
Algebra of Communicating Processes

J .A. Bergstra
J.W. Klop

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

A survey of process algebra is presented including the following features:
merging processes without communication, merging processes with communi
cation, data flow networks, regular processes, recursively defined processes,
abstraction mechanisms both in absence and presence of communication.
Throughout the paper emphasis is on equational specifications and graph
theoretic models.

INTRODUCTION

It is widely recognized that Milner's CCS constitutes a fundamental contribu
tion to the theory of concurrency. Milner's aim is to establish laws for con
current processes in the form of algebraic identities. We view process algebra,
as developed in [3], ... ,[10], as a rephrasing of the basic issues of CCS. For a
motivation of CCS as a theory of concurrency we refer to MILNER [14], [15].
We will not assume that the reader knows CCS. The differences with CCS in
aims and techniques can be summarized as follows:

(1) We use these operators and constants:

+ alternative composition (sum)
sequential composition (product)

II parallel composition (merge)
lL left merge
I communication merge

an encapsulation
T1 abstraction
8 deadlock (failure)
,,. silent (internal) action

TABLE 1

We will briefly discuss how these operators relate to CCS. The opera
tors +, II, and 7' have exactly the same meaning; multiplication • is more

90 J.A. Bergstra, J. W. Klop

general than the prefix multiplication of CCS; lL and I are new; 8 is
similar to NIL in sums (but not in products). oH and T1 are new opera
tors. (However these are formally renaming operators in the sense of
CCS.)

(2) Th.is choice of operators allows a finite initial algebra specification of
the behaviour of finite processes. Seen from CCS, lL and I are hidden
operators involved in this specification. We feel however that lL and I
are perfectly meaningful from an intuitive point of view.
Our presentation culminates in a system of equations A CP"' and passes
through several smaller specifications (PA, PA.,.,ACP) involving only a
subset of the operators.

(3) ACP chooses from the onset the axiomatic approach. Thus, where CCS
starts with a model of processes and derives identities in that model as
theorems, A CP reverses this procedure: a set of axioms is given first
and its models are investigated next. In the course of our investigations
we have met some twenty interesting process algebras (interesting as
opposed to pathological; the axiomatic approach allows also some less
useful models) and since there are so many it seems sensible to organize
them as models of some axiomatic theory.

(4) We claim that ACP is more amenable to a mathematical analysis than
CCS (in its original form). As an example we would like to point out
the simple formulation of the Expansion Theorem (2.2), and the
speciftcation of a Stack in subsection 3.5.
The core of this presentation is the system ACP. Infinite models for
A CP are constructed as projective limits of finite models, and as graph
models modulo bisimulation. The projective limit models have been
derived from the topological construction in DE BAKKER and ZUCKER
[I], [2]. The work on process algebra originated from a problem in [2]
(page 87) which was solved in [3] thereby essentially using the algebraic
properties of ll. (See 1.9 below.)

ACKNOWLEDGEMENTS
The material in the first three of the four sections of this paper was presented
in the Workshop on Concurrency and Abstract Data Types (Mook, October
1983) organized by W.P. DE ROEVER. We thank him for giving us the oppor
tunity to organize the present material in a set of lecture notes which was the
basis for this paper.

Furthermore, we thank J.W. DE BAKKER for his continuous support and
J.-J.CH. MEYER, J.V. TuCKER, J. TluRYN, E. BRINKSMA, C.J. KOOMEN, H.
JONKERS and H. OBBINK for many discussions on the subject of this paper.

Most of the following material has been covered in more detail in our
reports [3],. . .,(10]. Section 4 contains new results, centering around ACP .,., an
axiom system for communicating processes with internal steps. Almost all
proofs are omitted - these can be found in the above mentioned reports
(except for most of Section 4).

The structure of this paper is as follows:

Communicating processes

1. Process algebra: PA
2. Process algebra with communication: ACP
3. Recursively defined processes
4. Hiding internal steps in finite processes
References.

1. PROCESS ALGEBRA: PA

91

In this section we will introduce the axiom systems PA for process algebra
without communication (treated in Section 2) and without internal steps
(treated in Section 4). The co-operation between processes described by PA is
that of interleaving. As semantics for PA several 'process algebras' will be
introduced of which the simplest one is the initial algebra of PA.

1.1. The axiom system PA
The axiom system PA consists of the following list of axioms:

x+y=y+x Al
x +(y +z) = (x +y)+z A2
x +x = x A3
(x +y).z = x.z +y. z A4
(x.y).z = x.(y.z) A5
xlly = xlL_y +ylL_x Ml
alL_x = a.x M2
axlly = a(xlly) M3
(x +y)ILz = xllz +y!Lz M4

TABLE 2

1.1.1. The signature of PA. The signature of PA consists of the following
ingredients:
(i) a,b,c, ... EA, the set of axiomatic actions (also called 'steps' or 'events'). A

is also referred to as the alphabet. Throughout this paper, we will assume
that A is finite. (This is done to safeguard the algebraic nature of our con
siderations - e.g. infinite sums of processes are not considered here.) In
the axioms of PA, 'a' varies over A.

(ii) x,y,z, ... are variables, ranging over the domains of processes (process
algebras) which will be constructed below.

(iii) binary operators. These are:

+ alternative composition, or sum
• sequential composition, or product
II parallel composition, or merge
lL left-merge.

92 J.A. Bergstra, J. W. Klop

The 'main' operators are +,.,II. Left-merge lL is an auxiliary operator.

J.J.2. Process expressions. Process expressions or process te~s are built from
the a eA by means of +,., j , ll_. Examples of process express10ns are:

(a +b), ((((a·a)llb) + (c·d))·e).

The following notational conventions will be employed: xy stands for x-y;
outermost brackets are omitted; the operator •
has the greatest binding power; xn stands for xx ... x (n times); II and lL bind

stronger than +. So the two process expressions above may be written as

a + b, (a 2 llb + cd)e.

1.2. Semantics of PA
A process algebra is a domain of processes satisfying the axioms of PA. The
three most important process algebras for PA are:
(1) A.,, the initial algebra of PA,
(2) A 00 , the graph model of PA,
(3) A 00 , the standard model of PA

It will tum out that these algebras properly extend each other (modulo isomor
phism): A.,9A 00 9A 00 •

1.2.1. The initial algebra A.,. The elements of A., are the process expressions
modulo the equivalence given by PA. So, in A.,, 'a + b' and 'b +a' and
'a+b+a' are the same. Likewise, the process expressions ((aall_b+cd)e and
a(abe+bae)+cde denote the same element in A.,, since using PA one com
putes

(aall_b+cd)e = (aall_b)e+cde=a(allb)e+cde =

a(all_b+bll_a)e+cde = a(ab+ba)e+cde=

a(abe +bae)+cde.

Note that this derivation has eliminated the II, lL operators in the original pro
cess term. We have the following general fact:

THEOREM 1.1.
(i) Using the axioms of PA as rewrite rules from left to right, every process

expression can be rewritten to an expression without II or lL
(ii) If PAH1 = t1 andt 1, t1 do not contain II, lL, thenA1-5~t 1 = t 2•

This entails that elements of the initial algebra A., can be thought of as pro
cess expressions built from atoms via + and.only, modulo Al-5. Using this
fact we arrive at a convenient representation of elements of A., :

Communicating processes 93

PROPOSITION I.I. Modulo PA-equivalence, Aw is inductively generated as fol
lows:

m 11

X; EAw, a;EA (i = 1, ... ,n), b1 EA(j = l, ... ,m) zj 2: b1+ ~a;X;EAw·
j =1 i=I

EXAMPLE 1.1.

babllab =babll_ab +abll_bab =b(abllab)+a(bllbab)=

b(abll_ab +abll_ab)+a(bll_bab +babll_b)=

b(ab ll_ab) + a(bbab + b(ab lib))=

b(a(bllab))+a(bbab +(b(abll_b +bll_ab))=

b (a(bab +abb))+a(bbab + b(abb + bab)).

Expressions like the last one, without II and 11_, can conveniently be 'pictured'
as finite trees:

a

a b b

a a b

b b b b

FIGURE 1

Let us note here (in advance to the definition of II for process graphs later on
in this section) that the tree above, resulting from the interleaving of bab and
ab, can be obtained quickly by 'unraveling' the cartesian product graph

b a b

a a a a
b a b

b a
FIGURE 2

Vice versa, the above tree yields this product graph by identifying some nodes
with identical subtrees. We will return to such process trees and graphs later.

Note that PA does not contain the distributive law x(y+z) = xy+xz.

94 J.A. Bergstra, J. w. K!op

Indeed, for pairwise different atoms a, b, c the processes a (b + c) and ab + ac

are different in A.,. (Cf. also Example 2.2.)
We have now constructed our first process algebra as semantics of PA, the

initial algebra A"'' whose elements can also be t:t..ought of as finitely branching

and finitely deep process trees. The fact that the processes in A"' are only
finitely deep, means that we cannot find solutions p in A"' for recursive
definitions like p = ap; for, p would be aaaa ... or a"'.

Therefore we will now construct process algebras which do have infinite ele
ments, and in which solutions of recursion equations can be found.

1.2.2. The process graph model A 00 • A process graph (also called: transition

diagram) over a set of atoms A is a rooted, directed multi graph whose edges are
labeled by elements of A. Process graphs may be infinite and may contain
cycles. Process trees are special cases: they are acyclic process graphs where
no subgraph is shared (and containing no multiple edges); in other words,
where no two edges have the same end-point. Some examples will clarify these
concepts.

a

a b b a

(i) (ii) (iii) (iv)

b b b
-?':r< ,. a()0(>~::

a a a

(v)

Communicating processes 95

a

b

b

(vi)

FIGURE 3

Here (i), (ii) are finite acyclic process graphs, but not trees; (iii), (iv) are finite
process graphs containing cycles; (v) is an infinite process graph containing
cycles and (vi) is an infinite process tree.

To construct our second process algebra A 00 , we will restrict ourselves to
finitely branching process graphs. (This also puts a bound on the cardinality of
the edges and nodes of such graphs.)

