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1. INTRODUCTION 

In Baeten, Bergstra and Klop 1 an operator 0 is 
introduced, in the setting of bi-simulation semantics, 
which introduces priorities on the atomic steps in a 
process. This priority operator is useful in process 
specification; for example one can model interrupt 
mechanisms with it (see Ref. l ). In Bergstra, Kl op and 
Olderog2 a complete axiomatisation for finite processes 
with communication, but without silent moves, is given 
for readiness semantics and failure semantics. 

Now the starting point for this paper is the question 
whether () can consistently be added to readiness and 
failure semantics as expounded in Ref. 2. This is not 
obvious, since readiness and failure semantics equate 
many more processes than bi-simulation semantics does. 
Indeed it turns out that 0 and readiness or failure 
semantics are inconsistent (Section I). 

The question next considered is whether there is a 
process semantics 'close to' readiness and failure 
semantics to which ()can be consistently added. It turns 
out that there is a very natural semantics with this 
property: RTS, ready-trace semantics, which is interest
ing for its own sake. In Pnueli" RTS is called 'barbed 
semantics'. We give a complete axiomatisation for finite 
r-less processes under this semantics, as well as a 
complete axiomatisation (RTS0) which, moreover, takes 
() into account. The method of proof (to obtain the 
completeness results) is via process graph transforma
tions which enjoy the termination and confluency prop
erty, as in Ref. 2. 

This paper can be read independently, but it is useful 
to have seen Refs I and 2. Some general references are: 
for bi-simulation semantics, Milner;6 for readiness 
semantics, Olderog and Hoare; 7 for failure semantics, 
Brookes, Hoare and Roscoe,5 and for a connection 
between bi-simulation and failure semantics, Brookes.'' A 
more complete list of references can be found in Refs I 
and 2. 

* To whom correspondence should be addressed. 

2. THE INCOMPATIBILITY OF 
READINESS AND FAILURE SEMANTICS 
WITH THE PRIORITY OPERATOR 

We start with the simple demonstration of the fact that 
it is impossible to extend readiness and (a.fortiori) failure 
semantics with the priority operator e, as this observation 
is one of the primary motivations for the introduction of 
the ready-trace semantics below. First we will make 
precise the different concepts involved in this observation. 
We recall the following facts from Bergstra, Klop and 
Olderog.2 

2.1. Theorem 

The axiom systems BP A6, BPA,5 + R 1, 2, BP A6 + R I, 
2+S in Table l are complete axiomatisations of bi
simulation semantics, readiness semantics and failure 
semantics, respectively, on finite processes (over alphabet 
A without r). 

Comments 

Process algebra starts from a collection of given objects 
A, called atomic actions, atoms or steps. These actions 

Table 1 

BPA,1 x+y=y+x Al 
(x+y)+z=x+(y+z) A2 
x+x=x A3 
(x+y)z=xz+yz A4 
(xy) z = x(yz) A 5 
o+x=x A6 
OX= 0 A 7 

BPA,1+ l, 2 a(bx+u)+a(by+v) = a(hx+by+u)+ Rl 
a(bx+by+v) 

BPA6 +RI, 
2+S 

a(b+u)+a(hy+v) = a(b+by+u)+ R2 
a(b+by+ v) 

ax+a(y+z) = ax+a(x+y)+a(y+z) s 
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are taken to be indivisible, usually have no duration and 
form th~ _basic building blocks of our systems. The two 
compos~t10nal ope~a.tors we consider here are . , denoting 
s~quent1al compos1t1on, and + for alternative composi
t10n. If x and y are two processes, then x. y is the process 
that starts the execution of y after the completion of x, 
and x + y is the process that chooses either x or y and 
executes the chosen process (not the other one). Each 
time a choice is made, we choose from a set of 
alternatives. We do not specify whether the choice is 
made by the process itself, or by the environment. We 
leave out . and brackets as in regular algebra, so xy+z 

means (x .y)+z. On intuitive grounds x(y+z) and 
xy+xz present different mechanisms (the moment of 
choice is different), and therefore an axiom x( v+z) = 

xy+xz is not included. · 

We have a special constant 6 denoting deadlock, the 
acknowledgement of a process that it cannot do anything 
any more, the absence of any alternative. A6 = A U (6}. 

The variables a, h range over A6 and x, y, z, u, v range 
over all processes. 

