
Ready-Trace Semantics for Concrete Process Algebra with the
Priority Operator

J.C. M. BAETEN*t, J. A. BERGSTRMt AND J. W. KLOP§
t Departmenl of Computer Science, Uni1'ersity of Amsterdam

t Department of Philosophy, Unirersity of Utrecht

§ Centre filr Mathematics and Compu1er Science, Ams1erdam

We consider a process semantics intermediate between hi-simulation semantics and readiness semantics, called here
ready-trace semantics. The advantage of this semantics is that, while retaining the simplicity of readiness semantics, it is
still possible to augment this process model with the mechanism of atomic actions with priority (the 8 operator). It is
shown that in readiness semantics and a fortiori in failure semantics such an extension with 8 is impossible. Ready-trace
semantics is considered here in the simple setting of concrete process algebra, that is: without abstraction (no silent
moves), moreover for finite processes only. For such finite processes without silent moves a complete axiomatisation of
ready-trace semantics is given via the method of process graph transformations.

Received March 1986, revised August 1986

1. INTRODUCTION

In Baeten, Bergstra and Klop 1 an operator 0 is
introduced, in the setting of bi-simulation semantics,
which introduces priorities on the atomic steps in a
process. This priority operator is useful in process
specification; for example one can model interrupt
mechanisms with it (see Ref. l). In Bergstra, Kl op and
Olderog2 a complete axiomatisation for finite processes
with communication, but without silent moves, is given
for readiness semantics and failure semantics.

Now the starting point for this paper is the question
whether () can consistently be added to readiness and
failure semantics as expounded in Ref. 2. This is not
obvious, since readiness and failure semantics equate
many more processes than bi-simulation semantics does.
Indeed it turns out that 0 and readiness or failure
semantics are inconsistent (Section I).

The question next considered is whether there is a
process semantics 'close to' readiness and failure
semantics to which ()can be consistently added. It turns
out that there is a very natural semantics with this
property: RTS, ready-trace semantics, which is interest
ing for its own sake. In Pnueli" RTS is called 'barbed
semantics'. We give a complete axiomatisation for finite
r-less processes under this semantics, as well as a
complete axiomatisation (RTS0) which, moreover, takes
() into account. The method of proof (to obtain the
completeness results) is via process graph transforma
tions which enjoy the termination and confluency prop
erty, as in Ref. 2.

This paper can be read independently, but it is useful
to have seen Refs I and 2. Some general references are:
for bi-simulation semantics, Milner;6 for readiness
semantics, Olderog and Hoare; 7 for failure semantics,
Brookes, Hoare and Roscoe,5 and for a connection
between bi-simulation and failure semantics, Brookes.'' A
more complete list of references can be found in Refs I
and 2.

* To whom correspondence should be addressed.

2. THE INCOMPATIBILITY OF
READINESS AND FAILURE SEMANTICS
WITH THE PRIORITY OPERATOR

We start with the simple demonstration of the fact that
it is impossible to extend readiness and (a.fortiori) failure
semantics with the priority operator e, as this observation
is one of the primary motivations for the introduction of
the ready-trace semantics below. First we will make
precise the different concepts involved in this observation.
We recall the following facts from Bergstra, Klop and
Olderog.2

2.1. Theorem

The axiom systems BP A6, BPA,5 + R 1, 2, BP A6 + R I,
2+S in Table l are complete axiomatisations of bi
simulation semantics, readiness semantics and failure
semantics, respectively, on finite processes (over alphabet
A without r).

Comments

Process algebra starts from a collection of given objects
A, called atomic actions, atoms or steps. These actions

Table 1

BPA,1 x+y=y+x Al
(x+y)+z=x+(y+z) A2
x+x=x A3
(x+y)z=xz+yz A4
(xy) z = x(yz) A 5
o+x=x A6
OX= 0 A 7

BPA,1+ l, 2 a(bx+u)+a(by+v) = a(hx+by+u)+ Rl
a(bx+by+v)