Having this large collection of finitely branching process graphs available,
we note that there are 'too many' of them - some process graphs should be
identified. E.g. the five graphs in figure 4 all seem to denote the same process:
in each node ('state of the process') there are in all five cases infinitely many
a-steps possible.

a
a

a
a a

/ a

,
, ,

FIGURE 4

An elegant notion, introduced in PARK [16], called bisimulation, does indeed
identify these graphs.

96 J.A. Bergstra, J. w. Klop

J.2.2.1. Bisimulation of process graphs. Bisimulation of process graphs is
defined as follows.

Let g1'g2 be process graphs with node sets Nodes (g1), Nodes (g2). Let
s0 ,t0 be the roots of gl>g 2 respectively. Then g1>g2 are bisimilar, in symbols:

~ g1 - g1

if there is a relation R C Nodes (gi) X Nodes (g2) such that
(i) s0 Rt!l (the roots are related)
(ii) ifs~' is an edge of g 1 and sRt, there must be an edge t ~' of g 2 such

that s' Rt'. In a diagram:

(iii) vice versa (with the role of gi.g2 interchanged):

@-~-~. ~-~-~ a => a
t' s' .J:_- t'

ExAM.J>LES.

A~~~~J
..... _....-_______

---------a

b

--....... -----...... __

------ -
(i) (ii)

Communicating processes 97

a b

0
a b

0 1 1
a b b b

1 1

(iii)

(In figure 5 (iii) the bisimulation is given by the numbering of the nodes.)

(iv) A non-example:

and are not bisimilar.

a a a

b c b

FIGURE 5

(Cf. our earlier remark that Awfj=a(b +c) = ab +ac.) Note that unfolding (or
unwinding) a process graph respects bisimilarity. The same holds for sharing
(identifying nodes with identical subgraphs).

We call the process graph with one node and no edges, the trivial graph. A
node lying on a cycle is a cyclic node.

Now the second process algebra for PA, called the process graph algebra
A 00 , is defined as follows.

The elements of A 00 are the finitely branching, nontrivial process graphs with
acyclic roots modulo bisimulation.

98 J.A. Bergstra, J. w. Klop

The operations +,.,II, lL on A. 00 are defined thus:
(i) The sum g 1 +g2 is obtained by identifying the roots of gi,g2• E.g.:

~a+~b

FIGURE 6

~b
~a

This example indicates why the roots have to be acyclic: otherwise

;t ... ~b
~a

FIGURE 7

(ii) The product g 1 • g 2 is obtained by appending g 2 to all end nodes of g 1•

(iii) The merge g1 llg2 is the cartesian product graph as in the example:

a

FIGURE 8

(iv) The left-merge g1 llg2 is obtained as a subgraph or g1 llg2 as in the exam

ple:

Communicating processes 99

91 a a
-'JO >C

b
jt:)

9111_ 92
a a

92

c
a

FIGURE 9

It is now easy to prove the following theorem.

THEOREM 1.2.
(i) A 00 is a process algebra (a model of PA).
(ii) The finite acyclic elements in A 00 constitute a subalgebra which is (iso

morphic to) A,.,.

1.2.2.2. Approximations of processes in A 00 • There is a clear sense in which a
(possibly infinite) process tree t can be approximated by finite process trees
(t)n (n ;;;;;o l): (t)n is t where everything below level n is cut-off. (I.e. the branches
of (t)n have at most n steps.) This notion of projection induces one in A 00 in a
straightforward manner: writing [g] for the bisimulation equivalence class of
the process graph g (so [g] EA 00 , if g is nontrivial etc.), we define

([g])n = [(tree(g))n]

where tree(g) is a tree obtained by unwinding g. To establish the precise
definition of tree(g) and the well-definedness of the projection operation ()n:
A 00 ~A 00 is a matter of routine. From now on, we write simply g instead of
[g] when dealing with elements of A 00 • There is the following interesting fact:

THEOREM 1.3. Let g,heA 00 • Then g = h~Vn (g)n = (h)n·

So equality between :finitely branching graphs (modulo bisimulation) is entirely
determined by their finite approximations - i.o.w. a finitely branching graph
modulo bisimulation is determined by its finite approximations.

The implication ~ in this theorem is trivial; the proof of the reverse impli
cation consists of an application of Konig's Lemma made possible by the con
dition that elements in A 00 are (equivalence classes of) finitely branching
graphs. (This is used as follows: construct the tree of all bisimulations between
(g)n and (h)n, for all n;;;;;ol. That is, on the n-th level are the bisimulations
between (g)n and (h)n· Ordering in the tree is: extension of bisimulations in
the set-theoretic sense. Since this tree is finitely branching and infinite, it has
an infinite branch which yields a bisimulation for the pair g,h.) That this con
dition is essential for the proposition in the theorem, follows from a

100 J.A. Bergstra, J. w. Klop

consideration of these two process graphs which have the same finite approxi

mations:

a

(i) (ii)

FIGURE 10

Although the elements of A 00 are attractive objects, they are notoriously lack

ing in algebraic nature. On the basis of our intuitive understanding of the

graph model A 00 , we will now construct a process algebra for PA which is

algebraic in nature and which will be called the standard model A 00 for PA.

1.2.3. The standard model A 00 for PA. Bearing in mind that an element g EA 00

gives rise to a sequence ((g)i,(g)i, ...) of approximations which by the previ

ous theorem (1.3) determines g and for which we obviously have:

(g),, = ((g),, + dn, we now define without any reference to graphs: A projective

sequence is a sequence (p1>p 2,p3, ... , Pn• ...) of elements of A.., such that

p,, = (p,,+ 1)n· Here the projections (),,: A..,~A.., (n;;;;ol) are defined by

(a),, = a

(ax)1 =a, (ax),,+ 1 = a(x),,

(x +y),, = (x),, + (y),,.

Furthermore we define: the elements of A 00 are the projective sequences. The

operations +,·,II, lL on A 00 are defined coordinate-wise, thus:

(p1>p2, ... , Pn• ...) D (q1,q2, ... , q,,, ... ,) =

((p1 D qi)t> (p2 D q1h, ... , (p,, D q,,),,, ...)

where DE {+,.,\I, lL}. Note the outermost subscripts in the RHS, necessary

to ensure that the result from applying the operation D is again a projective

sequence. (The simple proof employs the fact that (p D q),, = ((p),, 0 (q),,),,.)

Communicating processes 101

ExAMJ>LE 1.2.
(i) The atomic action 'a' is represented by (a,a,a, ...).
(ii) (a, a+a 2 , a+a2 +a3, ••• , ~7= 1 ai, ...)EA 00 • We will refer to this ele

ment as ~I°= 1 a;. (Note however that except for this ad hoe notation we
will not use infinite sums.)

(iii) Calla"'=(a,a 2 ,a3, •••). Thena"'·b"'=((a·b)1>
(a2-b2)i, ...)=a"'.

(iv) a"'l\b"' =((al\b)i. (a2 1\b2h, ...)=(a +b, a(a +b)+b(a +b), ...)
=(a +b, (a +b)2, ...)=(a +b)"'.

(v) [(a"' \\b"')+a"']l\b"' =a"' \lb"'.

Again it is straightforward to verify that A 00 is a model of PA.
A natural question is how A 00 and A 00 compare. The answer is that A 00 is

an extension of A 00 : it contains all the processes in A 00 (modulo an isomor
phism) but also some processes which are not finitely branching, like ~I°= 1 ai
above. Strictly speaking, we have not yet defined when an element of A 00 , a
projective sequence, is finitely branching.

This can be done by assigning to a p EA 00 a process graph G (p), as follows.
First we define what a 'subprocess' of p EA 00 is.

The collection of subprocesses of p is given by
(i) pESub(p),
(ii) ax E Sub(p)~x E Sub(p),
(iii) ax + y E Sub(p)~x E Sub(p).

From the subprocesses of p (which may be thought of as the nonterminal
states of the process) we can assemble a process graph G(p). This process
graph will be called the canonical process graph G(p) for p. It is defined as fol
lows:
(i)
(ii)
(iii)

the set of nodes of G(p) is Sub(p)U { 0 },
the root of G(p) is p,
the edges of G (p) are g!ven by:
(1) aESub(p) ~a ~O is an edge,
(2) ax E Sub(p) ~ ax ~x is an edge,
(3) a +y ESub(p) ~a +y ~O is an edge,
(4) ax +yeSub(p) ~ ax +y ~x is an edge.

(If p has only infinite branches, the termination node 0 can be discarded.) So
now the statement that ~i°= 1 ai (=(a,a +a2, ...)) is infinitely branching makes
sense: it is meant that its canonical process graph is so. In fact, the canonical
process graph of p =~i°= 1 a; is

102 J.A. Bergstra, J. W. K!op

FIGURE 11

which is bisimilar to the process graph in figure 10 (ii).
(Note that G(.p) contains the infinite branch a"'; for: p =p +a"' =p +a.a"',

hence a"' ESub(.p).)
We conclude this section about PA with a number of remarks which give

some additional information about PA and its models (but which are not

strictly necessary for an understanding of the following sections).

1. 3. The cardinality of A 00 and A 00

The cardinality of A 00 and A 00 is 2~0 for all finite A (as supposed throughout

the paper). In contrast, one may consider the following. If there is no condi

tion imposed on the branching degree of process graphs, and A 00 is con

structed as before, then even for a singleton alphabet A the process domain

A 00 would be a proper class in the sense of axiomatic set theory. This shows

that in order to obtain a set-sized domain of process graphs modulo bisimula

tion one has to specify some cardinal as upper bound on the branching degree
in advance.

1.4. The finite process algebras An

Some interesting finite process algebras (models of PA) which were not intro

duced above, can be obtained as follows. Define An= { (p)n IP EA"'} and define
as operations Dn on the finite set An:

x O,Ji = (xDy)n

where the DE{ +,·,11,lL} are the operations from A..,. Then:

An(+n>n,11n,tln)l=PA. Now A 00 can be defined simply as the projective limit of
the algebras An (n ;a, I).

1.5. Commutativity and associativity of merge
From the axioms of PA, the commutativity of merge follows immediately:

xl[y = xlly+yllx=yll_x +xll_y=yllx.

