
SciQL, A Query Language for Science Applications

M. Kersten, N. Nes, Y. Zhang, M. Ivanova
CWI, Netherlands

ABSTRACT
Scientific applications are still poorly served by contemporary re-
lational database systems. At best, the system provides a bridge
towards an external library using user-defined functions, explicit
import/export facilities or linked-in Java/C# interpreters. Time has
come to rectify this with SciQL1, a SQL-query language for science
applications with arrays as first class citizens. It provides a seam-
less symbiosis of array-, set-, and sequence- interpretation using
a clear separation of the mathematical object from its underlying
storage representation.

The language extends value-based grouping in SQL with struc-
tural grouping, i.e., fixed-sized and unbounded groups based on
explicit relationships between its index attributes. It leads to a gen-
eralization of window-based query processing.

The SciQL architecture benefits from a column store system with
an adaptive storage scheme, including keeping multiple represen-
tations around for reduced impedance mismatch. This paper is fo-
cused on the language features, its architectural consequences and
extensive examples of its intended use.

1. INTRODUCTION
The sciences have long been struggling with the problem to archive

data and to exchange data between programs. Established file for-
mats are, e.g., NETCDF [28], HDF5 [17] and FITS [14], which
contain self-descriptive measurements in terms of units, instrument
characteristics, etc. In data-intensive sciences they contain very
large (sparse) multi-dimensional arrays or time series over numeric
data, e.g., (satellite) images and micro array sequences [20]. The
header is often an XML-based description of the instrument and the
experiment properties. For heterogeneous environments, such as in
bio-sciences, the data itself is also cast in XML2.

Relational database management systems are the prime means to
fulfill the role of application mediator for data exchange and data
persistence. Nevertheless, they have not been too successful in the
science domain beyond the management of meta data and work-
flow status. This mismatch between application needs and database

1SciQL is pronounced as ’cycle’.
2http://www.gbif.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2010 CWI .

technology has long been recognized [6, 34, 15, 18, 9, 20, 16, 4,
31]. In particular, an efficient implementation of array and time
series concepts is missing [15, 34, 24, 1]. The main problems en-
countered with relational systems in science can be summed up as
(a) the impedance mismatch between query language and array ma-
nipulation, (b) SQL is verbose for simple array expressions, (c) AR-
RAYs are not first class citizens, (d) ingestion of Tera-bytes data is
too slow. The traditional DBMS simply carries too much overhead.
Moreover, much of the science processing involves use of standard
libraries, e.g., Linpack, and statistics tools, e.g., R. Their interac-
tion with a database is often confined to a simplified import/export
dataset facility. A workflow management system is indispensable
when long running jobs on grids and clusters are involved. It is
realized mostly through middleware and a web interface, e.g., Tav-
erna [26].

Nevertheless, the array type has drawn attention from the database
research community for many years. The object-oriented database
systems allowed any collection type to be used recursively [2], and
multi-dimensional database systems took it as the starting point for
their design [16]. Several SQL dialects were invented in an attempt
to increase the functionality [27, 31, 21], but few systems in this
area have matured beyond the laboratory stage [4].

We believe that a clean design and a modern column-store database
engine provides a sound basis to tackle the problems. Key to suc-
cess is a query language that achieves true symbiosis of TABLE se-
mantics with ARRAY semantics in the context of external software
libraries. It led to the design of SciQL, where arrays are made first
class citizen by enhancing the SQL framework along three innova-
tive lines:

• Dimension constraints, which provide a general declarative
means to describe index access to array cells.

• Structural grouping, which generalizes the value-based group-
ing towards selective access to groups of cells based on po-
sitional relationships for aggregation.

• Adaptive storage, where the physical array storage is handled
by an adaptive runtime system.

Arrays in SciQL are identified by explicitly named index at-
tributes using DIMENSION constraints. Unlike a TABLE, every in-
dex combination denotes an array cell whose non-index value is
either explicitly stored, or derived from the attribute(s) DEFAULT
clause. Cells with default values need not be physically present.
The array size is fixed if the DIMENSION clause limits it explicitly.
The size of unbounded arrays are derived from the actual low/high
index values in their representation. The index type can be any of
the basic scalar types. The index attribute NULL value denotes ab-
sence of a cell. At the logical level this flavor is indistinguishable
from NULL valued attributes, but their underlying implementation

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301634529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

may differ greatly. For, arrays come in many physical flavors, i.e.,
dense and sparse arrays, row- and column- major order representa-
tions, list of lists, etc.. It is the task of the SciQL runtime system
to choose the best representation or to maintain multiple represen-
tations.

Arrays may appear wherever a table expression is allowed in a
SQL expression, producing an array if the target list contains in-
dex attributes. The SQL iterator semantics associated with TABLEs
carry over to ARRAYs, but iteration is confined to cells whose at-
tributes are not NULL.

An important operation is to carve out an array slab for further
processing. The windowing scheme provided in SQL:2003 is a
step into this direction. They were primarily introduced to better
handle time-series in business data warehouses and datamining. In
SciQL we take it a step further by providing an easy to use language
feature to identify groups of cells based on the relationships of their
index attributes. Such cell groups form a pattern, called a TILE,
which can be subsequently used in a GROUP BY clause to derive all
possible incarnations for statistical aggregation.

SciQL is purposely a SQL-flavored language. The adoption in
the astronomy community is a partial proof that 3rd generation, per-
sistent programming systems are not necessarily needed to access
TBs of array data [35]. It highlights the functional requirements
for database system architectures to develop into the direction to
satisfy this data-rich environment. This vision is reflected in this
paper by looking at the specific requirements in several science do-
mains. Rather than to revolutionize the world of how scientists
should organize their primary data repositories, we foresee and bet
on a symbiotic architecture where declarative array-based process-
ing and existing science routine libraries come together. The afore-
mentioned files, e.g., FITS, need not be ingested explicitly, but in-
stead they are exploited in an adaptive way by the SciQL query
processing strategy.

The MonetDB system is the target platform for SciQL. Its core
storage scheme is already heavily biased towards an array represen-
tation, which significantly reduces the impedance mismatch and
development effort. The software components go a long way in
keeping the order and provide for fast indexed access.

The remainder of the paper is organized as follows. Section 2
highlights the system architecture. Section 3 introduces SciQL
through a series examples. Section 4 demonstrates query function-
ality. Section 5 describes structural operators over arrays. Section 6
discusses SciQL’s support for two kinds of user defined functions.
Section 7 evaluates the language using snippets from key algo-
rithms in a few science domains. Section 8 discusses related work.
We conclude in Section 9 with a summary and an outlook on the
open issues.

2. SYSTEM ARCHITECTURE
Any array database system is biased towards the techniques de-

ployed to represent and operate on array data structures. Therefore,
a high level view on the SciQL architecture provides a frame of
reference for its subsequent definition. The corner stone for the ar-
chitecture is the MonetDB system 3. We refer to [5] for an overview
of its salient features.

2.1 Data Vaults
One of the main drawbacks of using database technology for sci-

ence is their hardwired slotted page structure to store tuples. It pro-
vides little room for storing arrays and one quickly has to resort to
BLOBs as the physical container for large array structures.

Over time, however, many sciences have developed file exchange

3http://www.monetdb.org

Figure 1: Alternative Array Storage Schemes

formats supported with software libraries for their storage and ma-
nipulation. Although it is relatively easy to convert these file struc-
tures into a relational table structure, it leads to duplicated storage
and often involves a time consuming import operation. Conversely,
when an array or time series representation in a database must be
shipped to an external library function, the format required is not
necessary physically aligned. An interface specific data marshaling
operation is then called for.

The solution chosen in the SciQL architecture is based on mutual
responsibility of database system and science data archive owner.
Data vaults have been added to the MonetDB suite, which contain
software modules to bridge the gap between both worlds. For each
foreign file format, or its specialization in a particular domain, a
vault is created. The vault comes with a catalog of files being man-
aged and status information on their whereabouts. In the simplest
case, the data archive owner updates the vault catalog with file lo-
cation names and leaves integration with database processing cycle
to the SciQL runtime system. Upon need, it will (partially) extract
and convert the foreign file into BATs, MonetDB’s internal format,
or simply call an external routine with reference to the data held by
MonetDB.

Each specific vault provides implementations of a minimum num-
ber of routines, i.e., import/export and marshaling functions. In
addition, any of the MonetDB algebraic operations can be over-
loaded to benefit from knowledge and access methods embodied in
the foreign file software libraries. Simple optimizers are called to
replace the MonetDB specific calls into (remote) library calls. For
example, execution of the operation aggr.count need not necessar-
ily require a complete load of the array. It may well be that this
information is encoded in the file header and easily accessible with
a library function.