BPA6 +RI,
2+S

a(b+u)+a(hy+v) = a(b+by+u)+ R2
a(b+by+ v)

ax+a(y+z) = ax+a(x+y)+a(y+z) s

498 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

READY-TRACE SEMANTICS FOR CONCRETE PROCESS ALGEBRA

are taken to be indivisible, usually have no duration and
form th~ _basic building blocks of our systems. The two
compos~t10nal ope~a.tors we consider here are . , denoting
s~quent1al compos1t1on, and + for alternative composi
t10n. If x and y are two processes, then x. y is the process
that starts the execution of y after the completion of x,
and x + y is the process that chooses either x or y and
executes the chosen process (not the other one). Each
time a choice is made, we choose from a set of
alternatives. We do not specify whether the choice is
made by the process itself, or by the environment. We
leave out . and brackets as in regular algebra, so xy+z

means (x .y)+z. On intuitive grounds x(y+z) and
xy+xz present different mechanisms (the moment of
choice is different), and therefore an axiom x(v+z) =

xy+xz is not included. ·

We have a special constant 6 denoting deadlock, the
acknowledgement of a process that it cannot do anything
any more, the absence of any alternative. A6 = A U (6}.

The variables a, h range over A6 and x, y, z, u, v range
over all processes.

The notions of bi-simulation semantics, readiness
semantics and failure semantics are (essentially) standard
and well known; for details of their definitions referring
to the present situation where two termination possibil
ities exist (namely a trace may end in 6, unsuccessfully,
or in a proper action EA, successfully) we refer to
Ref. 2.

2.1.1. Remark

In Ref. 2 a generalisation of Theorem 2.1 is proved, where
parallel operators and communication are also present.
For the purpose of this section we do not need these. In
Section 3 and later we will consider communication as
well (i.e. BPA,1 is replaced by ACP).

2.2. In Ref. I the priority operator 0 was introduced,
enabling one to indicate the priority of some actions in
a choice (a sum) over others. 'Priorities' are given by a
partial order > on Aii where 6 is always the least element.
So if the ordering a > h is adopted, then

O(ax+hy+z) = O(ax+z).

Another property of 0 is that

O(ax) = aO(x), and O(ax+ay) = aO(x)+aO(y), etc.

Below we will give a complete (and even finite)
axiomatisation of 0, but for the time being these
properties of 0 suffice. As shown in Ref. 1, 0 is vital for
modelling in process algebra features such as interrupt
mechanisms. In Ref. I the operator (J is introduced in the
setting of bi-simulation semantics. It is hence an obvious
question whether such a natural operator can 'consist
ently' be added to readiness and failure semantics. Here
we should explain what is mean by 'consistently': as an
ultimate criterion for consistency of a process axiomati
sation T we require that T does not derive an equation
t 1 = t2 between finite closed process expressions such that
trace(t 1) "# trace(t 2). Here trace(!) is defined in such a
way that termination Js are visible, e.g. trace(a+M) =

{a, M}. However, trace(a+6) ={a}, since a+o =a
(cf. axiom A 6 in Table I). For a precise definition
(which moreover involves r-steps) see Ref. 3.

The definite answer to the question just raised is
negative, as the following counterexamples show.

2.3. Proposition

Failure semantics with the priority operator is inconsist
ent. In particular, BP As+ R 1. 2 + S + (} is inconsistent.

Proof

Consider process expressions

t 1 :ah+a(c+d)

t2 : ah +a(c+d) + a(b +c).

According to Table I (axiom S), BPA~+R I, 2+S
+B 1- t 1 = t2 . Hence in this system BPi(1+R I, 2+S
+ 0 we have 0(1 1) = 0(12). We adopt the following priority
of atoms: b < c <d. Now w.r.t. this ordering:

O(ti) = aO(h)+aO(c+d) =ah+ ad

0(12) = aO(b)+aO(c+d)+aO(b+c) = ab+ad+ac.

So in the axiom system under consideration we derive the
equality of two expressions with different trace set. D

In fact, the previous proposition is strengthened by the
following, which shows that the inconsistency is already
obtainable in readiness semantics.

2.4. Proposition

Readiness semantics with the pnonty operator 1s m
consistent. In particular, BP A,,+ R l, 2 +{)is inconsistent.

Proof

Let

t 1 = a(bc+d)+a(be+f)

t2 = a(be + d)+ a(bc + f).

Adopt the priorities d > b > / Now BPA6 +R I, 2
+o I- t1 = 12 (using R I), but

O(t1) = ad+abe

0(t2) = ad+abc. D

2.5. Remark

The failure of readiness semantics and failure semantics
to describe the priority operator can be motivated as
follows: when a process is observed to have performed
some action a, then one can deduce that at that point it
was unable to perform any action b of greater priority.
Thus the presence of the priority operator makes visible
information about possible-but-not-chosen actions at
each point throughout any given trace of the process.
Readiness and failure semantics only provide such
information at the end of any given trace. In the next
section we shall define a semantics, which will preserve
this extra information.

