
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.C.M. Baeten, J.A. Bergstra, J.W. Klop, W.P. Weijland

Term rewriting systems with rule priorities

Computer Science/Department of Software Technology Report CS-R8815 April

Bibfictheelc
centrumvoorWiskunde en lnf~t'

Amsterdarr>

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

t/) r- b(\

Copyright © Stichting Mathematisch Centrum, Amsterdam
"

Term Rewriting Systems with Rule Priorities

J.C.M.Baeten
Programming Research Group, University of Amsterdam

J.A.Bergstra
Programming Research Group, University of Amsterdam,
Department of Philosophy, State University of Utrecht

J.W.Klop
Centre for Mathematics and Computer Science, Amsterdam,

Department of Computer Science, Free University, Amsterdam

W.P.Weijland
Centre for Mathematics and Computer Science, Amsterdam

Abstract: In this paper we discuss term rewriting systems with rule priorities, which

simply is a partial ordering on the rules. The procedural meaning of such an ordering

then is, that the application of a rule of lower priority is allowed only if no rule of higher

priority is applicable. The semantics of such a system is discussed. It turns out that the

class of all bounded systems indeed has such a semantics.
Note: Partial support received from the European Communities under Esprit contract

no. 432, Meteor (An integrated formal approach to industrial software development).

Key words and phrases: Term rewriting systems, Rule priorities, Priority rewrite

systems, Fixed point semantics, modularity.
1980 Mathematics Subject Classification: 03F65, 68C01, 68C99.
1982 CR Categories: 0.3.3, F.3.2, F.4.2.

1. INTRODUCTION

Tenn rewriting systems are an important tool to analyse the consistency of algebraic specifications,

and are also becoming increasingly important for implementation. Some general references for

algebraic specifications are Ehrig & Mahr [9], Goguen, Thatcher & Wagner [11], Goguen,

Thatcher & Wright (12], Klaeren (15] and Kutzler & Lichtenberger [18]. Some general references

for term rewriting systems are Huet & Oppen (13], O'Donnell [19, 20] and Klop (16].

For implementation purposes it is sometimes convenient to write down tenn rewriting systems

(1RS's) where some ambiguities between the rules are present, while adopting some restrictions on

the use of these rewrite rules to the effect that the ambiguities are not actually 'used'. The

mechanism that we discuss in this paper consists of giving priority to some rules over others in

cases of 'conflict'. Such a priority ordering on the rules has been used in a rather extended way, as

is for instance the case in programming languages such as HOPE, ML or MIRANDA and in syntax

editors like those used in MENTOR or TYPOL, where the pretty printer is directed by pattern

matching rules with priorities, or in specification languages such as OBJ [10] where reductions of

tenns can be forbidden depending on their sorts. In fact, our interest in this subject began when we

tried to give a fonnal semantics to Backus' system FP (Functional Programming) (see [1] and [2]).

This frequent use is due to the strong (although natural) expressive power of such a system and its

intuitive appeal. Another extension of the purely equational fonnalism, that retains the initial algebra

Report CS-R8815
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

semantics and also increases expressive power, is the introduction of conditional equations, see
Pletat, Engels & Ehrich [21], Kaplan [14] or Bergstra & Klop [5].

Here we consider a TRS with rule priorities, called a priority rewrite system (PRS). We study the

effect of such a priority assignment to rules, without imposing further restrictions such as choosing

a certain reduction strategy in combination with rule priorities. That is, we wish to consider the

priority mechanism on itself. As to the executability of the specification given by a PRS this is a

drawback: in general a PRS without more will not be an executable specification. In fact, it turns

out that it is rather problematic whether a 'pure PRS' has a well-defined semantics at all. It may

even be the case that a pure PRS does not possess a well-defined semantics (i.e. does not determine

an actual rewrite relation). Apart from the fact that PRS's have some interesting mathematical

properties, we find that it is worth-while to establish some facts about them in order to get a better

understanding of both their expressive power and their complications. Moreover, a decent subclass

of PRS's can be determined which does possess a well-defined semantics and we will also

establish a general theorem ensuring confluence for several of such PRS's. A typical example we

will consider is the class of all TRS's with a so-called specificity ordering.

The theory of PRS's is also useful in connection with modularity: we can break up a specification

in a number of (parametrized) smaller specifications in ways that are not expressible by means of

equational specifications.

This article is a major revision of [3], which itself is a revision of [2].

2. PRIORITY REWRITE SYSTEMS

In this section we will present the basic definitions of term rewriting systems with rule priorities

(often called a priority rewrite system or PRS, for short) and define what it means for such a PRS

to be well-defined. We start out with some examples, to give the reader an intuitive idea of a PRS.

EXAMPLE I

Consider the signature for the natural numbers with predecessor, successor, sum and zero, and

the rewrite rules in table 1.

rl:
r2:

l r3:
r4:

TABLE I

P(O) -+ 0
P(S(x))-+ x
x+O-+x
x + y-+ S(x + P(y))

Without the arrow this set of rewrite rules is ambiguous (i.e. more than one rule can be applied

to a certain redex), and does not implement our intention (to specify predecessor and sum on the

naturfil numbers). The arrow now means that the third rule (r3) has priority over the fourth (r4).

However, there is a caveat: the term x + P(S(O)) does not match the left-hand side of r3; but

this does not mean that r3 may be 'by-passed' in favour of applying r4 on this term. We may

only by-pass r3 if in no subsequent reduction of y = P(S(O)) we will get a match with the left

hand side of r3. So, in this case, we are not allowed to by-pass r3 and the correct reduction is:

EXAMPLE2

Finite sets of natural numbers with insertion and deletion. The signature consists of

sorts NAT, SET
functions S: NAT~NAT

ins: NAT x SET~ SET
del: NAT x SET~ SET

constants 0 e NAT
0e SET

variables x,y, e NAT
X,Y, e SET.