The associativity

xll(yllz) = (xl[y)llz

does not follow from PA. (Indeed one can construct a process algebra with

nonassociative merge operator.) However, in the process algebras introduced

above (A,.,,A"'A 00 ,A 00) the associativity does hold. A proof, by induction on

the structure of the elements, can be given simultaneously with a proof of the

Communicating processes 103

useful identity

(xlly)llz = xll(yllz).

1.6. Adding a zero process to PA
One can argue about the desirability of an element 0 in process algebras, with
the properties

x+O = x

Ox= xO=x.

Naive addition of such axioms to PA yields an 'inconsistency', though. For
consider:

ab =(a +O)b=ab+Ob=ab+b

contrary to our intention to distinguish ab from ab +b.
However, with the added proviso in axiom A4:

(x+y)z = xz+yz if x,y=FO

(and adding Ollx=O, xlLO=x) this inconsistency is removed and we have a
conservative extension of PA.

Yet we will not pursue this option, since we have no need for 0. One reason
is found in the next remark, another reason is the wish to adhere to an equa
tional format for process algebra as long as possible.

I. 7. The (non)existence of a suitable partial order on process algebras
It would be most convenient to have a cpo structure for process algebras such
as A..,, A 00 • One could think of adding an element 0 as in the previous
remark, to function as the least element in a supposed partial order .;;;; on A.,,
A 00 • Moreover, such a p.o. should be 'suitable' in the sense of respecting sub
stitution (i.o.w. being monotone in the operations).

However, a partial order on A., or A 00 (extended with 0) with these proper
ties:

f Oo;;;;p
1!' o;;;;q~s (p)o;;;;s(q)

(where s() is some 'context'), does not exist, since it would yield the contrad
ictory equation aa =aa +a:

aa = aa+Oo;;;;aa+a=aa+aO~aa+aa=aa.
Also there does not exist a p.o. on A..,, A 00 satisfying the properties

{
xo;;;;x+y

xo;;;;y~s (x)~s(y).

For, this would result in the contradictory equation a(b +c)=a(b +c)+ab:

104 J.A. Bergstra, J. W. Klop

a(b +c)o;;;;a(b +c)+abo;;;;a(b +c)+a(b +c) = a(b +c).

1.8. The auxiliary operator left-merge
The theory of the initial algebra A.,(+,·,11,ll), that is the set of true equations
between closed terms, is finitely axiomatized by PA. Without lL however such
a finite axiomatization of the theory of the reduct A.,(+,·,11) does not seem
possible. Of course the main advantage of lL is the ease in algebraical compu
tation.

Another advantage of lL is the greater defining power it gives. E.g. the
unique solution of the recursion equation

X = plLX

(a topic considered in detail in Section 3) can be seen as the 'w-merge' of p,
"' notation: p ~, which is intuitively

pllpllpll

i.e. the limit of the sequence p, p lip, p lip lip, (see also the next remark).
"' Without lL such a uniform definition of p = does not seem possible.

1.9. Solving equations in A 00

In Section 3 recursion equations and systems of recursion equations will be
considered under the condition that the equations are guarded. Here, we want
to mention a theorem for the unguarded case:

THEOREM 1.4. Let Ex= { X; = T;(X)I i = 1, ... ,n} be a system of equations for
X=XI> ... , Xn. Then Ex has a solution (p 1, ••• , Pn) in each of the above intro
duced process algebras.

In general this solution will not be unique. In the case that n = 1 solutions can
be obtained as follows:

THEOREM 1.5. Let X = T(X) be a recursion equation for X Then a solution for
X can be obtained as the limit of the iteration sequence

q, T(q), T(T(q)), ... , Tn(q), ...

for arbitrary q.

(Here limk_.00 Tk(q)=p means: 'r:Jn 3m (Tm(q))n =(p)n.) At present however we
do not see applications for the possibility of solving unguarded fixed point
equations.

Communicating processes 105

2. PROCESS ALGEBRA WITH COMMUNICATION: ACP

We will now extend the axiom system PA of Section I with the facility of com
munication between processes. The communication will be modeled by actions
sharing. In PA all atomic actions were on equal footing, and capable of being
performed independently. In ACP, Algebra of Communicating Processes, we
will introduce next to this kind of independent or autonomous actions, so
called subatomic actions which need one or more other subatomic actions as
partners in order to be executed. (Cf. the subatomic actions C!t and C?x in
Hoare's CSP (see [12]), whose simultaneous execution amounts to the assign
ment x: = t.) The execution is then an 'ordinary' atomic action.

Using this model of shared actions, of which a particular case is 'handshak
ing', we will as an application model the process given by a data.flow network.

As a first illustration, consider the following processes p =(abc)"' and
q =(efg)"'.

FIGURE 12

The heavy lines denote atomic actions, the steps c and g are subatomic actions
and need each other to perform the action h, notation: clg =h. (In Petri net
notation, the process resulting from the co-operation of p,q would be given by

FIGURE 13

Now the process r resulting from the co-operation of p and q would be:

a b

FIGURE 14

106 J.A. Bergstra, J. W. Klop

That is, r=([a(e(bf + jb)+bej)+e(a(bf + jb)+ fab))'h)"'.
The axiom system A CP (Table 3) gives the means to compute the results of

such communicating processes in an algebraic way. ACP is an extension of PA
(Table 2), but not only in the sense that axioms are added; one axiom from
PA (viz. Ml) is adapted: xl[y is in ACP a sum of three terms, namely xlly,
yllx and the new sum.mand x[y. Here xlL.y is, as in PA, 'like xl[y' but taking
its first step from x; likewise y llx; and x [y is like x l[y but requires the first
action to be the result of a communication (between a first subatomic 'step' of
x and a first subatomic step of y).

This new operator 'I' is called communication merge; on the set A of atoms
and subatomic actions it is a binary function, the communication function,
which is given a priori. It is commutative and associative. The precise choice of
the communication function varies with the application of A CP which one has
in mind - just as the choice of the alphabet A. Thus ACP is in fact
parametrized by A and by the communication function l:A XA~A.

The difference between what we called 'independent' atoms and 'subatomic
actions' needs, fortunately, not to be made explicit in the axiom system. What
is atomic and what subatomic follows by an inspection of the communication
function 'I'.

Besides a new operator '!', communication merge, there appear two new
ingredients in the signature of ACP as compared to that of PA.

The first is a constant 8, which is a 'zero' for + and moreover satisfies the
axiom 8 x =8 (A7). The 'process' 8 exhibits some (but not all) of the features
of deadlock or rather failure. The main reason for introducing 8 is algebraical:
by means of 8 the unsuccessful communications are eliminated. We will refer
to the constant 8 as 'deadlock' (without claiming that 8 models all of the
deadlock phenomenon). An intuitive view of 8 which 'explains' the axioms A6,
7 in Table 3 is: 8 is the action in which the process acknowledges the fact that
it cannot further execute actions. So, whenever the process has another option,
it will not perform this acknowledgement of stagnation: x + 8 = x.

The second new ingredient is formed by the encapsulation operators a H

where H <;,,A. Putting aH in front of at process expression p, result aH(p),
means that the subatomic actions mentioned in H and occurring in p, cannot
anymore communicate with an 'external' process - they have had their chance
inside p.

Summarizing, we have the following signature for ACP:

x +y alternative composition (sum)
x.y sequential composition (product)
x l[y parallel composition (merge)
x lL.y left merge
x [y communication merge
l:A XA~A communication function
aH(X) encapsulation
8 deadlock

Communicating processes 107

Note that ACP is an extension of PA in the following sense: let the communi
cation function be trivial, i.e. alb=8 for all a,bEA. Then the models A.,, A"'',
A 00 for PA (with signature +,·,II, Li._) are just reducts in the modeltheoretic
sense of the models Aw, A 00 , A 00 for A CP which we will construct below and
which have signature +,-,ll,Li._,1,aH,o.

ACP

x+y =y+x Al
x +(y +z) = (x +y)+z A2
x+x = x A3
(x +y)·z = X·Z +y.z A4
(x·y)·z = X·(y·z) AS
x+8 = x A6
8-x = o A7

ajb = bla Cl
(alb)lc = al(blc) C2
8Ja = o C3

xl[y = xLi._y +yLi._x + x[y CMl
aLi._x = a-x CM2
(ax)Li._y = a(xl[y) CM3
(x +y)Li._z = xllz+yllz CM4
(ax)Jb = (alb).x CMS
aJ(bx) = (aJb)-x CM6
(ax)J(by) = (alb).(xl[y) CM7
(x +y)Jz = xlz +yJz CM8
xJ(y +z) = x[y+xJz CM9

aH(a) = a if a r£H Dl
aH(a) = 8 if a EH D2
aH(X +y) = aH(x)+aH(y) D3
aH(X·J) = aH(X)·aH(y) D4

TABLE 3

108 J.A. Bergstra, J. W. Klop

2.1. Process algebras for ACP
The development of models for ACP is analogous to that for PA, so we will be
much shorter now in its description. Again we introduce:
(1) A.,, the initial algebra of ACP,
(2) A 00 , the process graph model of A CP,
(3) A 00 , the standard model of ACP.

Here some confusion may arise as to which signature, that of PA or that of
ACP, is meant when speaking about A.,, A 00 , A 00 • When this confusion is not
solved by the context, we will mention the intended signature explicitly, as in
A.,(+,·,11,lU vs. A.,(+,-,11,u_,1,aH,o).

2.1.1. The initial algebra A., of ACP. Before building A.,, we have fixed the
alphabet A, a communication function l:A XA_,.A, and a subset H s;A (hence
an encapsulation operator 3 H).

Now A., contains as elements: the process expressions (in the signature of
ACP) modulo the equality given by ACP. By the following theorem.

THEOREM 2.1 (NORMAL FORM). For each closed term t there is a closed term t'

not containing 11,u_,1,aH such that ACP ~t=t'.

We may think of elements of A., as built from A, +, · only (just as in the case
of PA), or as the finite process trees encountered in Section 1.

