
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

H.P. Barendregt, J.R. Kennaway, J.W. Klop, M.R. Sleep

Needed reduction and spine strategies
for the lambda calculus

Computer Science/Department of Software Technology Report CS-R8621 May

Bibfk>theek
C'11ntrumvoorW~tfli~tm In~

Arnsteff.Jam

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam
"

Needed Reduction and Spine Strategies

for the Lambda Calculus

H.P. Barendregt
University of Nijmegen, Toemooiveld,
6525 ED Nijmegen, The Netherlands.

J.R. Kennaway
University of East Anglia,

Norwich NR4 lTJ, England.

J.W. Klop
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

M.R. Sleep
University of East Anglia,

Norwich NR4 lTJ, England.

1980 Mathematics Subject Classification (1985): 03B40, 68099.

1982 CR Categories: 0.1.1., F.4.1.
Key Words & Phrases: lambda calculus, reduction strategy, needed redex, spine redex, strictness analysis.

Note: 1) H.P. Barendregt: author partially supported by the Dutch Parallel Reduction Machine project.

2) J.R. Kennaway, M.R. Sleep: authors partially supported by the British ALVEY project.

3) J.W. Klop: author partially supported by ESPRIT project 432, Meteor.

1

b~T>ll
05F1 1

A red.ex R in a lambda-term M is called needed if in every reduction of M to normal form (a residual <>t) R is

contracted. Among others the following results are proved.

1.R is needed in M iff R is contracted in the leftmost reduction path of M.

2. Let
'.Jt : Mo __ RO--> Ml __ Rl--> M2 __ R2 -->

be such that
\ii 3 fai Rj is needed in Mj.

Then '.Jt is normalising, i.e. if Mo has a normal form, then '.Jt is finite.

3. Neededness is an undecidable property, but has several efficiently decidable approximations, various versions

of the so called spine red.exes.

Report CS-R8621
Centre for Mathematics and Computer Science

P.O': Box 4079, 1009 AB Amsterdam, The Netherlands

2

CONTENTS

1. INTRODUCTION.

2. PRELIMINARIES.

3. NEEDED REDUCTIONS.

4. SPINE STRATEGIES.

5. CONCLUDING REMARKS.

6. APPENDIX.

REFERENCES.

1. INTRODUCTION.

A number of practical programming languages are based on some sugared form of the lambda

calculus. Early examples are LISP, McCarthy et al. [1961] and ISWIM, Landin [1966]. More

recent exemplars include ML (Gordon et al. [1981]), Miranda (Turner [1985]) and HOPE (Burstall

et al. [1980]). We use the term lambda language to cover these and other languages.

Classical implementations of a lambda language have adopted an applicative order evaluation

strategy, as embodied for example in the original SECD machine (Landin [1964]). It is well-lmown

that this strategy is not normalising for all lambda terms. It is also well-known that the leftmost

reduction strategy is normalising. However, until graph reduction was introduced in Wadsworth

[1971] the leftmost strategy was not considered practicable.

The adoption of a normalising implementation of lambda languages has a number of

advantages, of which the ability to specify data structures of unbounded size is most notable.

Turner [1979J, [1985] has argued the case for normalising implementations in a number of papers.

Recent advances in compiling techniques have led to normalising implementations of lambda

languages on sequential machines which rival in performance terms applicative order

implementations, e.g. Augustsson [1984]. By taking advantage of the side-effect-free nature of

lambda languages (at least in benign incarnations) it may be possible to achieve further

3

improvements in performance by developing appropriate parallel architectures.

However, the best-known normalising strategy for the lambda calculus is the leftmost strategy, ·

and this is sequential in the sense that identifying the 'next' leftmost redex cannot in general be

achieved without at least identifying the current leftmost redex. Equally, at least some of the

identification work can be done by a compiler: recent work on strictness analysis, see Mycroft

[1981], has exploited this observation.

The fundamental notion underlying this paper is that in every lambda term not in normal form

there are a number of needed redexes. A redex is said to be needed in a term M if R has to be

contracted (sooner or later) when reducing M to normal form. It will be shown that these redexes

can be reduced in any order, or in parallel, without risking unnecessary non-termination. We will

present efficient algorithms for identifying sets of needed redexes in a term.The most general

concept of neededness is undecidable, as we show in theorem 3.12. However, a family of

algorithms can be identified which deliver increasingly better (but increasingly costly)

approximations to the needed set. All the algorithms offered identify redexes which can be

contracted safely, ie secure in the knowledge that such contraction will reduce the length of a

leftmost reduction sequence to normal form by at least 1.