There are the following rewrite rules for insertion and deletion as in table 2.

rl: ins{x, ins(x, X)) _. ins(x, X)
r2: ins(x, ins(y, X)) _. ins(y, ins(x, X))

l r3: del(x, ins(x, X)) _. del(x, X)

r4: del(x, X) _. X

TABLE2

3

Again, r3 has priority over r4. That r4 is 'correct', is because if one is allowed to use it, then

del{x, X) does not match the left-hand side of r3, so X is not of the fonn ins{x, Y), in other

words "x e X", hence X- {x} = X.

EXAMPLE3

The factorial function. Add to the rules of table 1 rules for multiplication. Then factorial can be

specified as in table 3.

l Fac(O) _. S(O)
Fac(x) _. x·Fac(P(x))

TABLE3

EXAMPLE4

In a signature containing booleans, one may encounter rules for equality as in table 4.

l eq(x,x) _. T
eq(x,y) _. F

TABLE4

Thus, for any specification, containing booleans, adding these equations describes the equality

function on a certain sort. We claim that, without using rewrite rules with priority, such a

parametrized specification cannot be found! Even when using auxiliary sorts and functions, or

even conditional equations, such a specification cannot be found. One can see this from the fact

that otherwise each initial algebra would be decidable, the proof of which requires a very

systematic analysis of initial algebra semantics in the light of computability theory. In essence, ,,
this work has been carried out in Bergstra & Klop [6,7], see also Bergstra & Tucker[8].

4

Our conclusion is, that equational specifications do not support proper modularisation (in

unexpected cases). We claim that priority rewrite systems support modularity much better.

Let us now tum to the formal definition of rule priorities together with its mechanism of blocking

rule applications.

DEFINITION 2.1 A priority rewrite system, or PRS for short, is a pair (R,<), where lR is a term

rewriting system and < is a partial order on the set of rules of JR.

As a notation in a listing of rewrite rules we write l ~ when rl > r2.

DEFINITION 2.2 Let r be a rewrite rule of the PRS JR.

i. An instantiation (possibly containing variables) of the left-hand side of r is called an r-redex.

Note that this is regardless of whether the r-redex, in view of the priority restrictions, is actually

'enabled', i.e. is allowed to be rewritten according to rule r.

ii. A closed instantiation (closed instance) t--+ s of the rewrite ruler is called a rewrite. We will

write t 4 s or r: t --+ s.

iii. The closure of the relation--+ under contexts is one-step reduction, and denoted by~.

iv. The transitive and reflexive closure of the relation ~ is (more-step) reduction, denoted

DEFINITION 2.3 Let F(t1,• tn) be some term in a TRS. A reduction of F(t) is called internal if it

proceeds entirely in the arguments t (so the head-symbol F is 'unaffected').

Now we can formulate in a first approximation, what reduction relation a PRS is meant to describe:

Let r be a rule of the PRS lR and let t be an r-redex. Then t may be rewritten according to r if for no

rule r'>r it is possible to rewrite t, by means of an internal reduction, to an r'-redex t'. See figure 1.

t' r'
• s'

nu f
r 7 t •s

FIGURE 1

To see why the reduction to a 'higher' redex scheme, blocking the 'lower' reduction oft, must be

internal, one should consider that only internal reductions preserve the 'identity' of the term-to-be

reduced, in casu t. The following example may clarify this:

Consider the PRS in table 2, and consider the r4-rewrite

del(O, del(Q. ins(Q.0))) !! delCO. insCO.@).

Intuitively, this application of r4 is correct since the underlined part in the left-hand side denotes a

set not containing 0. But if we had stipulated above that the internal reduction could be any

reductien, the present application of r4 would be illegal since the right-hand side is also a r3-redex

and r3 > r4. The point is that the priority ordering provides us with some sort of a matching

mechanism by rewriting the arguments of the term in order to prove them 'equal' to the ones in the

s
rule with higher priority. Indeed, application of r4 on a tenn del(t, T) is only allowed if it is not the

case that both t _,. s and T _,. ins(s, S) for some s,S. That is, if there is an internal reduction of the

fonn del(t, T) int_,. del(s, ins(s, S)). In such an internal reduction, the right-hand side 'matches'

with the left-hand side with respect to the equality theory induced by the reduction relation.

In the following definition we will present a fonnal criterion for a rewrite to be 'enabled'. It is

important to note that in fact we make a choice here. For instance, in [2] and [4] different notions

were used.

DEFINITION 2.4 Let R be a set of rewrites for the PRS lR (i.e. closed instantiations of rules of JR.).

The rewrite t ..!'.sis correct (w.r.t. R) if there is no internal R-reduction t R_,. t' to an r'-rewrite
r'

t' --. s' E R with r' > r.
r' t'------•P. s' E R

.. s

FIGURE2

So in the situation of fig. 2 above, the rewrite t ..!'. s is not correct w.r.t. R.

DEFINITION 2.s R is called sound if all its rewrites are correct with respect to R.

R is complete if it contains all rewrites which are correct w.r.t. R.

In figure 2 R_,. denotes a reduction using only rewrites from R. Note that ifR is sound and t ..!'. s

is correct w.r.t. R, then R' =Ru {t ..!'. s} need not be sound, since t ..!'. s may be used in an

internal R'-reduction making some other rewrite t* __. s* illegal.

Finally, note that the concept of completeness in definition 2.5 has nothing to do with the notion

'complete' for TRS's, defined as meaning 'confluent and tenninating' (see e.g. Klop [17]).

Clearly, if a PRS lR determines a reduction relation Ras its semantics, we will require that R is

sound (i.e. it may not contain forbidden rewrites). Now it might be thought that all we have to do is

to look for a maximal sound rewrite set for JR. However, such a maximal sound rewrite set will not

be unique in general, and therefore does not qualify as the semantics of R; furthennore, we will

require the semantics of JR. to contain all r-rewrites for rules r which have maximal priority, and a

maximal sound rewrite set need not obey this requirement, as the following example shows.

