
Preempth·e Schedulln1 of Uniform
Machines Subject to Release Dates

J. Labetaulk

Centre National d'Etudes des T6l=mununications
lssy les Moulineaux, France

E.L. Lawkr

University of California
Berkeley, U.S. A.

J.K. unstra

Centre for Mathematics and Computer Science
Amsterdam, The Netherlands

A.H. G. Rinnooy Kan

Erasmus University
Rotterdam, The Netherlands

We shall be concerned with findina optimal preemptive schedules on parallel
machines, subject to release dates for the jobs. Two polynomial-time alaorithms are
presented. The first algorithm minimizes maximum completion time on an arbittary
number of uniform machines. The second algorithm minimizes malimum lateness with
respect to due dates for the jobs on an arbittary number of identical machines or on two
uniform machines. A third alaoJithm for minimizina maximum lateness on an arbittary
number of uniform machines is briefly discussed. NP-hardness is established for the
problem of minimizina total weiabfed completion time on a sinale machine.

1. Introduction
We consider scheduling problems in which n independent jobs

Ji • ... ,J,. have to be processed on m parallel machines
Mi, ... ,M •. Each machine can handle at most one job at a time and
each job can be executed on at most one machine at a time. Each job
J1 becomes available for processina at its release date r1• It bas an exe
cution requirement PJ and possibly also a due date or cfe.acDine dJ and a

PROGRESS IN COMBINATORIAL OPTIMIZATION 245 Capyrigbt c 1984 by Academic Preas Canada
All rilhU of .-produc!ioo in any fonni.

ISBN G-12-S667ll0-9

246 LABETOt.JU.E ET AL.

weight w,. Unlimited prcemption is allowed: the processing of any
job may arbitrarily often be interrupted and resumed at the same time
on a different machine or at a later time on any machine. The
machines are assumed to be uniform, i. e. , each machine M, bas a
speed 11, and complete execution of J, on M1 would require p/11 time
units. If all speeds are equal, the machines are identical; if m = 1, we
have a single machine. We assume that all numerical data
r,, p,, db w" '' are integers.

A feasible schedule defines a completion time c, and a lateness
L, = c,-d, for each J,. We may choose to minimize the maximum
completion time Cau = mu:1., •• {C,}, the maximum lateness
Lau = max1s1:s11{L,}, the total completion time :I C1 = :Ij.1 C" or
the total weighted completion time :I w,c, = l: j.1 w,q.

When scheduling jobs subject to release dates, one can distinguish
between three types of algorithms. An algorithm is on-line if at any
time only information about the available jobs is required. It is nearly
on-line if in addition the next release date has to be known. It is off.
line if all information is available in advance.

In Section 2 we consider the minimization of Cmu on m uniform
machines. For the case that all release dates are equal, Horvath, Lam
and Sethi [8] derived a closed form expression for the optimum value
of C•u· Gonzalez and Sahni [6] proposed an O(m log m + n) algo
rithm which produces a schedule meeting this value and containing at
most 2(m-1) preemptions. For the case that the release dates are arbi·
trary, Sahni and Cho [18) gave an 0 (n log n + mn) off -line algorithm
to determine if there exists a schedule in which no ~b is completed
after a common deadline. We will present an 0 (n) nearly on-line
algorithm to minimize c.u; Sahni and Cho [17] independently
developed an O(mn log n + m2n) nearly on-line algorithm that is very
similar to ours. We will indicate how to obtain an O(n log n + mn)
off-line implementation of our algorithm. These methods can also be
used to minimize Lmu in the case of equal release dates.

In Section 3 we consider the minimization of Lmu· For the case
of equal release dates, Horn [7] proposed an O(n2) algorithm to
minimize Lmu on m identical machines. For the case of arbitrary
release dates, he gave an off-line algorithm, based on a network flow
computation, to determine if there exists a schedule in which no job is
completed after its deadline. Bruno and Gonzalez [3] adapted this
feasibility test to the case of two uniform machines. We will extend
both methods by presenting polynomial-time algorithms to minimize
Lau· Martel [13, 14] recently proposed a feasibility test for the case of
m uniform machines, based on a polymatroidal network flow model,

PREEMPTIVE SCHEDULING OF UNIFORM MACHINES 247

and used it to obtain a polynomial-time algorithm to minimize L 1110 •

We will discuss these resu!ts as well.