2.2 Array Storage Schemes
Array representations in the runtime system of modern program-

ming languages use locality of reference. For example, RasDaMan
represents the complete multi-dimensional array as its program-
ming language counter part [3]. The SciDB project follows the
route to partition each table upfront into overlapping slabs for ease
of data allocation over multiple sites and improved parallel pro-
cessing [10, 6]. It is inspired by earlier extensions to PostgreSQL
to handle multi-dimensional arrays [29].

The building block of MonetDB is the binary relational table,
which is internally represented by two dense one-dimensional C-
arrays. These binary relational tables, also called Binary Associ-
ation Tables (BATs), are optimized for bulk processing both fixed
and variable length data types. In the translation of SQL into BATs,
the header column is used to store an OID, which allows for re-
covery of n-ary tuples through a join operation. For base tables,
the header column consists of a dense range of oid-values. This
fact is exploited in the kernel by turning such columns into virtual
columns, which do not require more storage than the start of the
oid-sequence. The actual OID is derived from the relative position

of a tail value in its array storage. The MonetDB kernel and op-
timizer stack maintain such properties and these features enable a
seamless integration of SciQL for one-dimensional C-arrays. There
is no impedance mismatch and operations run at top speed.

Moreover, SciQL does not rely on a single storage scheme for
multi-dimensional arrays. Instead, it selects the best representation
based on the intrinsic properties of an array instance. Both for per-
sistent data and intermittent data produced in queries. Consider a
2-dimensional ARRAY M. It can be represented in MonetDB in at
least four fundamentally different ways (see Fig1):

• Tabular, where the array index value is materialized.

• Virtual, where a single store contains the non-index attributes
and the cell location is derived by a function, e.g., M[x][y].v
using |y| ∗ x+ y.

• D-Order, where the array is stored using a programming lan-
guage compilation technique, such as row- or column- major
order using a series of BATs.

• n-ary Slabs, where a sizeable array is broken up into (over-
lapping) rectangles [6].

The prototype SciQL compiler uses the virtual representation as
the basis. Sparse arrays lead to tabular representations, and small
arrays can be represented as dimension-ordered. List of lists di-
rectly maps to 1-dimensional arrays (i.e., vectors) with complex
cells (i.e., each cell contains a list), but they can also be maped to a
multi-dimensional ragged array which shape is determined by the
depth of listing. Automatic re-organization between the schemes
is performed upon need in query plans. These storage options can
be combined into more complex structures to accomodate higher
dimensions. For example, a 3-dim array can be organized as a vir-
tual index along 2 of the dimensions. Likewise, a slab-based de-
composition is used as a starting point for parallel processing over
multiple cores and machines.

2.3 Query Evaluation
The query plan derived from SciQL expressions is similar to its

relational counterpart. The differences mainly appear in the leaves,
where now both tables and arrays form the sources, and the sym-
bolic reasoning over the dimensions in the remainder of the query
plan. Furthermore, joins over indexes occur more often as a pre-
lude for array arithmetic. The index columns are expanded when
touched. This may sound expensive, but the number of differently
shaped arrays in any application is limited. This means that we can
share the index columns with many actual arrays [19].

Further symbolic optimization largely follows well-known paths.
A short list of optimization rules is given in [3], which performs e.g.
replacement of operators by cheaper ones, propagate default ex-
pressions through the plan, common sub-expression elimination. In
addition, adaptive fragmentation of arrays into slabs forms the basis
for parallel processing using the existing techniques in MonetDB.
Likewise, re-use of common sub-expression and alternative array
representations are supported by its recycler technique [19]. A de-
tailed description of the optimizer and runtime system for SciQL,
which exploits the MonetDB infrastructure, is part of a companion
paper.

For the remainder of this paper, one may think of the SciQL
system to select the most appropriate storage scheme based on the
properties of the array instance.

3. LANGUAGE MODEL

In this section we summarize the features offered in SciQL con-
cerning ARRAY definitions as a first class citizen, their instantiation,
modification and coercions between TABLE and ARRAY.

3.1 Array Definitions
We purposely stay as close as possible to the syntax and seman-

tics of SQL:2003. An ARRAY object definition can reuse the syntax
of TABLE with a few minor additions. First, the ARRAY definition
calls for at least one attribute tagged with a DIMENSION constraint,
which describes its value range. The index type can be any scalar
type. Second, all non-index attributes come with a DEFAULT clause
to initialize the array cells. Ommission of the default or assigment
of a NULL-value produces a ‘hole’, which is ignored while scanning
the array. The default value may be arbitrarily constrained to take
an expression over other elements in the array, a side-effect free
function, or queries over the database at large as derived columns.

A TABLE and an ARRAY differ semantically in a straightforward
manner. A TABLE denotes a (multi-)set of tuples, while an ARRAY
denotes a (sparsely) indexed collection of tuples, also denoted as
cells. For an ARRAY all cells covered by the dimensions exist and
their attributes are initialized to a default value, while in a TABLE
tuples only come into existence after an insert operation. An AR-
RAY can be turned into a TABLE readily by ignoring its dimension
bounds, which turn the index attributes into a primary key. Like-
wise, a TABLE can be turned into an ARRAY by providing values
for all missing index elements, e.g., using the default values, or
changing the constraints attached to individual attributes.

The array size is either fixed or unbounded. It follows traditional
syntax to provide an upper bound for an integer index range, i.e.,
[size]. It is a shorthand for the sequence pattern <start expr>:<final
expr>:<step expr> composed out of literal constants. The default
start/final values and increment are type dependent. For integers the
size starts at 0 with an increment of 1. The pseudo expression ‘*’
can be used to denote an unbounded size, start or f inal expression.
An unbounded index satisfies the sequence pattern [∗ : ∗ : ∗]. Alter-
natively, a SQL SEQUENCE name can be used. Unbounded arrays
have an implicitly defined size derived from the minimal bound-
ing rectangle that encloses all index values in the ARRAY instance.
The effect is that listing an array with unbounded dimensions still
produces a finite result, but it may be huge. The arrays differ from
ordinary tables in that for out of bound index values the attributes
are set to produce NULL. Default values within the array bounds
are derived from the attribute’s DEFAULT clause. Ragged arrays are
obtained by setting the non-index attributes to NULL explicitly. The
following declarations of a zero initialized array float a[4] are
semantically identical:

CREATE ARRAY A1 (
x INTEGER DIMENSION[4],
v FLOAT DEFAULT 0.0);

CREATE ARRAY A2 (
x INTEGER DIMENSION[0:4:1],
v FLOAT DEFAULT 0.0);

CREATE SEQUENCE range AS INTEGER
START WITH 0 INCREMENT BY 1 MAXVALUE 3;

CREATE ARRAY A3 (
x INTEGER DIMENSION range,
v FLOAT DEFAULT 0.0);

SciQL arrays can take complex forms (Figure 2). In addition to
the C-style rectangular arrays, a grid can be defined as one where
the default value is indistinguishable from out of bound access, i.e.
some index values are explicitly excluded by carrying NULL val-
ues. A diagonal array is easily expressed using a predicate over the

Figure 2: SciQL Arrays

index dimensions involved. It is even possible to carve out an array
based on its content, thereby effectively nullifying all cells outside
its domain of validity and producing a sparse array. This feature is
of particular interest to remove outliers as an integrity constraint.
Different array forms can lead to very different considerations with
respect to their physical representation.

CREATE ARRAY matrix (
x INTEGER DIMENSION[4],
y INTEGER DIMENSION[4],
v FLOAT DEFAULT 0.0);

CREATE ARRAY stripes (
x INTEGER DIMENSION[4] CHECK(MOD(x,2) = 1),
y INTEGER DIMENSION[4],
v FLOAT DEFAULT 0.0);

CREATE ARRAY diagonal (
x INTEGER DIMENSION[4],
y INTEGER DIMENSION[4] CHECK(x = y),
v FLOAT DEFAULT 0.0);

CREATE ARRAY sparse (
x INTEGER DIMENSION[4],
y INTEGER DIMENSION[4],
v FLOAT DEFAULT 0.0 CHECK(v>0));

In SciQL, like SQL:2003 we also provide inclusion of array
columns. The most obvious use occurs when a science application
produces a sequence of time-stamped observations.

CREATE ARRAY experiment (
run DATE DIMENSION[TIMESTAMP ’2010-01-01’:*],
payload FLOAT ARRAY[4][4] DEFAULT 0.0);

This example also shows how SciQL is turned into a time series
support language by choosing a temporal domain index range. The
DIMENSION type is a time stamp or date and its increment is a
temporal unit. The time granularity (as with strings and floats) does
not imply availability of all values between the dimension bounds.
The index range will be sparsely populated.

3.2 Array Modifications

The SQL update semantics is extended towards arrays in a straight-
forward manner. Updates are focused on cell value replacement.
Contrarily, insert and delete operations affect the location of the
new/remaining cells in the array structure.

