b) by excluding

item n and taking the profit C(l,n -1,b) or by including item n and adding cn to the profit

C(l,n - I,b-an). A recursive application of this idea gives the following dynamic programming

algorithm [Bellman 1957):

for z~o to b do C(l,O,z)~O;
forj~l ton do

for z ~o to aj -1 do C(l,j ,z)~ C(l,j -1,z),
for z~aj to b do C(l,j ,z)~ max{C(l,j -1,z),C(IJ- l,z -aj)+c1 }.

The algorithm runs in O(nb) time. (Note that this is exponential in the problem size. Since it is

polynomial in the problem data, it is called 'pseudopolynomial'.) The obvious parallelization is to

handle the stages j (O-s;;;j-s;;;n) sequentially and, at stage j, to handle the states (l,j ,z) (O-s;;;z -s;;;b) in

parallel [Casti, Richardson & Larson 1973):

ALGORITHM KSl
par[O-s;;;z-s;;;b) C{l,O,z)~O;
for j~ 1 ton do

par [O-s;;;z <aj] C(l,j ,z)~ C(l,j-1,z),
[aj-s;;;z -s;;;b] C(l,j,z)~ max{C(l,j-1,z),C(l,j- l,z -aj)+c1 }.

This requires O(n) time and O(b) processors with a processor utilization of 0(1).
We can achieve a running time that is sublinear in n by observing that

C(l,n,b) = mruco~..;b {C(l,m,b -y)+C(m + l,nJI)}

for any ,;, E { l, ... ,n -1 }. It is of interest to note that this more general recursion was proposed in

14

[Bellman & Dreyfus 1962] in the context of parallel computations. If we choose m = n - I, the
previous recursion results as a special case. If we choose m = n 12, then we get another dynamic
programming algorithm for the knapsack problem (where it is assumed that n is a power of 2):

ALGORITHM KS2
par [I:s;;;;j :s;;;;n] par [O:s;;;;z <aj] C(j ,j ,z)~O,

[aj:s;;;;z:s;;;;b] C(j,j,z)~cj;
for z~ 1 to logn do

k~it,
par [O:s;;;;j <n lk] par [O=s;;;;z :s;;;;b) C(jk + I,jk +k,z)

~mruco~..;z {C(jk + I,jk +'hk,z -y)+C(jk +Vik+ IJk +kJl)}.

The algorithm requires O(nb2
) time on a single processor and O(logn logb) time on O(nb 2!logb)

processors. While the parallel running time is probably the best one can hope for (it might be called
'pseudopolylogarithmic'), the number of processors is huge. This number can be reduced by a factor of
logn logb by application of the first algorithm to produce starting solutions for the second algorithm.
The modified algorithm has three phases:

(i) Separate the n items into g groups of n I g items each.
(ii) Apply Algorithm KSI to each group, in parallel: O(nlg) time, O(gb) processors.
(iii) Apply Algorithm KS2, starting with g groups rather than with n items: O(logg logb) time,

O(gb2!logb) processors.
We now set g = f n /(logn lo§b)l to arrive at an algorithm that still requires O(logn logb) time but

using 'only' O(nb 2!(Iogn (logb))) processors.

E.xAMPLE 14. Traveling salesman [Pruul 1975]. Given a complete graph with n vertices and a weight for
each edge, one wishes to find a Hamiltonian cycle (i.e., a cycle passing through each vertex exactly
once) of minimum total weight.

A traditional branch and bound method for the solution of this ~'3'-hard problem uses a bounding
mechanism based on the linear assignment relaxation, a branching rule based on subtour elimination,
and a strategy for selecting new nodes for examination based on depth first tree search. The details are
of no concern here and can be found in [Lawler, Lenstra, Rinnooy Kan & Shmoys 1985]. Figure IO(a)
shows a search tree in which the nodes have been labeled in order of examination.