In Section 4 we consider the minimization of I, C1 and I, w1C1•

For the case of equal release dates, Bruno and Gonzalez [5] proposed
an 0 (n log n + mn) algorithm to minimize I, C1 on m uniform
machines. It is well known that in the case of identical machines allow
ing preemptions will not decrease the optimal value of I, w1C1 [15]. It
follows that I, w1C1 is minimb:ed on a single machine by scheduling the
jobs in order of noninc:reasing ratios w/p1 [19], and that the problem
on two identical machines is al.ready NP-hard [2, 12]. For the case of
arbitrary release dates, I, C1 is minimized on a single machine by an
obvious on-line e:rtension of the above ordering rule [1]; we will estab
lish NP-hardness for the problem of minimizing I, w1C1.

In Section S we conclude by indicating a major open problem and
some important recent developments in the area of preemptive schedul
ing.

2. Mulmum Completion Time

We first consider the problem of minimizing the maximum comple
tion time C •u on m uniform machines. The jobs and the machines are
assumed to be ordered in such a way that r1 :s · · · :s r,. and
St :2!: • • • :2!: S.,..

We will describe a nearly on-line algorithm that considers the time
intervals R1: = [r.1:, rk+ 1] in order of increasing le. For each successive
interval R1: (k = 1, ... , n -1), denote the remaining execution require
ment of J1 at r1: by pJ•> U = 1, .. .,k) and renumber the jobs so that
pfi:) 2!: • • • ~ p!">. The subalgorithm to be applied in each interval
determines the amounts by which the pJ1> are to be decreased within R.1:.
At time ,.,. , all jobs are available, and it is well known [8] that the
minimum time for their completion is given by

c:_ = r,. + max{max1s1sa-1f~J. 1 pJ11> I ~:.1 s1}, (1)

~ i-1 pJ"> I ~ !i s,}.

The portion of an optimal schedule within any interval R1: can be
constructed by applying the Gonzalez-Sahni algorithm [61 to the quanti
ties pjt> - pjk+t) determined by our subalgorithm. Similarly, a schedule
for the final interval [r,., C:.U] can be constructed by applying the same
algorithm. to the quantities pJ11>. Since both the subalgoritbm and the
schedule construction procedure require 0 (n) time for each interval,
the algorithm requires O(n2) time overall; it introduces O(mn)
preemptions into the optimal schedule.

248 LABETOULLE ET AL.

Our algorithm has the property that the remaining execution
requirements passed on to the next interval will be as ev~nly distributed
as possible. More specifically, for each k there is no way to process
the jobs before r1: that could lead to a smaller value for any of the par·
tial sums ~;_1 pjt> (l = 1, •.. ,k). This immediately implies the
correctness of the algorithm, since each of these partial sums appearing
in (1) is as small as it could possibly be.

Rather than giving an inductive proof of this property, we will
settle for a simpler correctness proof of the entire algorithm. This
proof will also serve to introduce algorithmic refmements, by which the
optimum value c:.. can be determined in 0 (n log n + mn) time. An
actual schedule can be constructed by applying the Sahni-Cho algorithm
[18], using c:.. as a common deadline for the jobs. This off-line
approach requires O(n log n + mn) time and introduces O(mn)
preemptions into the optimal schedule.

Let us consider an interval R1: for fixed k. Given the
pJ"> U = 1, ... ,l), we have to determine the pJ1:+1> to be passed on to
the next interval R1:+ t •

Suppose that at time r1: the jobs J 1, ••• , J. are available and not
yet completed, with p{I:> ~ · · · &!!:: p5"> > 0. For ease of notation, we
drop the superscripts. Thus, denote the given pj"> by p1 and the unk
nown pJ"+1> by q1 (j = 1, ... , v), and let t = r1:+ 1 - r1:. For purposes
of exposition, we assume for the time being that, if m < v, machines
M.+1, ... , M. with .r.+1 = · · · = "• = 0 are added to the model.