The algorithms are comparable to the so called abstract interpretations of terms, see Abramsky

et al. (1985]. For example in the simplest one the term

(A.x.(A.y.yPQ)R)S

is mapped onto

(A.x.(A.y .y l.l.)1-)..L,

concluding that the two remaining redexes are needed in the original term.

Just which of the defined algorithms is appropriate for a given implementation is technology

and application dependent Our contribution is to offer a range of choices to the implementor which

free him from the sharp distinction between applicative and normal order strategies, which currently

forces him to either accept wholesale the inefficiency risks associated with normal order, or to buy

the known efficiency of applicative order at the cost of losing normalising properties for his

implementation.

The relation with strictness analysis is as follows. There is a sharper notion of neededness: a

redex R is head-needed in a term M if R has to be contracted in any reduction to head normal form.

For example R in A.x.Rx is needed and head-needed, but in A.x.xR only needed. This notion of

head-neededness is essentially the same as that of strictness, albeit that head-neededness refers to

the argument whereas strictness refers to the function: we have for all redexes R and all contexts

C[]

R is head-needed in C[R] ~ C[] is strict in its argument [].

See section 5 for further discussion on strictness.

Plan of the paper. In section 2 we introduce the concepts and terminology necessary to

make this paper self contained Section 3 contains the major new theoretical concepts and results:

the main result in this section is that any strategy which eventually removes all needed redexes in a

4

term is normalising. Section 4 develops some practical algorithms for identifying sets of needed
redexes in a term. Section 5 offers some concluding remarks.

2. PRELIMINARIES

In this paper we will use notation and terminology of Barendregt [1984]. However, in order
to make the paper practically self-contained, we will introduce the relevant concepts and notations
in the present section. Also some specific preparations for the sequel are included, in the form of
Propositions 2.6 to 2.9.

2.1. DEFINmONS. The set of A-terms, notation A, is defined inductively by
a. x,y ,z,... e A;

b. M,N e A ::::} (MN) e A;

c. M e A ::::} (Ax.M) e A.

If in (c) the proviso x e FV(M) is added, we get the set of Al-terms. Here FV(M) is the set of free
variables of M. In applications (i.e. terms obtained by clause (b)) the usual bracket convention of
'association to the left' is employed; also outermost brackets are omitted. Repeated abstractions
(i.e. terms obtained by clause (c)) like (Ax.(Ay.(Az.M))) are written as Axyz.M.

A term R = (Ax.A)B is called a redex; R' = A[x:=B], the result of substituting B for the free
ocurrences of x in A, is the contractum of R A term not containing reclexes is a normal form (or: in
normal form). The passage from redex to its contractum R -->R' is called a contraction. One step
(f3-)reduction is defined by C[R] --> C[R'] where R -->R' is a redex contraction and C[] is a
context with one hole, i.e. a A-term with one occurrence of a hole [] . C[M] is the result of
substituting M for [] in C[]. The subterm relation sub is defined by

M sub N <=> N = C[M] for some C[].

Here= denotes syntactical equality. When stating that Mis a subterm of N, in this paper we will
refer always to some specific occurrence ofM in N.

If we want to display which redex R is contracted in the reduction step M -->N, we write
M __ R --> N. Again here we refer to a specific occurrence of R in M. The transitive reflexive closure
of the one step reduction relation -->is denoted by --».Reduction sequences (or reductions, for
short) Mo--> M 1 --> M2 --> ... will be denoted by R.,8 ... They may be finite or infinite. Although
it is an abuse of notation, we will sometimes shorten R. : Mo --> M 1 --> ... --> ~ to
R. : Mo-->>~. still bearing in mind that we refer to a specific reduction from Mo to~·

The equivalence relation generated by -->is called conversion and written as'='. It should be
distinguished from =, syntactical equality. ,,

Leftmost reductions and head reductions.