3. READY-TRACE SEMANTICS: A MODEL
OF FINITE PROCESSES

We shall now introduce ready-trace equivalence on pro
cesses, which will be in this paper finite and r-less.

3.1. Definition

Let IHI be the domain of finite acyclic process graphs with
edges labelled by elements from A0. The graphs g E []-{J will
be supposed to be in 6-normalform, i.e. b-steps may only

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 499

J.C. M. BAETEN. J. A. BERGSTRA AND J. W. KLOP

occur at the end of branches of g and may have no
alternatives.

On ~ we define operations +, . , Ii, lL, I. 211 as defined
in Bergstra, Klop and Olderog2 • These definitions are
assumed to be known in this paper.

Some remarks about the. new operators.
II is the parallel composition operator, called merge.

The merge of processes x and y will interleave the actions
of x and y, except for the communication actions. In
x II y, we can either do a step from x, or a step from y,
or x and y both synchronously perform an action, which
together make up a new action, the communication
action. In order to give a finite axiomatisation of merge,
we use two auxiliary operators lL (left-merge) and I
(communication merge). Thus, x lL y is x lly, but with
the restriction that the first step comes from x, and x IY
is x II y with a communication step as the first step.
Finally, we have the encapsulation operator i'.u. Here H
is a set of atoms, and l'u blocks those actions, renames
them into S. The operator 211 can be used to encapsulate
a process, i.e. to block communications with the
environment.

For the same of completeness we include here the
definition of the ready set .Ji [g] of g E IHl:

3.2. Definition

Let a vary over A*, the set of words over the action
alphabet A (not A 0). The empty word is},. Let g E IHl. Then
the ready set of g, notation: .Yi[g], is the least set satisfying
the following clause:

for all aEA*, g~h implies (a, /(h))E9i'[g].

Here g ~ h (his a derivation of g via a) ifthere is a path,
determining the word a, from the root of g to the root
of the subgraph h.

Further, J(h) is the set of initial steps of h; if his a single
6-step then I(h) = 0 and if h is 0, the zero graph 6
without edges, J(h) = l(O) = {i:). (i: is a formal symbol
denoting successful termination.)

3.3. Example

If g is the process graph in Fig. 1 :

S3

Figure I.

then

9l'[g] ={(,le, {a, b)), (a, 0), (a, {c}), (ac, {i:}), (b, {i:})}.

(The displaye? contributions in Bi?[g] are yielded by
node~, re~pect1vely, s0 , s1, s2, s3 , s4 • Note that s.1 gives no
contnbut1on.)

3.4. De_finition

g, h E ~ are ready equivalent if 9l'[g] = Bi?[h]; notation
g =.91h.

500 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

It is proved in Bergstra, Klop and Olderog2 that ready
equivalence is a congruence w.r. t. the operations +, . ,
II, ll., I, C'H; when restricting ourselves to +, . we have
the isomorphism

IHl(+, .)/= 91 ~ I(BPA,1+PI, 2)

where/(-) is the initial algebra of - . (This is part of the
contents of Theorem 2.1 above.)

We now turn to ready-trace semantics (RTS); here
fewer processes (process expressions) are identified than
in ready semantics (RS), as explained above. The essential
difference is that while RS is based on the notion of
ready-pair (er, X) (see Fig. 2(a)), RTS is based on the
notion of a ready trace (see Fig. 2 (b)), where also the
'intermediate' ready sets Xi along trace a are given.

g:

x

(a)

(b)

Figure 2.

3.5. Definition

(i) Let gE ll-U. A path n in g, starting from the roots of
g, is an alternating sequence of nodes of g and labelled
edges in g:

ao al an--l
7! = S0 --+S1---+ ... ---+,S'n

with ai EA (not A6). Here n ~ 0; if n = O we have the
empty path. All paths in this paper will start from the
~oot, so we omit that qualification. A path is maximal if
it cannot be prolonged, that is, either ending in a terminal
no~~ (0) of in the initial node of a S-step.

. (11) If s ENO DES~g~, (g)8 will be the suhgraph of g
with roots and cons1stmg of all labelled edges accessible
from s.