EXAMPLES

Let R be the PRS with rules and priorities in table 5.

0 __. 1

l A(l) __. 2
A(x) __. 3

TABLES

6

Then R1 = {O-+ 1, A(l) -+ 2} u {A(t) -+ 3 : all closed t except 0,1} is a maximal sound

rewrite set (the intended semantics!), but also R2 = {A(l) -+ 2} u {A(t) -+ 3 : all closed t

except 1} is a maximal sound rewrite set. As a candidate for the semantics of R, R2 is

unsatisfactory as it does not contain the maximum priority rule instance 0 -+ 1. To fix this

problem we require that the semantics R of a PRS R also is complete, since there is no reason to

exclude from R a rewrite t -+ s which cannot be shown illegal by R. Note that the rewrite set R2
is not complete (as 0-+ 1 is correct w.r.t. Ri), but that R1 is.

DEFINITION 2.6 Assume the PRS R has a unique sound and complete rewrite set R, then R is called

the semantics ofR; furthermore, R will be called well-defined.

The idea behind definition 2.6 is that a rewrite is part of the semantics of R if and only if there is no

way to show that it is illegal using legal rewrites only. Obviously, such a definition has a circular

nature and as a consequence there are PRS's that do not have a proper semantics, as is shown by

the following example:

EXAMPLE6

Consider the PRS R, with rules and priorities in table 6 below.

rl: 1-+ A(l)

l r2: A(O) -+ 1
r3: A(x)-+ 0

TABLE6

We allow the reduction A(l) ~ 0 if and only if not 1 0. However, one can easily verify

tbat 1 0 if and only if A(l) 0, since its lefthand side (i.e. 1) only matches the first rule in

R. Therefore, A(l) ~ 0 actually 'blocks itself and it is not quite clear whether or not this

reduction should be part of the semantics of R

What actually is the problem in example 6 is that every internal reduction sequence from A(l) to

A(O) uses the rewrite A(l) -+ 0. Thus, A(l) -+ 0 is part of the semantics of such a PRS iff it is

not. We will return to this problem later on (see example 9).

In the following we will use some extra notations:

DEFINITION 2.7 Let R be a PRS then the set of all rewrites for R is denoted by Rmax· Next assume

R~max is a set of rewrites for R then the closure c(R), often denoted by Re, ofR is the set of

all rewrites which are correct with respect to R.

LEMMA 2.1 Let R, S be sets of rewrites for the PRS R

i. R is sound <=> R ~Re

ii. R is complete <=> R ;;;;;! Re

iii. ~ is sound and complete <=> R = Re

iv. R ~ S => Re ;;;;;! sc
v. R ;;;;;! S, S sound and complete => R complete

vi. R k S, S sound and complete => R sound

7

Lemma 2.1 follows directly from the definitions 2.5 and 2. 7. From (iii) it follows that any rewrite

set is sound and complete for lR if and only if it is a fixed point of the closure map c. Furthermore,

from (iv) we find that c is an antimonotonic mapping on the powerset of Rmax·

PROPOSffiON 2.2 The direct sum of two well-defined PRS's need not be well-defined.

The proof of proposition 2.2 is given by the following example:

EXAMPLE 7 (G.J. Akkerman)

Consider the following PRS's lP and lR in table 7 and 8 respectively.

1 F(B(O, 1)) -+ 2
F(D(x)) -+ B(x,x)
D(x) -+ F(D(x))

TABLE?

or(x,y)-+ x
or(x,y)-+ y

TABLES

Considering lP we note that all reducts of D(x) are either of the form Fk(D(x)), or of the form

Fk(B(x,x)), so D(x) cannot be reduced to B(O,l). Therefore, lP is a well-defined PRS (in some

sense its rules are non-overlapping). Oearly lR is well-defined since it is a TRS, thus having

Rmax as its semantics. However, the direct sum l?Et>JR of lP and lR is not well-defined, for

consider the following rewrite x: F(D(or(O,l))) -+ B(or(O,l),or(O,l)). Assume lP'Et>lR has a

sound and complete rewrite set R such that xE R, then we have the following internal reduction

inR:

F(D(or(O,l))) ~ F(F(D(or(O,l)))) ~ F(B(or(O,l),or(O,l))) ~ ... ~ F(B(O,l))

contradicting the soundness of R. On the other hand, if x~ R then x is incorrect with respect to

R (since R is complete) and so there exists a reduction sequence D(or(O,l)) R,inL..,. B(O,l) in R.

Investigating all such possible reductions one easily verifies that they all contain the rewrite x

again and therefore x has to be an element in R. This is a contradiction. Thus lP'Et>lR is not a well-

defined PRS.

OPEN QUESTION

Clearly, the PRS's introduced in this section are (in general) not executable since it is not decidable

whether or not there exists an internal reduction from a 'lower' LHS to a 'higher' one. Up till now,

it is still an open question what classes of PRS's are executable, however. It would be very

interesting to establish a result of this kind in order to be able to tum the priority mechanism into a

executable programming language.

3. FIXED POINTS

In this section we will present some more theory on sound and complete rewrite sets. In particular

we will investigate the structure of the complete lattice <Rmax•!;;) together with the closure map c.
" From now on we write x, y, z, ... for rewrites from Rmax and r, r', ... will denote rules from the

PRS JR. Furthermore, LHS(x) and RHS(x) will denote the lefthand and righthand side of the

rewrite x, i.e. x = LHS(x) -+ RHS(x).

8

DEFINITION 3.1 We write x <l 0 (0 obstructs x), if there is an internal reduction of LHS(x) (say

this is an r-redex) to a 'higher' redex (i.e. an r'-redex with r'>r), such that the internal reduction

uses precisely all rewrites in 0.
r' t'-....;;...---1•• s'

x=t •s
Fig. 3.

Furthermore, we write x <l <l y if there exists an obstruction x <l 0 such that ye 0.