The notions of bi-simulation semantics, readiness 
semantics and failure semantics are (essentially) standard 
and well known; for details of their definitions referring 
to the present situation where two termination possibil
ities exist (namely a trace may end in 6, unsuccessfully, 
or in a proper action EA, successfully) we refer to 
Ref. 2. 

2.1.1. Remark 

In Ref. 2 a generalisation of Theorem 2.1 is proved, where 
parallel operators and communication are also present. 
For the purpose of this section we do not need these. In 
Section 3 and later we will consider communication as 
well (i.e. BPA,1 is replaced by ACP). 

2.2. In Ref. I the priority operator 0 was introduced, 
enabling one to indicate the priority of some actions in 
a choice (a sum) over others. 'Priorities' are given by a 
partial order > on Aii where 6 is always the least element. 
So if the ordering a > h is adopted, then 

O(ax+hy+z) = O(ax+z). 

Another property of 0 is that 

O(ax) = aO(x), and O(ax+ay) = aO(x)+aO(y), etc. 

Below we will give a complete (and even finite) 
axiomatisation of 0, but for the time being these 
properties of 0 suffice. As shown in Ref. 1, 0 is vital for 
modelling in process algebra features such as interrupt 
mechanisms. In Ref. I the operator (J is introduced in the 
setting of bi-simulation semantics. It is hence an obvious 
question whether such a natural operator can 'consist
ently' be added to readiness and failure semantics. Here 
we should explain what is mean by 'consistently': as an 
ultimate criterion for consistency of a process axiomati
sation T we require that T does not derive an equation 
t 1 = t2 between finite closed process expressions such that 
trace(t 1) "# trace(t 2 ). Here trace(!) is defined in such a 
way that termination Js are visible, e.g. trace(a+M) = 

{a, M}. However, trace(a+6) ={a}, since a+o =a 
(cf. axiom A 6 in Table I). For a precise definition 
(which moreover involves r-steps) see Ref. 3. 

The definite answer to the question just raised is 
negative, as the following counterexamples show. 

2.3. Proposition 

Failure semantics with the priority operator is inconsist
ent. In particular, BP As+ R 1. 2 + S + (} is inconsistent. 

Proof 

Consider process expressions 

t 1 :ah+a(c+d) 

t2 : ah +a(c+d) + a(b +c). 

According to Table I (axiom S), BPA~+R I, 2+S 
+B 1- t 1 = t2 . Hence in this system BPi(1+R I, 2+S 
+ 0 we have 0(1 1) = 0(12). We adopt the following priority 
of atoms: b < c <d. Now w.r.t. this ordering: 

O(ti) = aO(h)+aO(c+d) =ah+ ad 

0(12) = aO(b)+aO(c+d)+aO(b+c) = ab+ad+ac. 

So in the axiom system under consideration we derive the 
equality of two expressions with different trace set. D 

In fact, the previous proposition is strengthened by the 
following, which shows that the inconsistency is already 
obtainable in readiness semantics. 

2.4. Proposition 

Readiness semantics with the pnonty operator 1s m
consistent. In particular, BP A,,+ R l, 2 +{)is inconsistent. 

Proof 

Let 

t 1 = a(bc+d)+a(be+f) 

t2 = a(be + d)+ a(bc + f). 

Adopt the priorities d > b > / Now BPA6 +R I, 2 
+o I- t1 = 12 (using R I), but 

O(t1 ) = ad+abe 

0(t2 ) = ad+abc. D 

2.5. Remark 

The failure of readiness semantics and failure semantics 
to describe the priority operator can be motivated as 
follows: when a process is observed to have performed 
some action a, then one can deduce that at that point it 
was unable to perform any action b of greater priority. 
Thus the presence of the priority operator makes visible 
information about possible-but-not-chosen actions at 
each point throughout any given trace of the process. 
Readiness and failure semantics only provide such 
information at the end of any given trace. In the next 
section we shall define a semantics, which will preserve 
this extra information. 

3. READY-TRACE SEMANTICS: A MODEL 
OF FINITE PROCESSES 

We shall now introduce ready-trace equivalence on pro
cesses, which will be in this paper finite and r-less. 

3.1. Definition 

Let IHI be the domain of finite acyclic process graphs with 
edges labelled by elements from A0. The graphs g E []-{J will 
be supposed to be in 6-normalform, i.e. b-steps may only 
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occur at the end of branches of g and may have no 
alternatives. 