The PJ can be viewed as defining a staircase pattern as in Figure
1. The q1 will be chosen in such a way that they define a similar pat·
tern.

1

j

v

Fipe 1. Staircase pattern at r1;.

1

h. 1 .(.-

h .
.(.

v=h u.

Fiaure 2. Staircase pattern at '1:+ 1 •

At. illustrated in Figure 2, such a staircase can be characterized by a

PREEMPI'IVE SOfEDULING OF UNIFORM MACHINES 249

sequence ((hi, iit), ... ,(Ja., q.)), where ij, = q1 for each J1 with
h1-1 + 1 :s j :s h, (i = 1, ... ,u; ho= O; h.= v). A first condition
.for feasibility is that

ii> it+1 (i = 1, ... ,u-1). (2)

The staircase ((hi, i1), ... ,(Ja., q.)) will be constructed in such a way
that, for i = 1, ... ,u-1, the capacity of M,.,_1+i. •.• ,M,., will be
fully utilized to decrease P11,_1+i. ••• ,p111 to ijJ. A second condition
for feasibility is therefore that

:IJ-•,_1+1q1 = (l-h1-1)ij, &!'! :IJ-•,_1+tPJ - t:IJ.,.,_1+1.TJ (3)

(l = 111-1 + 1, ... ,h,; i = 1, ... ,u),

with the comers of the staircase, except possibly the last one,
corresponding to strict equalities:
~ ,., (Ja)- ~ ,., ~ ,.,
~J-•1_ 1+1 qJ = 1-h1-1 q, = ""1-•,_1+1 PJ - t""1-•1_ 1+1 s1

(i = 1, ... ,u-1).

A third condition for feasibility is of course that

0 :s qJ :s PJ (j = 1, ... ,v).

We tentatively construct the first step of the staircase by setting

hi = 1, iii = Pt - ts1.

(4)

(S)

Generally, having found i tentative steps (h1, iii), ... ,(h,, ii) with
Ja, < v and iii > · · · > q,, we construct the (i+ 1)-st tentative step by
setting

(6)

If q, > i1+1 and q, 2'! 0, the staircase ((h1, iii), ... ,(111+1, i1+1)) satis
fies (2) and (4); we increment i by one and, if h, is still amaller than v,
construct the next step.

Suppose now that ij, :s ii+ 1 or ij, < 0. In the latter situation,
there is excess capacity on M,.,_1+1, ••• ,M,.1; in both cases, some of the
capacity of these machines has to be devoted to processing h,+ 1 if (2)
and (4) are to be satisfied. We therefore reconstruct the i-th step so as
to include J,.1+ 1 as well: hi is incremented by one, and q, is recalcu-
lated according to

it = (l:;!..,_1+1PJ - tl:;!.,1_1+111)/(h1-h1-1) (7)

250 LABETOULLE ET AL.

(d. (4)). As a result, it may now be that i/i-1 :S ij, (iii-1 < 0 cannot
occur). In this case, we reconstruct the (i-1)-st step so as to include
the current i·th step: h1- 1 is increased to h,, and ii1-1 is recalculated as
in (7). We continue until once more iii> ... > ij,; the adjusted stair
case ((hi, iii), ... , (h" q;)) includes one more job and may have fewer
steps than before. If h1 is still smaller than v, we construct the next
step according to (6).

The process is terminated as soon as h1 = v. If ij, < 0, we reset
q, = O and note that only in this situation the last corner of the staircase
does not correspond to a strict equality.

We have to verify that the resulting staircase
((hi. ij1), ... , (h11 , q.,)) and the corresponding remaining execution
requirements q1, ••• ,q. indeed satisfy the feasibility conditions (2) -
(5). For (2) and (4), this is obvious. To see that (3) must be true,
note that each iii is initially defined by an equality constraint and can
only increase thereafter. To verify (5), it is sufficient to show that
q, s P•t Subtracting (3) for l = h,-1 from (4), we find
iii s p,.1 - ts11, which implies the desired result.