In figure 4 we have x <l {x1, ,xn} and x <l <l Xk for all l~. An element (x,O) of <l will be

called an obstruction and 0 will be called an obstruction of x.

We may have that an obstruction is empty, i.e. x <l 0. For instance, in example 6 we find that the

rewrite x: A(O) --. 0 has an empty obstruction since its lefthand side is identical with the lefthand

side of r2 which has higher priority.

From the antimonotonic mapping c we easily construct a monotonic mapping, called TR.

DEFINTI10N 3.2 Suppose R is a rewrite set for the PRS JR. then define: T R(R) = (RC)c.

Since c is antimonotonic, it follows directly that TR is monotonic. Note that ifR is a fixed point of

c then it is a fixed point of T JR.- In order to be able to find fixed points of T R• let us consider the

following construction.

DEFINITION 3.3 Let JR. be a PRS. Then for all ordinals a we define:

TRio = 0 TR.Lo = 0c

TR ia+l = TR(TR ia) TR.La+l = TJR(TR!a)

TR ia = u13<a (TR ip), if ais a limit ordinal; TR!a = n13<a TR!p, if a is a limit ordinal.

Clearly, 'JR ia is the a-repetition of 'JR starting from 0, and so is 'JR!a but then starting from 0c.

Recall, that 0c does not need to be equal to Rmax· It is a well-known fact that any monotonic

mapping such as 'JR on a complete lattice (0c .~) has a least fixed point (lfp) and a greatest fu:ed

point (gfp). Furthermore, there exists an ordinal a such that lfp('JR) = 'JR ia and gfp(TR) = 'JR!a

which is a consequence of a well-known theorem from Knaster and Tarski [22]. The smallest

ordinal a such that 'JR i a is a fixed point is called the closure ordinal for 'JR.

LEMMA 3.1 For all ordinals a we have: (Uj3<a 'JR ip)c = n13<a (TR ip)c.

PROOF ~= since (Uj3<a TR ij3) ;;;2 TR iy for all ordinals y<a we have (U13<a TR ij3)C ~ (TR iy)C

(lemma 2.l(iv)) for all y<a, and therefore (u13<a 'JR ip)c ~ n13<a (TR ip)c.

;;;J: if x e (u13<a TR ip)c then x<l {Yl•···•Yk} for some obstruction {y1, ... ,yk} ~ u13<a TR ip.

Sine~ {y1, ... ,yd is finite and (TR ip)j3<a is nondecreasing there exists some y<.a such that

{y1, ... ,yk}i;;;;TR iy. Then x has an obstruction in 'JR iy, i.e. x e (TR iy)c, so x e n13<a (TR ip)c.

Hence (u13<a TR ij3)C ;;;2 (113<a (TR ij3)C. D

THEOREM 3.2 For all ordinals a we have:

i. (TJR ia)c = 1JR!a

ii. (TJR !a)c = 1R i a+ 1

PROOF By transfinite induction on a.
a=O: (i) (1JR iO)C = 0c = 1JR!O and (ii) (1JR!O)C = (0C)C = 1JR(0) = 1R it.

9

ru:l: (i) (1JR ia+l)c = ((TJR!a)c)c (induction)= TJR(TJR!a) = (TJR!a+l); (ii) (TJR!a+l)c =

(((TJR!a)C)C)C= 1JR((TR!a)C) = TR(TJR ia+l) (induction)= 1R ia+2.

limit ordinals a: (i) (1JR ia)c = (u13<a TR i~)c (definition 3.3) = nl3<a (TR i~)c (lemma 3.1) =

flj3<a (TR!~) (induction)= TJR!a; (ii) (TJR!a)c = (nj3<a TJR!~)c = (nj3<a (T R i~)c)c

(induction)= (ul3<a 1R i~)c)c (lemma 3.1) = 1JR(TR!a) = (TR!a+l). o

COROLLARY 3.3 For all ordinals we have (fl13<a 1jR!~)C = Uj3<a (TR i~)C.

The proof of corollary 3.3 follows immediately from theorem 3.2. Apparently, we needed an

inductive argument for this result, whereas for lemma 3.1 can be proved directly from the

definitions. Note that that for the closure ordinal a of 1JR we also have that gfp(1JR) = 1JR !a.

We have theorem 3.2 only because earlier we have set 1JR!O = 0c. A more natural choice would

probably be to set 1JR J..o = Rmax• in which case we work within (Rmax.~) instead of the smaller

lattice (0C.~). Fortunately, however, it turns out that the fixed points ofTR in both lattices coincide

and thus both lattices give rise to different iterations approaching the same fixed points.

PROPOSITION 3.4 The greatest fixed points of1JR in both lattices (Rmax.~) and (0c,~) are equal.

PROOF Let gfp(1JR) denote the greatest fixed point with respect to (Rmax.~). Since 0~gfp(TR)c

we find by lemma 2.l(iv) that 0~gfp(1JR)cc = gfp(TR). Thus gfp(1JR) is a subset of 0c, and

since 0c is a subset of Rmax we conclude that gfp(1JR) is the greatest fixed point in (0c .~). O

PROPOSITION 3.5 For all ordinals a we have:

i. TR i a is sound

ii. TR!a is complete.

PROOF Since (1JR ia)C = Tn~.!a (theorem 3.2), and TR!a ;;2 gfp(TR) ;;2 lfp(TR)) ;;2 TR ia, it

follows that (1JR ia)c ;;;;;i TR ia. Hence by lemma 2.l(i) we find that 1JR ia is sound. Similarly it

follows that 1JR!a is complete. o

COROLLARY 3.6 lffor some ordinal a: TR ia = Tn~.J..a then JR. is well-defined.

In [2] and J3] a similar result - in a less general form - is presented as the stabilization lemma.We

will return to this subject later, and present an example of an explicit use of this theorem (see

example 11).