On ~ we define operations +, . , Ii, lL, I. 211 as defined 
in Bergstra, Klop and Olderog2 • These definitions are 
assumed to be known in this paper. 

Some remarks about the. new operators. 
II is the parallel composition operator, called merge. 

The merge of processes x and y will interleave the actions 
of x and y, except for the communication actions. In 
x II y, we can either do a step from x, or a step from y, 
or x and y both synchronously perform an action, which 
together make up a new action, the communication 
action. In order to give a finite axiomatisation of merge, 
we use two auxiliary operators lL (left-merge) and I 
(communication merge). Thus, x lL y is x lly, but with 
the restriction that the first step comes from x, and x IY 
is x II y with a communication step as the first step. 
Finally, we have the encapsulation operator i'.u. Here H 
is a set of atoms, and l'u blocks those actions, renames 
them into S. The operator 211 can be used to encapsulate 
a process, i.e. to block communications with the 
environment. 

For the same of completeness we include here the 
definition of the ready set .Ji [g] of g E IHl: 

3.2. Definition 

Let a vary over A*, the set of words over the action 
alphabet A (not A 0). The empty word is},. Let g E IHl. Then 
the ready set of g, notation: .Yi[g], is the least set satisfying 
the following clause: 

for all aEA*, g~h implies (a, /(h))E9i'[g]. 

Here g ~ h (his a derivation of g via a) ifthere is a path, 
determining the word a, from the root of g to the root 
of the subgraph h. 

Further, J(h) is the set of initial steps of h; if his a single 
6-step then I(h) = 0 and if h is 0, the zero graph 6 
without edges, J(h) = l(O) = {i:). (i: is a formal symbol 
denoting successful termination.) 

3.3. Example 

If g is the process graph in Fig. 1 : 

S3 

Figure I. 

then 

9l'[g] ={(,le, {a, b)), (a, 0), (a, {c}), (ac, {i:}), (b, {i:})}. 

(The displaye? contributions in Bi?[g] are yielded by 
node~, re~pect1vely, s0 , s1, s2, s3 , s4 • Note that s.1 gives no 
contnbut1on.) 

3.4. De_finition 

g, h E ~ are ready equivalent if 9l'[g] = Bi?[ h]; notation 
g =.91h. 
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It is proved in Bergstra, Klop and Olderog2 that ready 
equivalence is a congruence w.r. t. the operations +, . , 
II, ll., I, C'H; when restricting ourselves to +, . we have 
the isomorphism 

IHl(+, .)/= 91 ~ I(BPA,1+PI, 2) 

where/( - ) is the initial algebra of - . (This is part of the 
contents of Theorem 2.1 above.) 

We now turn to ready-trace semantics (RTS); here 
fewer processes (process expressions) are identified than 
in ready semantics (RS), as explained above. The essential 
difference is that while RS is based on the notion of 
ready-pair (er, X) (see Fig. 2(a)), RTS is based on the 
notion of a ready trace (see Fig. 2 (b )), where also the 
'intermediate' ready sets Xi along trace a are given. 

g: 

x 

(a) 

(b) 

Figure 2. 

3.5. Definition 

(i) Let gE ll-U. A path n in g, starting from the roots of 
g, is an alternating sequence of nodes of g and labelled 
edges in g: 

ao al an--l 
7! = S0 --+S1---+ ... ---+,S'n 

with ai EA (not A6). Here n ~ 0; if n = O we have the 
empty path. All paths in this paper will start from the 
~oot, so we omit that qualification. A path is maximal if 
it cannot be prolonged, that is, either ending in a terminal 
no~~ (0) of in the initial node of a S-step. 

. (11) If s ENO DES~g~, (g)8 will be the suhgraph of g 
with roots and cons1stmg of all labelled edges accessible 
from s. 

(iii) As before, _l(g) is the set of initial steps of g, with 
/(0) = {i:} and !(15) = 0. Instead of I((g) ). we write J·ust 
J(s). s 
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3.6. De,finition 

(') L IHI d ao an-1 . 
1 etgE an n=s0 ----+ ... ----+snbeapathmg. 

Then rt(n), the ready trace corresponding to n, is the 
alternating sequence of ready sets /(si) and steps ai: 

I(s0 ), a0 , /(s1), a1, ••• , a 11 _ 1 , J(s,,) 

(n;;:::: 0). We shall sometimes use the notation (a; X) for 

such a ready trace where O' = a 0 a 1 •.• a11 _ 1 and X = I(s0 ), 

/(s1), ... , I(srJ· The ready trace corresponding to the 

empty path of g is just I(g) or in the (O'; X) notation, 
(Jc, I(g)). 