The array cells are initialized upon creation with the default value.
A cell is given a new value through an ordinary SQL UPDATE state-
ment. The index attribute is used as a free variable, which takes on
all valid values successively. All cells with an index attribute set
to NULL are skipped. A convenient shortcut is to combine multiple
updates into a single guarded statement. The evaluation order en-
sures that the first predicate that holds dictates the cells value. The
refinement of the matrix stripes is shown below. The cell receives
a zero only in the case x=y.

UPDATE stripes SET v = CASE
WHEN x>y THEN x + y
WHEN x<y THEN x - y
ELSE 0 END;

UPDATE diagonal SET v = x +y;
UPDATE sparse SET v = MOD(RAND(),16);

Assignment of a NULL value leads to a ‘hole’ in the array, a place
indistinguishable from the out of bounds area. For convenience, the
array aggregate operations SUM, COUNT, AVG, MIN and MAX are
applied to non-NULL values only.

Cell insertion is inspired by row and column addition in a spread-
sheet program. The major difference is that cell insertion is the fo-
cus. When the target cell was identified as a hole, it is filled with
the new value. However, if the target cell is already occupied, then
it shifts all row/columns to make room. For example, the next ex-
ample inserts one row and one column by shifting all cells x = x+1
for x >= 1 and y = y + 1 for y >= 1. The cells without explicitly
assigned value are set to their default. For fixed bound arrays all
cells that fall outside the bound due to the shifting are set to NULL.

INSERT INTO grid VALUES(1,1,25);

The experiment time series does not carry a temporal unit step
size, which means that any event timestamp would be acceptable.
The dimension merely enforces an order over the events. Further-
more, insertion does not trigger a cell shift, unless a clash occurs
with an existing timestamp. In such an unbounded case, gaining
access to cells inserted calls for a little more care, because not all
possible timestamps carry a value. Materialization as part of a scan
would lead to unwanted performance drain and explicit skipping of
non-valid cells clutter the query formulation. Therefore, the default
scan semantics over arrays is to ignore them. It can be overruled
by explicitly asking for the NULL-valued elements in the array. To
illustrate, consider removing invalid event cells from the array by
explicitly declaring them part of the outer bound space as follows:

UPDATE experiment
SET payload[x][y] = NULL WHERE payload[x][y] < 0;

In addition to individual cell deletion, a complete row and col-
umn can be taken out by identifying an anchor cell, i.e., one cell
kills all. Such a deletion results in a relocation of the remaining
cells, akin to its counterpart in spreadsheet programs. If the array
has bounded dimension sizes, it results in collecting all remain-
ing elements in the lower part of the dimensions. Note that setting
all cells to NULL individually does not initiate the dimension shift.
The example below removes half of the rows and columns without
changing the array shape. The remaining cells are shifted towards
the lower bound of the dimensions. The remaining elements are set
to the default value, i.e., the cells outside the range x[0 : 1]y[0 : 1]
are set to zero.

DELETE FROM matrix WHERE MOD(x, 2) = 0 OR MOD(y, 2) = 0;

3.3 Array and Table Coercions
One of the strong features of SciQL is to switch easily between

a TABLE and an ARRAY perspective. Any array is turned into a
corresponding table by simply selecting its attributes. The index
attributes form a compound key. However beware, the semantics of
an array leads to materialization of all cells, even if their value was
set to a non-NULL default. A selection excluding the user specified
default values may solve this problem. For example, the matrix
defined above becomes a table using the expression SELECT x,y,v
FROM matrix.

Let mtable be the table produced this way. It can be turned into
a (sparse) array by picking the index columns in the target list as
follows: SELECT [x], [y],v FROM mtable. The minimum/maximum
value of the index attributes x,y determine the array bounds. The
default value(s) is(are) inherited from the default in the underlying
table.

An arbitrary table expression can only be coerced into an ARRAY
if the target list contains the index attributes and they form a com-
posite key over the table instance. It is not necessary that the table
schema itself has a composite key being defined for the underlying
tables used to construct the result, but such a constraint makes the
coercion a lot cheaper to execute. Violation of this constraint is
flagged as a transaction error.

4. QUERY MODEL
From a query perspective there is hardly any difference from

querying a TABLE and an ARRAY. In both cases elements are se-
lected based on predicates, joins, and groupings. The result of any
query expression is a table unless the target list contains explicit
dimension qualifiers ([attribute]). A novel way to use GROUP BY,
called tiling, is introduced to improve structure based querying.

4.1 Cell Selections
The examples below illustrate a few simple array queries. The

first two create an array out of literals. Their index is left implicit.
The next extracts elements from the array into a table followed by
one that constructs a sparse array from the selection. Its dimension
properties are inherited from the result sets. The index dimension
qualifiers introduce a new index range, i.e., a minimal bounding
box is derived from the result set, such that the answers fall within
its bounds.

SELECT ARRAY (1,2,3,4);
SELECT ARRAY((1,2),(3,4));
SELECT x, y, v FROM matrix WHERE v >2;
SELECT [x], [y], v FROM matrix WHERE v >2;
SELECT [T.k], [y], v

FROM matrix JOIN T ON matrix.x = T.i;

The last example shows how elements of interest can also be
obtained from tables using an ordinary join expression. It assumes
that the table T has a collection of numbers, then the expression ex-
tracts the sub-array from matrix and sets the bounds to the smallest
enclosing bounding box defined by the k and y values. The actual
bounds of an array can always be obtained from the built-in func-
tions MIN and MAX over the dimension attributes.

4.2 Array Slicing
An ARRAY object can be considered an array of records in pro-

gramming terms. Therefore, the language supports indexed access
using the dimension order in the array definition. The attributes
of interest should be explicitly identified. A static range-pattern,
borrowed from the programming language arena, supports easy
slicing over individual dimensions. To illustrate with a few value-
expressions over the arrays defined earlier:

SELECT matrix[1][1].v;
SELECT sparse[0:2][0:2].v;

The array slicing sequence pattern is <start>:<stop>:<step>.
The shortened sequence pattern <start>:<stop> uses the default
increment from the array definition. The <step> arguments are
passed to the type specific increment function. The dimension se-
quence pattern [*] denotes all index values or unbounded list.

The SET statement in SQL is extended to also take array expres-
sions directly. This leads to a more convenient and compact nota-
tion in many situations. The bounds of the array can be specified
by a sequence pattern of literals. Again, a sequence of updates act
as a guarded function. The array dimension attributes are used as
free variables that run over all valid dimension values.

SET vector[0:2].v = (expr1,expr2);
SET vector[x].v = CASE
WHEN vector[x].v < 0 THEN x
WHEN vector[x].v >10 THEN 10 * x END;

4.3 Transposed Embedding
Embedding arrays into others is a straightforward application of

the insert statement. A common case is to embed an array into
a larger one, such that a zero initialized bounding border is cre-
ated. In the select clause, the index values of the matrix are used
to identify the cells in the vmatrix to be updated. A slightly more
elaborate example is to derive a new location for each cell using
an expression. For example, in construction of the embedding we
might want to transpose the matrix.

CREATE ARRAY vmatrix (
x INTEGER DIMENSION[-1:4],
y INTEGER DIMENSION[-1:4],
w FLOAT DEFAULT 0);

INSERT INTO vmatrix SELECT [y], [x], v FROM matrix;

Both examples use an index expression to identify the target lo-
cation of a cell. If we only had a list of values then the array is
filled in the order of the dimension bounds, assuming fixed dimen-
sion sizes. It means that omission of values for the dimensions is
not considered a type error.

CREATE ARRAY vmatrix (...)
AS SELECT v FROM matrix;

4.4 Aggregate Tiling
A key operation in datawarehouse applications is to perform statis-

tics on groups. They are commonly identified by an attribute or ex-
pression list in a GROUP BY clause. This value-based grouping can
be extended towards structural grouping for ARRAYs in a natural
way. Large arrays are often broken into smaller pieces before being
aggregated or overlaid with a structure to calculate, e.g., a kernel
function or aggregate. SciQL supports fine-grained control over
breaking an array into (overlapping) tiles using a slight variation of
the SQL GROUP BY clause semantics. Therefore, the attribute list
is replaced by a parametrized series of array elements, called tiles.
Tiling starts with an anchor point, which is extended with a list of
cell denotations based on the anchor point variables. The value de-
rived from an aggregation over a group is associated with the index
value(s) of the anchor point.