10

The proof of corollary 3.6 does not use other results then the fact that T R is monotonic and that the

least and greatest :fixed points ofTR can be found from the closure ordinal of TJR.. In [4] a different

priority mechanism is used, in order to model the depth first search strategy in PROLOG, which

starts from a different notion of a correct rewrite. Since, however, the closure map c is still anti

monotonic - making T R monotonic - we still have corollary 3.6 for this particular case.

EXAMPLES

Consider the PRS JR"Ilt in table 9 below, which has n unary function symbols A 1, ···,An in its

signature, together with two constants 0 and 1:

l rl:
r2:

l r3:
r4:

Ai(O)-+ 1
A1(x)-+ 0
Ai(O)-+ 1
AiA1(x)-+O

l r2n-1: An(O)-+ 1
r2n: AnAn-1· .. A1(x)-+ 0

TABLE9

Consider the rewrites, denoted by Xk: AkAk-1· .. A1(0)-+ 0 (1~). then we can make the

following observation.

OBSERVATION Let S be a rewrite set such that AkAk-1· .. A1(0) s_,. 0, then this reduction

sequence consists of a one-step reduction via Xk.

PROOF First note that the application of a rule of Rn will eliminate at least one symbol Ai and

does not introduce new function symbols. Furthermore, note that the head symbol Ak in the

lefthand side of the reduction can only be eliminated via the rules r2k-1 or r2k.

Now, application of r2k-1 will yield the normal form 1, which cannot be reduced to 0.

Therefore, Ak is eliminated by application of rule r2k. Since, however, every reduction of a

subterm in AkAk-1 ···A1(0) will eliminate at least one function symbol, r2k has to be applied

immediately (otherwise none of its reducts can develop to an r2k-redex). Hence the reduction is

a one-step reduction via Xk (and thus XkE S). D

COROLLARY For all rewrite sets Sand all 15k<n: Xk+l e sc if! Xk~ S.

Its proof follows from the observation above and the fact that {xk} is an obstruction for Xk+l·

Next, consider the rewrite set cn(0), where c is the closure map from definition 2.7.

PROPOSffiON If 15k5n/2 then we have:

i. X2kECll(0), X2k-l~c2n(0)

ii. X2kEcn+l(0), X2k-l~cn+l(0).

The proposition follows easily by induction from the corollary above. From the proposition, we

can see that T and T., both have closure ordinal n. One can prove that, lR2n has T .J..n as
""R2n ""'2n+l ""R

its semantics, which in the case oflR2n+l is 1Rn fn.

11

Example 8 provides us with an example of a class of PRS's with unbound closure ordinals and

thus with a non-trivial example of the 'stabilization lemma', i.e. corollary 3.6. Note that the length

of the rules, the number of the rules and the number of arrows of Rn all increase with n.

We are now already in the position to find sufficient conditions for a PRS to be well-defined. It

turns out to be a sufficient condition that the relation <l<l (see definition 3.1) is well-founded with

respect to Rmax. i.e. there exists no infinite sequence (XLJie roof rewrites such that for all i we have:

Xi <l<l Xi+l· From the theory developed so far, this can be proved directly as is done in the

following theorem.

THEOREM 3.7 If R is a PRS such that <l <l is well-founded then it has a unique sound and

complete rewrite set.

PROOF Suppose that lfp(TR)-:F- gfp(TR), then there exists some x1egfp(TR)-lfp(TJR) which has an

obstruction 0 in gfp(TR). Since (gfp(TJR))C = lfp(TR) we find that this obstruction cannot be

entirely in lfp(TJR) and therefore there exists some x2egfp(TJR)-lfp(TJR) such that x1 <l<l x2.

Note that it makes no difference whether or not x1 and x2 are equal. Since we can repeat this

procedure arbitrarily many times, <l<l is not well-founded.

Hence lfp(TR) = gfp(TR) and thus by corollary 3.6, taking the closure ordinal of TJR for <X, R

has a unique sound and complete rewrite set. D

A sufficient condition for <l<l to be well-founded is that the underlying TRS of R is bounded.

Consider the following definition:

DEFINITION 3.4 i. Let R be a TRS, and R =to~ t1 ~ a possibly infinite reduction sequence in

R Then the reduction R is bounded if:

3 n V ti E R I ti I ::;; n (ltd is the length in symbols of 4).
ii. Let R be a TRS. Then R is bounded if all its reduction sequences are.

iii. Let R be a PRS. Then R is bounded if its underlying TRS is.

PROPOSITION 3.8

i. If the underlying TRS of a PRS is strongly normalising, then it is bounded.

ii. Equivalence of terms in a bounded and confluent TRS is a decidable property (two terms are

equivalent if there are related by the symmetric closure of"""*).

iii. The direct sum of bounded TRS's need not be bounded.

PROOF (i) Since every term t has only finitely many reducts, the maximum length of all reducts oft

is an upper bound. For (ii) and (iii), see Klop [17] ((iii) uses a counterexample, similar to one

given by Toyama [23]). D

PROPOSITION 3.9 If R is bounded then <l <l is well-founded.

12

PROOF Let (Xi)ie ro be an infinite sequence such that Xi <I <I Xi+ 1 for all i, then for every i there is an

internal reduction from LHS(xi) using Xi+l· Therefore, for some sequence of non-empty

contexts Ci[] we have that LHS(xi) - Ci[LHS(Xi+ 1)]. But then the reduction of LHS(x1) is not

bounded, since for every nit is reducible to C1[C2[C3[... Cn[LHS(xn+1)] ...]]], which is a term

with length >n. D

Note, that if JR. is a TRS, then <l<I is well-founded since there are no obstructions. Let us consider

some examples of PRS's that are not bounded.

EXAMPLE 9 (see example 6)

Consider the PRS JR., with rules and priorities in table 10 below.

rl: 1-+ A(l)

l r2: A(O) -+ 1
r3: A(x)-+ 0

TABLElO

Note that: lfp(TR) = {1-+ A(l), A(O)-+ 1}

gfp(TR) = Rmax - {A(O)-+ 0}.