ExAMPLE 2.1. Let A ={a,b,c,c0,d,S}. Let l:A XA~A be given by clc=c0,

and all other communication equal S (thus alb=cic0 =dia=
Sia= ... =Slo=o). Further, let H = { c }. Then:

3H[(ab +ac)licd] =

a1 cj[ab u_cd + ac u_cd + cdL(ab + ac) + cdlab + cdlac] =

a(c)la(b licd)+a (clicd) +c(dll(ab +ac)) +(cla)(dllb) + (cla)(dlic)] =

a(c}[a(bcd +c(dllb)+(blc)d)+a(ccd +c(dlic)+(clc)d) +

+c(dll(ab +ac))+o(dllb)+o(dlic)]=

a(c}[a(bcd +c(dllb))+a (ccd +c(dllc)+c0 d)+c(dll(ab +ac))] =

abo+ac0d.

ExAMPLE 2.2. Consider the alphabet { a,b,b0 ,c,c0 ,o} with the only proper
communications clc=c0 , blb=b0 . Now a(b +c) and ab +ac behave
differently in the context C[]=a(b,cJ(... lic); namely:

C[a(b +c)] = ac 0 ,

C[ab +ac] = ao+ac0 .

Communicating processes 109

2.1.2. The process graph algebra A 00 for ACP. The definition of
A 00 (+,·,II, ll.J,an,8) parallels that of A 00 (+,·,II, lU for PA, except for two
additions.

Let g,h be finitely branching process graphs with acyclic roots. Then the
merge gllh is now the cartesian product graph enriched with 'diagonal' edges
~in the following situation:

if is a subgraph of the cartesian product graph, then the ar
row o..SO (where c =aJb) is inserted; result: :'~-~f

b~b
"·· a . .:

The left merge g llh and the communication merge yield results which can now
be guessed. An example will suffice:

ExAMPLE 2.3. Let A =(a,b,c,8}, aJb=c and all other communications equal 8.
Then abllbab, ab[Lbab, bab[Lab and ablbab are the following graphs respec
tively:

b c

FIGURE 15

Note that we have omitted the diagonal edges labeled with 8, resulting from
trivial communications. This brings us to the second addition bisimulation
between process graphs containing 8-steps.

The old concept of bisimulation in Section I would not do now, since it
would not satisfy the laws x +8=x and 8x =8. We will choose the following
solution: first define the 8-norma/ form of the process graph g as the process
graph g' obtained by deleting all 8-steps which have a 'brother' step and creat
ing for the remaining 8-steps if necessary separate end nodes. Afterwards
disconnected pieces of the graph are removed.

Now g and h are bisimilar if their 8-normal forms are bisimilar in the old
sense.

110 J.A. Bergstra, J. W Klop

Finally, the effect of 38 on the graph g is simply to replace all a eH which
occur in g, by 8.

The effect of these definitions is that A 00 is a model of ACP. Using these
graphs, we have an easy way to 'compute' the result of Example 2.1.:

(ab +ac)llcd = a{c}[(ab +ac)llcd] = ab+ac0 d=

a b a b

d

FIGURE 16 FIGURE 17

2.1.3. The standard model A 00 for ACP. The standard model A 00 for ACP is
constructed entirely analogous to the corresponding model for PA. An example
of a computation in the standard model: Let A= { a,b,c,d, 8}, a I a =d the only
proper communication. Now let

p = (a,ab,aba,abab, ...)

and

q = (a,ac,aca,acac, ...).

Then

a(a}(pllq) = a(a}(alla)1>(abllac)i,(aballaca)3, ...)

= (a(a}(alla)1>a{a)(abllac)i, ...)

= (3(a)(aa +d)l>a{a}(...), ...)

= (d,d(b +c),d(bc+cb),d(bc+cb)d, ...)

2.2. Process algebras with standard concurrency and handshaking
A useful intuition about communicating processes is to postulate that II is com
mutative and associative. This does not follow from the axioms of A CP;
pathological process algebras with noncommutative and nonassociative II are
possible. But in the process algebras A.,, A 00 and A 00 , II is indeed commuta
tive and associative. In fact these algebras satisfy the following axioms of stan
dard concurrency:

Communicating processes

(xlly)llz = xll(vllz)
(x[y)llz = xl(Yllz)
x[y = ylx
xl[y = yllx
x\(Ylz) = (x[y)\z
xll(yllz) = (xl[y)llz

TABLE 4

111

(These axioms are not independent relative to A CP. E.g. commutativity and asso
ciativity of II are derivable from the other four plus ACP.)

Moreover, matters are greatly simplified by adopting the handshaking
axiom:

x[y\z = o
which is satisfied by both CSP and CCS. The handshaking axiom implies
that all proper communications are binary.

Under the hypotheses of standard concurrency and the handshaking axiom
we can prove the following fact which is a generalization of the A CP-axiom
CMl:

Here _xik is obtained by merging x 1, ••• ,xk except x;, and _xikJ is obtained by
merging xi, ... ,xk except x;,x1 (k;;;;o3). Thus, e.g. fork =3:

x l[y llz = x lL(y llz)+y ll(zllx)+ z ll(x l[y)+(y\z)llx +(z\x)lly +(x[y)llz.

2.3. Networks of processes communicating by handshaking
Imagine a process P (figure 18) whose events have a certain spatial position
a,/3, y as well as a data content d - so the actions of P are pairs (a,d), (a,d'),
(/3,d), ... , for simplicity written as ad,ad" /3d, E.g. let GJ)= {O, l} be the data
domain and let P be given by the recursion equation

P = ~/31YoP.

Next, consider a network of such proceses as in figure 19, where the nodes
D,M,N, C are given by

D = (~/30/30 +a1/31/31)D

M = [(/3o+toho+(/31 +t1)yi]M

C = [Yo(1Jo£o+Eo11o)+y1('1J1(1 +(1'1J1)]C

N = (Eo1J1 +(11Jo)N.

112 J.A. Bergstra, J. W. Klop

So D is the process which doubles ~ 'incomin~' 0 into 00, likewise for l; M is
the merge process which relays the s1~als ?, l ~ order of entrance at ~ or_~; C
is the copy process which rela~s ~ mcolllin? sign~ to _both T/ and i, m either
order; and N is the process which mverts an mconung signal.

a

11

FIGURE 19

The positions a, ... J will be called ports; {3,y,f.J are internal ports. As sug
gested by figure 19 with its sharing of the internal ports, the processes
D, M, C, N cannot operate freely but are constrained by each other: an action
{30 of D is now only an 'intended' action (a subatomic action) needing the
same action f30 of M for the actual passing or 0 along port /3. Let us denote
this actual event by /J'; likewise /31 denotes passing a 1 at /3, etc. (In fact, the
word 'passing' is misleading since it suggests a direction of flow which, interest
ingly, disappears at this level of analysis.)

Intuitively, it is clear that the example network has an operational semantics
which is a process in A 00 or A 00 over the alphabet

A = { ad,/3;" Yd,<1,f1, T/dld E6D}.

Now this process can be defined as

aH(DllMllCllN)

where H={f1d,Yd,edJdldE6D} and where the communication function is
defined by: ala =a 0 for all a EH and these are the only proper communica
tions. The operational semantics of the network can now be computed using
ACP to any desired depth. This computation can be speeded up by using the
Milner Expansion Theorem 2.2. (In fact, for this example the resulting process
is regular, that is: given by a finite process graph.)

Before discussing the operational semantics of datafiow networks through
networks with channels (which were not considered above; there processes are
'directly' connected), we will make some remarks on the present definition of
the operational semantics of networks communicating by handshaking.

Communicating processes 113

2.3.J. Handshaking. Handshaking, implicitly introduced above by the example
network, is understood here as follows. A network consisting of nodes
P" ... ,Pn communicates by handshaking if each port a of P; (i = l, .. ,n) is
either external (i.e. not connected to any other port) or connected to precisely
one port of another process. Here 'a is connected to /3' means that ad only
communicates properly with f3d (so if adlYe*5, then y = /3 and e = d).

2.3.2. Symmetrical handshaking. Symmetrical handshaking was used in the
example above; here a port a is either external or connected to a. By the
handshaking convention, a port a can be shared by two processes at most.

The example network can just as well be treated using asymmetrical
handshaking, as in

FIGURE 20

where f3*f3, etc., and communication is given by f3dlf3d = /3'd, etc. This is the
format used in MILNER (14], where many examples of networks communicating
by handshaking are given. One can prove an adequacy theorem for asymmetri
cal communication, in the sense that communication by handshaking can
always be taken to be 1-1 and asymmetrical without loss of defining power.
This statement will be made more precise in subsection 3.8.

Our example network was phrased in terms of symmetrical handshaking, to
minimize the notational overhead. For regular processes (the property 'regu
lar' is the subject of the next section), as all the nodes D,M, C,N in the exam
ple are, this works perfectly well. If the nodes are not regular and given by
recursion equations containing II, then asymmetrical communication must be
chosen; otherwise undesired 'auto-communications' may occur when evaluating
the recursive definition.

The condition in our definition of handshaking is a bit severe. One can
safely allow a port to be shared by more than two processes, still requiring
proper communications to be binary.

114 J.A. Bergstra, J. W. Klop

EXAMPLE 2.4. Let 6D={O}, lap=ao/3ola/h likewise If3Y' lya· Let T=ao. Let
communication be given by aia=a 0 for aEH={ao,/3o,Yo}-

FIGURE 21

In the resulting total process oH(Tlllaf311/f3r11Iya) the datum 0 is inserted by T
and then cycles clockwise through the ring of processors (which are buffers
with capacity 1).

A more interesting and fundamental deviation of the handshaking require
ments is introduced by MILNER [15].

2.3.3. Synchronous versus asynchronous processes. Process co-operation as
described above is asynchronous, in the sense of MILNER [15] where a study is
made of synchronicity vs. asynchronicity, and where it is argued that synchro
nous co-operation is the more fundamental of the two.

A synchronous network of processes is one where at the pulses of an (ima
ginary) universal clock all ports exhibit activity simultaneously. As an example
consider the following network consisting of two NOR circuits; the example is
from MILNER [15] with a slight adaptation and serves to demonstrate our claim
that synchronous networks can be treated to a large extent within ACP. The
NOR circuit (figure 22) is defined by

NOR(k) = ~ (a;l/3JIYk)NOR(iJ,J) (k =O, 1)
i,je{O,l)

Here iJj= 1 ~ i = j =O, and the a;!f3}Yk are actions which can be perceived
simultaneously at the ports a,{3,y. E.g. aol/3olY1 is the simultaneous passing
(or rather, occurrence) of 0 at a, 0 at f3 and l at y.