Pruul designed a parallel version of this method for an asynchronous MIMD machine. Each
processor performs its own depth first search; when it encounters a node that has already been selected
by another processor, it selects in the subtree rooted by that node an unexamined node at the highest
level. Figure 1 O(b) illustrates the process.

The lack of parallel hardware forced Pruul to simulate the algorithm on a sequential computer. An
empirical analysis for ten 25-vertex problems yielded average speedups that were greater than the
number of processors. This may be confusing at first sight, but the explanation is simple and lies
outside the area of parallel computing. The simulated parallel algorithm is nothing but a sequential
algorithm that is based on a mixture of depth first and breadth first tree search. Such complex
strategies have not yet been explored in any detail and might be quite powerful.

REFERENCES

(a) Sequential search; node t is selected at time t.

(b) Parallel search by three processors;
node t Ip is selected at time t by processor p.

FIGURE 10. Depth first tree search.

R.E. BELLMAN (1957). Dynamic Programming, Princeton University Press, Princeton, NJ.

15

R.E. BELLMAN, S.E. DREYFUS (1962). Applied Dynamic Programming, Princeton University Press,
Princeton, NJ.

J.L. BENTLEY (1980). A parallel algorithm for constructing minimum spanning trees. J. Algorithms 1,
51-59.

J.L. BENTLEY, H.T. KUNG (1979). A tree machine for searching problems. Proc. 1979 Internat. Conf
Parallel Processing, 257-266.

F.W. BURTON, M.M. HUNTBACH, G.P. MCKEOWN, V.J. RAYWARD-SMITH (1983). Parallelism in
Branch-and-Bound Algorithms, Report CSA/311983, University of East Anglia, Norwich.

J. CASTI, M. RICHARDSON, R. LARSON (1973). Dynamic programming and parallel computers. J.
Optim. Theory Appl. 12, 423-438.

A.K. CHANDRA, D.C. KOZEN, L.J. STOCKMEYER (1981). Alternation. J. Assoc. Comput. Mach. 28, 114-
133.

S.A. CooK (1974). An observation on time-storage trade off. J. Comput. System Sci. 9, 308-316.
S.A. CooK (1981). Towards a complexity theory of synchronous parallel computation. Enseign. Math.

(2) 27, 99-124.
E. DEKEL, S. SAHNI (1983a). Binary trees and parallel scheduling algorithms. IEEE Trans. Comput. C-

32, 307-315.
E. DEKEL, S. SAHNI (1983b). Parallel scheduling algorithms. Oper. Res. 31, 24-49.
E.W. DIJKSTRA (1959). A note on two problems in connexion with graphs. Numer. Math. 1, 269-271.
D. DOBKIN, R.J. LIPTON, S. REISS (1979). Linear programming is log-space hard for P. Inform. Process.

Lett. 8, 96-97.
J. EDMONDS, R.M. KARP (1972). Theoretical improvements in algorithmic efficiency for network flow

problems. J. Assoc. Comput. Mach. 19, 248-264.
0.1. EL-DESSOUKI, W.H. HUEN (1980). Distributed enumeration on between computers. IEEE Trans.

Comput. C-29, 818-825. Note: in the title, read 'network' for 'between'.
M.J. FLwp (1966). Very high-speed computing systems. Proc. IEEE 54, 1901-1909.
M.R. GAREY, D.S. JOHNSON (1979). Computers and Intractability: a Guide to the Theory of NP-

16

Completeness, Freeman, San Francisco.
L.M. GOLDSCHLAGER (1977). The monotone and planar circuit value problems are log space complete

for P. SIGACT N(!ws 9.2, 25-29.
L.M. GOLDSCHLAGER (1982). A universal connection pattern for parallel computers. J. Assoc. Comput.