Let us now analyze the running time of the subalgorithm. The
number of step constructions as in (6) is exactly v. The number of step
reconstructions as in (7) is at most v-1, since during each adjustment
two steps are collapsed into one. It follows that the process terminates
in O(v) time. This presupposes that the given values p1 are ordered;
but since the relative order of the remaining execution requirements
does not change, we can maintain an ordered list of these values and
insert the value of the job that becomes available at rt in O(v) time.
Hence the subalgorithm determines the values q1 for each interval in
O(v) time. As has been indicated above, the Gonzalez-Sahni algo
rithm [6] can be applied to construct an actual schedule in each interval
in O(v) time as well. We thus have arrived at a nearly on-line algo
rithm that requires 0 (112) time overall.

We now intend to prove the correctness of the algorithm.
We note first that not only does the relative order of the remain

ing execution requirements remain invariant, but also the following
stronger property holds: as soon as two remaining execution require
ments become equal, they will remain equal. To see this, suppose that
PJ = P1+1 at time rt, and let h, = j. According to (6), we set
iii+ 1 = PJ+ 1 - ta1+ 1 • But iii :S PJ - t31 :S PJ - ta1+ 1 = iii+ 1 , and we have
to reconstruct the i-th step so as to include 11+ 1 as well.

This leads us to defme the rank of an available job J1 at time r1: as
the value h, for which h1-1+1 :S j :s h,. The rank of a job at time r,. is
defined analogously as its step height that would be found if the

PREEMPTIVE SCHEDULING OF UNIFORM'. MAanNES 251

subalgoritbm were to be applied in the interval [r11, c:...,.]. A job will
be called critical if its rank is at most m -1 and noncritical otherwise.
The rank of a job cannot decrease; in particular, once a job becomes
noncritical, it never becomes critical again. It follows from (4) that in
any interval the fastest h1 machines are exclusively processing the long·
est h1 critical jobs. A critical job is processed continuously from its
release date until it either is completed or becomes nonc::ritical.

These observations suggest the following correctness proof for the
algorithm. Frrst, suppose that the schedule ends at c:...,. with the
simultaneous completion of l critical jobs (l < m). At any time when
l' of these jobs are available, they are processed by the fastest l'
machines. In this case, the schedule is clearly optimal.

Alternatively, suppose that the schedule ends with the simultane
ous completion of m noncritical jobs. Let ri be the last release date
just prior to which there is idle time on some machine. Ignoring the
jobs that are available but noncritical at time r.1:- i. we conclude that the
portion of the schedule for the remaining jobs has a structure as illus
trated in Figure 3.

jobs
critical
or
unavailable
at Jr.k.- l

* Jik cmax

Figure 3 . Simultaneous completion of noncritical jobs.

Before rA:, the available critical jobs are processed by the fastest
machines. Between r11: and c:_, there is no idle time. It follows that
the schedule is optimal for the jobs under consideration and a fortiori
that c:...,. is the minimum time to complete all the jobs.

Let us use the new terminology to describe a more efficient impJe
me:ntation of the subalgoritbm. We will reduce the running time by
dealing more carefully with the nonc:ritical jobs, circumventing the need
to introduce machines of speed zero.

Consider the situation after a typical application of the

252 LABETOUl.l..E ET AL.

subalgorithm, as illustrated in Figure 4.

1

h. 1 .{.-

m

v

critical jobs

active noncritical jobs

inactive noncritical jobs

Figure 4 • Staircase patterns at rt and 't+ 1.

The noncritical jobs of lowest rank, i. e., Ji.,_1+1, ... ,J,.1 where
Ja,_ 1 + 1 :s , m :s Ja" will be called activt. In the interval Rt, their
remammg execution requirements are reduced by machines
M111_ 1+1, ••• ,M. to a common amount q,. The remaining noncritical
jobs, i.e., J,,1+1, ... ,J.,, will be called inactivt. In Rt, their remaining
execution requirements are not reduced at all, since q, > iii+ 1 = p111+1
(note that ""•+l = 0).