(iii) As before, _l(g) is the set of initial steps of g, with
/(0) = {i:} and !(15) = 0. Instead of I((g)). we write J·ust
J(s). s

READY-TRACE SEMANTICS FOR CONCRETE PROCESS ALGEBRA

3.6. De,finition

(') L IHI d ao an-1 .
1 etgE an n=s0 ----+ ... ----+snbeapathmg.

Then rt(n), the ready trace corresponding to n, is the
alternating sequence of ready sets /(si) and steps ai:

I(s0), a0 , /(s1), a1, ••• , a 11 _ 1 , J(s,,)

(n;;:::: 0). We shall sometimes use the notation (a; X) for

such a ready trace where O' = a 0 a 1 •.• a11 _ 1 and X = I(s0),

/(s1), ... , I(srJ· The ready trace corresponding to the

empty path of g is just I(g) or in the (O'; X) notation,
(Jc, I(g)).

(ii) The ready trace set of g, notation .o/l.'T [g], is

{rt(n) In a path in g, starting from the root}.

(iii) g =.<Jf."I h if .o/l.'!I [g] = .o/l!!/ [h]; in words: g, hare
ready-trace equivalent.

3.7. Example

(i) Let g, h be as in Fig. 3.

g:

b

e

Figure 3.

Then g =,#."!h.
(ii) g, h as in Fig. 4 are not ready-trace equivalent (cf.

the counter-example in Proposition 2.4).

g:
a a

b J

e

Figure 4.

Namely, i!!l.'Y [g] contains the ready trace {a}, a, {d, b}, b,
{c~, c, {r,} which is not present in f!1.'Y [h].

3.8. Remark

In fact, in the present setting of finite acyclic process
graphs, it would have been sufficient to consider for the
definition of = :#:Y only ready traces corresponding to
maximal paths n. The present definition, which includes
also 'prefixes' of such ready traces, anticipates working
with infinite processes - which we shall not do in this
paper.

3.9. Remark

A convenient 'intuition' about a ready trace is this:
Imagine an interactive session with a machine as follows.
At the start of the session the machine presents the user
a menu ofall possible actions which the user may perform
(/(g)); one of these is chosen (a0), whereupon the machine

again flashes the menu of the options in that state (J(s1)),

and so on. Any moment the user may end the session, that
is, leave the machine which has on its screen the last menu
(I(s,,)). So a ready trace is a record of such a session.

We will prove in the sequel that =:JI."! is a congruence
on IHI w.r.t. +, . , II, lL I, aH, and also w.r.t. the priority
operator e which will be defined now.

3.10. Definition

Let a partial order < on Ac> be given such that J <a for
all a EA. Then e <, or e for short, is defined on IHI as
follows:

8(g) is the process graph arising from g by
(i) erasing all edges leaving nodes which have a label

a majorised by label b of some other edge leavings;
(ii) discarding all parts of g which have thus become

disconnected.

3.11. Example

Let a> band a> c. Then for pas in Fig. 5(a), B(p) is as
in Fig. 5(b):

p: 8 (p):
a

(a) (b)

Figure 5.

4. PROCESS GRAPH TRANSFORMATIONS
FOR READY-TRACE SEMANTICS

In order to prove that =:ill."/ is a congruence on ll-ll, and
to derive the completeness result in Theorem 5.2 below,
we will introduce three process graph transformations of
which the first two (already used in Bergstra, Klop &
Olderog2 are specific for bi-simulation semantics and the
third is specific for RTS.

4.1. The transformations double edge, sharing,
narrowing

(i) Double edge. This process graph transformation
step removes in a 'double edge'~ (a E A0) one of
the edges. a

Notation: g====;.h
Iii

(ii) Sharing. Suppose g E IHI contains two nodes s, t

determining identical subgraphs (g) 8 , (g)t· Then the nodes
s, t may be identified.

Notation: g====;,,h.
Iii[

(iii) Narrowing. If g E IHI contains a part as in Fig. 6 (a)
this may be replaced by the part as in Fig. 6(b). More
precisely, a new node r is created together with edges as
in Fig. 6(b), and the old a-edges to s, tare discarded. The
nodes s, t and the b;-edges leaving them (in Fig. 6(a)) are

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 501

.I. C. M. BAETEN. J. A. BERGSTRA AND J. W. KLOP

not discarded since s, t may have other incoming edges.
(If not, then s, t are inaccessible from the root and
disappear.)