Mach. 29, 1073-1086.
L.M. GOLDSCHLAGER, R.A. SHAW, J. STAPLES (1982). The maximum flow problem is log space

complete for P. Theoret. Comput. Sci. 21, 105-111.
L.J. GUIBAS, H.T. KUNG, C.D. THOMPSON (1979). Direct VLSI implementation of combinatorial

algorithms. Caltech Conf. VLSI, 509-525.
U.I. GUPTA, D.T. LEE, J.Y.-T. LEUNG (1979). An optimal solution for the channel-assignment problem.

IEEE Trans. Comput. C-28, 807-810.
D.B. JOHNSON, S.M. VENKATESAN (1982). Parallel algorithms for minimum cuts and maximum flows in

planar networks (preliminary version). Proc. 23rd Annual IEEE Symp. Foundations of Computer
Science, 244-254.

D.S. JOHNSON (1983). The NP-completeness column: an ongoing guide; seventh edition. J. Algorithms
4, 189-203.

R.M. KARP, E. UPFAL, A. WIGDERSON (1984). Personal communication.
L.G. KHACHIAN (1979). A polynomial algorithm in linear programming. Soviet Math. Dok/. 20, 191-

194.
G.A.P. KINDERVATER, J.K. LENSTRA (1985). Parallel algorithms. M. O'HEIGEARTAIGH, J.K. LENSTRA,

A.H.G. RINNOOY KAN (eds.). Combinatorial Optimization: Annotated Bibliographies, Wiley,
Chichester, Ch. 8.

R.E. LADNER (1975). The circuit value problem is log space complete for P. SIGACT News 7.1, 18-20.
T.-H. LAI, S. SAHNI (1984). Anomalies in parallel branch-and-bound algorithms. Comm. ACM 27, 594-

602.
E.L. LAWLER (1976). Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,

New York.
E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, D.B. SHMOYS (eds.) (1985). The Traveling

Salesman Problem, Wiley, Chichester.
R. McNAUGHTON (1959). Scheduling with deadlines and loss functions. Management Sci. 6, 1-12.
N. MEGIDDO (1982). Poly-log Parallel Algorithms for LP with an Application to Exploding Flying Objects,

Unpublished manuscript.
D.E. MULLER, F.P. PREPARATA (1975). Bounds to complexities of networks for sorting and for

switching. J. Assoc. Comput. Mach. 22, 195-201.
F.P. PREPARATA, J. VUILLEMIN (1981). The cube-connected cycles: a versatile network for parallel

computation. Comm. ACM 24, 300-309.
R.C. PRIM (1957). Shortest connection networks and some generalizations. Bell System Tech. J. 36,

1389-1401.
E.A. PRUUL (1975). Parallel Processing and a Branch-and-Bound Algorithm, M.Sc. thesis, Cornell

University, Ithaca, NY.
J.T. SCHWARTZ (1980). Ultracomputers. ACM Trans. Programming Languages and Systems 2, 484-521.
H.J. SIEGEL (1977). Analysis techniques for SIMD machine interconnection networks and the effects of

processor address masks. IEEE Trans. Comput. C-26, 153-161.
H.J. SIEGEL (1979). A model of SIMD machines and a comparison of various interconnection

networks. IEEE Trans. Comput. C-28, 907-917.
J.S. SQUIRE, S.M. PALAIS (1963). Programming and design considerations of a highly parallel computer.

Proc. AFIPS Spring Joint Computer Conf 23, 395-400.
H.S. STONE (1971). Parallel processing with the perfect shuftle. IEEE Trans. Comput. C-20, 153-161.
S.H. UNGER (1958). A computer oriented toward spatial problems. Proc. IRE 46, 1744-1750.
L.G. VALIANT (1982). Reducibility by algebraic projections. Enseign. Math. (2) 28, 253-268.
P. VAN EMDE BOAS (1985). The second machine class: models of parallelism. J. VAN LEEUWEN, J.K.

LENSTRA (eds.). Parallel Computers and Computations, CWI Syllabus, Centre for Mathematics and
Computer Science, Amsterdam.

