Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science
H.P. Barendregt, J.R. Kennaway, J.W. Klop, M.R. Sleep

Needed reduction and spine strategies
for the lambda calculus

The Centre for Mathematics and Computer Science is a research institute of the Stichting Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, computer science, and their applications. It is sponsored by the Dutch Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

Needed Reduction and Spine Strategies
 for the Lambda Calculus

H.P. Barendregt

University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
J.R. Kennaway

University of East Anglia, Norwich NR4 7TJ, England.

J.W. Kop

Centre for Mathematics and Computer Science P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

M.R. Sleep

University of East Anglia,
Norwich NR4 7TJ, England.

1980 Mathematics Subject Classification (1985): 03B40, 68Q99
1982 CR Categories: D.1.1., F.4.1.
Key Words \& Phrases: lambda calculus, reduction strategy, needed redex, spine redex, strictness analysis. Note: 1) H.P. Barendregt: author partially supported by the Dutch Parallel Reduction Machine project.
2) J.R. Kennaway, M.R. Sleep: authors partially supported by the British ALVEY project.
3) J.W. Glop: author partially supported by ESPRIT project 432, Meteor.

A redex R in a lambda-term M is called needed if in every reduction of M to normal form (a residual of) R is contracted. Among others the following results are proved.
1.R is needed in M inf R is contracted in the leftmost reduction path of M.
2. Let

be such that
$\forall i \exists j \geq i R_{j}$ is needed in M_{j}.
Then R is normalising, ie. if M_{0} has a normal form, then R is finite.
3. Neededness is an undecidable property, but has several efficiently decidable approximations, various versions of the so called spine redexes.

Report CS-R8621
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

CONTENTS

1. INTRODUCTION.

2. PRELIMINARIES.
3. NEEDED REDUCTIONS.
4. SPINE STRATEGIES.
5. CONCLUDING REMARKS.
6. APPENDIX.

REFERENCES.

1. INTRODUCTION.

A number of practical programming languages are based on some sugared form of the lambda calculus. Early examples are LISP, McCarthy et al. [1961] and ISWIM, Landin [1966]. More recent exemplars include ML (Gordon et al. [1981]), Miranda (Turner [1985]) and HOPE (Burstall et al. [1980]). We use the term lambda language to cover these and other languages.

Classical implementations of a lambda language have adopted an applicative order evaluation strategy, as embodied for example in the original SECD machine (Landin [1964]). It is well-known that this strategy is not normalising for all lambda terms. It is also well-known that the leftmost reduction strategy is normalising. However, until graph reduction was introduced in Wadsworth [1971] the leftmost strategy was not considered practicable.

The adoption of a normalising implementation of lambda languages has a number of advantages, of which the ability to specify data structures of unbounded size is most notable. Turner [1979], [1985] has argued the case for normalising implementations in a number of papers.

Recent advances in compiling techniques have led to normalising implementations of lambda languages on sequential machines which rival in performance terms applicative order implementations, e.g. Augustsson [1984]. By taking advantage of the side-effect-free nature of lambda languages (at least in benign incarnations) it may be possible to achieve further
improvements in performance by developing appropriate parallel architectures.
However, the best-known normalising strategy for the lambda calculus is the leftmost strategy, and this is sequential in the sense that identifying the 'next' leftmost redex cannot in general be achieved without at least identifying the current leftmost redex. Equally, at least some of the identification work can be done by a compiler: recent work on strictness analysis, see Mycroft [1981], has exploited this observation.

The fundamental notion underlying this paper is that in every lambda term not in normal form there are a number of needed redexes. A redex is said to be needed in a term M if R has to be contracted (sooner or later) when reducing M to normal form. It will be shown that these redexes can be reduced in any order, or in parallel, without risking unnecessary non-termination. We will present efficient algorithms for identifying sets of needed redexes in a term. The most general concept of neededness is undecidable, as we show in theorem 3.12. However, a family of algorithms can be identified which deliver increasingly better (but increasingly costly) approximations to the needed set. All the algorithms offered identify redexes which can be contracted safely, ie secure in the knowledge that such contraction will reduce the length of a leftmost reduction sequence to normal form by at least 1.

The algorithms are comparable to the so called abstract interpretations of terms, see Abramsky et al. [1985]. For example in the simplest one the term

$$
(\lambda x \cdot(\lambda y \cdot y P Q) R) S
$$

is mapped onto
$(\lambda x .(\lambda y . y \perp \perp) \perp) \perp$,
concluding that the two remaining redexes are needed in the original term.
Just which of the defined algorithms is appropriate for a given implementation is technology and application dependent. Our contribution is to offer a range of choices to the implementor which free him from the sharp distinction between applicative and normal order strategies, which currently forces him to either accept wholesale the inefficiency risks associated with normal order, or to buy the known efficiency of applicative order at the cost of losing normalising properties for his implementation.

The relation with strictness analysis is as follows. There is a sharper notion of neededness: a redex R is head-needed in a term M if R has to be contracted in any reduction to head normal form. For example R in $\lambda x . R x$ is needed and head-needed, but in $\lambda x . x R$ only needed. This notion of head-neededness is essentially the same as that of strictness, albeit that head-neededness refers to the argument whereas strictness refers to the function: we have for all redexes R and all contexts C[]
R is head-needed in $C[R] \Leftrightarrow C[]$ is strict in its argument [].
See section 5 for further discussion on strictness.

Plan of the paper. In section 2 we introduce the concepts and terminology necessary to make this paper self contained. Section 3 contains the major new theoretical concepts and results: the main result in this section is that any strategy which eventually removes all needed redexes in a
term is normalising. Section 4 develops some practical algorithms for identifying sets of needed redexes in a term. Section 5 offers some concluding remarks.

2. PRELIMINARIES

In this paper we will use notation and terminology of Barendregt [1984]. However, in order to make the paper practically self-contained, we will introduce the relevant concepts and notations in the present section. Also some specific preparations for the sequel are included, in the form of Propositions 2.6 to 2.9 .
2.1. Definitions. The set of λ-terms, notation Λ, is defined inductively by
a. $\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots \in \mathrm{A}$;
b. $\mathrm{M}, \mathrm{N} \in \Lambda \Rightarrow(\mathrm{MN}) \in \Lambda$;
c. $M \in \Lambda \Rightarrow(\lambda x . M) \in \Lambda$.

If in (c) the proviso $x \in F V(M)$ is added, we get the set of λI-terms. Here $F V(M)$ is the set of free variables of M. In applications (i.e. terms obtained by clause (b)) the usual bracket convention of 'association to the left' is employed; also outermost brackets are omitted. Repeated abstractions (i.e. terms obtained by clause (c)) like ($\lambda \mathrm{x} .\left(\lambda \mathrm{y} .\left(\lambda_{\mathrm{z} . \mathrm{M})}\right)\right.$) are written as $\lambda \mathrm{xyz} . \mathrm{M}$.

A term $\mathrm{R} \equiv(\lambda x . \mathrm{A}) \mathrm{B}$ is called a redex; $\mathrm{R}^{\prime} \equiv \mathrm{A}[\mathrm{x}:=\mathrm{B}]$, the result of substituting B for the free ocurrences of x in A , is the contractum of R . A term not containing redexes is a normal form (or: in normal form). The passage from redex to its contractum $\mathrm{R} \rightarrow-\mathrm{R}^{\prime}$ is called a contraction. One step (β-)reduction is defined by $C[R] \rightarrow C\left[R^{\prime}\right]$ where $R \rightarrow R^{\prime}$ is a redex contraction and $C[]$ is a context with one hole, i.e. a λ-term with one occurrence of a hole [] . C[M] is the result of substituting M for [] in $\mathrm{C}[\mathrm{]}$. The subterm relation sub is defined by
$M \operatorname{sub} N \Leftrightarrow N \equiv C[M]$ for some $C[]$.
Here \equiv denotes syntactical equality. When stating that M is a subterm of N, in this paper we will refer always to some specific occurrence of M in N .

If we want to display which redex R is contracted in the reduction step $M->N$, we write M --R $-->$ N. Again here we refer to a specific occurrence of R in M. The transitive reflexive closure of the one step reduction relation $-->$ is denoted by $\rightarrow \gg$. Reduction sequences (or reductions, for short) $\mathrm{M}_{0}->\mathrm{M}_{1} \rightarrow \mathrm{M}_{2} \rightarrow->$ will be denoted by \mathbb{R}, \mathcal{S}.. . They may be finite or infinite. Although it is an abuse of notation, we will sometimes shorten $R: M_{0}->M_{1}->\ldots M_{n}$ to $\mathcal{R}: M_{0} \rightarrow>M_{n}$, still bearing in mind that we refer to a specific reduction from M_{0} to M_{n}.

The equivalence relation generated by $-->$ is called conversion and written as ' $=$ '. It should be distinguished from \equiv, syntactical equality.

Leftmost reductions and head reductions.

2.2. DEFINITIONS. If N is an abstraction term λx.A we call the prefix $\lambda \mathrm{x}$ the abstractor of N .

Likewise if R is a redex ($\lambda x . A$)B the abstractor of R is λx. If M is not a normal form, the leftmost redex of M is that redex whose abstractor is to the left of the abstractor of every other redex in M. A leftmost reduction is one in which each contracted redex is leftmost. A leftmost reduction step is denoted by $-->1 m$.

The leftmost redex R in a non normal form M is a head redex if its abstractor is only preceded (in the left to right order of symbols) by abstractors of abstraction terms (not redexes). In particular, the abstractor of the head redex is not preceded by a variable which does not occur in an abstractor. Thus in $M \equiv \lambda x . x R$, where R is a redex, R is the leftmost redex but not the head redex; M has no head redex. On the other hand R is the head redex of $\lambda x . R A B C$. A term is in head normal form if it has no head redex. The set of head normal forms can inductively be defined as follows: if $\mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{n}}$ are head normal forms, then $\lambda \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{m}} \cdot \mathrm{yH}_{1} \ldots \mathrm{H}_{\mathrm{n}}$ is a head normal form. Here $n, m \geq 0$. A head reduction is one in which only head redexes are contracted. This is all standard terminology (apart from 'abstractor'); the following is not.
2.3. DEFINITION. The active components of M are the maximal subterms of M which are not in head normal form.

Here 'maximal' refers to the subterm ordering; so the active components are mutually disjoint. If a term is not in head normal form, it has one active component, namely itself. A normal form has no active components. The set of active components of $\lambda \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}} \cdot \mathrm{yN} \mathrm{N}_{1} \ldots \mathrm{~N}_{\mathrm{k}}$ is the union of the sets of active components of $\mathrm{N}_{1}, \ldots, \mathrm{~N}_{\mathrm{k}}$. The word 'active' refers to the fact that the active components are embedded in a context which is 'frozen', i.e. a normal form when the holes [] are viewed as variables. (This frozen context of M is the trivial context [] if M is not a head normal form.)
2.4. DEFINITIONS. If N is a subterm of M , the descendants of N after the reduction step $\mathrm{M} \rightarrow \mathrm{M}$ ' are those subterms in M^{\prime} which can be 'traced back' to N in M , in the following sense. If $N \equiv \mathrm{x}$, the notion is clear. If N is an abstraction term ($\lambda \mathrm{x} . \mathrm{A}$) or an application (AB), we look when tracing to the outermost pair of brackets of N . (For a more precise definition using labels or underlining see Klop [1980] or Barendregt [1984].) Our stipulation that the 'identity' of the outermost bracket pair determines the descendants, entails that the contractum R' of the redex R in M is not a descendant of R after the reduction step $M^{-} R^{-->} M^{\prime}$ (since in this redex contraction the original outermost pair of brackets of R vanishes). Descendants of redexes are also called residuals. Note that by the previous remark residuals of a redex are again redexes. The notion of descendants or residuals after one reduction step extends by transitivity to the notion of descendants or residuals after a finite reduction sequence R.

If $\mathbb{R}: \mathrm{M}^{*}--\gg \mathrm{N}$ and $\mathbb{S}: \mathrm{M} \rightarrow>\mathrm{L}$ are two 'diverging' reductions, the well-known Church-Rosser theorem states that 'converging' reductions $\mathbb{R}^{\prime}: \mathrm{L} \rightarrow \gg \mathrm{P}$ and $\mathrm{S}^{\prime}: \mathrm{N} \rightarrow \gg \mathrm{P}$ can be found. (In another well-known terminology, λ-calculus is said to be confluent.) A stronger version of this theorem asserts that these converging reductions can be found in a canonical way, by adding 'elementary
reduction diagrams' as suggested in fig.1.

fig. 1

The reduction diagram originating in this way is called $\mathrm{D}(\mathbb{R}, \mathbf{S})$ and in Slop [1980] or Barendregt [1984] it is proved that it closes, ie. the construction terminates and yields reductions \mathbb{R}^{\prime} and \boldsymbol{S}^{\prime} as desired. We write $\mathcal{R}^{\prime}=\mathbb{R} / \mathcal{S}$ and call \mathcal{R}^{\prime} the projection of \mathbb{R} by \mathcal{S}. Elementary reduction
 converging reductions (making the elementary diagram complete) consist of contracting the
 these sets of residuals is empty, we introduce 'empty' reductions as e.g. in the following elementary diagram (where $I \equiv \lambda x . x$):

If the reduction $M_{--R_{-->}} N$ is abbreviated by $\{R\}$ and $R: M-\gg$, the Parallel Moves Lemma asserts that the projection $\{R\} / R$ consists of the contraction of all residuals of R after R.