(a)

Figure 6.

a
a

(b)

Here J(s) = 1(1) = {b1 , ... , b,,}; the h; may have multiple
occurrences among the labels of edges leaving nodes s, t.

Notation: g ==;,h.
liiiJ

4.2. Notation

==;,is '?>U ===?> U ==?>;==?>>isthetransitivere-
lil 111) [Ill[

flexive closure of ?>, and<~=?>> is the equivalence
relation generated by ==?>.

4.3. Example

(i)

Figure 7.

(ii)

a a

b b

c

d

a

b

c

d e

Proof

It is simple to check that each of the three graph reduc
tions keeps the ready trace set invariant. D

We will now establish the completeness of the graph
transformations.

4.5. Definition

gE IHl is in ready trace normal form (rt-normal form) if
none of the graph reductions is applicable to g.

4.6. Proposition

Every graph reduction g ==?> g' ===?> g" ===?> ... must
end eventually in a rt-normal form.

Proof

Let T(g) be the tree obtained from g by unsharing. Let
card(g) be the number of nodes in T(g). Then
transformations of type [iii] have the effect of decreasing
card (g), while types [i], [ii] do not increase card (g). Since
[i], [ii]-transformations clearly must end eventually, this
proves the proposition.

(Note that the detour via T(g) is necessary since a type
[iii] transformation may increase the number of nodes in
g, as Example 4.3(ii) shows: the second graph has one
node more than the first.) D

4. 7. Proposition

Letg, h be in rt-normal form and suppose g = .;uh. Then
g, h are identical.

Proof

The proof consists of remarking that an rt-normal form
g can be uniquely reconstructed from its ready trace set.
The reconstruction is as follows. Let the elements of
~Y [g] U {o} be the nodes in a process graph g* to be

constructed. The root of g* is J(g) (or (A.; J(g)) in the (a; X)
notation). The edges of g* are given by

--+ (l __,.

(a; X)--. (aa; X, Y) if the last entry of X is not 0
--> 6

(u; X, 0)---> o.

~
[11![

==?> ==?> ~ ==?> ==?> ==?>
lllil liiil [11J It[ltl 1111

e a a e e

b b b b b

c d d
0

Figure 8.

4.4. Proposition

Let g, h E IHl. Then graph reduction is sound w.r.t.
ready-trace equivalence, i.e.

g==?>> h implies g = Jf~ h.

502 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

~ow it is. a routine matter to show that g* is in fact
'.sor:iorp~1c to T~g). So we .have proved that T(g) and T(h)
are 1dent1cal (or 1somorph1c). From this it readily follows
that g, h are identical. D

Although we will not need it, let us remark the
following fact:

READY-TRACE SEMANTICS FOR CONCRETE PROCESS ALGEBRA

4. 7. I. Corollary

Process graph transformations ==9>are confluent.

Proof

Immediate from Propositions 4.4, 4.6 and 4.7. O

4.8. Lemma

g·«==>>h iff g =.1'.f"h.

Proof

The implication ===7> is immediate from Proposition 4.4.
For the reverse implication, suppose g, h are rt
equivalent. Let g* be an rt-normal form of g, obtained
by a maximal ===7>-graph reduction (it exists by
Proposition 4.6). Likewise h* is a rt-normal form of h.
Then by Proposition 4.4, g = Bi.:7 g* and h = df.:7 h*, and
hence g* =~ffh*. So by Proposition 4.7, g* and h* are
identical, and therefore g===7>>g*<~ h.

4.9. Lemma

= . .w.:7 is a congruence on IHl(+, . , II, LL I, oH, 8).

Proof

Using the previous lemma, it suffices to prove:
if g g', h h' then

(i) g O h<~>g' Oh', where Dis+, . , JI, lL j.
(ii) aH(g)«==>>oH(g')

(iii) O(g) <«~> O(g').

Of these implications (ii), (iii) are trivial.
(i) is easy for the operations +, .. For II it suffices to

prove g II h ~> g' II h, which can be seen best using some
'geometrical intuition' (cf. Example 4.10); or, alterna
tively, one proves more directly that g===7>g' implies
gllh = . .J!'.r g' llh. The details of a really rigorous proof
would be extremely time- and space-consuming, and we
will not attempt one in the present note.

The operators lL and I present no special diffi-
culties. D

4.10 Example

See Fig. 9. Let ala = a0 be the only non-trivial
communication.