As a first refinement, the subalgoritbm does not have to deal with
the active noncritical jobs separately, since their remaining execution
requirements will remain equal throughout. They can easily be han
dled simultaneously by straightforward generalizations of (6) and (7).
As a second refmement, the subalgoritbm can be terminated as soon as
either Ja, = 11 or Ja, C!'! m and q, > P11trt·

Rather than maintaining an ordered list of all remaining execution
requirements, we have to do so only for the largest m-1 of them. We
simply record the number of active noncritical jobs, their common
remaining execution requirement, and the lowest index of any of them.
Fmally, we maintain a priority queue for the remaining requirements
of the inactive noncritical jobs.

At each release date, the execution requirement of the job that

PRE.EMPTIVE SCHEDtJLING OF UNIFORM MAOIINES 253

beC()mes available is, depending on its size, inserted either in the
ordered list in 0 (m) time or in the priority queue in O (log n) time.
The staircase computations for the longest m-1 jobs and the active
noncritical jobs require O(m) time in each interval and O(mn) time
overall. The queue operations require 0 (log n) time in each interval
and 0 (n log n) time overall, since once an inactive job becomes active
and is withdrawn from the queue, it remains active throughout. Hence
successive applications of the modified subalgorithm determine the
value c:.a in 0 (n log n + mn) time. As has been indicated above, the
Sahni-Cho algorithm l18] can be applied to construct an actual schedule
in the interval [r1, c_] in O(n log n + mn) time as well. We thus
have arrived at an off-line algorithm that requires O(n log n + mn)
time overall.

3.. Mulmum. Lateneu
We now consider the problem of minimizing the maximum late·

,uss L.u on m identical machines.
A relaxed version of this problem is to test a trial value of Lmu

for feasibility. That is, for a given value y, one has to determine
whether or not there exists a schedule for which Lmu :s y. This con
dition is equivalent to the requirement that no job J1 is completed after
an induced deadliM d1 + y. Sahni [16] proposed an off-line algo
rithm for the case of equal deadlines that requires O(n log mn) time
and introduces at most n-2 preemptions. He also showed that there
can be no nearly on-line algorithm for the case of arbitrary deadlines.
Hom [7] proposed a network flow algorithm for the latter case. He
suggested that one might conduct a search for the optimum value of
L.0 , but offered no upper bound on the number of trial values that
have to be tested. Our contribution here is to obtain such a bound and
to show that it is polynomial in the problem size.

Horn's approach is as follows. Suppose y is a trial value for Lmu·
Let {e1, •••• e2,.} (e1 :s · · · :s e2,.) be the ordered collection of
release dates r1 and induced deadlines d1 + y; if a release date and a
deadline are equal, the smaller index is to be assigned to the release
date. Further, defme the time interval E1: = [e1;, e1:+ 1] for
k = 1, ... ,2n-1.

A flow network is constructed with job vertices Ji, ... ,J,., interval
vertices E1 , ... ,E2,._ 1, a source vertex Sand a sink vertex T. There is
an arc (/" E1:) of capacity e1;+ 1 - e1; if and only if r, ~ e1; and
4!'.t+ 1 ~ d1 + y. In addition, there is an arc (S, 11) of capacity PJ for
j = 1, . .. ,n and an arc (E1:, T) of capacity m(e1;+1 - e1:) for
k = 1, ... ,2n-1. Now, a maximum value flow is found in O(n3) time

256 LABETOULLE ET AL.

{J11i EX} and each vertex E1:, it is required that the total flow through
the set of arcs {(Ii, Ea:) Ii EX} is no more than p(lc, IX!), where

p(k, l) = (e1:+1 - ea) ~~6·"'} s,.

Further, each arc (E1:, T) has capacity p(k, m). This is a special case
of the polymatroidal network flow model [11], in which the capacities
are defined by nonnegative and submodular functions, one for each set
of arcs entering (or leaving) a specific vertex; the model derives its
name from the fact that such a set function corresponds to the rank
function of a polymatroid. Traditional notions such as augmenting
paths and labeling techniques can be extended to find a maximum value
flow for the scheduling model in O((m2n3 + n4) (m + log n)) time
[13,14].