JR. does not have any sound and complete rewrite set since it has no other fixed points and the

least and the greatest fixed point do not coincide.

To see this, we show that: gfp(TR) -lfp(TJR) = {An+2(0)-+ 0, An(l)-+ 0: n>O}.

i. The rewrite x: An(l) -+ 0, being an instance of rule r3, is incorrect with respect to
lfp(TJR)u{x}, since it allows the internal reduction: An(l) int,rl~ An+l(l) int,x~ A(O) and

A(O) is a redex of r2 which has higher priority. Note that x is a 'selfobstructor', i.e. all
obstructions of x contain the rewrite x itself, and therefore x is correct with respect to lfp(T JR).

ii. Since An+l(O) int,r2~ All(l) the rewrite All(O)-+ 0 has an obstruction via AD(l)-+ O and

thus is not an element of (gfp(TJR))C = lfp(TJR).

Note that lfp(T JR) = T lR il and gfp(T JR) = T lR J.. 1.

EXAMPLElO
Consider the PRS JR., with rules and priori.ties in table 11 below.

rl: 1-+ A(2)
r2: 2-+ A(l)

l r3: A(O)-+ 1
r4: A(x)-+ 0

TABLEll

Note that: lfp(TJR) = { 1 -+ A(2), 2 -+ A(l), A(O) -+ 1}

gfp(T JR) = Rmax - { A(O) -+ 0}

which can be seen as follows.

We have to prove that gfp(TJR) - lfp(TJR) = {An+l(O)-+ 0, All(l)-+ 0, All(2)-+ 0: n>O}.

13

i Note that all rewrites An+l(O)-+ 0, An(t)-+ 0, An(2)-+ 0 are correct with respect to lfp(TJR)

and thus are in (lfp(T R))c = gfp(T R)

ii. The rewrites x: A(l)-+ 0 and y: A(2)-+ 0 in gfp(TJR) are 'mutual obstructors', in the sense

that they both are part of an obstruction for the other:

A(l)-+ O is incorrect with respect to gfp(TJR) since A(l) int,rL-+ A(A(2)) int,y~ A(O), and

similarly A(2)-+ 0 is incorrect since A(2) int,r2~ A(A(l)) int,x~ A(O). Since both x and y

are correct with respect to lfp(TJR.) they are in (lfp(TJR.))c = gfp(TJR).

iii. Finally observe that An+l(O) int,r3~ All(l) and An(t) int,rl~ An+1(2), thus in the presence

of both A(l) -+ 0 and A(2) -+ 0, the rewrites An+l(O) -+ 0, A.Jl(l) -+ 0, All(2) -+ 0 are

incorrect.

Again we have lfp(TJR) = TR it and gfp(TJR.) = TR!l.

Note that both S1: lfp(TJR)u{A(l) -+ 0} and S2: lfp(TJR)U{A(2) -+ O} are sound. One can

easily check that:

lfp(TJR)U{A2n+2(0)-+ 0, A2n+l(l)-+ 0, A2n+2(2)-+ 0: ~O}

lfp(TR)u{A2n+2(0)-+ 0, A2n+2(t)-+ 0, A2n+1(2)-+ O: ~}

are both sound and complete. They are obtained from S1 and S2 by repeatedly applying TJR.

Thus R has (at least) two sound and complete rewrite sets.

EXAMPLE 11

The PRS in table 1 (example 1) is not bounded. Therefore, in order to prove that it is well

defined we cannot use corollary 3.9. We will prove that it is well-defined by finding the closure

ordinal a ofTR and using corollary 3.6.

Define the interpretation[·] from closed tenns to natural numbers by

[0] = 0 [S(t)] = succ([t])

[P(t)] = pred([t]) [t + s] = [t] + [s],

where t,s are closed and pred, succ, 0 and + are the usual functions on the set of natural

numbers. Then, define:

R = {P(O)-+ 0, P(S(t))-+ t, t + 0-+ t: t closed} u {t + s-+ S(t + P(s)): t,s closed, [s] -:t:. O}.

CLA1M 1: Ifs R""* 0, then [s] = 0.

PROOF: Use induction on the fonnation of s.

CLAIM 2: If [s] = 0, then s R--i. 0.

PROOF: First prove with induction on n that Vm,n sm(O) + sn(O) R""* sm+n(O).

Then use this fact to show with induction on t that \1' closed t 3n t R""* sn(O). The claim

follows from observation and claim 1.

CLA1M 3: TR it= TR_j,1.

PROOF: From claims 1 and 2.

By corollary 3.6 it follows that R is well-defined.

The fixed point theory presented in this section seems to provide us with some elegant tools to find

a semantics (if it exists) for a PRS. There are still a few open questions that are worth to be

presented at the end of this section.

14

OPEN QUESTIONS

1. Is the mapping T R (definition 3.2) continuous, instead of only monotonic? In other words,

do we have that for all collections (Xi)ie ro of subsets of Rmax: T JR(Uie ro Xi) = Uie ro T R (Xi) ?

2. Is the closure ordinal of T R always finite? In example 8 we presented an infinite sequence

(Rn)nero of PRS's with increasing closure ordinals. It is not clear whether or not there exist

finite PRS's with closure ordinal ro or even larger. If this is not the case all transfinite induction

arguments can be eliminated from the proofs in this section.

3. The stabilization lemma (corollary 3.6) provides us with a sufficient condition for a PRS to

be well-defined. Is this condition also necessary? I.e. can we find a PRS, with closure ordinal

a, which is well-defined and such that TRI a -:t:. T Ria ?

4. LEFT-LINEAR PRIORITY REWRITE SYSTEMS

Up to this point, no requirement was made as to the left-linearity of the rules in a PRS. In this

section, we will restrict our attention to PRS's which have left-linear rules (i.e. no left-hand side

has a multiple occurrence of the same variable), in order to prove (under certain circumstances) a

confluence result for them.