Now consider the network as in figure 23, where NOR' is a copy of NOR
obtained by renaming the indicated ports. So

NOR'(k) = ~ <fiklY;!Aj)NOR'(iJ,j).
i,je {O, I)

Communication is given by (a;if311Yk2l.(ft11YklA£2=a;IYk:l.B}IA1; all other commun
ications result in o. Further, H = { a;if311Yb ydf311Ak I i,j,k E {O, 1} }.

Communicating processes

FIGURE 22

~
y~
~

FIGURE 23

115

Then the network of Figure 23 has as semantics: an(NOR(k)llNOR'(l)), in the
initial state k,l. Abbreviating this expression by X(k,/) we compute using the
axioms of ACP:

X(k,l) = an(NOR(k)lL.NOR'(l))+an(NOR'(l)lL.NOR(k))

+ an(NOR(k)INOR'(l))=S+s+an(NOR(k)INOR'(l))

= aH(~(ad.BJYk)NOR(iJ,j) I ~cft1l:YdA.j)NOR'(iJ,j))
i,j i,j

i,J

= ~(a;j,Bil-YiclA1)X(iJ,l, kJ,J)
i,j

which is a system of four recursion equations, describing the intuitively
expected process. The difference with Milner's approach via SCCS (see [15)) is
the use of 6: not only does it serve to remove the undesired interleaving
results, also it is used to express that certain composite actions are incompati
ble.

A more direct axiomatization of synchronous processes, related to Milner's
SCCS, can be given by omitting the interleaving part of ACP, that is: replace
CMI by xl[y=x[y, and erase CM2-4. We will not study this axiomatization
here, however.

2.4. Dataftow networks. We will return now to the case of networks communi
cating by handshaking. Above, the connections between ports were direction
less and thought of as relaying the data instantaneously. These port connec
tions are not channels as used in dataflow networks; e.g. a channel like Queue
does not relay its messages instantaneously. So let us consider networks such
as the one in figure 24, where the arrow-shaped figures denote channels. We
will consider as channels: Queue. Bag and Stack. Now an important realiza
tion is that channels and nodes are in fact the same type of entities: both are
processes.

Hence this simple form of dataflow is nothing more than a network com
municating by handshaking as treated above. The only difficulty is that the
processes Queue, Bag and Stack are rather complicated: they are not regular.
In the next section we will consider recursion equations within ACP (in fact,
even within PA) for Bag and Stack, and discuss some of their properties.

116 J.A. Bergstra, J. W. Klop

FIGURE 24

For Queue the situation is essentially more complicated. If one admits infinite
systems of equations, Queue can be defined in PA as the first component of
the solution of such an infinite system of equations.

One can prove (see [10]) that Queue cannot be defined recursively by a finite
system of recursion equations over PA.

If one allows extensions of the PA formalism, there are two ways of specify
ing Queue. The first method is via auxiliary operators II\ and A, that can be
axiomatized by finitely many equations (like lL is finitely axiomatized). Then
Queue can be recursively defined over PA extended with these new operators.
(See [10].) The second method uses process graphs defined by means of
abstract data types; see [7].

3. RECURSIVELY DEFINED PROCESSES

In the previous sections we have used, occasionally, some processes which were
defined as the solutions of recursion equations; namely, the iteration p"' of p

"' (as the solution of X = pX) and the w-merge p • of p (as the solution of
X=p!LX; see 1.8.).

In this section we will consider this important specification method for
processes in a more systematic way. This will produce some criteria as to
which processes in A 00 can be defined recursively; also it will give us some
other process algebras.

In the course of these considerations the concept of a finitely generated pro
cess algebra will prove to be an important concept. Likewise, the concept of a
regular process plays a prominent role: this is a process corresponding to a
finite transition diagram (i.e. having a finite canonical process graph), possibly
with cycles. First we need two technical concepts.

Communicating processes 117

3.1. Linear terms and guarded terms
Let X 1,. • .,Xno be variables ranging over processes. Given the signature of PA
or that of ACP, two kinds of terms containing variables Xl>···•Xn are of partic
ular importance: .
(i) Linear terms. Linear terms are inductively defined as follows:

- atoms a, 8 and variables X; are linear terms,
- if T 1 and T2 are linear terms then so are T 1 +T2 and aT1 (for aeA).

An equation T 1 = T 2 is called linear if Ti. T 2 are linear.
(ii) Guarded terms. The unguarded terms are inductively defined as follows:

- X; is unguarded,
- if T is unguarded then so are T+ T', T.T', oH(T), TllT', TlLT', TIT'

(for every T').

A term T is guarded if it is not unguarded. Note that we introduced 'formal'
variables X 1, ••• ,Xn; they are meant as the 'unknowns' in recursion equations.
The formal variables should not be confused with the metavariables x,y,. ..
which occur in the axioms of PA and ACP.

Mostly, we will be interested in finite systems E of equations. In this section
we will always require that E is a guarded system of equations. (I.e. the RHS's
of the equations in E are guarded.) We will first consider the case of linear E,
which gives us the regular processes.

3.2. Regular processes
As defined in Section 1, an element p EA 00 has a canonical process graph, with
the subprocesses as nonterminal nodes and 'o' as terminal node. Now we
define:
(i) p EA 00 is regular if Sub(p) is finite;
(ii) r(A 00) is the collection of the regular processes in A 00 •

The next fact is immediate.

THEOREM 3.1. The following statements are equivalent:
(i) p is regular
(ii) Sub(p) is finite
(iii) G(p) is finite
(iv) p is the first component of the solution vector of a finite, guarded, linear sys

tem of equations.

Moreover, r(A 00) is closed under all operations (in the signature of PA as well
as that of ACP); it is a process algebra whose position relative to the previous
ones is as follows: A., c;r(A 00) c; A 00 c;A 00 •

ExAMPLE 3.1.
(1) Let X be the solution of X=a+bX. Then G(X) is as in figure 25, with a
tree representation as in figure 26. Note that SuE{X) = { X}. As a projective
sequence, X=(a +b,a +b(a +b), a =b(a +b(a +o)), ... f" X is a regular
process.

118

a

a

b

FIGURE 25

{
X = aY+c

(2) Let Ex,Y be y = bX+dY+e

b

a

J.A. Bergstra, J. W. Klop

a b

,' '
'

FIGURE 26

Then the regular solution !!_ has the canonical process graph

FIGURE 27

(3) The following process !!_ is not regular.

FIGURE 28

It is the first component of the solution vector of the infinite system of linear

equations

Communicating processes 119

That X is indeed not regular follows from the realization that there are
infinitefy many subprocesses (all the ~n• n ;;a.Q, are pairwise different).

3.3. Recursively defined processes

We now define in full generality the concept of a recursively defined process.
Let X={X1> ... ,Xn} be a set of process names (formal variables). We will con
sider terms over X composed from atoms a EA and the operators in the signa
ture of PA or that of ACP.

A sytem Ex of guarded fixed point equations (or guarded recursion equations)
for X is a set of n equations {X;=T;(X1>···•Xn)li =l, ... ,n} with 7j(X) a
guarded term. There is the standard result:

THEOREM 3.2. Each system Ex of guarded fixed point equations has a unique
solution in (A 00 t.

We define p EA 00 to be recursively definable if there exists a system Ex of
guarded fixed point equations over X with solution (p,q l>····q,, -d· With
R (A 00) we denote the subalgebra of recursively defined processes. The relative
position of this second new process algebra R(A 00) is as follows:

A., Cr(A 00)CR(A 00)CA 00 CA 00

both for PA and ACP. All inclusions are proper.
There is an algebra of some interest which is strictly intermediate between

r(A 00) and R (A 00): it is the process algebra of uniformly finitely branching
processes. These are processes having canonical process graphs where all the
nodes have a uniformly bounded outdegree.

ExAMPLE 3.2. The following is a system of nonlinear guarded recursion equa
tions:

{
X = aX(X+b)

Y = bYXY

Likewise X=a(b\\X) is a nonlinear equation. (The process graph of the solu
tion X is the one in figure 28.)

A useful fact is the following. Call a process perpetual if all its traces are
infinite. Then:

THEOREM 3.3. Let Ex be a system of guarded recursion equations using only +
and . . Suppose the solutions X are perpetual. Then they are regular.

An example suggests the simple proof:

{
x = aYX(X+ Y)+bYYZ

Ex,Y,Z Y = bYY+cZX

Z = c(ZX+dZX)

120 J.A. Bergstra, J. W. Klop

Now a short inspection of Ex, r.z reveals that the solutions X, Y ,Z are per

petual. So in products in Ex, r,z one can erase evel)'. factor fOllo~g X, Y, z
(since for all p, .! p = .!• etc.) I.e. the system of equatwns

{
X=aY+bY

E~,Y.Z Y=bY +cZ
Z=c(Z+dZ)

has the same solutions X, Y, Z. But since E~. r,z is a linear system, these solu-
tions are regular. - - -

We will now consider recursion equations for the processes corresponding to

Bag, Stack and Counter.

3.4. Bag
Let a -c:::::i- f3 be a bag with input port a and output port /3. (Here 'bag' is

considered as a channel which does not preserve, like Queue does, the order of

the incoming data. So the contents of Bag can be imagined as a multiset or
bag.) Consider a finite data domain D. Then the actions to be performed by

Bag are, in our earlier notation, ad and f3d (dED). For notational convenience
we write d instead of ad and d instead of fid·

Let B be the initial state of Bag: the empty bag. Now let action d be exe
cuted, that is: dis added to the bag. The result is a bag with the commitment

of eventually giving d as output, i.e. performing action d. We claim on intuitive

grounds that this bag-with-commitment-d is d llB. Tliis leads to the equation
for B: - -

B = :Ld~llB).
deD

Alternatively: consider the process "2.ddd. Then it is (again intuitively) clear
that B is the w-merge: -

So

B = (Ldd)[LB
deD -

which indeed is equivalent to the first recursion equation for B, by using the
axioms of PA for lL .
A third definition:

!
Bd = d~ lLBd =d(~ llBd)

B = llBd (d ED)
d

Communicating processes 121

How can one verify that these equations for B indeed describe the intended
Bag?
(a) By computing the corresponding canonical process graph and 'validating

this against the intuition';
(b) by the more rigorous method employed in [7], which consists of giving a

specification of B in terms of abstract data types and proving the equation
given here correct w.r.t. that specification. Here we will not discuss that
method.