To determine the optimum value of Lmu, one again uses the oon
cept of critical trial values so as to arrive at a polynomial-time algo
rithm that requires O(n2 + n log s1 + log(mu:1{d1} + P)) calls to the
feasibility routine [14]. Admittedly, the degree of the polynomial is on
the high side. By way of compensation, we should add that the investi
gation of polymatroidal network flow models was inspired by this
scheduling problem and has yielded a useful generalization and unifica
tion of classical network flow theory and much of the theory of matroid
optimization [11].

4. Total Weighted Completion Time
We finally oonsider the problem of minimizing the total comple

tion time~ C; or the total weighted completion time~ w1C1•

Let us first assume that all release dates are equal. Bruno and
Gonzalez [.S] proposed a simple algorithm to minimize~ C; on m uni
form machines: order the jobs according to nondecreuin.g execution
requirements, and schedule each successive job preemptively so as to
minimize its completion time. This algorithm is illustrated in Figure 5.
Obviously, it requires 0 (n log n + mn) time and introduces at most

(m-1) (n - ;) preemptions.

The Bruno-Gonzalez algorithm not only minimizes ~ C1 but also
l: ~-i C1 for l = 1, ... , n-1 . Further, it minimizes ~ w1C1 provided
that the weights are agreeable, i.e., Pi < p1; implies w1 2: W.t [5].

A characteristic feature of the algorithm is that at each point in
time the fastest machines are working on the jobs with the shortest
remaining execution requirements. One may consider a straightf or
ward extension to the case of arbitrary release dates, in which at each
subsequent release date the above rule is applied to the available jobs.

PRE.EMPTIVE SCHEDULING OF UNlFORM MACHINES 257

m = 3, L> 1 = 3, t. 2 = 2, L> 3 = 1

n = 4, pl = 3, p2 = 8, p3 = 8, p4 = 10

optimal schedule obtained by Bruno-Gonzalez algorithm:

11 12

12 13

13 14

0 1

13

14

3 4

14

6

l:C- = 14
j

Raure 5 • Example with m uniform machines, all
r1 • 0, ~CJ aiterion.

In contrast to the algorithm described in Section 2, the resulting algo
rithm has the property that the remaining execution requirements
passed on to the next interval will be as unevenly distributed as possi
ble. Unfortunately, it may produce non-optimal schedules, as is illus·
trated in Figure 6. The example shows in fact that no on-line algo
rithm will be able to minimize l: C1 even on two identical machines.

For the case of a single machine, it has been pointed out in Sec·
tion 1 that when all release dates are equal ~ w,c, is minimized in
O(n log n) time by scheduling the jobs in order of nonincreasing ratios
w1 I p1 [19]. Again, an obvious extension to the case of arbitrary
release dates is to apply the ratio rule at each release date to the
remaining execution requirements of the available jobs. This on-line
algorithm yields an optimal schedule when the weights are equal or
agreeable [1]. Surprisingly [1,p.82], the problem is NP-hard when the
weights are arbitrary, as will be shown below.

This result will be obtained by a reduction from the following NP
complete problem (4]:

PARTITION: Given a set T = {1, ... ,t} and positive integers
a1, ... ,a,,b with ~J€raJ = 2b, does there exist a subset SC T such
that ~JuOJ = b?

Given any instance of PARTITION, we define a corresponding
instance of the problem of minimizing l: w,C1 on a single machine sub
ject to arbitrary release dates as follows:

n = t + 1;

,, = 0, PJ = WJ = OJ (j E T);

r,,, = b, p,,, = 1,w,,, = 2.