It is important to note that in general the residuals in P of redex R in M after a reduction M-->> P depend on the actual reduction from M to P. However this is not so if M and P are left-upper corner respectively right-lower corner of an elementary reduction diagram. As a consequence, this implies the following.

Let R sub M be a redex. Then the residuals of R in N^{\prime} are the same with respect to the two reduction paths $\mathcal{R} * \mathbb{S} / \mathcal{R}$ and $\mathbb{S} * \mathcal{R} / \mathcal{S}$. Here $*$ denotes concatenation of reduction paths.

PROOF. The property holds for elementary reduction diagrams and therefore also for reduction diagrams.텰

In the sequel we will need the following fact.
2.6. PROPOSITION. Consider the situation as in fig.3. Let R sub M be a redex none of whose residuals is contracted in \mathcal{R}. Let R^{\prime} sub M^{\prime} be a residual of R after reduction \mathbb{S}. Then no residual of R^{\prime} is contracted in R / S.

PROOF. Suppose that a residual of R^{\prime} is contracted in R / S. Since in R / S only those redexes are contracted that are residuals of the ones contracted in \mathbb{R}, it follows by Proposition 2.5 that a residual of R in a term of R is contracted. Contradiction. (For an alternative proof see the Appendix.)졍

We will need some following facts about reduction diagrams and the phenomenon of 'redex creation'. We say that redex S in M^{\prime} is created by the step $M-R_{-->} M^{\prime}$ if S is not a residual of any redex in M. Facts like the lemma 2.7 (ii) are a good illustration of the beneficial use of Lévy's labels expounded in the Appendix, which speeds up otherwise very tedious case verifications.
2.7. LEMMA. Let $M-->I m$ N and $M-R_{-->} M^{\prime}$. Let R sub M.
(i) If R is not leftmost, then a common reduct of N and M^{\prime} can be found by contracting the leftmost redex in M^{\prime}, see fig.4.

(ii) Moreover, if S sub M^{\prime} is a redex and S^{\prime} sub N^{\prime} is a residual of S in N^{\prime} via the contraction M^{\prime}--> $\operatorname{lm} N^{\prime}$, then
S is created in $M_{--} R_{->} M^{\prime} \Rightarrow S^{\prime}$ is created in $N \rightarrow>N^{\prime}$.
(iii) If R is arbitrary, then we have the elementary diagram as in fig.5.where $M^{\prime} \ldots l m \equiv \ldots N^{\prime}$ denotes either the leftmost step or an empty step (in which case $M^{\prime} \equiv N^{\prime}$). Moreover
$M^{\prime} \quad-{ }^{l} m \equiv{ }_{-->} N^{\prime}$ is the empty step iff R is the leftmost redex.

PROOF. (i) Routine. See for example Lemma 13.2.5 in Barendregt [1984].
(ii) By distinguishing some cases.(For an alternative proof see the appendix.)
(iii) Immediate by (i). \mathbf{R}
2.8 PROPOSITION. (i) Let $M \rightarrow>{ }_{l m} N$ and $M \rightarrow M^{\prime}$. Then the reduction diagram looks like fig.6.
fig. 6

(ii) If moreover S sub M^{\prime} is a redex created in $M \rightarrow M^{\prime}$ and S^{\prime} sub N^{\prime} is a residual of S, then S is created in $M \rightarrow>M^{\prime} \Rightarrow S^{\prime}$ is created in $N \rightarrow N^{\prime}$.
(iii) Let $M \rightarrow$ \rightarrow Im N and $M \rightarrow M^{\prime}$. Then the reduction diagram looks like fig.7. Moreover, $M^{\prime} \equiv N^{\prime}$ holds iff the reduction $M^{\prime}--\gg N^{\prime}$ contracts a residual of the leftmost redex in M.

PROOF. (i) Bý Lemma 2.7 (iii) we can make a diagram chase as in fig. 8 and the result follows.
fig. 8

(ii) By the same diagram chase, using lemma 2.7(ii).
(iii) Again by lemma 2.7 (iii) and a simple diagram chase. ${ }^{[8]}$

3. NEEDED REDUCTION.

3.1 DEFINITION. Let R be a redex in M.
(i) R is needed in M (or just 'needed' when the context makes clear which M is intended) if every reduction sequence of M to normal form reduces some residual of R.
(ii) R is head-needed if every reduction sequence of M to head normal form reduces some residual of R .
(iii) A reduction sequence is (head-)needed if every reduction step in the sequence contracts a (head-)needed redex.
3.2 EXAMPLE. Consider $\lambda x y$.Ix($\mathrm{Ky}(\mathrm{Iy})$). Then in this term Ix is needed and head-needed, Ky (Iy) is needed but not head-needed and Iy is neither needed nor head-needed.

A head-needed redex is automatically needed since every reduction to normal form contains a reduction to head-normal form. If there is no reduction sequence to (head-)normal form, then every redex is (head-)needed. Each term M not in normal form has at least one needed redex, the leftmost redex. The proof requires a routine argument which we omit. Similarly the head-redex of a term (if there is one) is always head-needed.
3.3 DEFINITION. (i) Consider the reduction sequence

Let R be a redex in M_{0} such that no residual of R is contracted in R and such that M_{n} contains no residuals of R. Then we say that redex R is erased in R.
(ii) Redex R in M is erasable if there is a reduction sequence R beginning with M in which R
is erased.

The following fact, whose proof is immediate, gives a first and simple characterisation of the needed redexes in a term.

3.4 PROPOSITION. Let M have a normal form. Then for any redex R in M we have

R is needed in $M \Leftrightarrow R$ is not erasable in M. 졍

Note that the restriction to terms with normal form in Proposition 3.4 is necessary: e.g. in $M \equiv \Omega((\lambda x . I) R)$ where $\Omega \equiv(\lambda x . x x)(\lambda x . x x)$ and R is some redex, R is erasable but by the definition 3.1 also needed, as M does not have a normal form.

A consequence of proposition 3.4 is that in the λI-calculus, where erasure of redexes is impossible, every redex is needed.

We will now investigate how the properties of neededness and non-neededness propagate along the lines of descendants (or residuals) of a redex in M , in some reduction sequence of M . As one may expect, non-neededness is a persistent property.
3.5 TheOREM.Let $M \rightarrow>M^{\prime}$. Let S be redex in M and S^{\prime} be a residual of S in M^{\prime}. Then
(i) S is not needed $\Rightarrow S^{\prime}$ is not needed;
(ii) S is not head-needed $\Rightarrow S^{\prime}$ is not head-needed.

Equivalently

S^{\prime} is (head-)needed $\Rightarrow S$ is (head-)needed.

PROOF. (i) Suppose S is not needed. Then there exists a reduction sequence $S: M-\gg N$ to normal form N in which no residual of S is reduced. Let S^{\prime} be the projection of \mathbb{S} over $\mathrm{M} \rightarrow \mathrm{M}^{\prime}$.

In every reduction step in \mathbb{S}^{\prime} a redex is contracted which is a residual of a redex contracted in $\$$.

Since S reduces no residuals of S it follows by proposition 2.6 that no residual of S^{\prime} is contracted in S^{\prime}. Hence S^{\prime} is not needed.
(ii) Similarly. 졍

We now consider how (head-)neededness propagates. If R is needed in M, and R has just one residual R^{\prime} in M^{\prime} by reduction of some other redex in M, then it follows immediately from Definition 3.1 that R^{\prime} is needed. When R has more than one residual, it is easy to see that it is possible that not all of them are needed. (Consider e.g. ($\lambda \mathrm{x} . \mathrm{x}(\mathrm{KIx})) \mathrm{R}$.) However, we do expect that at least one residual is needed. The proof of this fact is not obvious. This is because if R has, say, two residuals R_{1} and R_{2} in M^{\prime}, one can imagine that every reduction sequence of M^{\prime} to normal form might reduce a residual of R_{1} or of R_{2}, but with some of those sequences reducing only residuals of R_{1}, and others reducing only residuals of R_{2}. This does not happen. We will obtain this fact in proposition 3.7 as an immediate consequence of another characterisation of needed redexes, which says that for neededness it is sufficient to look only at the leftmost (or 'normal', as it is also called) reduction sequence, instead of looking at all reduction sequences of a term to normal form.
3.6 THEOREM. Let R be a redex in M.
(i) Let $\mathbb{L}: M$-->> N be the maximal leftmost reduction starting with M. Then N is the normai form of M and
R is needed \Leftrightarrow some residual of R is contracted in \mathbb{L}.
(ii) Let $\mathcal{F}: M \rightarrow>N$ be the maximal head-reduction starting with M. Then N is a head-normal form of M and
R is head-needed \Leftrightarrow some residual of R is contracted in \mathcal{H}.

PROOF. (i) (\Rightarrow) By the definition of neededness. (\Leftarrow) Leftmost redexes are needed. If some residual of R is a leftmost redex, then by Theorem 3.5, also R is needed.
(ii) Similarly.

This result can be reformulated as follows:
R is (head-)needed iff R is not erased in L (H) iff R has a residual with respect to $\mathcal{L}(\mathcal{H})$ that is a leftmost redex.

In the sequel \mathcal{G} will range over \mathbb{L} and \mathcal{H}.
3.7 Proposition. Suppose M has a (head-)normal form, and R is a (head-)needed redex of M. Suppose \mathbb{S} : M-->> N is a reduction sequence which does not reduce any residual of R. Then R has a (head-)needed residual in N.

PROOF. Let $\mathcal{G}: \mathrm{N} \rightarrow \mathrm{N}_{0}$ be the leftmost (head-)reduction sequence of M to (head-)normal form.

Because R is (head-)needed in M, some residual R_{1} of R must be reduced in $S+G$. Since S reduces no residuals of R, the redex R_{1} must descend from some residual of R_{0} by \mathbb{S} in N. Then R_{0} is (head-)needed in N , by Theorem 3.6. 중
3.8 PROPOSITION. Let $M M_{-->} M^{\prime}$. If Q is a (head-)needed redex in M^{\prime} created by this contraction, then R is (head-)needed in M.

PROOF. let $\mathcal{G}: \mathbf{M}$-->> N be the leftmost (head) reduction path to (head-)normal form. Let Q be a created and needed redex in M'. Suppose towards a contradiction that R is not (head-)needed. Then no residual of R is contracted in \mathcal{G}. Since Q is needed, it has some residual Q^{\prime} contracted in $\mathfrak{G}^{\prime}=\mathfrak{G} / \mathbf{R}$.

Then Q^{\prime} is a residual of a redex in \mathbb{G}, i.e. not created along a vertical downwards reduction. By Proposition 2.8 (ii) it follows that Q is not created. Contradiction.

A useful property is that '(head-)neededness is preserved upwards', with respect to the relation 'subterm of'.

3.9 LEMMA. Let R sub S sub M, with R and S redexes.Then
 R is (head-)needed in $M \Rightarrow S$ is (head-)needed in M.

PROOF. If M has no (head-)normal form then this is trivial. Otherwise, let $G: M->N$ be the leftmost (head-)reduction of M to its (head-)normal form. Suppose that S is not (head-)needed in M in order to show that R is not (head-)needed in M. Then no residual of S is contracted in G. The redex S is to the left of R and the same holds for the respective residuals. It follows that also no residual of $\mathrm{R}^{\text {c }}$ is contracted in \mathfrak{G}. Therefore R is not (head-)needed by Theorem 3.5.평
3.10 PROPOSITION. Let $M H_{--\gg}^{R} N$ and let S be a (head-)needed redex in M. Suppose that R is not (head-)needed. Then S has a unique residual S^{\prime} in N. Moreover S^{\prime} is (head-)needed.

PROOF. Suppose that the (head-)needed redex S is multiplied by contracting R, then R is a superredex of S and therefore by lemma 3.9 also R would be (head-)needed, contradiction. Moreover, since S is (head-)needed it is different from R and cannot be erased by reducing R. It follows that S has a unique residual S^{\prime}. This S^{\prime} is also (head-)needed by Proposition 3.7. $\boldsymbol{l d}_{8}$

3.11 LEMMA. If $F=\beta^{F^{\prime}}$, then
 R (head-)needed in $F R \Rightarrow R$ (head-)needed in $F^{\prime} R$.

PROOF. By the Church-Rosser theorem one has $F--\gg F^{\prime \prime}$ and $F^{\prime}-\gg F^{\prime \prime}$ for some $F^{\prime \prime}$. Then FR $\rightarrow>F^{\prime \prime} R$ and $F^{\prime} R \rightarrow>F^{\prime \prime} R$. Suppose R is (head-)needed in FR. Then also R is (head-)needed in $F^{\prime \prime} R$ by Proposition 3.7 and hence in $F^{\prime} R$ by Theorem 3.5. 져d

Intuitively, (head-)neededness is related closely to termination. Consequently the following result comes as no great surprise.