(ii) The ready trace set of g, notation .o/l.'T [g], is 

{rt(n) In a path in g, starting from the root}. 

(iii) g =.<Jf."I h if .o/l.'!I [g] = .o/l!!/ [h]; in words: g, hare 
ready-trace equivalent. 

3.7. Example 

(i) Let g, h be as in Fig. 3. 

g: 

b 

e 

Figure 3. 

Then g =,#."!h. 
(ii) g, h as in Fig. 4 are not ready-trace equivalent (cf. 

the counter-example in Proposition 2.4). 

g: 
a a 

b J 

e 

Figure 4. 

Namely, i!!l.'Y [g] contains the ready trace {a}, a, {d, b}, b, 
{c~, c, {r,} which is not present in f!1.'Y [h]. 

3.8. Remark 

In fact, in the present setting of finite acyclic process 
graphs, it would have been sufficient to consider for the 
definition of = :#:Y only ready traces corresponding to 
maximal paths n. The present definition, which includes 
also 'prefixes' of such ready traces, anticipates working 
with infinite processes - which we shall not do in this 
paper. 

3.9. Remark 

A convenient 'intuition' about a ready trace is this: 
Imagine an interactive session with a machine as follows. 
At the start of the session the machine presents the user 
a menu ofall possible actions which the user may perform 
(/(g)); one of these is chosen (a0 ), whereupon the machine 

again flashes the menu of the options in that state (J(s1)), 

and so on. Any moment the user may end the session, that 
is, leave the machine which has on its screen the last menu 
(I(s,,)). So a ready trace is a record of such a session. 

We will prove in the sequel that =:JI."! is a congruence 
on IHI w.r.t. +, . , II, lL I, aH, and also w.r.t. the priority 
operator e which will be defined now. 

3.10. Definition 

Let a partial order < on Ac> be given such that J <a for 
all a EA. Then e <, or e for short, is defined on IHI as 
follows: 

8(g) is the process graph arising from g by 
(i) erasing all edges leaving nodes which have a label 

a majorised by label b of some other edge leavings; 
(ii) discarding all parts of g which have thus become 

disconnected. 

3.11. Example 

Let a> band a> c. Then for pas in Fig. 5(a), B(p) is as 
in Fig. 5(b): 

p: 8 (p): 
a 

(a) (b) 

Figure 5. 

4. PROCESS GRAPH TRANSFORMATIONS 
FOR READY-TRACE SEMANTICS 

In order to prove that =:ill."/ is a congruence on ll-ll, and 
to derive the completeness result in Theorem 5.2 below, 
we will introduce three process graph transformations of 
which the first two (already used in Bergstra, Klop & 
Olderog2 are specific for bi-simulation semantics and the 
third is specific for RTS. 

4.1. The transformations double edge, sharing, 
narrowing 

(i) Double edge. This process graph transformation 
step removes in a 'double edge'~ (a E A0) one of 
the edges. a 

Notation: g====;.h 
Iii 

(ii) Sharing. Suppose g E IHI contains two nodes s, t 

determining identical subgraphs (g) 8 , (g)t· Then the nodes 
s, t may be identified. 

Notation: g====;,,h. 
Iii[ 

(iii) Narrowing. If g E IHI contains a part as in Fig. 6 (a) 
this may be replaced by the part as in Fig. 6(b). More 
precisely, a new node r is created together with edges as 
in Fig. 6(b), and the old a-edges to s, tare discarded. The 
nodes s, t and the b;-edges leaving them (in Fig. 6(a)) are 

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 501 



.I. C. M. BAETEN. J. A. BERGSTRA AND J. W. KLOP 

not discarded since s, t may have other incoming edges. 
(If not, then s, t are inaccessible from the root and 
disappear.) 

(a) 

Figure 6. 

a 
a 

(b) 

Here J(s) = 1(1) = {b1 , ... , b,,}; the h; may have multiple 
occurrences among the labels of edges leaving nodes s, t. 

Notation: g ==;,h. 
liiiJ 

4.2. Notation 

==;,is '?>U ===?> U ==?>;==?>>isthetransitivere-
lil 111) [Ill[ 

flexive closure of ?>, and<~=?>> is the equivalence 
relation generated by ==?>. 

4.3. Example 

( i) 

Figure 7. 