258 LABETOUI.LE ET AL.

~ = 5 • IL1 = !Lz = '1.3 = o, '1.4 = '1.5 = fL

P1 = Pz = P3 = 2, P4 = P5 = 1

(a.) fL = 2

optimal schedule obtained by extended Bruno-Gonzalez algorithm:

11 14

12 15

2 3

optimal schedule:

11 I 12

121 13

13

14

15

5

Ic . = 1s
j

Ic . = 16
j

0 1 2 3 4

non-optimal schedule obtained by extended Bruno-Gonzalez algorithm:

Ic. = 11
j

Figure 6 - Example with two identical machines, ~c1 criterion.

We claim that PARTITION has a solution if and only if there exists a
schedule with value ~ w1C1 s y , where

y = l: is1s1:si a1a1: + 3b + 2.

With respect to {11li E T}, any nonpreemptive schedule without
machine idle time is optimal and has value l'; 1"'J""t"'' a1a1. Inserting
the unit-time job J,. in a schedule for {J1li E T} increases the contribu·
tion to~ w1C1 of the latter set by the total weight of all jobs completed
after J,. • Let us denote the inde:z: set of all jobs completed before J,.
by S, the length of the interval from b until J,. starts by c (c :<?: 0) , and
the length of the interval from the last completion before J,. until J.
starts by d (d :<?: 0). We then have for any schedule that

c .. = b + c + 1,

~JU Wj = b + C - d,

PREEMPTIVE SCHEDULING OF UNIFORM MAOilNES 259

l: W1C1 = :l:1sJstsi DJDt + 2b - l:JuWJ + 2C,. = y + c + d

(d. Figure 7). It follows that there exists a schedule with value y if
and only if P AR1TTION has a solution.

Since PAR1TTION can be solved in O(tb) time, the above reduc
tion does not exclude the existence of a similar pseudopolynomial algo
rithm [4] for the single machine problem. However, the latter problem
is NP-hard even with respect to a unary encoding [12] (NP-hard in the
strong sense [4]), which implies that it cannot be solved in pseudopoly
nomial time unless P = NP.

schedule corresponding to solution of PARTITION:

Ml t-1---{JjljES}--___,I Jnl
0 b b+l 2b+l

arbitrary schedule:

M1 tl ~~~~~~~~{J~i{I J~· €~s1} ~~~~~f1~nJE~f{J~1~· lfii €;.IT~-sS:}~g@g~~
0 b+c.-d b+c. b+c.+1

Figure 7 ·Reduction from PARTITION to single machine problem,
l: w1CJ criterion.

2b+l

This stronger result can be obtained by a reduction from the fol
lowing unary NP-complete problem [4]:

3-PARTITION: Given a set T = {1, ... ,3t} and positive integers

01, • .. ,a3,,b with ! b < o1 < ~b(j ET) and l:J€r aJ = tb, do there

exist t pairwise disjoint subsets s, CT such that l:Ju, o1 = b for
i=1, ... ,t?

The reduction is as follows:

n = 4t - 1;

TJ = 0, PJ = WJ = DJ (j E T);

TJ = (j-3t) (b+l)-1, PJ = 1, WJ = 2 (j = 3t+l, ... ,4t-1);

3
Y = l:isjstsli DJOt + (t-1)t(2b+l).

The equivalence proof is left to the reader.

260 LABETOULLE ET AL.

5. Condudln1 Remarks
The major open problem in the area of preemptive scheduling ol

uniform machines subject to release dates involves the minimization Oj

l:C1• It has been pointed out that this problem cannot be solved by m:
on-line algorithm. We suspect that it cannot be proved NP-hard eith.e1
and conjecture that it is solvable in polynomial time.

An important generalization of the models considered in thi!
paper is the addition of precedence constraints between the jobs. 11
turns out that a number of results for the nonpreemptive scheduling oJ
unit-time jobs subject to precedence constraints can be extended to the
preemptive scheduling of jobs with arbitrary processing requirements.
For example, polynomial-time algorithms have been obtained for the
minimization of Cmu on an arbitrary number of identical machines sub
ject to release dates and outtree constraints, and for the minimization
of Lmu on two uniform machines subject to release dates and general
precedence constraints. Also some NP-hardness proofs carry through,
e. g., for the above C.u problem with intree rather than outtree con
straints. The reader is referred to [10] for further details.