3.12 THEOREM. It is undecidable whether a redex in some term is (head-)needed.

Proof. Scott's theorem (see Barendregt [1984], 6.6.2) states: "Let X be a set of lambda terms which is closed under conversion. Moreover, let X not be the whole set of lambda terms nor be empty. Then X is not recursive." Now consider the set
$X=\{F \mid R$ is (head-)needed in FR $\}$.
Then X satisfies the criteria of Scott's theorem, by Lemma 3.11. Hence it is not decidable whether R is (head-)needed in FR. From this it follows that it is in general not decidable whether a redex in some term is (head-)needed.

However, just as we can determine that certain programs terminate we can hope to identify at least some (head-)needed redexes in some lambda terms. Theorem 3.12 does not say we cannot do anything: it just tells us that perfection is not possible.

We will now proceed to give a surprisingly simple characterisation of the (head-)needed redexes in M in terms of their behaviour with respect to the leftmost (head-)reduction sequence of M to its (head) normal form. The following definition and treatment are suggested by the analogous treatment in Huet and Lévy [1979].
3.13 DEFINITION. (i) Let M be a term. Then the norm of M , notation $\|\mathrm{M}\|$, is the length (in number of reduction steps) of the leftmost reduction sequence of M to normal form if this exists, and 'infinite' otherwise.
(ii) Similarly, the head-norm of M , notation $\|\mathrm{M}\|^{\mathrm{h}}$, is the length of the maximal head-reduction sequence starting with M.

Note that $\|\mathbf{M}\|^{\mathrm{h}} \leq\|\mathbf{M}\|$.
3.14 NOTATION. $-\ggg_{n}$ denotes the contraction of a needed redex and $\rightarrow \gg_{-n}$ the contraction of a non-needed redex. Similarly $\rightarrow_{\ggg_{h n}}$ denotes the contraction of a head-needed redex and $--\gg_{-h n}$ of a redex that is not head-needed.
3.15 THEOREM. (i) Let M have normal form. Then

$$
\begin{array}{lll}
M \rightarrow>_{n} & N & \Rightarrow\|M\|>\|N\| . \\
M--\ggg n & & \Rightarrow\|M\|=\|N\| .
\end{array}
$$

(ii) Let M have a head-normal form. Then

$$
\begin{aligned}
& \mathrm{M} \rightarrow>_{\text {hn }} \mathrm{N} \\
& \mathrm{M} \rightarrow \mathrm{M}_{\text {hhn }} \mathrm{N}
\end{aligned} \quad \Rightarrow\|\mathrm{M}\|^{\mathrm{h}}>\|\mathrm{N}\|^{\mathrm{h}} .
$$

PROOF. (i) Let R sub M be arbitrary and consider the leftmost reduction sequence
L: $M \equiv M_{0}-\gg M_{k}$ to normal form M_{k}. Let $M-R_{-\gg} N \equiv N_{0}$. By proposition 2.9 we can erect the diagram in fig. 11.

L

where L^{\prime} is again leftmost. Hence in any case $\|\mathrm{M}\| \geq\|\mathrm{N}\|$.
If R is needed, at least one of its residuals is contracted in L. Say this is in the step M_{i}--> M_{i+1}. Since $M_{i} \rightarrow N_{i}$ contracts all the residuals of R, it also contracts the leftmost redex in M_{i}. Therefore by Proposition 2.9 the reduction sequence $N_{i} \rightarrow \gg N_{i+1}$ is the empty step. Hence $\|M\|>$ $\|\mathrm{N}\|$.

If R is not needed, then by Theorem 3.6 no residual of R is contracted in \mathbb{L}. Therefore again by Proposition 2.9 each step $M_{i}>M_{i+1}$ in \mathbb{L} gives exactly one leftmost step $N_{i} \rightarrow N_{i+1}$ in L^{\prime}. Thus \mathbb{L} and \mathbb{L} ' have exactly the same length, and $\|M\|=\|\mathbb{N}\|$.
(ii) Similarly. 졍

The next theorem collects all our equivalent characterisations of (head-)neededness.
3.16 THEOREM (Equivalent characterisations of (head-)neededness).
(i) Let M have normal form N, and let R in M be a redex. Let L be the leftmost reduction sequence from M to N. Then
R is needed in $M \Leftrightarrow R$ is not erasable in M
$\Leftrightarrow R$ has a residual contracted in \mathcal{L}
$\Leftrightarrow R$ is not erased in \mathcal{L}
$\Leftrightarrow R$ is norm-decreasing.
(ii) Let M have a head-normal form, and let R in M be a redex. Let \mathcal{H} be the maximal leftmost head-reduction sequence starting from M. Then
R is head-needed in $M \Leftrightarrow R$ has a residual contracted in \mathcal{H}
$\Leftrightarrow R$ is head-norm-decreasing. \mathbb{S}^{8}
3.17 PROPOSITION. Let M have a (head-) normal form. Then the leftmost (head-) reduction sequence of M has maximal length among the (head-) needed reduction sequences to (head-) normal form. (There may of course be longer sequences, but these include redexes that are not (head-) needed.)

PROOF. Every (head-)needed reduction reduces the (head-)norm by at least one. Therefore a (head-)needed reduction sequence from M to (head-)normal form can have length no more than $\|\mathrm{M}\|^{(\mathrm{h})}$. But $\|\mathrm{M}\|^{(\mathrm{h})}$ is the length of the leftmost (head-)reduction sequence to (head-)normal form. E

This proposition implies that in the λI-calculus the leftmost reduction sequence of M has maximal length among all reduction sequences. This implies the well-known fact for the $\lambda \mathrm{I}$-calculus, that if M has a normal form, then all reductions starting with M terminate.
3.18 LEMMA. (i) Let

$$
M R_{-->} N S_{--->} L
$$

with R non-needed and S needed. Then there is a term N^{\prime} such that
M-- $S^{\prime}->N^{\prime}$---->> L
where S^{\prime} is a needed redex and $N^{\prime}---\gg L$ consists of non-needed reduction steps, see fig.12.

(ii) An analogous statement holds for head-neededness.

PROOF. (i) By Proposition 3.7 non-needed redexes never create needed redexes, so S must be a residual by R of some redex S^{\prime} in M. By Corollary $3.10, S$ must be the only residual of S^{\prime}. Therefore we can make the above reduction diagram. Hence by Theorem 3.5, the redexes reduced in $\mathrm{N}^{\prime}--\gg \mathrm{L}$ are non-needed. That S^{\prime} is needed follows also by 3.5 .
(ii) Similarly
3.19 THEOREM. Let $\mathcal{R}: M$-->> N be a reduction sequence. Then there are sequences $\mathbb{S}: M$-->> L and $\mathcal{T}: L \rightarrow>N$ such that \mathcal{S} is needed, \mathcal{T} is non-needed, and $\mathcal{R}=\boldsymbol{S} . \mathcal{T}$. ("Non-needed reductions can be postponed.") Similarly for non-head-needed reductions.

PROOF. By Lemma 3.18 using some "diagram chasing". 젼

The word 'needed' refers to the fact that, by definition, some residual of the needed redex must be contracted in order to reach normal form. Now we will show that reduction of needed redexes is not only necessary, but also sufficient to reach the normal form. More generally, we will show that if an arbitrary finite number of non- needed steps is allowed between needed steps, the resulting reduction sequence is still sufficient to reach normal form. That is: 'quasi-needed reduction is normalising'.
3.20 DEFINITION. Consider the (finite or infinite) reduction sequence

$$
R=M_{0}-R_{0-->} M_{1}-R_{1-->} M_{2}-R_{2}-->\ldots .
$$

(i) R is called a quasi-needed reduction sequence if
$\forall i \exists j \geq i \quad R_{j}$ is needed in M_{j}.
(ii) Similarly we define quasi-head-needed.

So the quasi-needed reduction discipline has the nice property that one is free to perform, between needed reduction steps, an arbitrary finite reduction sequence.
3.21 THEOREM.(i) Let M have a normal form. Then every quasi-needed reduction sequence starting with M terminates.
(ii) Similarly, if M has a head-normal form, then every quasi-head-needed reduction starting with M terminates.

PROOF. (i) By theorem 3.15, needed reductions are norm-decreasing, while non-needed reductions are norm-preserving. Hence a quasi-needed reduction sequence starting from a term with a finite norm (i.e. having a normal form), must end in a term with norm 0 (i.e. a normal form).
(ii) Similarly.

It follows that if a term has a (head-)normal form, then a quasi-(head-)needed reduction is able to find it (one).

4. SPINE REDUCTIONS.

As shown in 3.12, neededness of a redex R in M is undecidable in general. In practical cases we usually work with terms having a (head) normal form. In these cases we can decide whether R is (head) needed: reduce M by the leftmost reduction path L to (head) normal form; if (a residual of) R is reduced in L, then R is (head-) needed, otherwise not. (A leftmost reduction to head normal form is a head reduction.) This is however not a practical algorithm: it uses (unpredictably long) look-ahead.

Practical algorithms for identifying needed redexes should be efficient: the number of steps required should be bounded by some linear function of the size of a term. This motivates the various notions of spine redex introduced below. These come in two groups: various notions of head-spine redex and spine redex. These are generalisations of the notions of head redex and leftmost redex respectively. The redexes belonging to these families are all needed. Moreover we will give efficient algorithms to test whether a redex in a term belongs to one of the classes.
4.1 DEFINITION. The set HS(M) of head spine redexes in a lambda-expression M is defined as follows.

$$
\begin{array}{ll}
\mathrm{HS}(\mathrm{M})=\varnothing & \text { if } M \text { is in head normal form } \\
\mathrm{HS}(M)=\{(\lambda y \cdot P) Q\} \cup H S(P) & \text { if } M \equiv \lambda x_{1} \cdot x_{n} \cdot((\lambda y \cdot P) Q) R_{1} \ldots R_{m}, \text { for some } n, m \geq 0 .
\end{array}
$$

Note that the head spine redexes of M can be identified during a single traversal of the left spine of M . It follows that there exists an efficient algorithm for identifying the head spine redexes.
4.2 DEFINITION. For a lambda-expression M we define $h s(M)$; this will be the same term with some underlining:

$$
\begin{aligned}
& \mathrm{hs}(\mathrm{x})=\underline{x} \\
& \mathrm{hs}(\lambda \mathrm{x} \cdot \mathrm{P})=\underline{\lambda x} \cdot \mathrm{hs}(\mathrm{P}) \\
& \mathrm{hs}(\mathrm{PQ})=\mathrm{hs}(\mathrm{P}) \mathrm{Q}
\end{aligned}
$$

It is easy to see that a redex R in M is a head spine redex iff the λ of R is underlined in hs(M).
4.3 DEFINTIION. Every lambda-expression can be written in the form

$$
M \equiv \underline{x}_{\underline{0}}\left(\lambda x_{1} \cdot\left(\ldots \cdot\left(\lambda x_{\underline{n}} \cdot \mathbf{x} P_{n+1}\right) P_{n}\right) \ldots\right) P_{1}
$$

where $n \geq 0$, the $x_{0}, \ldots, x_{n}, P_{1}, \ldots, P_{n+1}$ are vectors, i.e. $x_{0}=x_{01}, x_{02}, \ldots$ etc. Note that such vectors are not subterms, but lists of subterms. E.g. in (${ }^{*}$) below $\mathrm{D}_{1} \mathrm{D}_{2}$ is not a subterm. The vectors X_{0} and $\mathbf{P}_{\mathrm{n}+1}$ may be empty, but the remaining x_{i} and $\mathbf{P}_{\mathbf{i}}$ are nonempty. Note that with more parentheses we have $\quad M \equiv\left(\lambda x_{0} \cdot\left(\left(\lambda x_{1} \cdot\left(\left(\ldots,\left(\lambda x_{n} \cdot\left(y P_{n+1}\right)\right) P_{n}\right)\right) \ldots\right)\right) P_{1}\right)$.

The head spine corresponds to the underlined portion of M . The variable y is called the head variable of M . By analogy with the notion of "spine", the terms P_{ij} are called the ribs of M .

For example a term with $\mathrm{n}=2$ looks like
$\lambda x_{0} \cdot\left(\lambda x_{1} \cdot\left(\lambda x_{\underline{2}} \cdot \underline{y} P_{3}\right) P_{2}\right) P_{1} ;$
and when the vectors are written out e.g. like

$$
\begin{equation*}
\underline{\mathrm{a}}_{1} \underline{a}_{2} \cdot\left(\lambda \mathrm{~b}_{1} \underline{b_{2}} \underline{b}_{\underline{b}} \cdot\left(\lambda c_{1} \underline{c}_{2} \cdot \underline{y} D_{1} D_{2}\right) \mathrm{C}_{1}\right) \mathrm{B}_{1} \mathrm{~B}_{2} \tag{}
\end{equation*}
$$

EXAMPLE. In tree notation the term (*) looks like fig. 13. The head-spine corresponds to the leftspine of the tree and is displayed.