(ii) 

a a 

b b 

c 

d 

a 

b 

c 

d e 

Proof 

It is simple to check that each of the three graph reduc
tions keeps the ready trace set invariant. D 

We will now establish the completeness of the graph 
transformations. 

4.5. Definition 

gE IHl is in ready trace normal form (rt-normal form) if 
none of the graph reductions is applicable to g. 

4.6. Proposition 

Every graph reduction g ==?> g' ===?> g" ===?> ... must 
end eventually in a rt-normal form. 

Proof 

Let T(g) be the tree obtained from g by unsharing. Let 
card(g) be the number of nodes in T(g). Then 
transformations of type [iii] have the effect of decreasing 
card (g), while types [i], [ii] do not increase card (g). Since 
[i], [ii]-transformations clearly must end eventually, this 
proves the proposition. 

(Note that the detour via T(g) is necessary since a type 
[iii] transformation may increase the number of nodes in 
g, as Example 4.3(ii) shows: the second graph has one 
node more than the first.) D 

4. 7. Proposition 

Letg, h be in rt-normal form and suppose g = .;uh. Then 
g, h are identical. 

Proof 

The proof consists of remarking that an rt-normal form 
g can be uniquely reconstructed from its ready trace set. 
The reconstruction is as follows. Let the elements of 
~Y [g] U {o} be the nodes in a process graph g* to be 

constructed. The root of g* is J(g) (or (A.; J(g)) in the (a; X) 
notation). The edges of g* are given by 

--+ (l __,. 

(a; X)--. (aa; X, Y) if the last entry of X is not 0 
--> 6 

(u; X, 0)---> o. 

~ 
[11![ 

==?> ==?> ~ ==?> ==?> ==?> 
lllil liiil [11J It[ ltl 1111 

e a a e e 

b b b b b 

c d d 
0 

Figure 8. 

4.4. Proposition 

Let g, h E IHl. Then graph reduction is sound w.r.t. 
ready-trace equivalence, i.e. 

g==?>> h implies g = Jf~ h. 
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~ow it is. a routine matter to show that g* is in fact 
'.sor:iorp~1c to T~g). So we .have proved that T(g) and T(h) 
are 1dent1cal (or 1somorph1c). From this it readily follows 
that g, h are identical. D 

Although we will not need it, let us remark the 
following fact: 
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4. 7. I. Corollary 

Process graph transformations ==9>are confluent. 

Proof 

Immediate from Propositions 4.4, 4.6 and 4.7. O 

4.8. Lemma 

g·«==>>h iff g =.1'.f"h. 

Proof 

The implication ===7> is immediate from Proposition 4.4. 
For the reverse implication, suppose g, h are rt
equivalent. Let g* be an rt-normal form of g, obtained 
by a maximal ===7>-graph reduction (it exists by 
Proposition 4.6). Likewise h* is a rt-normal form of h. 
Then by Proposition 4.4, g = Bi.:7 g* and h = df.:7 h*, and 
hence g* =~ffh*. So by Proposition 4.7, g* and h* are 
identical, and therefore g===7>>g*<~ h. 

4.9. Lemma 

= . .w.:7 is a congruence on IHl( +, . , II, LL I, oH, 8). 

Proof 

Using the previous lemma, it suffices to prove: 
if g g', h h' then 

(i) g O h<~>g' Oh', where Dis+, . , JI, lL j. 
(ii) aH(g)«==>>oH(g') 

(iii) O(g) <«~> O(g'). 

Of these implications (ii), (iii) are trivial. 
(i) is easy for the operations +, .. For II it suffices to 

prove g II h ~> g' II h, which can be seen best using some 
'geometrical intuition' (cf. Example 4.10); or, alterna
tively, one proves more directly that g===7>g' implies 
gllh = . .J!'.r g' llh. The details of a really rigorous proof 
would be extremely time- and space-consuming, and we 
will not attempt one in the present note. 

The operators lL and I present no special diffi-
culties. D 

4.10 Example 

See Fig. 9. Let ala = a0 be the only non-trivial 
communication. 

4.11. Remark 

In Bergstra, Klop and Olderog2 it was proved that 
readiness equivalence on lHl(=.'!i') is generated by the 
graph transformations===.>(double edge), ===7>-(sharing) 

Iii lul 
as before, together with the transformation 'cross', by 
which in a part as in Fig. 10 (a) two b-steps may be inserted 
to yield the part as in Fig. lO(b). 