Consider the 4x4 matrix and tiling it with a 2x2 matrix by extend-
ing the anchor point matrix[x][y] with structure elements matrix[x+
1][y], matrix[x][y+1] and matrix[x+1][y+1]. The tiling operation
performs a grouping for every valid anchor point in the actual array
dimension (See Fig3). The individual elements of a group need not
belong to the array index domain, but then their values are assumed

Figure 3: SciQL Array Tiling

to be the outer NULL value, which are ignored in the statistical ag-
gregate operations. This way we break the matrix array into 16
overlapping tiles. The number can be reduced by explicitly calling
for DISTINCT tiles. This will only consider tiles whose boundary
indexes are mutually exclusive. The dimension range sequence pat-
tern can be used to concisely define all index values of interest.

SELECT [x], [y], avg(v) FROM matrix
GROUP BY matrix[x:x+2][y:y+2];

SELECT [x], [y], avg(v) FROM matrix
GROUP BY DISTINCT matrix[x:x+2][y:y+2];

SELECT [x], [y], avg(v) FROM matrix
GROUP BY DISTINCT matrix[x-1:x+1][y-1:y+1];

The last example illustrates how tiling can be controlled to in-
corporate knowledge about a zero initialized enclosure. A recurring
operation is to derive check sums over array slabs. For columns this
can be achieved with a simple tiling on the x dimension, e.g., SE-
LECT [x],sum(v) FROM matrix GROUP BY DISTINCT matrix[x][y :
∗]. Its anchor point is the index of each row.

A discrete convolution operation is only slightly more involved.
For, consider each element to be replaced by the average of its
four neighboring elements. The extended matrix vmatrix is used
to calculate the convolution, because it ensures a zero value for all
boundary elements. The aggregates outside the bounds [0:3][0:3]
are not calculated by using an array slab in the FROM clause.

SELECT x, y, AVG(v)
FROM vmatrix[0:3][0:3]
GROUP BY vmatrix[x][y], vmatrix[x-1][y], vmatrix[x+1][y],

vmatrix[x][y-1], vmatrix[x][y+1];

Value based selection and structure based selection can be com-
bined. An example of such a language concept is nearest neighbor
search. The structure dictates the context over which a metric func-
tion is evaluated. Most systems dealing with feature vectors deploy
a default metric, e.g., Euclidean function. The example below uses

an argument ?V as the reference vector. It generates a listing of
all rows with the distance from the reference vector. Ranking the
result produces the K-nearest neighbors.

SELECT distance(A, ?V), A.*
FROM matrix AS A
GROUP BY matrix[x][*];

Using the index attributes in the grouping clause permits arbi-
trary complex structures to be defined. It generalizes the window-
ing functions defined in SQL:2003, which are limited to aggrega-
tions over sliding windows over a sequence. The approach taken
can be generalized to support the equivalent of mask-based selec-
tion tiles. For this we simply need a table with index values, which
are used within the GROUP BY clause as a pattern to search for.

5. STRUCTURE OPERATORS
The structural grouping is a powerful method to iterate with a

template over an existing ARRAY. In the same line it is necessary
to provide cheap implementations of shape modifications, such as
dimensions adjustments, shape restructuring and array gluing.

5.1 Coordinate Systems
Consider a Landsat image stored as an array of 1024x1024 pix-

els in the database. One of the steps in the processing pipeline is to
align the image with known positions on the sky and to adjust the
coordinates accordingly. In practice, this amounts to calibration
process against some known sources in the image with those in the
database to derive a x− and y− shift. Often a stretching or contrac-
tion is needed to fit one image over another or anchor it against a
reference image. There are two cases to consider in materialization
of this shift in the image array. If the array has fixed dimensions,
then we can update the SciQL catalog by dropping the dimension
constraints and replace it with another. For example, we may shift
the image along the x axis with 5 steps as follows.

ALTER ARRAY img ALTER x DIMENSION[-5:*];

If the dimensions are not fixed in the catalog then we have to shift
all cells with a normal update statement. Such a shift operation does
not necessarily imply access to all elements in MonetDB. It can
change the properties of the underlying physical representation.

ALTER ARRAY matrix ADD r FLOAT
DEFAULT SQRT(POWER(x,2) + POWER(y,2));

ALTER ARRAY matrix ADD theta FLOAT DEFAULT (CASE
WHEN x > 0 AND y > 0 THEN 0
WHEN x > 0 THEN ARCSIN(CAST(x AS FLOAT) / r)
WHEN x < 0 THEN -ARCSIN(CAST(x AS FLOAT) / r) + PI()

END);

5.2 Dimension Reduction
In many applications array re-gridding is a key operation. The

canonical example is to break a large array into distinct tiles, per-
form an aggregation function over each tile, and construct a new
array out of these values. The SciQL tiling constructs address this
point for the larger part. The example below compresses the 4x4
matrix into a 2x2 matrix by averaging over the values in each tile.
This step to solve this problem benefits from the extended GROUP
BY semantics.

CREATE ARRAY tmp (
x INTEGER DIMENSION,
y INTEGER DIMENSION,
v FLOAT);

INSERT INTO tmp SELECT x, y, AVG(v) FROM matrix
GROUP BY DISTINCT matrix[x:x+2][y:y+2];

The next step is to take the now sparse array and condense it
along both dimensions. By default, all unassigned array elements
are NULL. This means that we can simply delete them, DELETE
tmp WHERE v =NULL, thereby triggering the reshuffling of rows
and columns as required. Of course, this assumes that the original
array did not have NULL-valued cells to begin with. Since the slid-
ing tile may bounce on the border of the array its value becomes
dependent on the NULL filled outer space. Pre-embedding the ma-
trix in a larger 0-valued outer space avoids this problem.

5.3 Array Composition
Taking arrays to form larger objects is one of the features advo-

cated in array database systems. It directly stems for matrix algebra
considerations, where the valence of the arrays is precisely con-
trolled and a constraint for most operations. In SciQL the valence
or shape plays a lesser role. However, the declarative structure per-
mits much more complex combinations to be spelled out precisely.
The SciQL approach is to start with a definition of the desired ar-
ray shape and to inject the operands of the concatenation into this
object. This gives precise control on the where abouts of each cell
in the final structure. For example, it allows for a checker boarding
merge of two tables as well.

CREATE SEQUENCE rng AS INTEGER
START WITH 0 INCREMENT BY 1 MAXVALUE 7;

CREATE ARRAY white (
i INTEGER DIMENSION rng,
j INTEGER DIMENSION rng,
color CHAR(5) DEFAULT ’white’);

CREATE ARRAY black (LIKE white);

CREATE ARRAY chessboard (
i INTEGER DIMENSION rng,
j INTEGER DIMENSION rng,
white CHAR(5));

INSERT INTO chessboard
SELECT [i], [j], color FROM white
WHERE (i * 8 + j) / 2 = 0

UNION
SELECT [i], [j], color FROM black
WHERE (i * 8 + j) / 2 = 1

6. USER DEFINED OPERATORS
A query language, most notably one aimed at science applica-

tions, should support easy extension of the operators defined. This
amounts to two function classes to be considered. The white-box
functions defined in terms of SciQL language primitives and black-
box functions whose implementation is taken from a linked in li-
brary.

6.1 White-box functions
Complex arrays in SciQL can be created with ARRAY producing

functions, much like table producing functions in the PERSISTENT
STORED MODULE of SQL:2003. The functions are side-effect free,
they take (array) arguments and return a new array instance. Below
we illustrate a few built-in functions, inspired by the MATLAB li-
brary. The first function returns a vector of random numbers. The
last example illustrates a matrix transposition, which is simplified
by our facility to manipulate the indexes explicitly.

CREATE SEQUENCE seq AS INTEGER START WITH 0
INCREMENT BY 1 MAXVALUE 10;

CREATE FUNCTION random ()
RETURNS ARRAY (i INTEGER DIMENSION, v FLOAT)

BEGIN RETURN SELECT[seq], RAND() FROM SEQUENCES seq; END;

CREATE FUNCTION transpose (
a ARRAY (i INTEGER DIMENSION,

j INTEGER DIMENSION, v FLOAT))
RETURNS ARRAY (i INTEGER DIMENSION,

j INTEGER DIMENSION, v FLOAT)
BEGIN RETURN SELECT [j],[i], a[i][j].v FROM a; END;

6.2 Black-box functions
A query language for science applications cannot ignore the fact

that most operations needed are already defined, tested, and opti-
mized in widely available software libraries. A symbiosis between
SciQL and these well-tested and broadly used libraries should be
created. The SQL:2003 standard supports black-box functions by
tagging a signature with en external name and a possible host lan-
guage name. In most cases, the externally defined function is a
wrapper, that translates the database specific storage structure into
something understood by the library function being called.

For example, we may want to use a matrix algebra package to
perform a Markov chain operation over a matrix. The physical
representation of the matrix in SciQL may differ from the one ex-
pected in the library. For example, small arrays can be represented
in a column oriented fashion, while the external library calls for a
row-major order representation of the array elements. Then at each
call the internal format has to be re-cast. This is a potentially ex-
pensive operation and a possible focus for shifting to a white-box
implementation instead.