The leftmost reduction sequence of M begins by reducing all the head spine redexes, from the outermost inwards. If in a leftmost reduction some rib \mathbf{P}_{i} is substituted for the head variable of M , the head spine of M is extended by the head spine of \mathbb{P}_{i}, and the head spine redexes of \mathbf{P}_{i} will have residuals on the spine of the resulting expression. It follows from the contrapositive formulation of Theorem 3.6 that all the head spine redexes of \mathbf{P}_{i} are needed in M . These observations provide a basis for a better approximation to neededness than that offered by head spine redexes.
4.4 Definition. (i) Let M be as above and let $\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i} 1}, \mathrm{P}_{\mathrm{i} 2} \ldots$ and $\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i} 1}, \mathrm{x}_{\mathrm{i} 2} \ldots$. Then M has the head spine target $\mathrm{P}_{\mathrm{i} 1}$ if $\mathrm{y} \equiv \mathrm{x}_{\mathrm{i} 1}$ with $\mathrm{i}>0$. This subterm will be substituted for the head spine variable when normalising M .
(ii) M has the polyadic head spine target P_{ij} if $y \equiv x_{i j}$ with $i>0$ and $P_{i j}$ exists (i.e. P_{i} has at least j elements).
4.5 EXAMPLE. Consider $\mathrm{M} \equiv\left(\lambda \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \cdot\left(\left(\lambda \mathrm{y}_{1} \mathrm{y}_{2} \cdot\left(\left(\lambda \mathrm{z}_{1} \mathrm{z}_{2} \mathrm{z}_{3} \mathrm{z}_{4} \cdot \mathrm{yW}_{1} \mathrm{~W}_{2}\right) \mathrm{Z}_{1}\right)\right) \mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{Y}_{3}\right)\right)$; then
$y \equiv y_{1} \quad \Rightarrow Y_{1}$ is the (polyadic) head spine target.
$y \equiv y_{2} \quad \Rightarrow Y_{2}$ is the polyadic head spine target.
$y \equiv z_{1} \quad \Rightarrow Z_{1}$ is the (polyadic) head spine target.
$\mathrm{y} \equiv \mathrm{z}_{2} \quad \Rightarrow$ there is no (polyadic) head spine target.
y is free \Rightarrow there is no (polyadic) head spine target.
4.6 DEFINITION. Let M be a term with head spine target N. An extended head spine redex of M is a head spine redex of M or an extended head spine redex of N.

Let M be a term with polyadic head spine target N . A polyadic head spine redex of M is a head spine redex of M or a simple polyadic head spine redex of N .

Recall that the active components of M are the maximal subterms of M not in head normalform.

For example if $M \equiv \lambda x .(\lambda y \cdot P) Q R$, then M is the only active component of itself. If $M \equiv$ $\lambda \mathrm{x} . \mathrm{yR}_{1} \ldots \mathrm{R}_{\mathrm{m}}$, then the active components of M are the ones of $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{m}}$ together.
4.7 DEFINITION. (i) A spine redex of M is a head spine redex of an active component of M .
(ii) Similarly, extended or polyadic spine redexes are respectively the extended or polyadic head-spine redexes of an active component in M .

4.8 LEMMA. Let A sub M be an active component. Then

R is head-needed in $A \Rightarrow R$ is needed in M.

PROOF. Induction on the length of M. If M is not in head-normal form, then $A \equiv M$ and the statement is trivial.
Otherwise, $\mathrm{M} \equiv \lambda \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}} \cdot \mathrm{yA}_{1} \ldots \mathrm{~A}_{\mathrm{m}}$ and A is an active component of say A_{i}. By the induction hypothesis R is needed in A_{i}, hence in M.
4.9 THEOREM. (i) Head spine, extended head spine and polyadic head spine redexes are all headneeded.
(ii) Spine, extended spine and polyadic spine redexes are all needed.

PROOF. (i) From the definition of head spine redexes it is clear that these will be contracted on the head reduction path. Hence by 3.6 (ii) such redexes are head needed. From the definition of extended or polyadic head spine redexes it also is clear that these will become head redexes; therefore they are also needed.
(ii) By (i) and Lemma 4.8.졍

Summarising we have for the classes of redexes the situation as shown in fig. 14.
head spine
in
extended head spine
in
fig. 14
in
head-needed

in
$\subseteq \quad$ extended spine
in

in
$\subseteq \quad$ needed

Now we will turn to the algorithms that detect the various classes of needed redex. First we give a non-computable version in order to make clear the idea.
4.10 DEFINITION. The selection number of a λ-term M , notation $\operatorname{Sel}(\mathrm{M})$, is defined as follows.
$\operatorname{Sel}(\mathrm{M})=\uparrow$ (undefined), if M has no head-normal form;

$$
\begin{aligned}
& =0, \quad \text { if } M \text { has a head-normal form with a free head variable; } \\
& =\mathrm{i}, \quad(>0)
\end{aligned} \quad \text { if } \mathrm{M} \text { has a head-normal form } \lambda \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}} \cdot \mathrm{x}_{\mathrm{i}} \mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}} .
$$

Clearly Sel is a partial recursive function on (the codes of) terms.

The selection number is related to the notion of head-neededness. In the following definition $\Lambda \perp$ stands for the set of lambda terms extended with a new constant \perp.
4.11 DEFINITION. The map $<>: \Lambda \rightarrow \Lambda \perp$ is defined as follows.

$$
\begin{array}{rlrl}
<x> & =x ; \\
<\lambda x . P> & =\lambda x .<P>; & & \\
<\mathrm{PQ}> & =<\mathrm{P}><\mathrm{Q}\rangle, & & \text { if } \operatorname{Sel}(\mathrm{P})=1, \\
& =\langle\mathrm{P}\rangle \perp, & & \text { else. }
\end{array}
$$

EXAMPLE. Let

$$
\begin{aligned}
& \mathrm{M}_{1} \equiv \lambda \mathrm{w} \cdot(\lambda \mathrm{xy} \cdot \mathrm{yAB})((\lambda \mathrm{z} \cdot \mathrm{w}) \mathrm{B}) \\
& \mathrm{M}_{2} \equiv \lambda \mathrm{w} \cdot(\lambda \mathrm{xy} \cdot \mathrm{xAB})((\lambda \mathrm{z} \cdot \mathrm{w}) \mathrm{B})
\end{aligned}
$$

Then

$$
\begin{aligned}
& <\mathrm{M}_{1}>\equiv \lambda w \cdot(\lambda \mathrm{xy} \cdot \mathrm{y} \perp) \perp ; \\
& <\mathrm{M}_{2}>\equiv \lambda \mathrm{w} \cdot(\lambda \mathrm{xy} \cdot \mathrm{x} \perp \perp)((\lambda \mathrm{z} \cdot \mathrm{w}) \perp)
\end{aligned}
$$

4.12 DEFINITION. Referring to the previous example we say that the redex (λ z.w)B is visible in $\left\langle\mathrm{M}_{2}\right\rangle$, but not in $\left\langle\mathrm{M}_{1}\right\rangle$.

4.13 DEFINITION. Let R be a redex in M.

(i) R is called < >-preserved if R is visible in $<\mathrm{M}>$.
(ii) R is called < >-needed if R is < >-preserved in an active component of M.
4.14 PROPOSITION. (i) R is < >-preserved $\Rightarrow R$ is head-needed.
(ii) R is < >-needed $\Rightarrow R$ is needed.

PROOF. Induction on M of which R is a subterm. If $M \equiv x$, then the result is trivial. If $M \equiv \lambda x . P$, then the result follows from the induction hypothesis (IH). If $M \equiv P Q$, then there are three subcases.
$R \equiv P Q$. Then R is head needed.
R sub P. Then

$$
\begin{aligned}
\mathrm{R}<>\text {-preserved } & \Rightarrow R \text { visible in }<M> \\
& \Rightarrow R \text { head-needed in } P, \text { by the } I H \\
& \Rightarrow R \text { head-needed in } M .
\end{aligned}
$$

$\mathrm{R} \operatorname{sub} \mathrm{Q}$. Then

$$
\begin{aligned}
R<>\text {-preserved } & \Rightarrow R \text { visible in }\langle M\rangle \equiv\langle P\rangle\langle Q\rangle \& \operatorname{Sel}(P)=1 \\
& \Rightarrow R \text { visible in }\langle Q\rangle \& \operatorname{Sel}(P)=1 \\
& \Rightarrow R \text { head-needed in } Q \& P \rightarrow_{h} \lambda x_{1} \ldots x_{n} \cdot x_{1} N_{1} \ldots N_{k} \\
& \Rightarrow R \text { head-needed in } P Q \equiv M .
\end{aligned}
$$

(ii) By (i) and Lemma 4.8.졍

The converse does not hold: R in ($\lambda \mathrm{x} . \mathrm{xR}(\lambda y \cdot \mathrm{y}))(\lambda$ pq.p) is head-needed, but not $<>$-preserved.
Now we will define several computable approximations to $\mathrm{Sel} \mathrm{Sel}_{1}, \ldots, \mathrm{Sel}_{4}$. These partial recursive functions are computable in the sense that their domains are recursive. The definition of $\mathrm{Sel}_{\mathrm{i}}$ is simultaneous with that of $\left\rangle_{\mathrm{i}}\right.$.

In the following definition \uparrow denotes "undefined" and $a=b$ is $a-b$ if this is not negative, 0 otherwise.
4.15 DEFINITION. (i) $<>_{i}$ is defined by replacing Sel in the definition of $<>$ by Sel $_{\mathrm{i}}$.
(ii)

$$
\operatorname{Sel}_{1}(P) \quad=\uparrow, \text { for all } P
$$

(iii)	$\mathrm{Sel}_{2}(\mathrm{x})$	$=0$;	
	$\mathrm{Sel}_{2}(\mathrm{PQ})$	= \uparrow;	
	$\mathrm{Sel}_{2}(\lambda \mathrm{x} . \mathrm{P}$)	$\begin{aligned} & =1, \\ & =\uparrow \end{aligned}$	if $x \in F V\left(<P>_{2}\right)$, otherwise.
(iv)	$\mathrm{Sel}_{3}(\mathrm{x})$	$=0$;	
	$\mathrm{Sel}_{3}(\mathrm{PQ})$	$\begin{aligned} & =\operatorname{Sel}_{3}(\mathrm{P}) \cdot 1, \\ & =\uparrow, \end{aligned}$	if $\operatorname{Sel}_{3}(\mathrm{P}) \neq 1$, otherwise;
$\operatorname{Sel}_{3}(\lambda \mathrm{x} . \mathrm{P})$		$\begin{aligned} & =1, \\ & =\operatorname{Sel}_{3}(\mathrm{P})+1, \\ & =0, \end{aligned}$	if $x \in F V\left(<P_{>}\right)$, if $\mathrm{x} \notin \mathrm{FV}\left(<\mathrm{P}>_{3}\right) \& \operatorname{Sel}_{3}(\mathrm{P})>0$, otherwise.
(v)	$\mathrm{Sel}_{4}(\mathrm{x})$	= 0 ;	
	$\mathrm{Sel}_{4}(\mathrm{PQ})$	$\begin{aligned} & =\mathrm{Sel}_{4}(\mathrm{P}) \cdot 1, \\ & =\mathrm{Sel}_{4}(\mathrm{Q})-\text { lengthtail }(\mathrm{P}), \\ & =\uparrow \end{aligned}$	$\begin{aligned} & \text { if } \operatorname{Sel}_{4}(\mathrm{P}) \neq 1 \text {, } \\ & \text { if } \operatorname{Sel}_{4}(\mathrm{P})=1 \text { and } \operatorname{Sel}_{4}(\mathrm{Q})>\text { lengthtail }(\mathrm{P}) \\ & \text { otherwise; } \end{aligned}$
	$\operatorname{Sel}_{4}(\lambda x . \mathrm{P})$	$\begin{aligned} & =1, \\ & =\operatorname{Sel}_{4}(\mathrm{P})+1, \\ & =0 \end{aligned}$	if $x \in F V\left(<P>_{4}\right)$, if $\mathrm{x} \notin \mathrm{FV}\left(<\mathrm{P}>_{4}\right) \& \mathrm{Sel}_{4}(\mathrm{P})>0$, otherwise.

Here lengthtail (P) is defined by:
if P has as head-normal form $\lambda x_{1} \ldots x_{m} \cdot y Q_{1} \ldots Q_{n}$ (with $n, m \geq 0$), then lengthtail $(P)=n$, otherwise \uparrow. Moreover we have the property
$\mathrm{Sel}_{4}(\mathrm{P})=1 \Rightarrow$ lengthtail (P) is defined.
We will not prove this fact here as it will follow from a more precise analysis later on. See the end of this section.

4.16 DEFINITION. Let R be a redex sub M.

(i) A redex R sub M is called a generalised head spine redex if R is $<>_{4}$-preserved.
(ii) R is a generalised spine redex if R is a generalised head spine redex of an active component of M .

It is clear that for the partial functions $\operatorname{Sel}_{\mathrm{i}}$ we have

$$
\mathrm{Sel} \supseteq \mathrm{Sel}_{4} \supseteq \mathrm{Sel}_{3} \supseteq \mathrm{Sel}_{2} \supseteq \mathrm{Sel}_{1},
$$

i.e. the $\mathrm{Sel}_{\mathrm{i}}$ are successively better approximations of Sel.