Another challenge is to investigate the stochastic counterparts of
these models, in which the job parameters are random variables and an
expected objective value is to be minimized. Initial results for such
models are reported in [20].

Acknowledpientl
The referee's commeats led to an improvement of our running time analysis in Sec

tion 3. This research was partially supported by NSF Grants MCS76-17605 and MCS78-
20054 and by NATO Special Research Grant 9. 2. 02 (SRG. 7).

References
[1] K. R. Bahr (1974) Introduction to Sequencing and Scheduling, Wiley, New York.

[2] J. Bruno, E.G. Coffman, Jr., R. Sethi (1974) Scheduling independent tasks to
reduce meanfinishina time. Comm. ACM 17, 382-387.

[3] J. Bruno, T. Gonzalez (1976) Scheduling independent tasks with release dates and
due dates on parallel machines. Technical Report 213, Computer Science Depatt
ment, Pennsylvania State University.

[4] M.R. Garey, D.S. Johnson (1979) ComputtrJ and Intractability: a Guitk to the
TMory <I NP-CompltttMU, Freeman, San Francisco.

[5] T. Gonzaltz (19'n) Optimal mean finish time preemptive schedules. Technical
Report 220, Computer Science Department, Pennsylvania State University.

[6] T. Gonzaltz, S. Sahni (1978) Preemptive schedulina of uniform processor sys
tems. /. Auoc. Comput. Mach. 25, 92-101.

[7) W.A. Hom (1974) Some simple scheduling algorithms. Naval RtJ. Logist. Quan.
21, 177-185.

PREEMPTIVE SCHEDULING OF UNIFORM MAOIINES 261

[8] E. C. Horvath, S. Lam. R. Sethi (1917) A level algorithm for preemptive schedul·
ing. J. A.r.soc. Compllt. Mach. 24, 32-43.

[9] AV. Karzanov (1974) Determining the maximal flO\V in a necwork by the method
of preflows. S<7Viet Math. Dold. 1.5, 434-437.

[10] E. L. Lawler (1982) Preemptive scheduling of precedence-constrained jobs on
parallel machines. In: M.AH Dempster, J.K. Lenstra, A.HG. Rinn.coy Kan
(eds.) (1982) Deterministic and Stochastic Scheduling, Reidel., Dordrecltt, 101-123.

[11) E.L. Lawler, C. U. Martel (1982) Computing maximal "polymatroidal" netWork
fl.O'WS. Math. Oper. Res. 7, 334-347.

[12] J.K. Lenstra, AHG. Rinnooy Kan, P. Brucker (1977) Complexity of machine
scheduling problems. AM. Discrete Math. 1, 343-362.

[13) C. Martel (1982) Pree.mptive scheduling with release times, deadlines, and due
times. J. Assoc. Com.put. Mach. 29, 812·829.

[14) C. Martel (1982) Scheduling uniform machines with release times, deadlines and
due times. In: M.AH Dempster, J.K. Lenstra, AHG. Rinnooy Kan (eds.)
(1982) Deterministic and Stochasric ScMdulillg, Reidel, Dordrecht, 89-99.

[1.5] R. McNaughton (1959) Scheduling with deadlines and loss functions. Management
Sci. 6, 1-12.

[Hi] S. Sahni (1979) Preemptive scheduling with due dates. Oper. Res. 27, 925-934.
[17] S. Sahni, Y. Olo (1979) Nearly on line scheduling of a uniform processor system

with release times. SIAM J. Comp111. 8, 275-285.
[18] S. Sahni, Y. Olo (1980) Scheduling independent tasks with due times on a uni

form processor system. J. Assoc. Comput. Mach. 27, 55()..563.

[19] W.E. Smith (1956) Various optimizers for single-stage production. Naval Res.
logi.st. Quart. 3, 59-66.

[20] G. Weiss (1982) Multiserver stochastic scheduling. In: M. AH Dempster, J. K.
Lenstra, AH G. Rinnooy Kan (eds.) (1982) Determinisric and Stochastic Schedul
ing, Reidel, Dordrecht, 1.57-179.