CREATE FUNCTION markov (
input ARRAY (x INT DIMENSION, y INT DIMENSION, f FLOAT),
steps INT)

RETURNS ARRAY (x INT DIMENSION, y INT DIMENSION, f FLOAT)
EXTERNAL NAME ’markov.loop’;

7. FUNCTIONAL EVALUATION
One way to evaluate SciQL is to confront the language with a

functional benchmark. Unfortunately, the area of array- and time-
series databases is still too immature to expect a (commercially) en-
dorsed and crystallized benchmark. Instead, we focus on test suites
defined in the context of AML [25] and ordered SQL [21, 12]. In
combination with the black box function libraries, they provide an
outlook in the feasibility of SciQL.

7.1 Image Analysis
The AML benchmark suite [25] context is a single LandSat im-

age composed of 1024x1024 images along 7 channels. Such im-
ages undergo a cleansing and scrubbing process before being pub-
lished as an image product. In this process, errors induced by the
remote scanning sensors over time are compensated. Valid data in
one of the channels must be normalized against data of the other
channels. The AML suite contains five algorithms: TVI, NDVI,
DESTRIPE, MASK and WAVELET. The queries all focus on a sin-
gle channel against the Landsat array:

CREATE ARRAY landsat (
channel INTEGER DIMENSION[7],
x INTEGER DIMENSION[1024],
y INTEGER DIMENSION[1024],
v INTEGER);

7.1.1 DESTRIPE
The destriping algorithm is an image cleaning and restoration

operation. It is used to correct the errors that may have occurred
in the individual channels due to sensor aging. This results in rel-
atively higher or lower values along every sixth line occurring in a
specific channel. Assume that the drift delta for channel 6 is de-
rived using statistics [23] and that the noise of each pixel is to be
reduced with the function noise() for the scan lines 1, 7, 13, etc.

UPDATE landsat SET v = noise(v,delta)
WHERE channel = 6 AND MOD(x,6) = 1;

7.1.2 TVI
A common earth observation enhancement technique is to com-

pute vegetation indexes using between-band differences and ratios.
A scalar function tvi defined as follows encapsulates this heuristics:

ftvi(b3,b4) =
[

b4−b3
b4+b3

+0.5
]0.5

where bi denotes the radiance in the i-th band.

CREATE FUNCTION tvi (b3 REAL, b4 REAL) RETURNS REAL
RETURN POWER(((b4 - b3)/ (b4 + b3) + 0.5), 0.5);

Each of the bands is first pre-processed by a noise-reduction
technique. In the original suite[25] this is done by a convolu-
tion filter that computes the noise-reduced pixel radiance using the
radiances of the pixel’s eight immediate neighbors. The filter is
implemented as a SciQL function that takes as an argument a 2-
dimensional array of size 3x3, i.e. the radiance of the pixel and its
neighbors, and returns the noise-reduced value:

CREATE FUNCTION conv (
a ARRAY(i INTEGER DIMENSION[3],

j INTEGER DIMENSION[3],
v FLOAT))

RETURNS FLOAT
BEGIN

DECLARE s1 FLOAT, s2 FLOAT, z FLOAT;
SET s1 = (a[0][0].v + a[0][2].v +

a[2][0].v + a[2][2].v)/4.0;
SET s2 = (a[0][1].v + a[1][0].v +

a[1][2].v + a[2][1].v)/4.0;
SET z = 2 * ABS(s1 - s2);
IF ((ABS(a[1][1].v - s1)> z) or

(ABS(a[1][1].v - s2)> z))
THEN RETURN s2;
ELSE RETURN a[1][1].v;
END IF;

END;

Having the tvi and the conv functions defined, the TVI index of
the satellite image is computed by the following SciQL query:

SELECT [x], [y],
tvi(conv(landsat[3][x-1:x+1][y-1:y+1]),

conv(landsat[4][x-1:x+1][y-1:y+1]))
FROM landsat;

Note that in the above example, the function conv() does not take
into account the possibility that its array parameter a can contain
outer NULL values. In such cases, the value of s1 or s2 is NULL and
the function will always return a[1][1].v. To overcome this prob-
lem, without adding many statements to explicitly deal with the
NULL values, one can embed each image along each channel into a
larger array. Another alternative is to use the SciQL tiling approach
described in Section 3.4, as shown in the function conv2() below:

CREATE FUNCTION conv2 (
a ARRAY(i INTEGER DIMENSION[3],

j INTEGER DIMENSION[3],
v FLOAT))

RETURNS FLOAT
BEGIN

DECLARE s1 FLOAT, s2 FLOAT, z FLOAT;
SET s1 = (SELECT AVG(v) FROM a

WHERE a.i = 1 AND a.j = 1
GROUP BY a[i-1][j-1], a[i-1][j+1],

a[i+1][j-1], a[i+1][j+1]);
SET s2 = (SELECT AVG(v) FROM a

WHERE a.i = 1 AND a.j = 1
GROUP BY a[i-1][j], a[i][j-1],

a[i][j+1], a[i+1][j]);
SET z = 2 * ABS(s1 - s2);
IF ((ABS(a[1][1].v - s1)> z) or

(ABS(a[1][1].v - s2)> z))
THEN RETURN s2;
ELSE RETURN a[1][1].v;
END IF;

END;

7.1.3 NDVI
The normalized difference vegetation index (NDVI) is computed

directly from the AHVRR bands over two successive bands us-
ing the formula NDV I = (b2−b1)

(b2+b1)
with bi the data in channel i.

The NDVI produces arrays where vegetation has positive values,
clouds, water and snow have negative values, the remainder denotes
rock and bare soil. The values for Bi are preferably in radiance
rather than pixel intensity values. Suppose that the pixel intensities
in bands b1 and b2 are in the range of 0..255. Then, pixel intensity
and radiance are related using the formula [23]: bout = (LMAX−
LMIN)/255× bin + LMIN Hence, bout is the absolute spectral ra-
diance value, while bin is the pixel intensity. The global variables
LMIN and LMAX are sensor specific.

First, we define an SQL function that returns the spectral radi-
ance given pixel intensity and the sensor parameters:

CREATE FUNCTION intens2radiance (
b INT, lmin REAL, lmax REAL)

RETURNS REAL
RETURN (lmax-lmin) * b /255.0 + lmin;

Next, we create the target array ndvi with attributes to hold the
intermediate steps:

CREATE ARRAY ndvi (
x INT DIMENSION[1024],
y INT DIMENSION[1024],
b1 REAL, b2 REAL, v REAL);

UPDATE ndvi SET
ndvi[x][y].b1 = (

SELECT intens2radiance(landsat[1][x][y].v, lmin, lmax)
FROM landsat),

ndvi[x][y].b2 = (
SELECT intens2radiance(landsat[2][x][y].v, lmin, lmax)
FROM landsat),

ndvi[x][y].v = (ndvi[x][y].b2 - ndvi[x][y].b1) /
(ndvi[x][y].b2 + ndvi[x][y].b1);

7.1.4 MASK
In image analysis a bit-valued array is often used to mask a por-

tion of interest. They are typically derived from performing a filter
over the pixel values followed up with, e.g., a flooding algorithm
to derive a coherent slab. For example, consider construction of
an n× n mask image derived from the landsat image using aver-
aging over 3x3 elements and keeping only those within the range
[10,100]. The computation is easily expressed by the tiling con-
struct of SciQL with associated predicate on the tiles:

SELECT [x], [y], AVG(v) FROM landsat
GROUP BY landsat[x-1:x+1][y-1:y+1]
HAVING AVG(v) BETWEEN 10 AND 100;

Note that the border tiles may contain NULL-valued cells. Hence,
the result mask array may have size of (n− 2)× (n− 2). Alterna-
tively, the original matrix can be embedded in a larger one with
borders initialized with an application-dependent default values, so
that the mask array produced is again of size n x n.

7.1.5 WAVELET
Multi-resolution image processing is based on wavelet transforms.

An image is decomposed into many components so that it can be
reconstructed in multiple resolutions. Consider a step in wavelet
reconstruction where two n

2 ×
n
2 images are used for reconstruction

of a higher-resolution image of size n× n
2 . Assume that the img ar-

ray has been defined with dimension attributes x and y, and a value
attribute v, to hold the result of the wavelet reconstruction of arrays
d and e4.

UPDATE img
SET v = (SELECT d.v + e.v * POWER(-1,x) FROM d, e

WHERE img.y = d.y AND img.y = e.y AND
d.x = img.x/2 AND e.x = img.x/2);

Alternatively, we can specify the computation using the array
slicing notation:

UPDATE img
SET img[x][y].v = (

SELECT d[x/2][y].v + e[x/2][y].v * POWER(-1,x)
FROM d, e);

For convenience, the computation can be encapsulated in a SciQL
array-valued function taking the arrays d and e as parameters. This
provides a concise notation when a number of successive calls are
needed, while keeping the computation in a white box amendable
for optimizations.