In the next proposition \supseteq denotes Böhm-tree inclusion of $\lambda \perp$-terms, that is $\mathrm{M} \supseteq \mathrm{N}$ iff M results by replacing some occurrences of \perp by arbitrary $\lambda \perp$-terms.E.g. $\lambda x . x y \supseteq \lambda x . x \perp$.

4.17 PROPOSITION. For all terms M we have

$$
<M>\supseteq<M>_{4} \supseteq<M>_{3} \supseteq<M>_{2} \supseteq<M>_{1} .
$$

PROOF. By the previous remark.

EXAMPLE. Let $M \equiv \mathrm{I}\left(\mathrm{K}_{*} \mathrm{I}\left((\lambda \mathrm{x} . \mathrm{xI}) \mathrm{K}_{*}(\mathrm{II})\right)\right)(\omega \mathrm{I}(\mathrm{II}))$, where $\mathrm{K}_{*} \equiv \lambda x y . \mathrm{y}$ and $\omega \equiv \lambda \mathrm{x} . \mathrm{xx}$. Then $\left\langle\mathrm{M}>_{1} \equiv \mathrm{I} \perp \perp ;\right.$
$\left\langle\mathrm{M}>_{2} \equiv \mathrm{I}(\mathrm{K} * \perp \perp) \perp ;\right.$
$<\mathrm{M}>_{3} \equiv \mathrm{I}\left(\mathrm{K} * \perp\left((\lambda \mathrm{x} . \mathrm{xI}) \mathrm{K}_{*} \perp\right)\right) \perp ;$
$<\mathrm{M}>_{4} \equiv \mathrm{I}\left(\mathrm{K} * \perp\left((\lambda \mathrm{x} . \mathrm{xI}) \mathrm{K}_{*}(\mathrm{II})\right)\right)((\lambda \mathrm{x} . \mathrm{x} \perp) \mathrm{L} \perp) ;$
$<\mathrm{M}>\equiv \mathrm{I}(\mathrm{K} * \perp((\lambda \mathrm{x} . \mathrm{xI}) \mathrm{K} *(\mathrm{II})))((\lambda \mathrm{x} . \mathrm{x} \perp) \mathrm{I}(\mathrm{II}))$.
4.18 DEFINITION. Let R be a redex in M.
(i) R is $\left\rangle_{i}\right.$-preserved if R is visible in $\langle\mathrm{M}\rangle_{\mathrm{i}}$.
(ii) R is $<>_{i}$-needed if R is $<>$-preserved in an active component of M .
4.19 PROPOSITION. (i) $R<>_{i}$-preserved $\Rightarrow R$ head-needed.
(ii) $R<>_{i}$-needed $\Rightarrow R$ needed.

PROOF. (i) By proposition 4.17 it follows that if R is visible in $\left\langle\mathrm{M}_{\mathrm{i}}\right.$, then also in $\langle\mathrm{M}\rangle$ and therefore < >-preserved. Hence by Proposition 4.14 we are done.
(ii) By (i) and lemma 4.8. 텽
4.20 PROPOSITION. (i) R is a head-spine redex $\Leftrightarrow R$ is $<>1$-preserved.
(ii) R is a spine redex $\Leftrightarrow R$ is $a<>1_{1}$-needed.
(iii) R is an extended head spine redex $\Rightarrow R$ is $<>_{2}$-preserved.
(iv) R is an extended spine redex $\Rightarrow R$ is $<>\rangle_{2}$-needed.
(v) R is a polyadic head spine redex $\Rightarrow R$ is $<>_{3}$-preserved.
(vi) R is a polyadic spine redex $\Rightarrow R$ is $<>_{3}$-needed.

PrOOF. For the statements including "head-" this follows by induction on the structure of M in which R occurs. The case distinctions are best made according to the shape of M displayed in Definition 4.3. As a typical example let us show (iii) with $\mathrm{M} \equiv\left(\left(\lambda \mathrm{x}_{1} \mathrm{x}_{2} \cdot\left(\lambda \mathrm{y}_{1} \mathrm{y}_{2} \cdot \mathrm{x}_{2} \mathrm{Z}\right) \mathrm{Y}\right) \mathrm{X}_{1}\right) \mathrm{X}_{2}$ and let R sub M in fact be sub X_{2}. Then
R polyadic head-needed in $M \Rightarrow R$ polyadic head-needed in X_{2}
$\Rightarrow R$ visible in $\left\langle X_{2}>3\right.$, by the $I H$
$\Rightarrow R$ visible in $<M>_{3} \equiv\left(\left(\lambda x_{1} x_{2} \cdot\left(\lambda y_{1} y_{2} \cdot x_{2} \perp\right) \perp\right) \perp\right)<X_{2}>3$
since $\operatorname{Sel}_{3}\left(\left(\lambda \mathrm{x}_{1} \mathrm{x}_{2} \cdot\left(\lambda \mathrm{y}_{1} \mathrm{y}_{2} \cdot \mathrm{x}_{2} \mathrm{Z}\right) \mathrm{Y}\right) \mathrm{X}_{1}\right)=\operatorname{Sel}_{3}\left(\left(\lambda \mathrm{y}_{1} \mathrm{y}_{2} \cdot \mathrm{x}_{2} \mathrm{Z}\right) \mathrm{Y}\right)+1+1-1=1$.
For the statements without "head-", the validity follows from lemma 4.8.国

The reverse implications in (ii) and (iii) do not hold. Consider e.g. $M \equiv(\lambda x .(\lambda y . y A) x) R$. Then R is not an extended (nor polyadic) head spine redex, although R is visible in $\langle M\rangle_{2}$.

As to the length of the different spine reductions, we can state the following simple observation.
4.21 PROPOSITION. All spine reduction sequences of a given term to normal form have the same length.

PROOF. Note that if R_{0} and R_{1} are two different spine redexes in M, then R_{0} and R_{1} can neither multiply nor erase each other. Hence we have the elementary reduction diagram in fig. 15.

Now the statement follows by a simple diagram chase.령

For extended and polyadic spine reductions this is not true, since, for example, a polyadic spine redex may be duplicated by a spine redex to its left.

An algorithm for detecting generalised (head) spine redexes.

The definition of Sel_{4} contains an unsatisfactory element, namely the appeal to lengthtail(M) for which the head-normal form of M must be determined. It would be better to have a more explicit algorithm to determine lengthtail (M). Such an algorithm is given by the following definition. The operation L gives what was called above lengthtail. K is an auxiliary function; see theorem 4.31 below. $\mathrm{K}(\mathrm{M}), \mathrm{Sel}_{4}(\mathrm{M}), \mathrm{L}(\mathrm{M})$ are defined simultaneously; therefore it is convenient to work with triples ($\mathrm{K}(\mathrm{M}), \mathrm{Sel}_{4}(\mathrm{M}), \mathrm{L}(\mathrm{M})$), abbreviated as $\mathrm{KSL}(\mathrm{M})$ and varying over $\mathbf{N}^{3} \cup\left\{\left({ }^{*},{ }^{*},{ }^{*}\right)\right\}$. The operation + on this set works coordinatewise with the understanding that $\mathrm{n}+*=*$.
4.22 DEFINITION. (i) KSL(\perp) $=\left({ }^{*}, *, *\right)$
(ii) $\operatorname{KSL}(\mathrm{x})=(0,0,0)$
(iii) $\operatorname{KSL}(\lambda x . P)=\operatorname{KSL}(P)+(1,1,0) \quad$ if $x \in F V\left(<P>_{4}\right)$ or $F V\left(<P>_{4}\right)=\varnothing$

$$
\mathrm{KSL}(\mathrm{P})+(1,0,0) \quad \text { otherwise. }
$$

(iv) $\quad \mathrm{KSL}(\mathrm{PQ})=\mathrm{KSL}(\mathrm{P}) \oplus \mathrm{KSL}(\mathrm{Q})$, where \oplus is recursively defined by
(1) (*,*,*)
$\oplus(x, y, z)$
$=\left(*,{ }^{*}, *\right)$
(2) $(0,0, \mathrm{j})$
$\oplus(x, y, z)$
$=(0,0, \mathfrak{j}+1)$

(3)	$(\mathrm{k}+1,0, \mathrm{j})$	\oplus	$(\mathrm{x}, \mathrm{y}, \mathrm{z})$	$=(\mathrm{k}, 0, \mathrm{j})$
(4)	$(\mathrm{k}+1,1, \mathrm{j})$	\oplus	$\left(*,{ }^{*}, *\right)$	$=\left(*,{ }^{(}, *\right)$
(5)	$(\mathrm{k}+1,1, \mathrm{j})$	\oplus	$\left(0,0, \mathrm{j}^{\prime}\right)$	$=\left(\mathrm{k}, 0, \mathrm{j}+\mathrm{j}^{\prime}\right)$
(6)	$(\mathrm{k}+1, \mathrm{n}+2, \mathrm{j})$	\oplus	$(\mathrm{x}, \mathrm{y}, \mathrm{z})$	$=(\mathrm{k}, \mathrm{n}+1, \mathrm{j})$
(7)	$(\mathrm{k}+1,1,0)$	\oplus	$\left(\mathrm{k}^{\prime}+1,0, \mathrm{j}^{\prime}\right)$	$=\left(\mathrm{k}+\mathrm{k}^{\prime}+1,0, \mathrm{j}^{\prime}\right)$
(8)	$(\mathrm{k}+1,1, \mathrm{j}+1)$	\oplus	$\left(\mathrm{k}^{\prime}+1,0, \mathrm{j}^{\prime}\right)$	$=(\mathrm{k}+1,1, \mathrm{j}) \oplus\left(\mathrm{k}^{\prime}, 0, \mathrm{j}^{\prime}\right)$
(9)	$(\mathrm{k}+1,1,0)$	\oplus	$\left(\mathrm{k}^{\prime}+1,1, \mathrm{j}^{\prime}\right)$	$=\left(\mathrm{k}+\mathrm{k}^{\prime}+1, \mathrm{k}+1, \mathrm{j}^{\prime}\right)$
(10)	$(\mathrm{k}+1,1, \mathrm{j}+1)$	\oplus	$\left(\mathrm{k}^{\prime}+1,1, \mathrm{j}^{\prime}\right)$	$=\left({ }^{*},{ }^{*}, *\right)$
(11)	$(\mathrm{k}+1,1,0)$	\oplus	$\left(\mathrm{k}^{\prime}+1, \mathrm{n}^{\prime}+2, \mathrm{j}^{\prime}\right)$	$=\left(\mathrm{k}+\mathrm{k}^{\prime}+1, \mathrm{k}+\mathrm{n}^{\prime}+2, \mathrm{j}^{\prime}\right)$
(12)	$(\mathrm{k}+1,1, \mathrm{j}+1)$	\oplus	$\left(\mathrm{k}^{\prime}+1, \mathrm{n}^{\prime}+2, \mathrm{j}^{\prime}\right)$	$=(\mathrm{k}+1,1, \mathrm{j}) \oplus\left(\mathrm{k}^{\prime}, \mathrm{n}^{\prime}+1, \mathrm{j}^{\prime}\right)$.

As to the intuition for KSL(M), the following will be proved:
$\operatorname{KSL}(\mathrm{M})=(\mathrm{k}, \mathrm{s}, \mathrm{j}) \Rightarrow \mathrm{M}$ has a head-normal form of the form $\lambda \mathrm{z}_{1} \ldots \mathrm{z}_{\mathrm{k}} \cdot \mathrm{z}_{\mathrm{s}} \mathrm{N}_{1} \ldots \mathrm{~N}_{\mathrm{j}}$.

The reverse implication does not hold; $\mathrm{M}=(\lambda \mathrm{x} . \mathrm{xI}) \mathrm{I}$ has a head-normal form I , but
$\mathrm{KSL}(\mathrm{M})=\mathrm{KSL}(\lambda \mathrm{x} . \mathrm{xI}) \oplus \operatorname{KSL}(\mathrm{I})=(\mathrm{KSL}(\mathrm{xI})+(1,1,0)) \oplus \mathrm{KSL}(\mathrm{I})=$
$((\mathrm{KSL}(\mathrm{x}) \oplus \mathrm{KSL}(\mathrm{I}))+(1,1,0)) \oplus \mathrm{KSL}(\mathrm{I})=$
$(((0,0,0) \oplus(1,1,0))+(1,1,0)) \oplus(1,1,0)=$
$((0,0,1)+(1,1,0)) \oplus(1,1,0)=$
$(1,1,1) \oplus(1,1,0)=$
(*,*,*).