4.11. Remark

In Bergstra, Klop and Olderog2 it was proved that
readiness equivalence on lHl(=.'!i') is generated by the
graph transformations===.>(double edge), ===7>-(sharing)

Iii lul
as before, together with the transformation 'cross', by
which in a part as in Fig. 10 (a) two b-steps may be inserted
to yield the part as in Fig. lO(b).

Using this fact we can pinpoint once more (cf. also
Proposition 2.4) why =tit is not a congruence w.r.t. 0.
Namely, if g, g' are the graphs in Fig. 11 (a), then O(g),
O(g'), with priorities d > b > f, are as in Fig. 11 (b).

~ A ... ·n ltii]
a a

b b

c d c d
0

h=

Then gJlh =

b b
ii

b b
ii

d
ii d

c ii c

ii.

a
=g'llh.

Figure 9. (Note that while g ~ g', the sequence of transfor-
1 iii]

mations gllh===;>>g' llh uses all three types of transformation.)

a

b b b b

(a) (b)

Figure 10.

g: g':
a a

d f d f
b b

c e c e

(a)

0 (g)
a

d

b

e c e

Figure 11.
(b)

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 503

J. C. M. BAETEN. J. A. BERGSTRA AND J. W. KLOP

Now clearly O(g) and O(g') are not convertible via [i], [ii]
and the cross transformation. Contrast this with the
present situation, where via some case analysis it is easily
seen that if g ~ g' then: O(g) ~ O(g') or O(g), O(g')
coincide. luil l•iil

4. 12. Some auxiliary operators on IHI

We will add two more operators on IHI, which serve to
axiomatise e in a finite way and to formulate a proof rule
typical for RTS.

4.12. l Definition

Let g, h E IHI. Then g <J h (g ·unless' h) is defined as the
result of erasing in g all initial steps which are majorised
(w.r.t. the p.o. < to which the priority operator refers)
by some initial step in h. (Of course, disconnected pieces
are discarded.)

4.12.2. Example

Let a< h <c. Then:

Figure 12.

4.12.3. De.fi.nition

A
{ }

n11 : IHI~ 11-ll is the nth projection operator (n ~ 1),
which cuts off all branches after n steps. E.g.

11"2(()a
b a

c a

Figure 13.

A
{ }

It is left to the reader to check that Lemma 4.9
generalises to the presence of <J and the n 11 (n :;;::: I).

5. A COMPLETE AXIOMATISATION FOR
READY-TRACE SEMANTICS

The previous results lead at once to a complete
axiomatisation RTS as in Table 2 for ready-trace
semantics on finite processes with communication (but
without silent moves).

Here the upper part of Table 2 is ACP, Algebra of
Communicating Processes; a, b vary over A 0. It contains
BPA0. The n 11 are projection operators; to formulate
RTR, the ready-trace rule, n1 is sufficient. Note that (at
least for finite processes) RTR is equivalent to the rule

1t1{x) = n1(Y)
a(x+ y) = ax+ay

Table 2

RTS x+y=y+x Al
x+(y+z) = (x+y)+z A2
x+x=x A3
(x+ y)z = xz+yz A4
(xy) z = x(yz) AS
x+b=x A6
bx= b A7

alb=bla Cl
(alb)lc = al(blc) C2
bla = b C3

x 11 y = x ll. y + y ll. x + x I y CM!
allx=ax CM2
ax ll y = a(x llY) CM3
(x + y) ll z = x ll. z + y ll z CM4
(ax)lb = (alb)x CMS
al(bx) = (alb)x CM6
(ax) I (by) =(a I b) (x II y) CM7
(x+y)lz=xlz+ylz CM8
xl(y+z) =xly+xl= CM9
o11(a)=aifa~H DI
ou(a)=bifaeH D2
011(x+y) = u11(x)+u 11Cv) D3
ofl(xy) = ou(x)uu(Y) D4
nm(a) =a PRI
n1(ax) =a PR2
nm+ 1(ax) = anm(x) PR3
nm(x+y) = nm(x)+nm(Y) PR4

n1(X) = ni(y)
RTR

:-(x+y) = zx+zy

5.1. Lemma

BPAa+ PR 1 -4+ RTR is a complete axiomatisation of
11-ll(+, .,1tn)/= . .Jf.~·

Proof

We refer to Bergstra, Klop and Olderog2 for the (obvious)
interpretation of process expressions in the graph model
and for the arguments concerning +, .. Clearly, RTR
corresponds to the process graph transformation ~ By

flit I
Lemma 4.8 we have completeness. D

The extension to the priority operator 0 can easily be
done on the basis of the axiomatisation ACP0 introduced
and analysed in Baeten, Bergstra and Klop1• ACP0 is the
axiom system consisting of ACP (upper part of Table 2)
and the nine axioms in Table 3:

Table 3

a<Jb=aifnot(a<b)
a <J b = J if a < b
X<lYZ=X<lJ'
X<l (y+z) = (X<l _v)<l Z

X)'<l Z = (X<l z)y
(x+ y) <1 z = x <1 z+ y <1 z
O(a) =a
O(xy) = B(x) O(y)
O(x+y) = B(x)<1 y+B(y)<l x

PI
P2
P3
P4
PS
P6
THI
TH2
TH3

We will refer to RTS together with the axioms in Table
3 as: RTS8.

504 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

READY-TRACE SEMANTICS FOR CONCRETE PROCESS ALGEBRA

5.2. Theorem

RTS0 is a complete axiomatisation of the graph model

IHI(+,., II, U.,i,0H,n11 ,<J,8)/=Jf.:v

Proof

The proof is entirely similar to the one for readiness
semantics in Bergstra, Klop and Olderog2, using Lemma
5.1 and the fact that all operators except the basic
operators +, can be eliminated from process expres
sions. O

5.3. Corollary

RTS11 is a consistent (in the sense of Section 2.2)
axiomatisation.

Proof

The elements of IHI(-)/ = .'if.r are = df.:requivalence
classes of graphs; each equivalence class is generated by
the three graph transformations of Section 3. These
transformations preserve traces. Hence, by Lemma 5.2,
the axiom system RTS0 is consistent. O

6. AN EXPLICIT PRESENTATION OF THE
MODEL FOR READY-TRACE SEMANTICS

Above, we have obtained a model for RTS, with
equivalence classes of process graphs as elements. It is
also possible to present this model in a more direct way,
namely with the ready-trace sets themselves as elements
(without any mention of underlying process graphs). This
requires formulating some closure properties of ready
trace sets (Cf. the analogous procedure in Bergstra, Klop
and Olderog2 for failure semantics.) The end result will
be an 'explicit' model for RTS, which is isomorphic to
the 'graph model' above. In order to obtain this explicit
representation, we have to define the operations +, . , II,
U., I, uH, fJ, <l, n 11 directly on the ready-trace sets. We will

do this only for 0, and further be satisfied with the
formulation of the closure properties inherent in a ready
trace set.

6.1. Definition

(i) Let X0 ,a0 ,X1'a 1,. .. ,a111 ,X11 be an alternating
sequence of sets X1 (i = 0, .. ., n) and actions a;
(i = 0, ... , n - l) for some n ~ 0. Then this sequence is a
ready trace if

(I) a1EX; (i < n)

(2) X0 , X 11 _ 1 :::::; A

(3) X,, :::::; A or Xn = {e} {i.: rt A).

We recall the notation (a; X) = (a0 , .. ., an-i; X0 , ... , X,,)
for X0 , au, ... , Xn.

(ii) Let !1.t be a collection of ready traces. Then !l' is a
ready trace set if !1l satisfies the following clauses:

(I) if (a; X)E.°l and (p; Y)E.'!t, then X 0 = Yo (root

condition)

(2) if (a; X) is a ready trace and (ap; X Y) E ::l' then

(a; X)EYF (prefix condition)

(3) if (a0, .. ., aA,-i; X0, ... , Xk) E Et and ak E Xk (ak #
e), then (a0 , ... , ak_1, ak;X0 , ... , Xk, Xk+i)E.'!t for
some Xk+i (:::::; A or = {e}) (continuation con
dition).

Clearly any f!d:Y [g], g E IHI is a ready-trace set in this
definition. (It holds moreover for :!It:!/ [g], g being in this
paper finite and acyclic, that every ready trace in ,qll,,'Y [g]
can be continued to one in which the last ready set is 0
or {e}.)

Vice versa, we can associate a process graph g£ (in fact
a tree) to a ready-trace set ;I[as already explained in the
proof of Proposition 4.7.