7.1.6 Matrix-vector Multiplication
Many array manipulations require multiplication of matrices. Let

A be a 2-dimensional array with dimensions named x and y, and B
be a 1-dimensional vector with dimension named k, matching the
size of A on dimension y:

CREATE ARRAY m (
x INT DIMENSION[1024],
v INT);

UPDATE m
SET m[x].v = (SELECT SUM(a[x][y].v * b[k].v)

FROM a,b
WHERE a.y = b.k
GROUP BY a[x][*]);

7.2 Astronomy
The Flexible Image Transport System(FITS) [14], is a standard

file format for transport, analysis, and archival storage of astro-
nomical data. Originally designed for transporting image data it
has evolved to accommodate more complex data structures and ap-
plication domains.

The content of a FITS file is organized in HDUs, header-data
units, each containing metadata in the header, and a payload of
data. The file always contains a primary HDU, and may contain a
number of extensions. The data formats supported by the standard
are images, ASCII and binary tables. The fact that arrays and tables
are the only standard extensions in FITS after almost 30 years of
use is a positive indicator that a language where both tables and
arrays are first-class citizens will offer sufficient expressive power
for the needs of astronomy community.

The image extension is used to store an array of data. The array
may have from 1 to 999 dimensions. Fixed number of bits represent
data values. Multi-dimensional arrays are serialized the Fortran-
way, where the first axis varies most rapidly. Index ranges always
begin with 1 and have increment of 1.

ASCII and binary table extensions allow for storage of catalogs
and tables of astronomical data. The binary tables provide more
4We skip the complementary step reconstructing an image of size
n×n from two n× n

2 images, which can be similarly expressed.

features and are more storage efficient than ASCII tables. An im-
portant enhancement is the ability of a field in a binary table to
contain an array of values, including variable length arrays.

FITS is a mature standard that during the years has accumulated
lots of software packages. It has interface libraries for the major
procedural languages, visualization and editing tools. Typical pro-
cessing of FITS files includes column and row filtering, for instance
add a column derived through an expression from other columns,
or filter rows based on time interval or spatial region filtering. The
tools create a temporary copy in memory which is supplied to the
the application program.

FITS files can contain entire database about an experiment. Data
in FITS files can be mapped to the SciQL model as follows. The
ASCII and binary table extensions have straightforward represen-
tation as database tables. The metadata about the table structure
(the number of columns, their names and types) are described as
compulsory keywords in the extension header. The image exten-
sion directly corresponds to the array concept in SciQL. The array
metadata (number and size of dimensions, the type of elements) are
again specified in respective header keywords. For the remainder of
this section, we assume existence of a single FITS file to be made
visible within SciQL.

7.2.1 SciQL Use Cases
In X-ray astronomy events are stored in a 2-column FITS ta-

ble (X ,Y), where X and Y are the coordinates of detected photons.
The corresponding image is created by binning the table that pro-
duces a 2-dimensional histogram with a number of events in each
(X ,Y) bin. Assume that the FITS table with events is loaded into
event(x,y) database table. The image array is then created by the
following SciQL statement:

CREATE ARRAY ximage (
x INTEGER DIMENSION,
y INTEGER DIMENSION,
v INTEGER DEFAULT 0);

INSERT INTO ximage SELECT [x], [y], count(*)
FROM events GROUP BY x,y;

For binning of size bigger than one, we can use the tiling feature
of SciQL. For instance, image with binning=16 can be derived as
follows:

SELECT [x/16], [y/16], SUM(v)
FROM ximage
GROUP BY DISTINCT ximage[x:x+16][y:y+16];

Images stored in the data array of the primary HDU of a FITS
file have integral array indexes that range in value from 1 to sizei,
the size in dimension i. As a first processing step pixel coordi-
nates need to be mapped to some of the world coordinate systems
(WCSs, e.g., Celestial, Spectral) presented through a set of key-
words in the header section of the image HDU. The first mapping
step is a linear transformation applied via matrix multiplication
qi = ∑

N
j=1 mi j(p j − r j), where r j are the pixel coordinates of the

reference point, mi j are the elements of the linear transformation
matrix, j indexes the pixel axis, and i indexes the world coordinate
system axis. The result intermediate pixel coordinates are offsets
that are scaled to physical units by a scalar vector multiplication:
xi = si ∗qi.

Assume that the image extension has been imported to SciQL
system as a 2-dimensional array img, the transformation matrix
defined through the keywords into a 2-dimensional array m, and
the scaling vector and the reference point coordinates into a 1-
dimensional arrays s and re f , resp. Similarly to array transforma-
tion in Sec. 5.1 we first extend the img array with attributes to hold
the world coordinate system:

ALTER ARRAY img ADD wcs_x FLOAT DIMENSION;
ALTER ARRAY img ADD wcs_y FLOAT DIMENSION;

Assume that both coordinate systems are 2-dimensional, i.e. the
matrix m has size 2x2. The coordinates in the WCS are computed
by the matrix-vector multiplication and scaling described above,
specified in SciQL in the following way:

UPDATE img
SET wcs_x = (SELECT s[0].v *

(m[0][0].v * (img.x - ref[0].v) +
m[0][1].v * (img.y - ref[1].v))

FROM m, ref, s),
wcs_y = (SELECT s[1].v *

(m[1][0].v * (img.x - ref[0].v) +
m[1][1].v * (img.y - ref[1].v))

FROM m, ref, s);

7.3 Seismology
Temporal data is important in many different areas, such as statis-

tics, signal processing, econometrics and mathematical finance. In
the scientific world sensor data (such as temperature, ground accel-
eration and strain gauges) are often time-series data, as they come
in as continuous streams at fixed rates. In the time series domain
there does not exist a standardized functional test of expressiveness.
Since the primary target of SciQL is the science domain, we take
the SEED time series data as a yardstick.

The Standard for the Exchange of Earthquake Data (SEED) [30]
is an international standard format for the exchange of digital seis-
mological data. It is a format for digital data measured at one point
in space and at equal intervals of time. Currently, SEED is a widely
used standard file format for the exchange of seismic waveform
data among global broadband seismograph networks.

A SEED volume consists of a number of control headers fol-
lowed by a number of data records, i.e., the waveform time series.
The control headers contain auxiliary information about this SEED
volume, the stations (e.g., their geographic locations) and the data
records stored in this SEED volume. The data records contain both
raw data that is sample rate specific and time dependent, and em-
bedded auxiliary information of this data stream. Each data record
is composed of three main fields. The first field is a 48 bytes fixed
header containing meta information of the time series in this data
record, such as data quality, sample rate and start time. The fixed
header also contain identifiers to refer to the station that has pro-
duced this time series. Then, there is a variable header, which al-
lows more (but less significant) auxiliary information to be added.
Finally, the data section contains a time series in the form (times-
tamp, datasample), where measurement can be of different data
type.

In its current implementation, the SEED volumes are mostly
stored separately in dataless SEED volumes containing the con-
trol headers, and dataonly SEED volumes (also called miniSEED
volumes, or mSEED for short) containing the data records. This
separation avoids repeated transmission of SEED volume control
header information and allows for rapid re-distribution of meta-data
when station information changes. An increasing usage of SEED
data is distributing pure mSEED combined with access to dataless
SEED volumes.

In SciQL, we map the meta information about the stations onto
a 3D array with the geographic locations as the dimensions:

CREATE ARRAY Stations(
latitude INTEGER DIMENSION,
longitude INTEGER DIMENSION,
altitude INTEGER DIMENSION,
id VARCHAR(5), -- Station identifier code
name VARCHAR(60) -- Station name);

Each data record is mapped onto one tuple in the table mSeed,
which contains a 1-D time series to store the data samples.

CREATE TABLE mSeed(
seqnr INTEGER, -- Identifier of this data record
station VARCHAR(5),
quality CHAR,
samples ARRAY (

time TIMESTAMP DIMENSION,
data DOUBLE),

PRIMARY KEY (seqnr),
FOREIGN KEY (station) REFERENCES Stations(id));

7.3.1 Retrieving Time Series Data
The predominant operation on the mSEED data is retrieving time

series by dates, possibly with additional constraints on, e.g., sta-
tions. Seismologists are mainly interested in most recent data, typ-
ically within weeks. If there has been an earthquake recently, exact
locations and dates are often given to retrieve SEED data related to
that earth quake. For example, to retrieve all data samples that have
been measured by the sensors in New Zealand on Sep. 3rd, 2010
(there was an earthquake in New Zealand on that day around 04:35
PM), the following query can be used:

SELECT Stations.*, seqnr, quality,
samples[TIMESTAMP ’2010-09-03 16:30:00’:

TIMESTAMP ’2010-09-03 16:40:00’]
FROM mSeed, Stations
WHERE station =

Stations[?lat_min:?lat_max][?lng_min:?lng_max][*].id;

In this query, we rely on the SciQL slicing feature. In the WHERE
clause, the returned data series are first limited to those produced
by stations located in New Zealand, by slicing over the latitude
and the longitude dimensions of the array Stations. For simplic-
ity, we use two pairs of min/max variables to indicate the area of
New Zealand. Then, in the SELECT clause, we slice over the time
dimension of the array samples to select only those time series that
were measured around the time the earthquake was happening.