Using this fact we can pinpoint once more (cf. also 
Proposition 2.4) why =tit is not a congruence w.r.t. 0. 
Namely, if g, g' are the graphs in Fig. 11 (a), then O(g), 
O(g'), with priorities d > b > f, are as in Fig. 11 (b). 

~ A ... ·n ltii] 
a a 

b b 

c d c d 
0 

h= 

Then gJlh = 

b b 
ii 

b b 
ii 

d 
ii d 

c ii c 

ii. 

a 
=g'llh. 

Figure 9. (Note that while g ~ g', the sequence of transfor-
1 iii] 

mations gllh===;>>g' llh uses all three types of transformation.) 

a 

b b b b 

(a) (b) 

Figure 10. 

g: g': 
a a 

d f d f 
b b 

c e c e 

(a) 

0 (g) 
a 

d 

b 

e c e 

Figure 11. 
(b) 
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Now clearly O(g) and O(g') are not convertible via [i], [ii] 
and the cross transformation. Contrast this with the 
present situation, where via some case analysis it is easily 
seen that if g ~ g' then: O(g) ~ O(g') or O(g), O(g') 
coincide. luil l•iil 

4. 12. Some auxiliary operators on IHI 

We will add two more operators on IHI, which serve to 
axiomatise e in a finite way and to formulate a proof rule 
typical for RTS. 

4.12. l Definition 

Let g, h E IHI. Then g <J h (g ·unless' h) is defined as the 
result of erasing in g all initial steps which are majorised 
(w.r.t. the p.o. < to which the priority operator refers) 
by some initial step in h. (Of course, disconnected pieces 
are discarded.) 

4.12.2. Example 

Let a< h <c. Then: 

Figure 12. 

4.12.3. De.fi.nition 

A 
{ } 

n11 : IHI~ 11-ll is the nth projection operator (n ~ 1 ), 
which cuts off all branches after n steps. E.g. 

11"2( ()a 
b a 

c a 

Figure 13. 

A 
{ } 

It is left to the reader to check that Lemma 4.9 
generalises to the presence of <J and the n 11 (n :;;::: I). 

5. A COMPLETE AXIOMATISATION FOR 
READY-TRACE SEMANTICS 

The previous results lead at once to a complete 
axiomatisation RTS as in Table 2 for ready-trace 
semantics on finite processes with communication (but 
without silent moves). 

Here the upper part of Table 2 is ACP, Algebra of 
Communicating Processes; a, b vary over A 0. It contains 
BPA0. The n 11 are projection operators; to formulate 
RTR, the ready-trace rule, n1 is sufficient. Note that (at 
least for finite processes) RTR is equivalent to the rule 

1t1{x) = n1(Y) 
a(x+ y) = ax+ay 

Table 2 

RTS x+y=y+x Al 
x+(y+z) = (x+y)+z A2 
x+x=x A3 
(x+ y)z = xz+yz A4 
(xy) z = x(yz) AS 
x+b=x A6 
bx= b A7 

alb=bla Cl 
(alb)lc = al(blc) C2 
bla = b C3 

x 11 y = x ll. y + y ll. x + x I y CM! 
allx=ax CM2 
ax ll y = a(x llY) CM3 
(x + y) ll z = x ll. z + y ll z CM4 
(ax)lb = (alb)x CMS 
al(bx) = (alb)x CM6 
(ax) I (by) =(a I b) (x II y) CM7 
(x+y)lz=xlz+ylz CM8 
xl(y+z) =xly+xl= CM9 
o11(a)=aifa~H DI 
ou(a)=bifaeH D2 
011(x+y) = u11(x)+u 11Cv) D3 
ofl(xy) = ou(x)uu(Y) D4 
nm(a) =a PRI 
n1(ax) =a PR2 
nm+ 1(ax) = anm(x) PR3 
nm(x+y) = nm(x)+nm(Y) PR4 

n1(X) = ni(y) 
RTR 

:-(x+y) = zx+zy 

5.1. Lemma 

BPAa+ PR 1 -4+ RTR is a complete axiomatisation of 
11-ll(+, .,1tn)/= . .Jf.~· 

Proof 

We refer to Bergstra, Klop and Olderog2 for the (obvious) 
interpretation of process expressions in the graph model 
and for the arguments concerning +, .. Clearly, RTR 
corresponds to the process graph transformation ~ By 

flit I 
Lemma 4.8 we have completeness. D 

The extension to the priority operator 0 can easily be 
done on the basis of the axiomatisation ACP0 introduced 
and analysed in Baeten, Bergstra and Klop1• ACP0 is the 
axiom system consisting of ACP (upper part of Table 2) 
and the nine axioms in Table 3: 