The reason is that the computation of the head-normal form of M uses the underlined subterm in ($\lambda \mathrm{x} . \mathrm{xI}$)I whereas the definition of $<>_{4}$ (for which KSL is a subroutine) is such that every vector $\mathrm{xP}_{1} \ldots \mathrm{P}_{\mathrm{j}}$ is replaced by $\mathrm{x} \perp \ldots \perp$ (j times \perp; this is abbreviated as $\mathrm{x} \perp^{\mathrm{j}}$). One can formulate a restricted λ-calculus embodying these restrictions (namely that no information is visible of a vector $\mathrm{xP}_{1} \ldots \mathrm{P}_{\mathrm{j}}$ except the head variable and the length j of the tail) in the calculation of KSL and therefore of <>4, and obtain a precise characterisation of when $\operatorname{KSL}(\mathrm{M})=\left(*,{ }^{*}, *\right)$ as follows.
4.23 DEFINITION. $\lambda \perp$-calculus has as terms the set $\Lambda \perp$ and as rules
(i) $\perp \mathrm{M} \rightarrow \perp$,
(ii) $\lambda x . \perp \cdots \perp$,
(iii) $\quad \mathrm{xP}_{1} \ldots \mathrm{P}_{\mathrm{j}} \rightarrow \mathrm{x} \perp \mathrm{j}, \quad \mathrm{j} \geq 0$,
(iv) $\quad\left(\lambda x_{1} \ldots x_{k} \cdot x_{1} \perp^{j}\right) P \quad \rightarrow \lambda x_{2} \ldots x_{k} \cdot P \perp, k \geq 1, j \geq 0$,
(v) $\quad\left(\lambda x_{1} \ldots x_{k} \cdot x_{n} \perp^{j}\right) P \rightarrow \lambda x_{2} \ldots x_{k} \cdot x_{n} \perp j, \quad k \geq 1, j \geq 0, n \neq 1$.

Note again that the \perp^{j} are not subterms.

EXAMPLE. In $\lambda \perp:(\lambda x . x x)(\lambda x . x x) \rightarrow \gg(\lambda x . x \perp)(\lambda x . x \perp) \rightarrow(\lambda x . x \perp) \perp \rightarrow \perp->\perp$.
4.24 PROPOSITION. $\lambda \perp$-calculus is terminating and Church-Rosser. The normal forms are \perp and $\lambda x_{1} \ldots x_{k} x_{n} \perp j$.

PROOF. Every reduction decreases the length of a term, hence the system is terminating. The Church-Rosser property follows via Newman's Lemma, see Barendregt [1984], Proposition 3.1.25, since the system is easily proved to be weakly Church-Rosser. $\boldsymbol{\in}$
4.25. Lemma. (i) $K S L(\perp)=(*, *, *)$.
(ii) $K S L\left(\lambda x_{1} \ldots x_{k} x_{n}{ }^{(j}\right)=(k, n, j)$, if $1 \leq n \leq k$.
(iii) $K S L\left(\lambda x_{1} \ldots x_{k} \cdot x^{\perp}\right)=(k, 0, j)$, if $x \notin\left\{x_{1}, \ldots, x_{k}\right\}$.

PROOF. By the definition. \mathbf{R}
4.26. LEMMA. $K S L$ is substitutive. That is, if $K S L(E)=K S L(F)$, then for any $G, K S L(G[y:=E])$ $=K S L(G[y:=F])$ (where by the usual variable convention the substitution automatically renames variables in E to avoid captures).
PROOF. By induction on the structure of G.
(i) $\mathrm{G} \equiv \mathrm{x}$. Trivial
(ii) $\mathrm{G} \equiv \lambda x$.P. Write $\mathrm{G}^{\mathrm{E}} \int \mathrm{G}[\mathrm{y}:=\mathrm{E}]$. Now

$$
\begin{aligned}
\operatorname{KSL}\left(\mathrm{G}^{\mathrm{E}}\right) & \left.=\operatorname{KSL}\left(1 \mathrm{x} . \mathrm{PE}^{\mathrm{E}}\right)\right)+(1,1,0) \text { or }(1,0,0) \\
& \left.=\operatorname{KSL}\left(\mathrm{P}^{\mathrm{E}}\right)\right)+(1,1,0) \text { or }(1,0,0) \\
& \left.=\operatorname{KSL}\left(\mathrm{P}^{\mathrm{F}}\right)\right)+(1,1,0) \text { or }(1,0,0), \text { by the induction hypothesis, } \\
& \left.=\operatorname{KSL}\left(\mathrm{G}^{\mathrm{F}}\right)\right),
\end{aligned}
$$

since $x \in F V\left(<P^{E}>_{4}\right) \Leftrightarrow x \in F V\left(<P^{F}>_{4}\right)$ because $x \neq y$ and x is not free in E or F
(iii) $G \equiv P Q$. Similar but more easy. 영
4.27. Lemma. Let E be a $\lambda \perp$-redex without proper subredexes. Let F be the contractum of E. Then $\operatorname{KSL}(E)=K S L(F)$.

PROOF. By cases of $\lambda \perp$-reduction, and by induction, firstly on the size of E, and then (when E is an application) on the size of the rator of E. See definition 4.24.

Case (i) $\mathrm{E} \equiv \perp \mathrm{M}$. Then $\mathrm{F} \equiv \perp$. Now $\mathrm{KSL}(\mathrm{E})=\left(*,{ }^{*}, *\right) \oplus \operatorname{KSL}(\mathrm{M})=\left({ }^{*},{ }^{*}, *\right)=\mathrm{KSL}(\mathrm{F})$.
Case (ii) $\mathrm{E} \equiv \lambda x . \perp$. Then $\mathrm{F} \equiv \perp$. Now KSL(E) $=\left({ }^{*},{ }^{*}, *\right)=\mathrm{KSL}(\mathrm{F})$.
Case (iii) $E \equiv x P_{1} \ldots P_{j}$. Then $F \equiv x \perp j$. Now $\operatorname{KSL}(E)=(0,0, j)=\operatorname{KSL}(F)$.
Case (iv) $E \equiv\left(\lambda x_{1} \ldots x_{k} \cdot x_{1} \perp^{j}\right) P$. Then $F \equiv \lambda x_{2} \ldots x_{k} \cdot P \perp{ }^{j}$. Now

$$
\begin{aligned}
\operatorname{KSL}(\mathrm{E}) & =\operatorname{KSL}\left(\lambda \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{k}} \cdot \mathrm{x}_{1} \perp^{\mathrm{j}}\right) \oplus \operatorname{KSL}(\mathrm{P}) \\
& =(\mathrm{k}, 1, \mathrm{j}) \oplus \operatorname{KSL}(\mathrm{P})
\end{aligned}
$$

We compute KSL(F) according to the following subsubcases (4), (5), (7) - (12) corresponding to the definition of \oplus.
(4). $\operatorname{KSL}(\mathrm{P})=\left(*,{ }^{*}, *\right)$. Then $\mathrm{P} \equiv \perp . \operatorname{Now} \mathrm{F} \equiv \lambda \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{k}} \cdot \perp \perp^{\mathrm{j}}$ and $\operatorname{KSL}(\mathrm{F})=\left(*,{ }^{*},{ }^{*}\right)=\operatorname{KSL}(\mathrm{E})$.
(5). $\mathrm{KSL}(P)=\left(0,0, j^{\prime}\right)$. Then $P \equiv y \perp \perp^{\prime}$. Now $F \equiv \lambda x_{2} \ldots x_{k} \cdot y^{\prime} j^{j^{\prime} \perp j}$ and

$$
\operatorname{KSL}(E)=(k, 1, j) \oplus\left(0,0, j^{\prime}\right)=\left(k-1,0, j^{\prime}+j^{\prime}\right)=\operatorname{KSL}(F)
$$

(7). $\operatorname{KSL}(P)=\left(k^{\prime}+1,0, j^{\prime}\right) \& j=0$. Then $P \equiv \lambda y_{1 \cdots y_{k^{\prime}+1}} \cdot y \perp \mathcal{j}^{\prime}$. Now $F \equiv \lambda x_{2} \cdots x_{k} \cdot P$ and $\operatorname{KSL}(E)=(k, 1,0) \oplus\left(k^{\prime}+1,0 j^{\prime}\right)=\left(k+k^{\prime}, 0, j^{\prime}\right)=\operatorname{KSL}(F)$.
(8) and (12) can be treated simultaneously. $\mathrm{KSL}(\mathrm{P})=\left(\mathrm{k}^{\prime}+1,0, \mathrm{j}^{\prime}\right)$ and $\mathrm{k}, \mathrm{j}>0$.
$P \equiv \lambda y_{1} \ldots y_{k^{\prime}+1} \cdot y^{\prime} j^{\prime}$. Now $F=\lambda x_{2} \ldots x_{k} . P \perp{ }^{j}$. Let $G=\left(\lambda x_{1} \ldots x_{k} \cdot x_{1} \perp^{j-1}\right)(P \perp)$. Then $G \ldots F$. From the definition of \oplus we have

$$
\operatorname{KSL}(E)=(k, 1, j) \oplus\left(k^{\prime}+1,0, j^{\prime}\right)=(k, 1, j-1) \oplus\left(k^{\prime}, 0, j^{\prime}\right)=\operatorname{KSL}(G)
$$

We must prove $\mathrm{KSL}(\mathrm{G})=\mathrm{KSL}(\mathrm{F})$. If $\mathrm{P} \perp$ is not a redex, then by induction, this follows from the lemma applied to G. Suppose that $P \perp$ is a redex. Let P^{\prime} be the result of reducing it. It is clear that $P \perp$ contains no proper subredexes and is smaller than E; therefore by the induction hypothesis $\operatorname{KSL}(\mathrm{P} \perp)=\mathrm{KSL}\left(\mathrm{P}^{\prime}\right)$. By substitutivity of KSL one has $\operatorname{KSL}(\mathrm{G})=\mathrm{KSL}\left(\mathrm{G}^{\prime}\right)$, where $G^{\prime} \equiv\left(\lambda x_{1} \ldots x_{k} \cdot x_{1} \perp^{j-1}\right) P^{\prime}$. Let $F^{\prime} \equiv \lambda x_{2} \ldots x_{k} \cdot P^{\prime} \perp^{j-1}$. Then $G^{\prime} \ldots F^{\prime}$ and $F \ldots F^{\prime}$. Both G^{\prime} and F^{\prime} are smaller than E, and are both redexes not containing subredexes. Therefore by the induction hypothesis $\operatorname{KSL}\left(\mathrm{G}^{\prime}\right)=\operatorname{KSL}\left(\mathrm{F}^{\prime}\right)=\operatorname{KSL}(\mathrm{F})$, and the result is proved. (9), (11). $\operatorname{KSL}(\mathrm{P})=$ $\left(k^{\prime}+1, n^{\prime}+1, j^{\prime}\right) \& k>0, j=1$. Then $P \equiv \lambda y_{1} \cdots y_{k^{\prime}+1} \cdot y_{n^{\prime}+1} \perp^{j^{\prime}}$. Now $F \equiv \lambda x_{2} \ldots x_{k} \cdot P \equiv \lambda x_{2} \ldots x_{k} y_{1} \cdots y_{k^{\prime}+1} \cdot y_{n^{\prime}+1} \perp j^{\prime}$.

$$
\mathrm{KSL}(\mathrm{E})=(\mathrm{k}, 1,0) \oplus\left(\mathrm{k}^{\prime}+1, \mathrm{n}^{\prime}+1, \mathrm{j}^{\prime}\right)=\left(\mathrm{k}+\mathrm{k}^{\prime}, \mathrm{k}+\mathrm{n}^{\prime}+1, \mathrm{j}^{\prime}\right)=\mathrm{KSL}(\mathrm{~F})
$$

(10). $\mathrm{KSL}(\mathrm{P})=\left(\mathrm{k}^{\prime}+1,1, \mathrm{j}^{\prime}\right) \& \mathrm{k}, \mathrm{j}>0$. Then $\mathrm{P} \equiv \lambda \mathrm{y}_{1} \ldots \mathrm{y}_{\mathrm{k}^{\prime}+1} \cdot \mathrm{y}_{1} \perp \mathrm{j}^{\prime}$. Now $\mathrm{F} \equiv \lambda \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{k}} \cdot \mathrm{P} \perp \mathrm{j}$.

$$
\begin{aligned}
\mathrm{KSL}(\mathrm{E}) & =(\mathrm{k}, 1, \mathrm{j}) \oplus\left(\mathrm{k}^{\prime}+1,1, \mathrm{j}^{\prime}\right)=\left({ }^{*}, *, *\right) \\
\mathrm{KSL}(\mathrm{~F}) & =(\mathrm{KSL}(\mathrm{P}) \oplus \operatorname{KSL}(\perp) \oplus \ldots \oplus \mathrm{KSL}(\perp))+\ldots \\
& =\left(\left(\mathrm{k}^{\prime}+1,1, \mathrm{j}^{\prime}\right) \oplus\left({ }^{*},,^{*},{ }^{*}\right) \oplus \ldots \oplus(*, *, *)\right)+\ldots \\
& =\left({ }^{*},,^{*}, *\right)+\ldots \\
& =\left({ }^{*},,^{*}, *\right)
\end{aligned}
$$

Case (v). $E \equiv\left(\lambda x_{1} \ldots x_{k} \cdot x_{n} \perp{ }^{j}\right) P \& k \geq 1, n \neq 1$. Now $F \equiv \lambda x_{2} \ldots x_{k} \cdot x_{n} \perp j$.

$$
\begin{aligned}
\mathrm{KSL}(\mathrm{E}) & =\operatorname{KSL}\left(\lambda \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{k}} \cdot \mathrm{x}_{\mathrm{n}} \perp^{\mathrm{j}}\right) \oplus \mathrm{KSL}(\mathrm{P}) \\
& =(\mathrm{k}, \mathrm{n}, \mathrm{j}) \oplus \operatorname{KSL}(\mathrm{P}) .
\end{aligned}
$$

We compute KSL(F) according to cases (3) and (6) of the definition of \oplus.
(3) $n=0 . \operatorname{KSL}(E)=(0,0, j) \oplus \operatorname{KSL}(P)=(k-1,0, j)=\operatorname{KSL}(F)$
(6) $n \geq 2$. $\operatorname{KSL}(E)=(k, n, j) \oplus\left(\operatorname{KSL}(P)=(k-1, n-1, j)=\operatorname{KSL}(F)\right.$. R 2
4.28 PROPOSITION. If $\lambda \perp /--E=F$, then $K S L(E)=K S L(F)$. In particular, $K S L(E)=K S L\left(E^{n f}\right)$, where $E^{n f}$ is the normal form of E.