7.3.2 Data Cleansing
For scientists working with noisy data, an important class of op-

erations concerns data cleansing. Gaps are one type of noise in
seismological data. A gap exists if the difference of times of two
consecutive samples is larger than the sample rate. Detection of
gaps within certain thresholds can be expressed in SciQL as the
following:

SELECT * FROM mSeed
WHERE next(samples.time) - samples.time

BETWEEN ?gap_min AND ?gap_max
HAVING next(samples.time) IS NOT NULL;

Since the time dimension contains many holes, a built-in func-
tion next() is required to find the next valid data sample.

7.3.3 Spikes Detection
Under normal seismic background conditions, the sample data

are highly correlated indicating low activity in the earth surface.
A burst in the sample data, called spikes, can indicate interesting
activities in the earth surface or malfunctioning sensors. For fur-
ther analysis (e.g., applying more advanced algorithms to find the
cause of the burst), it is necessary to detect the spikes and retrieve
their neighboring time series. For example, tiles of 200 samples are
selected anchored at a spike for a threshold T as follows:

SELECT seqnr, quality, station, samples[time-100:time+100]
FROM mSeed
WHERE ABS(samples[time].data -

next(samples[time]).data) > ?T;

7.3.4 Computing Moving Averages
Computing trailing moving averages is an important class of op-

erations for time series. Assume a samples array of five consecu-
tive seconds and its moving average :

time (sec) data 3sec moving avg
1 4.5051 4.5051
2 4.5947 4.5499
3 5.2231 4.7743
4 4.9635 4.9271
5 5.2945 5.1604

Trailing means that for each data value, we compute the aver-
age of this value and two preceding values of it. The three seconds
trailing moving average of the data value at time 3 is (4.5051 +
4.5947 + 5.2231)/3 = 4.7743. The DATA value at time 2 does
not have two preceding values. Its moving average is computed
as ((4.5051 + 4.5947)/2 + 4.5051 + 4.5947)/3 = 4.5499, i.e., the
absent value is replaced by the average of the present values, which
equals to (4.5051 + 4.5947)/2. The same holds for the value at
time 1. D. Shasha pointed out in [12] that expressing moving aver-
age in SQL is extremely hard. In SciQL, we can rely on the tiling
features and the extended semantics of the AVG() function to con-
cisely express this class of operations:

SELECT [time], data, AVG(sample[time-3:time].data)
FROM mSeed WHERE mSeeds.seqnr = ?nr
GROUP BY sample[time-3:time];

8. RELATED WORK
Already in the 80’s, Shoshani et al. [32] identified common char-

acteristics among the different scientific disciplines. The subse-
quent paper [33] summarizes the research issues of statistical and
scientific databases, including physical organization and access meth-
ods, operators and logical organization. Application considerations
led Egenhofer [13] to conclude that SQL, even with various spa-
tial extensions, is inappropriate for the geographical information
systems (GIS). Similar observations were made by e.g. Davidson
in [11] on biological data. Maier et al. [24] injected “a call to or-
der” into the database community, in which the authors stated that
the key problem for the relational DBMSs to support scientific ap-
plications is the lack of support for ordered data structures, like
multidimensional arrays and time series. The call has been well
accepted by the community, considering the various proposals on
DBMS support (e.g., [4, 6, 9, 16, 20, 31]), SQL language exten-
sions (e.g., [3, 21, 27]) and algebraic frameworks (e.g., [9, 22, 25])
for ordered data.

In the area of building/extending DBMS with array support, the
systems can be divided into three groups: i) simulating arrays on
top of a relational DBMS, such as RAM [36] and SRAM [9]; ii)
storing arrays as BLOBs in relational DBMSs and using an array
executor to deal with array specific queries, such as RasDaMan [4];
and iii) enhancing a relational DBMS with array as a primary data
type and providing native support for array oriented operations,
such as SciQL and SciDB [6, 34, 10].

RAM [36] is a proposal for flexible representation of information
retrieval models in a single multidimensional array framework. It
introduces an array algebra language on top of MonetDB and used
as the “gluing layer” for DB+IR applications. RAM defines a set
of basic array algebra operators, including MAP, APPLY, AGGRE-
GATE, CONCAT, etc. Queries in RAM are compiled by the front-
end into an execution plan to be executed by the MonetDB ker-
nel. RAM does not support a declarative language such as SQL.
SRAM [9] is a following up of RAM that pays special attention to
efficient storing and querying of sparse arrays in relational DBMS.

Despite the abundance of research effort, there is just a single
mature system to handle arrays in a database fashion. RasDaMan [4]

is a domain-independent array DBMS for multidimensional arrays
of arbitrary size and structure. It has completely been designed in
an object-oriented manner. RasDaMan follows the classical two-
tier client/server architecture with query processing done completely
in the server. It relies on the underlying DBMS to store arrays as
BLOBs, so theoretically, it can be ported to any DBMS. Arrays are
decomposed into tiles, which form the unit of storage and access.
The RasDaMan server acts as a middleware, which maps the ar-
ray semantics to a simple “set of BLOB” semantics. RasDaMan
provides a SQL-92 based query language RasQL [3] to manipulate
raster images using foreign function implementations. It defines a
compact set of operators, e.g., MARRAY creates an array and fill it
by evaluating a given expression at each cell; CONDENSE aggre-
gates cell values into one scalar value; SORT slices an array along
one of its axes and reorders the slices. RasQL queries are executed
by the RasDaMan server, after the necessary BLOBs have been re-
trieved from the underlying DBMS.

RAM and RasDaMan have a common drawback, namely, they
are black boxes to the underlying DBMS. This means that RAM
and RasDaMan cannot fully benefit from the query execution facil-
ities provided by the underlying DBMS. Contrary, the underlying
DBMS is not aware of the specific array properties, which result in
missing opportunities for query optimization.

A recent attempt to develop an array database system from scratch
is undertaken by the SciDB group. The mission of SciDB at large [34]
is the closest to SciQL, namely, building array database with tai-
lored features to fit exactly the need of the science community.
In [10] and [6] SciDB has shown that the SciDB architecture, in
which arrays are vertically partitioned and divided into overlapping
chunks (or slabs), contributes to efficient distributed array query
processing. SciDB follows SQL with array creation syntax to cre-
ate arrays with named dimensions. Five operators (SLICE, SUB-
SAMPLE, SJOIN, FILTER and APPLY) have been defined especially
for array manipulation. However, their design is a mix of SQL syn-
tax and algebraic operator trees, instead of a seamless integration
with SQL syntax and semantics. SciQL is a much richer language
design.

Various database researchers have embarked on scientific appli-
cations that called for an array query language. PostgreSQL al-
lows columns of a table to be defined as variable-length multidi-
mensional array. Arrays of built-in type, enum type, composite
type and user-defined base type can all be created. Basic arith-
metic operators on arrays and simple slicing, i.e., integer indexes
always increased by 1, are supported. Unfortunately, PostgreSQL
has followed the SQL standard to used anonymous dimensions,
a limitation that has been disputed by the science community5.
AQuery [21] integrates table and array semantics into one kind
of ordered entities arrables, a.k.o column store where the index
is kept. An arrable’s ordering can be defined at creation time using
an ORDERED BY clause, which can be also altered per query, using
an ASSUMING ORDER clause. Array access is supported with a few
functions, e.g., first(<N>, <col>) and last(<N>,<col>).

The precursors of SQL:1999 proposals for array support focused
on the ordering aspect of their dimensions only. Examples are
the sequence language SEQUIN [31] and SRQL [27]. SEQUIN
uses the abstract data type functionality of the underlying engine
to realize the sequence type. SRQL is a successor of SEQUIN
which treated tables as ordered sequences. SRQL extends the SQL
FROM clauses with GROUP BY and SEQUENCE BY to group by and
sort the input relations. Both systems did not consider the shape
boundaries in their semantics and optimization schemes. AQuery
inherits the sequence semantics from SEQUIN and SRQL. How-

5SciDB Use Cases http://www.scidb.org/use/

ever, while SEQUIN and SRQL kept the tuple semantics of SQL,
AQuery switched to a fully decomposed storage model.