Table 3 

a<Jb=aifnot(a<b) 
a <J b = J if a < b 
X<lYZ=X<lJ' 
X<l (y+z) = (X<l _v)<l Z 

X)'<l Z = (X<l z)y 
(x+ y) <1 z = x <1 z+ y <1 z 
O(a) =a 
O(xy) = B(x) O(y) 
O(x+y) = B(x)<1 y+B(y)<l x 

PI 
P2 
P3 
P4 
PS 
P6 
THI 
TH2 
TH3 

We will refer to RTS together with the axioms in Table 
3 as: RTS8. 
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5.2. Theorem 

RTS0 is a complete axiomatisation of the graph model 

IHI(+,., II, U.,i,0H,n11 ,<J,8)/=Jf.:v 

Proof 

The proof is entirely similar to the one for readiness 
semantics in Bergstra, Klop and Olderog2, using Lemma 
5.1 and the fact that all operators except the basic 
operators +, can be eliminated from process expres
sions. O 

5.3. Corollary 

RTS11 is a consistent (in the sense of Section 2.2) 
axiomatisation. 

Proof 

The elements of IHI( - )/ = .'if.r are = df.:requivalence 
classes of graphs; each equivalence class is generated by 
the three graph transformations of Section 3. These 
transformations preserve traces. Hence, by Lemma 5.2, 
the axiom system RTS0 is consistent. O 

6. AN EXPLICIT PRESENTATION OF THE 
MODEL FOR READY-TRACE SEMANTICS 

Above, we have obtained a model for RTS, with 
equivalence classes of process graphs as elements. It is 
also possible to present this model in a more direct way, 
namely with the ready-trace sets themselves as elements 
(without any mention of underlying process graphs). This 
requires formulating some closure properties of ready
trace sets (Cf. the analogous procedure in Bergstra, Klop 
and Olderog2 for failure semantics.) The end result will 
be an 'explicit' model for RTS, which is isomorphic to 
the 'graph model' above. In order to obtain this explicit 
representation, we have to define the operations +, . , II, 
U., I, uH, fJ, <l, n 11 directly on the ready-trace sets. We will 

do this only for 0, and further be satisfied with the 
formulation of the closure properties inherent in a ready
trace set. 

6.1. Definition 

(i) Let X0 ,a0 ,X1'a 1,. .. ,a111 ,X11 be an alternating 
sequence of sets X1 (i = 0, .. ., n) and actions a; 
(i = 0, ... , n - l) for some n ~ 0. Then this sequence is a 
ready trace if 

(I) a1EX; (i < n) 

(2) X0 , .... X 11 _ 1 :::::; A 

(3) X,, :::::; A or Xn = {e} {i.: rt A). 

We recall the notation (a; X) = (a0 , .. ., an-i; X0 , ... , X,,) 
for X0 , au, ... , Xn. 

(ii) Let !1.t be a collection of ready traces. Then !l' is a 
ready trace set if !1l satisfies the following clauses: 

(I) if (a; X)E.°l and (p; Y)E.'!t, then X 0 = Yo (root 

condition) 

(2) if (a; X) is a ready trace and (ap; X Y) E ::l' then 

(a; X)EYF (prefix condition) 

(3) if (a0, .. ., aA,-i; X0, ... , Xk) E Et and ak E Xk (ak # 
e), then (a0 , ... , ak_1, ak;X0 , ... , Xk, Xk+i)E.'!t for 
some Xk+i (:::::; A or = {e}) (continuation con
dition). 

Clearly any f!d:Y [g], g E IHI is a ready-trace set in this 
definition. (It holds moreover for :!It:!/ [g], g being in this 
paper finite and acyclic, that every ready trace in ,qll,,'Y [g] 
can be continued to one in which the last ready set is 0 
or {e}.) 

Vice versa, we can associate a process graph g£ (in fact 
a tree) to a ready-trace set ;I[ as already explained in the 
proof of Proposition 4.7. 

An alternative definition of a ready-trace set would be 
one in which the ready traces are allowed to be infinite. 
Under that definition, the resulting semantics would dis
tinguish processes like Ln an and 2: 11a" + aw. 