PROOF. From lemmas 4.26 and 4.27, if $\lambda \perp \mid-\mathrm{E} \rightarrow \mathrm{F}$, then $\operatorname{KSL}(\mathrm{E})=\mathrm{KSL}(\mathrm{F})$. The proposition follows. 툰
4.29 PROPOSITION.(i) $K S L(M)=(k, n, j) \Leftrightarrow \lambda \perp /-M-\gg \lambda x_{1} \ldots x_{k} \cdot x_{n} \perp$.
(ii) $K S L(M)=(*, *, *) \Leftrightarrow \lambda \perp /-M-\gg \perp$.

PROOF. The normal forms of $\lambda \perp$ are $\lambda \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{k}} \cdot \mathrm{x}_{\mathrm{n}} \perp^{j}$ and \perp. Every $\lambda \perp$-expression has a normal form. Hence the proposition follows from lemma 4.25 and proposition 4.28. \mathbf{R}
4.30 PROPOSITION. If $\lambda \perp /-M-\gg \lambda x_{1} \ldots x_{k} x_{n} \perp{ }^{j}$, then $\lambda /-M \ldots \gg x_{1} \ldots x_{k} x_{n} P_{1} \ldots P_{j}$, for some expressions $P_{I} \ldots P_{j}$.

PROOF. All $\lambda \perp$-reductions can be mimicked in λ. .
4.31 THEOREM. $K S L(M)=(k, s, j) \Rightarrow M$ has a hnf of the form $\lambda z_{1} \ldots z_{k} \cdot z_{s} N_{l} \ldots N_{j}$.

PROOF. From Proposition 4.29 and Proposition 4.30. 잢

5 CONCLUSION.

We will make some remarks on the relation of the present work with 'strictness analysis' and with the various concepts of 'sequentiality'.

Strictness.

As the bare essence of 'strictness analysis' we understand the following. Given a domain D of data, including an undefined element \perp, and some space \mathbb{F} of functions over D (not necessarily only unary functions) we will understand 'strictness analysis' to designate the endeavour of (1) giving characterisations of some classes of strict functions from \mathbb{F}, (2) giving computable approximations (that is: subclasses) of some classes of strict functions from \mathbb{F}. Here a unary function f in \mathbb{F} is strict if $f(\perp)=\perp$, meaning that non-zero information output can only be obtained by non-zero information input. Further, a binary function g in \mathbb{F} is strict in both arguments if $g(\perp, x)=g(x, \perp)=\perp$, and likewise for n-ary functions.

In our setting, the data domain D is the set of λ-terms modulo equality as obtained by β-reduction plus the rule $\mathrm{M} \rightarrow \perp$ for all M without head normal form. Thus all terms without head normal form are considered to be meaningless and identified with the undefined element \perp. In Barendregt [1984] ch. 16 this lambda theory is called \mathcal{H}. The space of n-ary functions \mathbb{F} consists of contexts $\mathrm{C}[, \ldots$,$] with \mathrm{n}$ (or less) holes; here $\mathrm{n} \geq 1$. We now have the following result, due to
H. Mulder.
5.1 PROPOSITION. For every context $C[J$ and every redex R we have:
the unary function associated with $C[]$ is strict $\Leftrightarrow R$ is head needed in $C[R]$.

PROOF. We show that the negations of both sides are equivalent.

$$
\begin{aligned}
C[\perp] \neq \perp & \Leftrightarrow C[\perp] \text { has a head normal form } \\
& \Leftrightarrow C[\perp] \rightarrow>\text { head } \lambda x_{1} \ldots x_{n} \cdot x_{i} M_{1} \ldots M_{m} \\
& \Leftrightarrow C[R] \text {-->>head } \lambda x_{1} \ldots x_{n} \cdot x_{i} M_{1}^{*} \ldots M_{m}^{*}, \text { without reducing } R, \\
& \Leftrightarrow R \text { not head needed in } C[R] . \mathbb{S}
\end{aligned}
$$

It follows that
$C[]$ is strict in [] $\Leftrightarrow \forall R$ R head needed in $C[R]$
$\Leftrightarrow \quad \exists \mathrm{R} R$ is head needed in $C[R]$.

Thus our computable approximations of the concept of head needed redex, such as head spine redex, generalized head spine redex etc., can be perceived as strictness analysis.

Berry sequentiality.

At this point it is worth-while to note that in the pure λ-calculus there are no nontrivial n-ary (with n ≥ 2) functions which are strict in all their arguments. That is, if $\mathrm{C}[\mathrm{M}, \perp]=\mathrm{C}[\perp, \mathrm{M}]=\perp$ for all M , then the function associated with this binary context is identically \perp. This follows from a theorem of G. Berry [1978] who refers to this fact as the 'sequentiality' of λ-calculus. It is therefore slightly puzzling that an operator as + can be defined in λ-calculus by a term PLUS such that PLUS n m $--\gg \mathrm{n}+\mathrm{m}$; apparently the operator + which is strict in both arguments in some setting (D, F) can only be implemented in λ-calculus such that the dependence on one argument is non-strict; indeed, the usual definition of PLUS will be such that PLUS $\perp \underline{\mathrm{m}}=\perp$, whereas PLUS $\underline{\mathfrak{n}} \perp \neq \perp$. The 'Berry-sequentiality' of λ-calculus entails that PLUS reads in and processes its input in a sequential way.

Of course the concept of strictness depends entirely on what is taken to be as \perp; a typical example is the following: in λI-calculus with 'having no head-normal form' standing for 'undefined' we have, as we just saw, no binary contexts strict in both 'arguments'. However, if we take as notion of undefined: 'having no normal form' (so $\mathrm{M}-\mathrm{-} \perp \perp$ if M has no nf) then there are binary functions strict in both arguments; just take the context $\lambda \mathrm{z} . \mathrm{z}[\mathrm{]}[\mathrm{]}$. (The restriction to λI-calculus is necessary for this example, since in λ-calculus it is not possible to identify all terms without normal form.) See the discussion on "undefined" in Barendregt [1977].

The remark above on the non-existence of binary functions (as given by contexts) strict in both arguments can be paraphrased in another way. In a λ-term M we can discern the head needed redexes R_{1}, \ldots, R_{n}. Each redex R_{i} can be replaced by an arbitrary redex which still is head needed if
the other redexes are kept the same. So we have determined head needed 'places'; but the place occupied by $\mathbf{R}_{\mathbf{i}}$, while independent of $\mathbf{R}_{\mathbf{i}}$, does depend on the other redexes. In fact, Berry's sequentiality theorem states that there is no binary context such that both places are head needed regardless of the contents; the head neededness of one place depends on the actual content of the other place.

Huet-Lévy sequentiality.

The terminology of 'needed places' brings us to another concept of sequentiality, that of Huet \& Lévy [1979], which should not be confused with Berry's notion of sequentiality. While Berry's notion refers to the way in which data are read in and processed in a λ-term, regardless of any 'reduction strategy', the notion of Huet and Lévy says that a sequential reduction strategy (as opposed to a parallel one) is adequate for reaching (head) normal forms. This in contrast with some rewriting systems for which no adequate sequential reduction strategy exists and for which one must adopt a parallel strategy in order to be sure of finding (head) normal forms whenever they exist. In the terminology of Huet and Lévy, a rewrite system is sequential if for every n-ary context $C[, \ldots$,$] in normal form and for every substitution with redexes R_{i}$ such that the result $C\left[R_{1}, \ldots, R_{n}\right]$ has a normal form, there exists at least one redex R_{i} which is needed. A short-coming of this notion is that in general it can not be decided whether a rewrite system has this property; and secondly that even if the rewrite system has this sequentiality property, such a needed redex can not always be indicated in a computable way. Therefore they introduce a stronger concept: a rewrite system is strongly sequential if for every n-ary context $\mathrm{C}[, \ldots$,] in normal form there exists a needed place, say the i-th place. This means that after filling up the context with redexes R_{i} such that $C\left[R_{1}, \ldots, R_{n}\right]$ has a normal form, the i-th redex is needed. Clearly, λ-calculus is strongly sequential in this sense: the leftmost place in $\mathrm{C}[, \ldots$, , $]$ is always needed.

Summarizing: (i) λ-calculus is strongly sequential in the sense of Huet and Lévy;
(ii) λ-calculus with identification of terms without head normal form is sequential in the sense of Berry.

To see the difference between the two notions even more sharply, one may consider the extension of λ-calculus with an new constant + satisfying $\underline{n}+\underline{m} \cdots \underline{n}+m, \perp+\underline{n} \rightarrow \perp$ and $\underline{n}+\perp$--> \perp. This extension is still strongly sequential in the sense of Huet and Lévy, but it is not Berry-sequential. Another extension of λ-calculus, with or $(T, x) \rightarrow T$, or $(x, T) \rightarrow T$ and or $(F, F)-->F$ is neither Huet-Lévy sequential nor Berry-sequential. The first operator, + , is strict in both arguments, the second, or, is strict in neither of its arguments. Nevertheless, there exists a sequential strategy for lambda calculus with or, see Kennaway [1986].

An extension of lambda calculus with the strict operator + .

It is of interest to note that our algorithms for the determination of (a subset of) the headneeded and needed redexes, can easily be extended to such extensions of λ-calculus with strict operators such as + . We will show that the algorithms for $\mathrm{Sel}_{\mathrm{i}}$ and $\left\rangle_{i}\right.$ (see definition 4.15) can easily be extended to the case where a 'demand-forking' operator like ' + ' is present. We will only do this for $\mathrm{i}=3$.

Consider the extension of λ-calculus with a binary operator + , and numerals \underline{n} for each natural number n. Apart from the β-reduction rule there are the rules $+(\underline{n}, \underline{m})-->n+m$ for all n, m. An expression $+(\underline{n}, \underline{m})$ is a "+-redex". Call this extension λ^{+}-calculus. An example of a λ^{+}-term is $(\lambda x .+(x, x)) 3$. (Note that $+(x, x)$ is not a redex.)

We have to define what a head-normal form in λ^{+}-calculus is: it is a term such that neither a β-redex nor a + -redex is in 'head position'. More precisely:
5.2 DEFINITION. (i) Let M be a λ^{+}-term. A redex R sub M is in head-position if the leading symbol of R (that is λ or +) is only preceded by occurrences of + or λ where the latter are not redex- λ 's. Here the precedence ordering is as follows: (1) if s, t are symbol occurrences in an application $P Q, s$ in P and t in Q, then s precedes $t ;(2)$ in $+(P, Q)$ the + precedes all symbols of P, Q, but there is no relation between s in P and t in Q.
(ii) $\mathrm{A} \lambda^{+}$-term M is a head-normal form if there is no redex R sub M in head-position.

EXAMPLE. $+((\lambda x .+(3,2)), 1)$ is not a head-normal form; $\lambda x y .+((\lambda x .+(x, x)), y)$ is a head-normal form.

The notion of (head-)needed is analogous to the case without + .

Now $\operatorname{Sel}_{3}(\mathrm{M})$, for a λ^{+}-term M , is defined as follows. It will be a set of non-zero natural numbers. First a notation: if X is such a set, then

$$
\begin{aligned}
X-1= & \{n \mid n+1 \in X\}-\{0\} \\
& X++1=\{n+1 \mid n \in X\} .
\end{aligned}
$$

Simultaneously with $\mathrm{Sel}_{3}(\mathrm{M})$, we define $<\mathrm{M}>_{3}$.