An alternative definition of a ready-trace set would be
one in which the ready traces are allowed to be infinite.
Under that definition, the resulting semantics would dis
tinguish processes like Ln an and 2: 11a" + aw.

It is possible to define the operators considered above
directly on these ready-trace sets. We will not do that,
except for the case of 0, in order to understand better why
() is compatible with RTS - and not with the coarser
semantics such as readiness or failure semantics.

6.2. Definition

Let a p.o. < on As be given.
(i) Let X:::::; A. Then O(X) is the set of maximal

elements (w.r.t. <) in X. If X = {e}, O(X) = X. If
X = X 0, ... , X," O(X) = G(X0), ... , O(X,,).

(ii) Let (a; X) be a ready trace. Then (a; fJ(X)) need not
be a ready trace, since property (I) of Definition 5 .4.1
may be violated. However, (a; fJ(X)) contains a maximal
prefix (in the obvious sense) which is still a ready trace.
Now we define

G(a; X)
to be this maximal prefix ready trace of (a;{:)(X)).

(Example: if a< b then O({a, b}, b, {a, b}, a, 0) = {b},
b, {b}.)

(iii) Let .6£ be a ready-trace set. Then

fJ(.OJ') = {O(a; X) I (a; X) E ;?{}.

Now we claim (without proof) that () and ,qll,:!J []
commute:

6.3. Claim

Let gE IHI. Then:

!Jll.'Y [G(g)] = G(f!d:Y [g]).

Note that in this explicit definition of the operator ()
on ready-trace sets it is essential to have the intermediate
ready sets in a ready trace available.

7. CONCLUDING REMARKS

We have considered a process semantics RTS, ready-trace
semantics (called in Pnueli8 'barbed semantics'), which is
intermediate between bi-simulation semantics (BS) and
readiness semantics (RS). The advantage of RTS over RS
and FS (failure semantics) is that it allows the presence
of operators that may be important for process
specification, such as the priority operator 0.

That is in contrast with RS and FS, which reject
operators like G, since in these semantics too many

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 505

J.C. M. BAETEN, J. A. BERGSTRA AND J. W. KLOP

processes are identified to bear the presence of B. This
seems to be a general phenomenon: the finer the process
equivalence, the more operators on processes (like 8) can
be defined. Adding more equations, i.e. making the
process equivalence coarser, increases the ease of process
verifications, but at the cost of losing specification
possibilities by means of operators such as e, which
become undefinable.

REFERENCES

I. J.C. M. Baeten, J. A. Bergstra and J. W. Klop, Syntax
and defining equationsfi1r an interrupt mechanism in process
algebra, Fund. lnf. IX (2), 1986, pp. 127-168.

2. J. A. Bergstra, J. W. Klop and E.-R. Olderog, Readies and
Failures in the Algebra of' Communicating Processes. CWI
report CS-R8523, Centre for Mathematics and Computer
Science, Amsterdam (1985).

3. J. A. Bergstra, J. W. Klop and E.-R. Olderog, Failure
Semantics with Fair Abstraction. CWI report CS-R8609,
Amsterdam (1986).

4. S. D. Brookes, On the relationship of CCS and CSP. In
Proc. !Otiz !CA.LP, Barcelona, edited J. Diaz. Springer
LNCS no. 154, pp. 83-96 (1983).

5. S. Brookes, C. Hoare and W. Roscoe, A theory of corn-

506 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

From an intuitive point of view (see Remark 3.9) a 'I
semantics such as RTS seems perfectly natural.

An evident direction for further work is the extension
of the above to infinite processes, and to silent
moves.*

* R. van Glabbeek has informed us that there is a neat complete
axiomatisation of RTS for finite processes with r-steps without,
however, the priority operator e.

municating sequential processes. Journal (if the Computing
Association of Machines 31 (3), 560-599 (1984).

6. R. Milner, A Calculus of Communicating Systems. Springer
LNCS no. 92 (1980).

7. E.-R. Olderog and C. A. R. Hoare, Specification-oriented
semantics for communicating processes. In Proc. JOth
!CALP, Barcelona, edited J. Diaz. Springer LNCS no. 154
(1983). Expanded version: Technical Monograph PRG-37,
Oxford University Computer Laboratory (1984).

8. A. Pnueli, Linear and branching structures in the semantics
and logics of reactive systems. In Proc. 12th !CALP,
Nafplion, edited W. Brauer. Springer LNCS no. 194, pp.
15-32 (1985).