We proceed with (a). First, consider the singleton data domain D={d}. Then
B =d(~ llB), and now-writing

Bo = B, Bn+I =d llBn=dnllB
- -

one proves immediately

{
Bo = dB1

Bn +1 = dBn+2 +d Bn (n~O).

(PROOF:

Bn+I =d llBn =dlLBn +Bnlld=d Bn +(dBn +1 +d Bn-1)lld
- - - - - -

=d Bn +dBn+1 lLd+d Bn-1 lLd=dBn +d(Bn +1 lld)+d(Bn-J lld)
- - - - -

=dBn+dBn+2 +d Bn.)
- -

This yields the canonical process graph

FIGURE 29

The general case B =~dd(d llB) is, as process graph, obtained by merging
these 'singleton-bags' Bd· S"o if D = { a,b }, the canonical process graph of
B =a(a llB)+b(b llB) is:

- -

122 J.A. Bergstra, J. W. Klop

FIGURE 30

We will return to Bag later in this section.

3.5. Stack
For convenience, let D={a,b}. As with Bag, 'a' denotes the event of pushing
'a' on the stack, 'a' of popping 'a' from the stack; likewise for b. Now Stack
can be defined thus:

S = TS

T = aTa+bTb

Ta= a +TTa

Tb= b +TTb.

Here T is Terminating Stack, which must terminate as soon as it is again
empty. Further, Ta is T containing an 'a', Tb likewise. S is the iteration T"' of
T; so S is the intended perpetual process Stack. Essentially, this recursive
definition of Stack occurs also in HOARE [12].

The recursive definition of Stack above involves the definition of a nonper
petual process, in casu T. This is essential: Stack S cannot be derived recursively
(over + and ·) without a non-perpetual auxiliary process. For, if it could, then
Theorem 3.3 would entail that Sis regular, an obvious contradiction. A conse
quence is that S cannot be defined recursively (over + and .) in one equation.

The canonical process graphs of S and T are as in figure 31 and 32.

Communicating processes 123

FIGURE 31

FIGURE 32

3.6. Counter
We will consider a simple counter C without test for zero. The equation for C
is obtained by the one for Stack, with D={a}:

T = aT {
C =TC

1~ = <!_ ~1Ta
or, after eliminating T and writing D =Ta:

{
C = aDC

D = <!_ +aDD.

G(C) is determined as follows: writing Cn =Dnc one easily computes

{
Co = aC1

Cn+I = ~Cn+aCn+2

which determines the same process graph as for the singleton-bag above. So we
have the interesting fact that C is also the solution of

C = a(a llC).

This leads to the question whether it is also possible in the case of the general
bag (over an arbitrary but finite data domain D) to eliminate II in its recursive
definition in favour of +,.(and possibly using more equations). The answer is
no, if D contains at least two elements. For the lengthy proof see [8].

124 J.A. Bergstra, J. W. Klop

3. 7. Criteria for recursive definability

TlIEOREM 3.4. A process which is recursively defined only with + and·, and
which has an infinite branch, must have an eventually periodic infinite branch.

ExAMPLE 3.3. The process babaabaaabaaaabaaaaab... cannot recursively be
defined over + and ·.

TlIEOREM 3.5.
(i) If p eR(A 00)(+,·,II, lL), that is: p can recursively be defined in the signature

of PA, then Sub(p) is finitely generated (in the usual algebraic sense) over
+,·,11,[L.

(ii) Likewise for the reduced signature +, ·.

The last fact (ii) can be used to prove that Bag over a non-singleton domain
cannot be recursively defined by + and alone; one must prove that Sub(Bag)
(i.e. the collection Bmn in figure 30, if D = { a,b}) cannot be finitely generated
using +, only.

3.8. 1-1 communication
We conclude this section with a theorem stating that binary communication
may always be supposed to have a certain simple form.

Consider the alphabet A = E UH where H is the set of communication
actions, so H={aeAl3balb=f=o}. Let communication be binary: alblc=o for
all a,b,ceA.

We claim that without loss of defining power (on the external processes,
where 'external' refers to £ 00), the communication mechanism H, I can be
replaced by a 1-1 communi~tion mechanism n·, (. This means: there is a
map - :H" ~H·, such that a =a and such that all proper communications

have the form a la= b.
Let us be more precise about the phrase 'without loss of defining power on

external processes'. The situation is as in figure 33:

----·- ··-> R(A"')

------- R(E"'I

·----------->a (R(A"'l I
H

FIGURE 33

(A*l whereA*=EuH*

.-·-------· -+ R(A*~I

FIGURE 34

Communicating processes 125

In the original setting with H and I (see figure 33), the communication
mechanism is able to define the 'external' processes (i.e. in E 00) contained in
aH(R(A 00)). This aH(R(A 00)) is a subalgebra of A 00 ; it contains a subalgebra
R(E 00), the external processes recursively definable without communication.
Here the difference aH(R(A 00))-R(E 00) is nonempty; i.e. communication
yields more expressive power.

Now it is possible to replace H, I by H*, 1· such that the situation in figure
34 is obtained. That is, the new communication mechanism given by H*, I"
recursively defines at least as many processes as the old mechanism.

It is not hard to obtain as a next step an 1-1 asymmetrical communication
function without impairing the expressive power. (A communication function
is asymmetrical if for all a: ala =8.) In fact, this is the communication format
chosen in MILNER [14].

4. HIDING INTERNAL STEPS IN FINITE PROCESES

In this last section we will discuss the very fundamental problem of abstraction
of internal steps ('hiding'). In a process one may wish to distinguish internal
and external behaviour and to abstract from the former; obviously the availa
bility of adequate abstraction mechanisms is of crucial importance for a
hierarchical construction of systems.

In trace semantics, which may be viewed as the theory of A CP augmented
with the axiom x (y + z) = xy + xz, the abstraction problem seems easy:
abstracting from the internal (or silent) steps T (in Milner's notation) from a
trace such as abTacrra results simply in abaca.

Also for synchronous processes as described in MILNER [15] abstraction from
internal steps is easy: in a composite action (i.e. a simultaneous action of all
ports, internal and external, of the network in consideration), say eJ!e21e3 li 1li2

where i1>i 2 are internal, the result after 'hiding' the internal steps is eJ!e 2 le 3 •

(The point here is that each composite action has a nonempty external part, so
that hiding does not hide the whole action - therefore the choice structure is
left intact.)

However, trace semantics does not respect and reflect deadlock behaviour;
and synchronous process co-operation is in our view a special case of the more
general mechanism of asynchronous process co-operation, cf. subsection 2.3.3.
(MILNER [15] argues the reverse point of view, though.)

For asynchronous processes the initial temptation to treat internal or silent
steps T as above, like the unit element in group theory, that is via equations
xT=TX =x, leads at once to difficulties in the presence of communication.
Namely, the processes a(Tb +c) and a(b +c) have different deadlock
behaviour: let c,c' be communication atoms such that clc'=c 0 is the only
proper communication (so alc'=Tlc'= ... =8). Then for the context

C[] =a(c,c'} [... lie']

126

we have

C[a(rb +c)] = a(To+c 0
)

C[a(b+c)] = ac 0
•

J.A. Bergstra, J. W. Klop

In this section we will treat abstraction of internal steps for asynchronous
processes. We will deal only with finite processes; here the theory exhibits
some clarity. For infinite processes the situation is at present much less clear
- for some comments see our 'concluding remarks' (4.3) at the end of this
section.

4.1. Hiding internal steps in finite processes without communication: PAT

4.1.1. Bisimulation modulo internal steps. From now on, we consider the alpha
bet A U { T }, where T is the silent or invisible step. A trace a is a possibly
empty finite string over A U{T} (thus aE(A U{r}*). With e(a) we denote the
trace <J where all r-steps are erased.

Consider a finite acyclic process graph g over A U { r}. A path 7T:s 0 ~ sk in
g is a sequence of the form

10 11 '•-1

s0 -?s 1 --? ... --? sk
h, h, h,_I

(k ;;a.O) where the si are nodes, the h; are edges between s; and s; + 1, and each l;
is the label of edge hi. (The h; are needed because we work with multigraphs.)
The trace trace('IT) associated to this path is just 10 11 ... /k - I·

DEFINITION 4.1. A bisimulation modulo T between two finite acyclic process
graphs g1 and g2 is a relation Ron NODEs(gi)X NODEs(g2) satisfying the fol
lowing conditions:
(i) (ROOT{g1), ROOT(gz))ER,
(ii) Domain (R) = NODES(gi) and Codomain(R) = NODES(g2),

(iii) For each pair (s 1,sz)ER and for each path 771 : s 1 ~t 1 in g 1 there is a

path 7Tz: s2-+t2 in g1 such that (t1,t2)ER and e(trace(7Ti))=
e(trace(7T2)). (See figure 35.)

(iv) Likewise for each pair (s 1,sz)ER and for each path 172 : s 1~t2 in g 2

there is a path 7T1: s 1-+t 1 in g 1 such that (tJ,t 2)ER and e(trace(7Ti))=
e(trace(7T1)). (See figure 36.)

Communicating processes 127

FIGURE 35

R

R

FIGURE 36

Process graphs g 1,g2 are bisimilar modulo r if there is a bisimulation modulo r
between g1>g2. Notation: g1 tiTg2 .

The notion of bisimulation modulo r specializes to the notion of bisimula
tion t7 introduced in Section 1, where r is not around. For technical reasons it
is convenient to work with rooted bisimulation modulo r: here a root cannot
be related to a nonroot node. If gI>g2 are bisimilar in this sense, we write
g 1 ti,,T g2 • Also this notion of bisimulation specializes to t7 in Section 1 (see
1.2.2.1).