Query optimization over array structures led to a series of at-
tempts to develop a multidimensional array-algebra, e.g. AML[25]
and RAM[9]. Such an algebra should be simple to reason about
and provide good handles for efficient implementations. AML is
focused on decomposition of an array into slabs, applying func-
tions to their elements and, finally, merging slabs to form a new
array. AQL [22] is an algebraic language with low-level array ma-
nipulation primitives. Four array-related primitives (two for array
creation, one for subscripting and one for determining array shapes)
plus auxiliary features, such as conditionals and arithmetic oper-
ations, allow application-specific array operations to be defined
within AQL. The user specifies an algebraic tree with embedded
UDF calls. Comparing with array-algebras, SciQL has a much
more intuitive approach where the user focuses on the final struc-
ture.

The idea of using data vaults to dynamically integrate existing
scientific data has some similarity with earlier work on mediator
systems, such as Garlic [8] and TSIMMIS [7]. Both systems use
wrappers to facilitate rapid integration of existing heterogeneous
data sources. Garlic is an object-oriented middleware system that
integrates multimedia databases and provide common interfaces
through Garlic’s object query language and a C++ API. In TSIM-
MIS, both structured and unstructured data can be integrated and
special attention is paid to ensure the consistency of the information
obtained. TSIMMIS provides a SQL-like query language, OEM-
QL, as the interface to its users (e.g., applications).

9. SUMMARY AND FUTURE WORK
SciQL has been designed to lower the entry fee for scientific

applications to use a database system. The language stands on the
shoulders of many earlier attempts. SciQL preserves the SQL flavor
using a minimal enhancements to the language syntax and seman-
tics. Convenient syntax shortcuts are provided to express array ex-
pressions using a conventional programming style. We researched
the needs for array-based query capabilities in the science field. In
most cases the concise description in SciQL brings relational and
array processing symbiosis one step closer to reality.

A prototype implementation of SciQL within the MonetDB frame-
work is undertaken. A few areas of the system kernel needs ad-
ditional functionality, e.g., the concept of virtual OID should be
extended to all types. This means that the dimension properties
should be added and exploited throughout the complete software
stack. Future work includes development of a formal semantics for
the array extensions, evaluation of the adaptive storage schemes,
and exploration of the performance on functionally complete sci-
ence applications.

10. REFERENCES
[1] A. Ailamaki, V. Kantere, and D. Dash. Managing scientific data. Commun.

ACM, 53(6):68–78, 2010.
[2] F. Bancilhon, C. Delobel, and P. C. Kanellakis, editors. Building an

Object-Oriented Database System, The Story of O2. Morgan Kaufmann, 1992.
[3] P. Baumann. A database array algebra for spatio-temporal data and beyond. In

NGITS’2003, pages 76–93, 1999.
[4] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The

multidimensional database system RasDaMan. SIGMOD Rec., 27(2):575–577,
1998.

[5] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture evolution:
Mammals flourished long before dinosaurs became extinct. PVLDB,
2(2):1648–1653, 2009.

[6] P. G. Brown. Overview of SciDB: large scale array storage, processing and
analysis. In SIGMOD’10, pages 963–968, New York, NY, USA, 2010. ACM.

[7] S. Chawathe and the others. The TSIMMIS Project: Integration of
Heterogeneous Information Sources. In IPSJ Conference, pages 7–18, Tokyo,
Japan, October 1994.

[8] W. Cody and the others. Querying Multimedia Data from Multiple Repositories
by Content: The Garlic Project. In VDB-3, Lausanne, Switzerland, March 1995.

[9] R. Cornacchia, S. Heman, M. Zukowski, A. P. de Vries, and P. A. Boncz.
Flexible and efficient IR using Array Databases. VLDB Journal, special issue
on IR&DB integration, 17(1):151–168, January 2008. Published online:
Saturday, September 29, 2007.

[10] P. Cudre-Mauroux and the others. A demonstration of SciDB: a
science-oriented DBMS. Proc. VLDB Endow., 2(2):1534–1537, 2009.

[11] S. B. Davidson. Tale of two cultures: Are there database research issues in
bioinformatics? In SSDBM’02, page 3, Washington, DC, USA, 2002. IEEE
Computer Society.

[12] Dennis Shasha. Time series in finance: the array database approach.
http://cs.nyu.edu/shasha/papers/jagtalk.html.

[13] M. J. Egenhofer. Why not SQL! International Journal of Geographical
Information Systems, 6(2):71–85, 1992.

[14] FITS. Flexible Image Transport System.
http://heasarc.nasa.gov/docs/heasarc/fits.html, July 2008.

[15] J. Gray, D. T. Liu, M. A. Nieto-Santisteban, A. S. Szalay, D. J. DeWitt, and
G. Heber. Scientific data management in the coming decade. SIGMOD Record,
34(4):34–41, 2005.

[16] M. Gyssens and L. V. S. Lakshmanan. A foundation for multi-dimensional
databases. In VLDB, pages 106–115, 1997.

[17] HDF5. HDF5:API specification reference manual. National Center for
Supecomputing Applications, 2010.

[18] B. Howe and D. Maier. Algebraic manipulation of scientific datasets. VLDB J.,
14(4):397–416, 2005.

[19] M. Ivanova, M. L. Kersten, N. J. Nes, and R. Goncalves. An architecture for
recycling intermediates in a column-store. In SIGMOD Conference, pages
309–320, 2009.

[20] P. J. Killion, G. Sherlock, and V. R. Iyer. The longhorn array database (lad): An
open-source, miame compliant implementation of the stanford microarray
database (smd). BMC Bioinformatics, 4:32, 2003.

[21] A. Lerner and D. Shasha. Aquery: query language for ordered data,
optimization techniques, and experiments. In vldb’2003, pages 345–356. VLDB
Endowment, 2003.

[22] L. Libkin, R. Machlin, and L. Wong. A query language for multidimensional
arrays: design, implementation, and optimization techniques. SIGMOD Rec.,
25(2):228–239, 1996.

[23] T. M. Lillesand and R. W. Kiefer. Remote Sensing And Image Interpretation.
John Wiley and Sons, New York, 1999.

[24] D. Maier and B. Vance. A call to order. In PODS ’93: Proceedings of the
twelfth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pages 1–16, New York, NY, USA, 1993. ACM.

[25] A. P. Marathe and K. Salem. Query processing techniques for arrays. VLDB J.,
11(1):68–91, 2002.

[26] T. Oinn, M. Addis, J. Ferris, D. Marvin, T. Carver, M. R. Pocock, and A. Wipat.
Taverna: A tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 20:2004, 2004.

[27] R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, K. S. Beyer, and
M. Krishnaprasad. Srql: Sorted relational query language. In SSDBM, pages
84–95, 1998.

[28] R. Rew, G. Davis, S. Emmerson, H. Davies, and E. Hartnett. the NetCDF Users
Guide - Data Model, Programming Interfaces, and Format for Self-Describing,
Portable Data - NetCDF Version 4.1. Unidata Program Center, March 2010.

[29] S. Sarawagi and M. Stonebraker. Efficient organization of large
multidimensional arrays. In ICDE, pages 328–336, Washington, DC, USA,
1994. IEEE Computer Society.

[30] SEED. Standard for the exchange of earthquake data, May 2010.
http://www.iris.edu/manuals/SEEDManual_V2.4.pdf.

[31] P. Seshadri, M. Livny, and R. Ramakrishnan. The design and implementation of
a sequence database system. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan,
and N. L. Sarda, editors, VLDB’96, pages 99–110. Morgan Kaufmann, 1996.

[32] A. Shoshani, F. Olken, and H. K. T. Wong. Characteristics of scientific
databases. In VLDB’84, pages 147–160, San Francisco, CA, USA, 1984.
Morgan Kaufmann Publishers Inc.

[33] A. Shoshani and H. K. T. Wong. Statistical and scientific database issues. IEEE
Trans. Softw. Eng., 11(10):1040–1047, 1985.

[34] M. Stonebraker and the others. Requirements for science data bases and SciDB.
In CIDR. www.crdrdb.org, 2009.

[35] A. S. Szalay, J. Gray, A. R. Thakar, P. Z. Kunszt, T. Malik, J. Raddick,
C. Stoughton, and J. vandenBerg. The SDSS skyserver: public access to the
sloan digital sky server data. In SIGMOD’02, pages 570–581, New York, NY,
USA, 2002. ACM.

[36] A. R. van Ballegooij, R. Cornacchia, A. P. de Vries, and M. L. Kersten.
Distribution Rules for Array Database Queries. In Proceedings of the
International Workshop on Database and Expert Systems Application, pages
55–64, Copenhagen, Denmark, August 2005.