It is possible to define the operators considered above 
directly on these ready-trace sets. We will not do that, 
except for the case of 0, in order to understand better why 
() is compatible with RTS - and not with the coarser 
semantics such as readiness or failure semantics. 

6.2. Definition 

Let a p.o. < on As be given. 
(i) Let X:::::; A. Then O(X) is the set of maximal 

elements (w.r.t. <) in X. If X = {e}, O(X) = X. If 
X = X 0, ... , X," O(X) = G(X0), ... , O(X,,). 

(ii) Let (a; X) be a ready trace. Then (a; fJ(X)) need not 
be a ready trace, since property (I) of Definition 5 .4.1 
may be violated. However, (a; fJ(X)) contains a maximal 
prefix (in the obvious sense) which is still a ready trace. 
Now we define 

G(a; X) 
to be this maximal prefix ready trace of (a;{:)( X)). 

(Example: if a< b then O({a, b}, b, {a, b}, a, 0) = {b}, 
b, {b}.) 

(iii) Let .6£ be a ready-trace set. Then 

fJ(.OJ') = {O(a; X) I (a; X) E ;?{}. 

Now we claim (without proof) that () and ,qll,:!J [] 
commute: 

6.3. Claim 

Let gE IHI. Then: 

!Jll.'Y [G(g)] = G(f!d:Y [g]). 

Note that in this explicit definition of the operator () 
on ready-trace sets it is essential to have the intermediate 
ready sets in a ready trace available. 

7. CONCLUDING REMARKS 

We have considered a process semantics RTS, ready-trace 
semantics (called in Pnueli8 'barbed semantics'), which is 
intermediate between bi-simulation semantics (BS) and 
readiness semantics (RS). The advantage of RTS over RS 
and FS (failure semantics) is that it allows the presence 
of operators that may be important for process 
specification, such as the priority operator 0. 

That is in contrast with RS and FS, which reject 
operators like G, since in these semantics too many 
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processes are identified to bear the presence of B. This 
seems to be a general phenomenon: the finer the process 
equivalence, the more operators on processes (like 8) can 
be defined. Adding more equations, i.e. making the 
process equivalence coarser, increases the ease of process 
verifications, but at the cost of losing specification 
possibilities by means of operators such as e, which 
become undefinable. 

REFERENCES 

I. J.C. M. Baeten, J. A. Bergstra and J. W. Klop, Syntax 
and defining equationsfi1r an interrupt mechanism in process 
algebra, Fund. lnf. IX (2), 1986, pp. 127-168. 

2. J. A. Bergstra, J. W. Klop and E.-R. Olderog, Readies and 
Failures in the Algebra of' Communicating Processes. CWI 
report CS-R8523, Centre for Mathematics and Computer 
Science, Amsterdam ( 1985). 

3. J. A. Bergstra, J. W. Klop and E.-R. Olderog, Failure 
Semantics with Fair Abstraction. CWI report CS-R8609, 
Amsterdam ( 1986). 

4. S. D. Brookes, On the relationship of CCS and CSP. In 
Proc. !Otiz !CA.LP, Barcelona, edited J. Diaz. Springer 
LNCS no. 154, pp. 83-96 ( 1983). 

5. S. Brookes, C. Hoare and W. Roscoe, A theory of corn-

506 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 

From an intuitive point of view (see Remark 3.9) a 'I 
semantics such as RTS seems perfectly natural. 

An evident direction for further work is the extension 
of the above to infinite processes, and to silent 
moves.* 

* R. van Glabbeek has informed us that there is a neat complete 
axiomatisation of RTS for finite processes with r-steps without, 
however, the priority operator e. 

municating sequential processes. Journal (if the Computing 
Association of Machines 31 (3), 560-599 (1984). 

6. R. Milner, A Calculus of Communicating Systems. Springer 
LNCS no. 92 (1980). 

7. E.-R. Olderog and C. A. R. Hoare, Specification-oriented 
semantics for communicating processes. In Proc. JOth 
!CALP, Barcelona, edited J. Diaz. Springer LNCS no. 154 
(1983). Expanded version: Technical Monograph PRG-37, 
Oxford University Computer Laboratory (1984). 

8. A. Pnueli, Linear and branching structures in the semantics 
and logics of reactive systems. In Proc. 12th !CALP, 
Nafplion, edited W. Brauer. Springer LNCS no. 194, pp. 
15-32 (1985). 