5.3 DEFINITION.

(a)

$$
\begin{array}{ll}
<\mathrm{x}>_{3} & =\mathrm{x},<\mathrm{n}>_{3}=\mathrm{n}: \\
<\lambda x . \mathrm{P}>_{3} & =\lambda x .<\mathrm{P}>_{3} ; \\
<\mathrm{PQ}>_{3} & =<\mathrm{P}>_{3}<\mathrm{Q}>_{3}, \text { if } 1 \in \operatorname{Sel}_{3}(\mathrm{P}), \\
& =<\mathrm{P}>_{3} \perp, \quad \text { otherwise; } \\
<+(\mathrm{P}, \mathrm{Q})>_{3} & =+\left(<\mathrm{P}>_{3},<\mathrm{Q}>_{3}\right) .
\end{array}
$$

(b)

$$
\begin{array}{rlr}
\mathrm{Sel}_{3}(\mathrm{n}) & =\operatorname{Sel}_{3}(\mathrm{x})=\varnothing ; \\
\mathrm{Sel}_{3}(\mathrm{PQ}) & =\operatorname{Sel}_{3}(\mathrm{P})--1 ; & \\
\mathrm{Sel}_{3}(\lambda \mathrm{x} . \mathrm{P}) & =\left(\operatorname{Sel}_{3}(\mathrm{P})++1\right) \cup\{1\}, & \text { if } \mathrm{x} \in \mathrm{FV}(<\mathrm{P}>3), \\
& =\operatorname{Sel}_{3}(\mathrm{P})++1, & \text { otherwise; } \\
\mathrm{Sel}_{3}(+(\mathrm{P}, \mathrm{Q})) & =\operatorname{Sel}_{3}(\mathrm{P}) \cup \operatorname{Sel}_{3}(\mathrm{Q}) . &
\end{array}
$$

(Note that the role of \uparrow in definition 4.15 is now played by \varnothing).

EXAMPLE. (i) $\operatorname{Sel}_{3}(\lambda x y z .+(z,+(x, z)))=\{1,3\}$. (ii) $<(\lambda x y z .+(z,+(x, z))) P Q R S>_{3}=(\lambda x y z .+(z,+(x, z)))<P>_{3} \perp<\mathrm{R}>_{3} \perp$.

The proof of the following fact follows the same lines as the case without + , and is omitted.

5.4 THEOREM. All redexes visible in $<M>_{3}$, where M is a λ^{+}-term, are (head-)needed. ${ }^{\text {d }}$

Concluding remarks.

The introduction motivated the precise identification of the concept of needed redex in a lambda term, and the requirement for efficient algorithms which yield approximations to this undecidable notion. Following a section which introduced the basic concepts and notation used in the paper, section 3 developed the main technical result which is that quasi-needed reduction sequences are normalising.Section 4 identified a range of algorithms which identify increasingly better approximations to the the set of needed redexes in a term.

Section 3 gives a very precise characterisation of neededness. Particular note should be taken of the norm-reducing characterisation of needed redexes identified in section 3. Also notable is the resilience of needed reduction to introduction of contractions of non-needed redexes (quasi-needed reduction is normalising).

Section 4 begins the work of identifying efficient algorithms for computing neededness. Whether such algorithms are best employed at compile or run time is very much a matter for the implementor, and the technology available to him. At the time of writing he will achieve some benefit from including an algorithm for detecting neededness in a compiler for a sequential machine. Future implementors may find it useful to embody algorithms for recognising needed redexes in hardware.

6. APPENDIX: LÉVY'S LABELLED LAMBDA CALCULUS

Lévy's labelled λ-calculus is a powerful instrument to trace in a precise way what happens in a reduction sequence. Many arguments using the terminology of reduction diagrams, residuals of redexes and creation of redexes as explained in the Introduction can be dealt with in a more succinct
way using Lévy's labels. In this Appendix we will introduce Lévy's labelled λ-calculus and use it to obtain some alternative proofs for propositions in this paper, in particular those propositions which required for a complete proof very verbose arguments and elaborate casuistics, which, therefore, we have only sketched. Besides giving additional credibility to some of those technical propositions, we feel that Lévy-labelled λ-calculus can play a beneficial role in investigations similar to the present one. Lévy-labelled λ-calculus was introduced in Lévy [1975]; we will present and use the simplified version in Klop [1980] (in Barendregt [1984] present as Exercise 14.5.5).
6.1. DEFINITION. (i) Let $\mathrm{L}_{0}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$... be an infinite set of symbols. The set L of (Lévy) labels is defined inductively by

$$
\begin{array}{ll}
w \in L_{0} & \Rightarrow w \in L \\
w, v \in L & \Rightarrow w v \in L \\
w \in L & \Rightarrow \underline{w} \in L .
\end{array}
$$

Here wv is the concatenation (without brackets) of the words w and v. Note that labels may have nested underlinings, as in abcabca.
(ii) The set Λ_{L} of labelled λ-terms is inductively defined by:

$$
\begin{aligned}
& x \in \Lambda_{L}, \\
& M, N \in \Lambda_{L} \Rightarrow(M N) \in \Lambda_{L}, \\
& M \in \Lambda_{L} \quad \Rightarrow(\lambda x \cdot M) \in \Lambda_{L}, \\
& M \in \Lambda_{L} \Rightarrow\left(M^{W}\right) \in \Lambda_{L}
\end{aligned}
$$

Since the first three clauses generate unlabelled terms, this means that we have defined terms with partial labellings (i.e. not every subterm bears a label; equivalently, some subterms may have the 'empty label').

Multiple labellings as in $\left(\mathrm{M}^{\mathrm{W}}\right)^{\mathbf{V}}$ will be simplified to $\mathrm{M}^{\mathbf{W v}}$; this simplification is executed as soon as possible.
(iii) Labelled β-reduction $->\mathrm{L}^{(}$(where the subscript L will often be dropped) is defined by

$$
(\lambda x \cdot M[x])^{W} N->L M\left[N^{W}\right] \underline{w},
$$

i.e. each occurrence of x in the (labelled) term $M(x)$ is replaced by $N W$ (note that N may have some labels itself; see example below) and the result is labelled by \underline{w}. The label \mathbf{w} appearing in this definition is called the degree of the redex in the LHS. An example of a labelled reduction step is:

$$
\left(\left(\lambda x \cdot\left(x^{a} A\right)^{b}\right)^{c}(\lambda y \cdot B)^{d}\right)^{e} \rightarrow_{L}\left((\lambda y \cdot B)^{d c a} A\right)^{b c}
$$

Note that this step has taken place in the labelled context [$]^{\mathrm{e}}$; and that substituting $(\lambda y \cdot B)^{\mathrm{dc}}$ in $x^{\text {a }}$ has yielded ($\left.\lambda y . B\right)^{\text {dca }}$.

The following fact is proved in Lévy [1975] and Klop [1980].
6.2. THEOREM. Labelled λ-calculus is confluent. 중
6.3. EXAMPLE.

Residuals of redexes are defined in the case of labelled reductions just as in the unlabelled case. We can now state the first benefit of the labelled version of reductions: let R in the unlabelled term M be a redex, and suppose $M-\gg N$. To determine the residuals of R in N, we attach an atomic label, say ' a ', as the degree of R (that is, $R \equiv(\lambda x . A) B$ is replaced by ($\lambda x \cdot A)^{a} B$). The result is a (partially) labelled term M^{I} where I denotes the labelling. The given reduction $M \rightarrow>N$ can now in the obvious way be 'lifted' to the labelled case; we find a labelled reduction $M^{I} \rightarrow \gg L N^{J}$ where N^{J} is N together with a labelling J. Now all redexes $R^{\prime}, R^{\prime \prime}, \ldots .$. in N^{J} with degree ' a ', are residuals of the original redex R , and they are the only ones. (The proof is a routine exercise.)

Creation of redexes can also neatly be expressed in the formalism of labelled reduction. Given an unlabelled reduction step $M \rightarrow$ \rightarrow obtained by contraction of redex R in M, we say that redex S in N is created by the R-contraction if S is not the residual of a any redex in M. Now if the present reduction step takes place in the labelled setting: $M^{I} \quad->R^{N} N^{J}$, it turns out that the degree of the created redex S in N^{J} contains the underlined degree of the creator redex R as a subword. We give an example.
6.4. EXAMPLE. (i) $M \equiv R \equiv\left(\lambda x . x^{u} B\right)^{v}(\lambda x . A)^{\mathbf{w}} \rightarrow\left((\lambda x . A)^{w \underline{y}}{ }^{\mathbf{v}}\right)^{\underline{v}} \equiv S \equiv N$.

Indeed the degree wyu of the created redex contains the underlined degree v as a subword.
(ii) $\left(\lambda x . x^{u}\right)^{\mathbf{v}}(\lambda y . A)^{w} B \rightarrow(\lambda y . A)^{W^{w} \underline{w}_{B}}$
(iii) $\left(\lambda x . \lambda y \cdot x^{\mathrm{u}}\right)^{\mathrm{v}} \mathrm{CB} \rightarrow\left(\lambda y \cdot C^{\mathrm{Vu}}\right)^{\underline{V}} \mathrm{~B}$.
(Essentially these are all 'types of creation' that exist.) Theorem 6.2 can in fact be strengthened in the same way as for unlabelled reductions, see 2.3 of the preliminary section: the common reduct can be found by completing a reduction diagram (now for the labelled case) by adding 'elementary labelled reduction diagrams' of which one is displayed above in Example 6.3. In such elementary diagrams the redexes contracted in opposite sides have the same degree; so one might say that degrees propagate without changing in horizontal and vertical direction, in the construction of a reduction diagram. Therefore, in a completed composite labelled reduction diagram, the degrees of the redexes contracted in the top side of the diagram coincide exactly with the degrees of the redexes contracted in the bottom side, and likewise for left side and right side. Bearing in mind that residuals have the same degree as their ancestor redex, we have an immediate proof of Proposition
2.7 (ii) in the preliminary section.

Finally, an alternative proof for Proposition 2.7(i) can be obtained easily using the above mentioned facts for labelled reductions. However, with the available power of labelled reductions, it is just as easy to skip Proposition 2.7 and prove Proposition 2.6 directly; the latter proposition follows at once from the following.
6.5. PROPOSITION. Let a reduction diagram as in fig. 16 be given, such that no residual or redex R in M is contracted in the reduction $\mathcal{R}=M \rightarrow>N$. Let redex S in M be created by the step $M \rightarrow M^{M}$. Then in the projected reduction $\mathcal{R} /\{R\}$ no residual of S is contracted.

PROOF. Label M partially by assigning degree 'a' to R and degree ' b ' to all other redexes in M. Then every redex contracted in the reduction $\mathrm{M}-\gg \mathrm{N}$ has degree containing ' b ' as its only atomic label. The same therefore holds true for the projected reduction M^{\prime}-->> N^{\prime}. This means that no residual of S is contracted in that reduction, since in the labelled reduction diagram (obtained by lifting the given reduction diagram starting with the before mentioned labelling of M) the degree of redex S in M ' contains an occurrence of the symbol 'a'. 졍

ACKNOWLEDGEMENTS

Inspiration for the paper was obtained on the island of Ustica at the First autumn seminar and conference on reduction machines (organised by C. Böhm) where we had stimulating discussions among others with Arvind. The various algorithms in section 4 are also described in van Eekelen and Plasmeijer [1985] who introduced them independently.

REFERENCES

Barendregt, H.P.
[1977] Solvability in lambda calculi, in: Colloque International de Logique, Éditions du Centre National de la Recherche Scientifique, Paris, 209-220.
[1984] The Lambda Calculus, North Holland, Amsterdam.

Berry, G.
[1978] Séquentialité de l'évaluation formelle des λ-expressions, in Proc. 3-e Colloque International sur la Prgrammation, Dunod, Paris.

Burn, G.L., C.L. Hankin and S. Abramsky

[1985] Strictness analysis for higher-order functions, preprint, Imperial College of Science and Technology, Queens Gate, London.

Burstall, R. M., D.B. MacQueen and D.T.Sannella

[1981] HOPE: an experimental applicative language, in: proceedings First LISP Conference, Stanford, 136-143.
van Eekelen, M.C.J.D. and M.J. Plasmeijer
[1985] Avoiding redex copying in lambda reduction, preprint, Informatica, Tournooiveld 1, 6525 ED Nijmegen, The Netherlands.

Gordon, M.J., A.J.R.G. Milner and C.P. Wadsworth
[1979] Edinburgh LCF, Lecture Notes in Computer Science 78, Springer, Heidelberg.

Huet, G. and J.-J. Lévy
[1979] Call by need computations in non-ambiguous linear term rewriting systems, preprint 359, INRIA, B.P. 105, Le Chesnay 78150, France.

Kennaway, J.R.
[1986] Recursive one-step strategiees for weakly regular combinatory reduction systems, to appear, School of Information Systems, University of East Anglia, Norwich NR4 7TJ, England.

Klop, J.W.
[1980] Combinatory Reduction Systems, Mathematical Centre Tracts 127, Kruislaan 413, 1098 SJ Amsterdam.

Landin, P.
[1964] The mechanical evaluation of expressions, Computer Journal 6, 308-320.
[1966] The next 700 programming languages,Comm. ACM 9,157-166.

McCarthy, J., P.W. Abrahams, D.J. Edwards, T.P. Hart and M.I. Levin
[1962] The LISP 1.5 Programmers' Manual, MTT Press, Cambridge, MA.

Mycroft, A.
[1981] Abstract interpretation and optimising transformations for applicative programs, Ph.D. thesis, University of Edinburgh.
Turner, D.
[1979] A new implementation technique for applicative languages, Software practice and experience $9,31-49$.
[1985] Miranda: a non-strict functional language with polymorphic types, in: Functional Programming Languages and Computer Architecture (ed. J.-P. Jouannaud), Lecture Notes inComputer Science 201, Springer, Heidelberg, 1-16.

Wadsworth, C.P.
[1971] Semantics and pragmatics of the lambda calculus, D.Phil. thesis, Oxford University.