We expect that some confluence results also can be obtained for suitably restricted PRS's with

non-left-linear rules, as in examples 2 and 4, but we will not attempt to do so here. First we will

prove a 'general' theorem, namely confluence for essentially regular TRS's.

Ambiguities in the rewrite rules of a TRS may be an obstacle to confluence (see e.g. Klop [16,

17]). Yet, we may allow the presence of ambiguities if there is some additional mechanism (such as

rule priorities) which prevents the ambiguities to be actually 'used'. We will conceive such a

'desambiguati.ng' mechanism as a restriction of the sets Ri of rewrites ri: ti,k -+ si,k·

In the following we write t(x1, ... ,xn) for an open tenn containing variables only from xi, ... ,Xn, but

not necessarily containing all of them.

DEFINITION 4.1 Let r: t(x1, ... ,xn)-+ s(xi. ... ,xn) be a rewrite rule, and let t(p(x1), ,p(xn)) be an

r-redex for some substitution p. Lett' be another redex occurring in some p(xi)· Then this redex

occurrence is called a small redex occurrence oft' in t.

Notation: t' < < t(p(x1) •.... ,p(xn)).

DEFINITION 4.2 Let lR be a left-linear TRS (possibly ambiguous). Suppose that Rmax is partitioned

into 'enabled' rewrites (E) and 'disabled' rewrites (D): Rmax = D u E. Then (R,E) is called a

restricted TRS.

The idea behind definition 4.2 is that we are able to block the use of the rewrites from D, in order

to avoid ambiguities. Although fonnally D is denoted as a set, in any practical implementation one

may think of a rule or some other mechanism. The reduction relation defined by a restricted TRS is

precisely the reduction relation induced by the set of enabled rewrites E.

In the sequel we will consider a well-defined PRS as such a restricted TRS, in the sense that its

semantics is precisely its set of enabled rewrites. Note that a PRS without a semantics has no such

set.

15

In the following definition we recall the concept of a critical pair of terms (see HUET & OPPEN

[13]), well-known in the area of Knuth-Bendix completions. Our definition will be self-contained,

though.

DEFINITION 4.3 Let r: t -+ s, r': t' -+ s' be two different rewrites in E (i.e. the triples (r,t,s) and

(r' ,t' ,s') are different; thus we may have that e.g. r=r' and t=t' or e.g. that t=t' and s=s'). Let r

be of the form g -+ d (so t is an instantiation of g).

Now, r: t-+ s and r': t' -+ s' together form a critical pair of rewrites if t' is a subterm oft

(possibly equal to t) and t' is an instantiation of a non-variable subterm of g.

DEFINITION 4.4 E is called closed under small redex contractions if the following holds:

Let r be a rule of the form g(xi, ... ,xn)-+ d(xi, ... ,xn) and g(ti, ... ,tn)-+ d(t1, ... ,tn) e E, where

all ti, ... ,tn are closed terms, and assume there exist (zero or more-step) reductions ti E_,. Si

using rewrites from E, then g(si, ... ,sn)-+ d(si, ... ,sn) e E.

Using the two definitions above we are now in the position to present the definition of an important

property of restricted TRS's:

DEFINITION 4.5 The restricted TRS (JR,E) is essentially non-ambiguous if:

1. E contains no critical pair of rewrites

2. E is closed under small redex contractions.

(JR,E) is essentially regular if it is essentially non-ambiguous and the rules are left-linear.

We now have immediately the Church-Rosser theorem for essentially regular restricted TRS's:

THEOREM 4.1 If the restricted TRS (JR,E) is essentially regular then it is ground confluent.

PROOF Entirely similar to the unrestricted regular case (see e.g. Klop [17]). It proceeds as

follows, assuming -7 and _. to denote reductions in E.

t • s' t • s I t ~~ s'

roint r~· ! ! ! set of set of
redexes redexes

t' ~~ s t' ~~ s t'

(a) (b) (c)

FIGURE4

First prove that if both t -7 s and t _,. t' by reducing a set of pairwise disjoint redexes, then an s'

can be found such that t' _. s' and s __,. s', the latter again via the reduction of disjoint redexes
'" (see figure 4a). The proof follows from a straightforward analysis of cases depending on the

relative position of the redex reduced in the step t -7 s with respect to the disjoint redexes that

are reduced in t __,. t'. Here we use the property 'essentially regular'.

16

From this fact (figure 4a) we immediately find the so-called parallel moves lemma (see figure

4b), which reads: t ~ t' & t _,. s :::} 3s': t' _,. s' & s _,. s'. This lemma finally yields the full

confluence property (see figure 4c). o

DEFINITION 4.6 Let lR be a PRS. We say that the ordering < of the rules in lR is a specificity

ordering if:
i. r < s <=> the LHS of s is a substitution instance of the LHS of r;

ii. no ambiguities occur between incomparable rules;

iii. ambiguities between comparable rules consist of overlaps at the roots only.

The third condition tells us that lefthand sides of rules with lower priority do not unify with proper

subterms of higher priority rules. For instance,

l L(L(x))-+ ···
L(x) -+ ···

is not a specificity ordering since the second LHS unifies with a proper subterm of the first. Note,

that condition (i) in definition 4.6 still holds.

1lIEOREM 4.2 Well-defined, left-linear PRS's with specificity ordering are ground confluent.

PROOF If JR is a well-defined, left-linear PRS such that its priority relation is a specificity ordering,

then lR contains no critical pairs of rewrites in its semantics. To see this, assume that x and y

form a critical pair of rewrites originating from the rules rand r' respectively, then clearly rand

r' are overlapping and thus it follows by definition 4.6(ii) that r and r' are comparable, r>r' say.