ExAMPLES 4.1. arbtt,,Tab (see figure 37); ab'=,,Tar(_rb+rrb) (see figure 38);
a(rb +b)tt,,T ab (see figure 39); c(a +b)'=,,Tc(r(_a +b)+a) (see figure 40).

A negative example: see figure 41. This was the example in the i"l.troduction to
this section. The heavy line denotes where it is not possible to continue a con
struction of the bisimulation.

Another negative example: a(rb +c) 'fr,,T a(b +c)+ab.

128

a

T

-
b

FIGURE 37

./
/

~ --
/

/
~/

\
_

J.A. Bergstra, J. W. Ktop

a a

R" ____
1

\\ " ----------"'" --/ ~ \ "'- "-.
\ _, "-- '-..'-..T 1

\""' ""' --.. --
\ "'- "-"-.

""'"""
"'--. ---

""'
-

"-......__
.._____ -
FIGURE 38

a a

1
-----,.;;---
b ---- b ---- --;_-

b ---------

" "-

FIGURE 39

c

T

"-.., _____ - ----
FIGURE 40

1

b

Communicating processes 129

a

b c

------- - ---
b ---

FIGURE 41

THEOREM 4.1. Rooted bisimulation modulo 'T is preserved by the operators
+,., lL II on finite acyclic process graphs.

(This would not be true for bisimulation modulo ,. without the 'rooted' condi
tion. E.g. ati"a' 'Tbti"bbuta+'Tb~"a+b. Notethat'Tb~,,-rb.)

COROLLARY 4.1. The relation 'bisimilar modulo ,., is a congruence on
Aw(+,·,11,ll).

4.1.2 Axioms for abstraction. A beautiful result in MILNER [14] is that the
semantical notion of <;::±'·" congruence on finite processes can be treated alge
braically, namely by three simple equations: Milner's T-laws Tl, TI, T3. Added
to PA we obtain PA" as in Table 5, where the abstraction operator ,.1 serves to
'internalize' steps. (Here a EA".)

130 J.A. Bergstra, J. W. Kiop

THEOREM 4.2.
(i) PAT is conservative over PA (the latter with actions from A).
(ii) The initial algebra of PA" is iomorphic to Aj'::±,,,,. (the initial algebra of

PA modulo the congruence of rooted bisimulation modulo r).

Stated differently: the r-laws TI -3 are a complete axiomatization of rooted
bisimulation modulo T.

Part (i) of the theorem states that PA" does not identify processes not contain
ing T which differ w.r.t. PA.

ExAMPLE 4.2. If the r-laws constitute a congruence, then since PAT t- ar=a we
must also have PAT t-arllb =alL_b. Indeed:

arllb = a(Tllb)=a(rb + br)=a (rb + b) =aTb =ab =a llb.

The following derivable identity is often useful:

PROPOSITION 4.1. PA,,.t-r(x +y)+x = r(x+y).

PROOF. r(x+y) = r(x+y)+x+y=r(x+y)+x+y+x=r(x+y)+x.

In [6] a proof of Theorem 4.2. is given along the following line. On the set of
finite acyclic process graphs a reduction procedure is defined which simplifies
the graph (lessens its number of edges and nodes) and which is sound for '::::?,,T.
A normal proces graph is one in which no further reduction steps are possible.
A rigid process graph is one which admits only the trivial rooted bisimulation
with itself (E.g. arb +ab is not rigid since it admits the nontrivial 'auto
bisimulation' as in figure 42.)

T

b

a ·4 -- _// -- /
/ b _ ,,....,

/
/

/

FIGURE 42

Now one can prove that (i) normal process graphs are rigid and (ii) rigid
bisimilar process graphs must be identical. This together with the soundness
yields the confluency property for the graph reduction procedure (the explicit
confluency proof in [6] is in fact superfluous), which in tum implies the com
pleteness of the graph reduction procedure w.r.t. +:::±, ,,..

An example to see how the graph reduction pr~edure translates into the

Communicating processes 131

axioms Tl-3: one of the reduction steps consists of replacing in a graph a part
as in figure 43 (i) by the part in figure 43 (ii) (i.e. deleting an a-step).

a a

FIGURE 43 (i) (ii)

In terms of terms this amounts to a(Tx +y)+ax=a(Tx +y).
We remark that the confluency result mentioned above only holds for the

graph reduction procedure; when Tl-3 are viewed as reduction rules (in what
ever direction), together with a restatement of PA as a rewrite system (i.e.
choosing the direction left to right in all but the axioms for commutativity and
associativity) confluency does not hold.

Before extending the PA.,.-formalism with communication, we mention the
following curious fact (which is significant for some choices in the development
of the present theory):

PROPOSITION 4.2. 'I'he equation X =a +,,. X has in.finitely many solutions in the
initial model of PA.,..

PROOF. If p is a solution, then also 7(p +q) is a solution for arbitrary q:

a+,,.$ +q) =a +T(p +q)=a +p+7(p +q)

= a +a +rp +T(p +q)

= a +rp +'l°(p +q) = p +7(p +q)=T(p +q).

Therefore, since Ta is a solution (by Tl and T2), T(Ta +q) solves the equation
for arbitrary q. This proves the proposition.

Although we do not treat infinite processes here, we note as a corollary from
this proposition that recursion equations, guarded by atoms from A U {,,.}, are
no longer an adequate specification mechanism for infinite processes as they
do not have unique solutions.

132 J.A. Bergstra, J. w. Klop

4.2. Hiding internal steps in finite processes with communication: A CP T

The virtue of the T-laws Tl-3 is not yet fully realized in PAT; it is more real
ized in the presence of communi~ation - indee_d the ~otivatio.n for rejecting
some alternative to the T-laws as m the example rn the mtroduct10n to this sec
tion was stated in terms of communication behaviour. Therefore we want to
combine ACP with the T-laws; the result is the axiom system ACP T in Table 6.

It turns out that (apart from the T-laws) the atom T must also in the axioms
concerning 'I' be treated differently from the a EA; otherwise some desirable
congruence properties are lost. Namely, a term as nalnb will be evaluated in
ACP 7 as alb (and not as (TIT) (m llTTb) as ACP would prescribe).

ACPT

x+y=y+x Al XT = X TI
x +(y +z) = (x +y)+z A2 TX +x = TX T2
x+x = x A3 a(TX +y) = a(Tx +y)+ax T3
(x +y)z = xz +yz A4
(xy)z = x(yz) AS
x+S = x A6
Sx = 8 A7

alb = bla Cl
(alb)lc = al(blc) C2
Sia= 8 C3

xlly = xlLy+ylLx +x[y CMl
allx = ax CM2 Tll_X = TX TMl
(ax)lLy = a(xl[y) CM3 ('TX)lLy = T(xlly) TM2
(x +y)llz = xllz +yllz CM4 TIX = {) TC!
(ax)lb = (alb)x CMS xlT = 8 TC2
al(bx) = (alb)x CM6 (Tx)[y = x[y TC3
(ax)l(by) = (alb)(xllv) CM7 xl(Ty) = x[y TC4
(x +y)lz = xlz +ylz CM8
xl(y+z) = x[y+xlz CM9

a H('r)=T DT
TJ(T) = T Tll

as(a) =a if af!=H<;;,A Dl T1(a) = a if ati!C.,A -{8} TI2
aH(a) = 8 if a EH D2 TJ(a) = T if a El TB
aH(X +y) = aH(x)+as(y) D3 r 1(x +y) = T1(x)+T1(y) TI4
as(.xy) = as(x). as(y) D4 T1(xy) = T1(x). T1(y) TI5

TABLE 6

Here ~he alphabet is AU { T}; and a,b in Table 6 vary over A only. In the
renaming operators () 8 , T1 we require Tf!=H and 8fl;f, since these constants

Communicating processes 133

should not be renamed.
In order to discuss some properties of A CP n we begin with establishing a

graph model for ACP 7 •

4.2.1. The model of finite acyclic process graphs for ACP 1'. Consider, as in
4.1.1, the collection 5{ of finite acyclic process graphs over A U { T}. In
Theorem 4.2 (ii) it was stated that 6X.f:::tr,1'' i.e. the collection of finite acyclic
graphs modulo rooted T-bisimulation, is (isomorphic to) the initial algebra of
PA 7. (In fact, we used a loose formulation there by not distinguishing X from
Aw.) We will now do the same in the context of ACP .,..

The operations II, ll_,J,aH,TJ on X are defined as follows. The definition of aH
and TJ is clear - their effect is merely renaming some atoms (labels at the
edges) into 8 resp. 'I'. The definition of II and lL is also easy: it is analogous to
that for ACP (see 2.1.2) with the additional communication Tia =8 for all a EA
and TJT=o. The communication merge g 1 Jg2 is different now:

g1Jg2 = 2:{(s~s') (g1llg2)s'ls~s' is a maximal corn. step ing1llg2}·

Here (g)s denotes the subgraph of g with roots (E NODES (g)) and 'maximal'

refers to the accessibility ordering on EDGEs(g) (i.e. s 1 ~ s 2 is greater in this

ordering than s 3 ~s4 if s3 can be reached from s2). A 'communication step'
in g1 llg2 is one obtained as a 'diagonal' edge ~ resulting from the cornmuni-

. f a d b cation o ~an --t

The structure X='X(+, , II, ll_,J,aH,Tf>0,'1') is not yet a model of ACP 7 • It
has a homomorphic image which is a model of ACP 1'' and which is obtained
by dividing out ~r.n rooted T-bisimulation. To define ~r,.,. on the elements of
'X, we must extend the definition of ~r,1'' given before, such that the presence
of 8' s in graphs is taken into account: this is done as above in 2.1.2, so that in
effect we work with 'o-normal graphs'.

Now one can prove the important fact:

LEMMA 4.1.
(i) Rooted T-bisimulation is a congruence on X.
(ii) 6XJ':::±r,T FACP T.