Furthermore, it follows from definition 4.6(iii) that r and r' are overlapping at the root (hence

LHS(x) = LHS(y)) and therefore y has an empty obstruction. But then y is not correct (with

respect to 0, hence with respect to the semantics of JR) and thus not in the semantics of JR.

Furthermore, the semantics R of lR is closed under small ('internal') redex contractions, since if

it were not, then for some rewrite x in R there would exist an internal reduction of LHS(x) to a

term which is the lefthand side of a rewrite y, which is an instance of the same rule and which is

not in R. Thus y is incorrect with respect to R and there is an internal reduction from LHS(y) to

the lefthand side of a rewrite z with higher priority. Since x and y are instances of the same rule,

there exists an internal reduction from LHS(x) via LHS(y) to LHS(z) using rewrites in R, and

therefore x is incorrect as well. This is a contradiction, since x was in R.

Thus lR is essentially non-ambiguous, and since it is left-linear it is essentially regular. Now

apply theorem 4.1. D

EXAMPLE12

Consider the PRS from example 1:

rl:
r2:

l r3:
r4:

TABLE12

P(O) -+ 0
P(S(x))-+ x

x+O-+x
x + y -+ S(x + P(y))

17

Obviously, the PRS from table 12 is left-linear and the priority relation is a specificity ordering.

In example 11 we have shown that it is well-defined (despite the fact that it is not bounded), and

thus it is confluent. Extending this PRS with the rules for the factorial function in table 13 below

(see example 3):

1 Fac(O) -+ S(O)
Fac(x) -+ x·Fac(P(x))

TABLE 13

we find that the priority relation is still a specificity ordering, and since the resulting PRS is

well-defined and leftlinear, it is confluent.

OPEN QUESTION

What kind of conditions can be found for a PRS to be terminating? Clearly, a restricted TRS can

tum a non-terminating TRS into a terminating one. It would therefore be interesting to find a

class of terminating PRS's with a non-terminating underlying TRS.

REFERENCES

[l] J. Backus, Can programming be liberated from the Von Neumann style? A functional style

and its algebra of programs, CACM 21(8), 1978.

[2] J.C.M.Baeten, J.A.Bergstra & J.W.Klop, Priority rewrite systems, Report CS-R8407,

Centre for Mathematics and Computer Science, Amsterdam 1984.

[3] J.C.M.Baeten, J.A.Bergstra & J.W.Klop, Term rewriting systems with priorities, proc.

RTA, ed. P. Lescanne, LNCS 256, pp.83-94, Bordeaux 1987.

[4] J.C.M.Baeten, W.P.Weijland, A semantics for PROLOG via term rewrite rewrite systems,

report CS-R8739, Centre of Mathematics and Computer Sciences, Amsterdam 1987. To

appear in: Proc. lst Int'l Workshop on Conditional Term Rewriting, Paris 1987, Springer

LNCS.

[5] J.A.Bergstra & J.W.Klop, Conditional rewrite rules: confluence and termination, JCSS 32,

pp. 323-362, 1986.

[6] J.A.Bergstra & J.W.Klop, Algebraic specifications for parametrized data types with minimal

parameter and target algebras, Proc. ICALP 1982, Springer LNCS 140, 1982.

[7] J.A.Bergstra & J.W.Klop, Initial algebra specifications for parametrized data types, EIK 19,

pp. 17-31, 1983.

[8] J.A. Bergstra & J.V. Tucker, Algebraic specifications of computable and semicomputable data

types, TCS 50 (1987), pp.137-181. ,,
[9] H.Ehrig & B.Mahr, Fundamentals of algebraic specification 1, Springer EATCS Monographs

on Theor. Comp. Sci., Springer Verlag 1985.

[10] K.Futatsugi, I.A.Goguen, J.P.Jouannaud & J.Meseguer, Principles of OBJ2, Proc. 12th

ACM Syrop. on Principles of Programming Languages, 1985.

18

[11] J.A.Goguen, J.W.Thatcher & E.G. Wagner, An initial algebra approach to the specification,

correctness and implementation of abstract datatypes, Current trends in Progr. Meth. IV, Data

structuring (RT.Yeh, ed.), Prentice Hall, New Jersey, 1978.

[12] J.A.Goguen, J.W.Thatcher & J.B.Wright, Abstract datatypes as initial algebras and

correctness of datatype representations, Proc. ACM Conf. on Comp. Graphics, Pattern

Recognition and Data Structure, ACM, New York 1975.

[13] G.Huet & D.C.Oppen, Equations and rewrite rules, a survey, Formal Lang., Perspectives

and Open Problems, Academic Press, 1980.

[14] S.Kaplan, Conditional rewrite rules, Theor. Comp. Sci. 33 (2/3), pp. 175 - 193, 1984.

[15] H.A.Klaeren, Algebraische Spezification, eine Einfuhrung, Springer Lehrbuchreihe

Informatik, 1983.

[16] J.W.Klop, Combinatory reduction systems, Math. Centre Tract 127, Amsterdam 1980.

[17] J.W.Klop, Term rewriting systems: a tutorial, Bulletin of the EATCS 32, pp. 143-182, 1987.

[18] B:Kutzler & F.Lichtenberger, Bibliography on abstract datatypes, Informatische Fachberichte

68, Springer 1983.

[19] M.J.O'Donnell, Computing in systems described by equations, Springer LNCS 58, 1977.

[20] M.J.O'Donnell, Equational logic as a programming language, MIT Press, 1985.

[21] U.Pletat, G.Engels & H.D.Ehrich, Operational semantics of algebraic specifications with

conditional equations, Forschungsbericht 118/81, Abteilung Informatik, Univ. Dortmund,

1981.

[22] A.Tarski, A lattice theoreticalfzxed point theorem and its applications, Pacific J. Math. 5, pp.

285-309, 1955.

[23] Y.Toyama, On the Church-Rosser property of the direct sum of term rewriting systems,

JACM, Vol.34, No.I, pp.128-143, 1987.