To prove this, we use results in [6] stating that <:::±,,1' can be analyzed into some
elementary graph reductions which have the confluency property. Denoting the
subset of axioms A 1 - 7, T 1 - 3 of A CP 1' by AT, we have, also essentially from
[6], the following proposition.

PROPOSITION 4.2. Let t,s be terms built from A U { T} by + and only. Then:

6XJ<:::±r,7 Ft =s ~AT~ t =s.

Now consider 2:. =A CP 7 - AT, the set of axioms of A CP 1' minus AT. This set
of axioms gives rise to a rewrite system (in fact on equivalence classes of terms

134 J.A. Bergstra, J. W. Klop

modulo the associativity and commutativity axiops, A 1,2,5) by choosing in
every axiom the direction from left to right. Let 4be one step reduction, and

-4 be the transitive reflexive closure of 4. The reductions in ~ are confluent
and terminating. Let ~denote reduction to the unique normal form. (Note
that these normal forms are built by +,•only.) Then, applying Proposition 4.2
on t 3 ,t4 in the diagram of figure 44, (together with Lemma 4.1 (ii)) we have
immediately:

LEMMA 4.2.
(i) I.e. if ACP7 1-t 1 =t2 , then t1 and t2 can be reduced by means of the rewrite

rules (from left to right) associated to the axioms in ACP.,. -AT to normal
forms t 3 ,t4 which are convertible via the AT-axioms.

(ii) Every term t can be proved equal in A CP.,. to a term t' built from A U { -r} by
+ and· only; moreover, t' is unique modulo ~,. 7 •

tl 1• ACP't 1• t2

~~-M ~~-M

3
t3 ·=============. t4

AT

FIGURE 44

EXAMPLE 4.3. The following examples illustrate Lemma 4.2 (i):

(ra +a)jb = rajb
T2

+b+alb J
ajb +ajb = ajb

a-r[Lb

i
a(-rllb)

i
a(-rllb +bllr+rjb)

i

allb

j
a(rb +br+o) = a(-rb +br)=a(-rb +b)=a-rb = ab

(i)

(ii)

Communicating processes

(Ta +a)U_b

l
rn U_b +a U_b

l
T(allb)+aU_b

l
T(aU_b +bU_a +aib)+alLb

l
T(ab+ba+aib)+ab =

l'I

rn!Lb

l
T(aJlb)

T(ab +ba +alb)

135

(iii)

Here (*) is an instance of the (from An derivable rule r(x + y) + x = T(X + y)
as in Proposition 4.1.

A further corollary of Lemma 4.1 and 4.2 is:

THEOREM 4.3.
(i) ~'(J'=?r.r is isomorphic to I(ACP 7), the initial algebra of ACPr·
(ii) A CP r is conservative over A CP (the latter over the alphabet A). I.e., for r

less terms t 1,t2 : ACP,1-t 1 =t 2=ACP1-t 1 =t 2.

A corollary of Theorem 4.3 (i) and the fact that II in A CP r behaves like II in
A CP is the associativity of II:

PROPOSITION 4.3. /(ACPr)FxlJ(vJlz) = (xlly)!Jz

In fact, I (A CP r) satisfies all 'axioms of standard concurrency' as in 2.2 (Table
4) except the second one. Although this second axiom (x lY)llz = x i(Y llz) does
not hold in /(ACP 7), as can be seen by evaluating (alrb)llc to (aib)c and
a j(rb [Le) to (a lb)c +(aic)b +a Ible, a restricted form does hold in I (ACP 7),

namely:

(xiay)lLz = xl(~vlLz).
In view of the linearity of I and lL this can be rephrased as follows: I (A CP r)
~{x lY)U_z = x i(Y llz) for stable y. Here y is stable, in the terminology of
MILNER [14], if y admits no r-stap as a first step.

Some other useful identities in I (A CP 7) are:

xlky = rxllv=r(xllr)

xll-i:v = xU_y, xlLT=x.

For a binary communication mechanism (so that the handshaking axiom
x lv iz = 8 holds) we have analogous to the Milner Expansion Theorem 2.2:

136 J.A. Bergstra, J. W. K/op

THEOREM 4.4 (EXPANSION THEOREM FOR ACPT). Let alblc=8for all a,b,cEA.
Then, in the notation of Theorem 2.2:

~ X; ll__x'k + ~ (x;ix1)Lx'1l
1.;;;.,.k J.;;i<j.;;k

This is not a straightforward generalization of Theorem 2.2, since our proof of
that theorem employed the axioms of standard concurrency (in Table 4) of
which, as remarked above, the second one does not hold in I (A CP 1).

The diagram in figure 45 gives an impression of the modular construction of
ACP r· Here ~ 1 ,,.;J~2 means that ~2 is a conservative extension of ~ 1 ; for each
axiom system part of the signature (viz. the alphabet) is mentioned.

Al-5

A-{6)

4.3. Concluding remarks

PA

A-\6)

PA
1

(A- f o})v(t

'I ' trivial

Al-7

A

FIGURE 45

ACP

A

, I' trivial

..
ACP

1

Aul 1)

,g

In [6] we have described an abstraction mechanism that is at least able to deal
with the following situation: suppose two channels (say, bags Bi. B 2) are con
nected in series:

FIGURE 46

The result, clearly, is again a bag B; however in B there are internal steps visi
ble, viz. the passings of the data through the port connection {3- {31• Now a
minimal requirement for an adequate abstraction mechanism is that it can deal
with such a simple situation: the mechanism should be able to hide the

Communicating processes 137

internal data transmissions and allow a proof that the connection of B 1,B 2

yields again a bag.

It is hard to find the 'canonical' extension of the above algebraic framework

for finite processes with internal steps to infinite processes. This has to do with

the possible presence of infinitely long traces of internal steps. E.g. the notion

of bisimulation can be extended to the infinite case in several nonequivaient

ways whose consequences are by no means immediately clear. One possibility,

which is (formally) the straightforward generalization of <::7'·" admits the po~
sibility of collapsing infinite T-traces; thus equating 'the' solution X of the

recursion equation X =a + T X (which one would expect to be as in figure 47)

with the finite process 'Ta'.

FIGURE 47

Two difficulties arise here, one technical, one conceptual. The technical prob

lem was mentioned in the remark after Proposition 4.2: X is not uniquely

determined by X =a + T X. The conceptual problem is that equating X with

'ra' implies a certain fairness assumption, viz. that X will not always tale the

option T. Interestingly, this built in fairness assumption can be used to attack

the problem of protocol verification (where the fairness assumption is that a

defective channel will not always be defective), as was pointed out to us by

C.J. KOOMEN (13].
It is also possible to extend <::7'·' in another way, such that infinite T-traces

cannot be collapsed. In that case 'rn' and X are different. It might be that here

is a bifurcation point in the development oT the theory.

However, for many purposes such as the one explained above (proving that

composing two bags yields again a bag), one can work within the restricted

algebra of finitely branching processes which are bounded in the sense of not

having infinite T-traces. Here all 'reasonable' extensions of the concept of

bisimulation coincide. In [6] an abstraction mechanism was worked out which

essentially resides in this algebra of bounded processes.
Even though, maybe, the real interest is for infinite processes with invisible

steps, it is certainly safe to say that an adequate algebraic framework to deal

with them presupposes a clear understanding of such a framework for the

finite case; and that was the subject of this last section.

138 J.A. Bergstra, J. W. Klop

REFERENCES
l. J.W. DE BAKKER, J.l. ZUCKER (1982). Denotational semantics of con

currency. Proc. 14th ACM Symp. on Theory of Computing, p. 153-158.
2. J.W. DE BAKKER, J.I. ZUCKER (1982). Processes and the denotational

semantics of concurrency. Information and Control, Vol. 54, No. 1I2,
70-120.

3. J.A. BERGSTRA, J.W. KLoP (1982). Fixed Point Semantics in Process
Algebras, Department of Computer Science Technical Report IW
206/82, Mathematisch Centrum, Amsterdam.

4. J.A. BERGSTRA, J.W. KLoP (1984). Process algebra for synchronous
communication. Information and Control 60 1-3, 109-137.

5. J.A. BERGSTRA, J.W. KLOP (1983). A Process Algebra for the Opera
tional Semantics of Static Data Flow Networks, Department of Com
puter Science Technical Report IW 222/83, Mathematisch Centrum,
Amsterdam.

6. J.A. BERGSTRA, J.W. KLoP (1983). An Abstraction Mechanism for Pro
cess Algebras, Department of Computer Science Technical Report IW
231183, Mathematisch Centrum, Amsterdam.

7. J.A. BERGSTRA, J.W. KLoP (1983). An Algebraic Specification Method
for Processes over a Finite Action Set, Department of Computer Science
Technical Report IW 232/83, Mathematisch Centrum, Amsterdam.

8. J.A. BERGSTRA, J.W. KLoP (1984). The algebra of recursively defined
processes and the algebra of regular processes. J. PAREDAENS (ed.).
Proc. llth ICALP Antwerpen, Springer LNCS 172, 82-94.

9. J.A. BERGSTRA, J.W. KLOP, J.V. TuCKER (1983). Algebraic tools for
system construction. E. CLARKE, D. KozEN (eds.). Logic of Programs,
Proc. 1983, Springer LN CS 164, 34-44.

10. J.A. BERGSTRA, J. TIURYN (1983). Process Algebra Semantics for
Queues, Department of Computer Science Technical Report IW 241/83,
Mathematisch Centrum, Amsterdam.

11. M. HENNESSY (198 l). A term model for synchronous processes. I nfor
mation and Control, Vol. 51, No. 1, 58-75.

12. C.A.R. HOARE (1980). A model for communicating sequential
processes. R.M. MCKEAG, A.M. MCNAGHTON (eds.). On the construc
tion of programs, Cambridge University Press, 229-243.

13. C.J. KooMEN (1983). Personal communication.
14. R. MILNER (1980). A Calculus for Communicating Systems, Springer

LNCS 92.
15. R. MILNER (1983). Calculi for synchrony and asynchrony. Theoretical

Computer Science 25, 267-310.
16. D.M.R. PARK (1981). Concurrency and automata on infinite sequences.

Proc. 5th GI (Gesellschaft fur Informatik) Conference, Springer LNCS
104.