2.2. DEFINITIONS. If N is an abstraction term Ax.A we call the prefix Ax the abstractor of N.

5

Likewise if R is a redex (Ax.A)B the abstractor of R is Ax. If M is not a normal form, the leftmost

redex of M is that redex whose abstractor is to the left of the abstractor of every other redex in M. A ·

leftmost reduction is one in which each contracted redex is leftmost. A leftmost reduction step is

denoted by --> Im·

The leftmost redex R in a non normal form Mis a head redex if its abstractor is only preceded

(in the left to right order of symbols) by abstractors of abstraction terms (not redexes). In

particular, the abstractor of the head redex is not preceded by a variable which does not occur in an

abstractor. Thus in M = Ax.xR, where R is a redex, R is the leftmost redex but not the head redex;

M has no head redex. On the other hand R is the head redex of Ax.RABC. A term is in head normal

form if it has no head redex. The set of head normal forms can inductively be defined as follows:

if H1, ... ,Hn are head normal forms, then Ax1···xm·YH1···Hn is a head normal form. Here

n,m>O. A head reduction is one in which only head redexes are contracted. This is all standard

terminology (apart from 'abstractor'); the following is not.

2.3. DEFINITION. The active components of Mare the maximal subterms of M which are not in

head normal form.

Here 'maximal' refers to the subterm ordering; so the active components are mutually disjoint.

If a term is not in head normal form, it has one active component, namely itself. A normal form has

no active components. The set of active components of Ax 1···Xn·YN1 ···Nk is the union of the sets

of active components of N 1,. .. ,Nk-The word 'active' refers to the fact that the active components

are embedded in a context which is 'frozen', i.e. a normal form when the holes [] are viewed as

variables. (This frozen context of M is the trivial context [] if M is not a head normal form.)

2.4. DEFINITIONS. If N is a subterm of M, the descendants of N after the reduction step

M --> M' are those subterms in M' which can be 'traced back' to N in M, in the following sense. If

N = x, the notion is clear. If N is an abstraction term (Ax.A) or an application (AB), we look when

tracing to the outermost pair of brackets of N. (For a more precise definition using labels or

underlining see Klop [1980] or Barendregt [1984].) Our stipulation that the 'identity' of the

outermost bracket pair determines the descendants, entails that the contractum R' of the redex R in

Mis not a descendant of Rafter the reduction step M __ R --> M' (since in this redex contraction the

original outermost pair of brackets of R vanishes). Descendants of redexes are also called residuals.

Note that by the previous remark residuals of a redex are again redexes. The notion of descendants

or residuals after one reduction step extends by transitivity to the notion of descendants or residuals

after a finite reduction sequence R.

If '.R.:M '--» N and S:M -->>Lare two 'diverging' reductions, the well-known Church-Rosser

theorem states that 'converging' reductions '.R.' :L --» P and 8 ':N -->>P can be found. (In another

well-known terminology, A-calculus is said to be confluent.) A stronger version of this theorem

asserts that these converging reductions can be found in a canonical way, by adding 'elementary

6

reduction diagrams' as suggested in fig.I.

8 8'

fig. 1

The reduction diagram originating in this way is called D('.R.,8) and in Kl op [1980] or Barendregt
[1984] it is proved that it closes, i.e. the construction terminates and yields reductions '.R.' and 8' as
desired. We write '.R.' = '.R./8 and call '.R.' the projection of '.R. by 8. Elementary reduction
diagrams are obtained as follows: if M ___ R ___ > N and M ___ s ___ > L are two diverging reduction steps,

converging reductions (making the elementary diagram complete) consist of contracting the
residuals of Rafter M ___ s ___ > L resp. the residuals of S after M ___ R ___ > N. In case one (or both) of

these sets of residuals is empty, we introduce 'empty' reductions as e.g. in the following
elementary diagram (where I= A.x.x):

(A.x.y)(II) (A.x.y)I

fig.2

1 f

y y

If the reduction M __ R ___ > N is abbreviated by {R} and '.R.:M --» L, the Parallel Moves Lemma

asserts that the projection {R }l'.R consists of the contraction of all residuals of R after '.R..

It is important to note that in general the residuals in P of redex R in M after a reduction

M -->> P depend on the actual reduction from M to P. However this is not so if M and P are
left-upper comer respectively right-lower corner of an elementary reduction diagram. As a
consequence, this implies the following.

2.5. PROPOSITION. Let :Jl:M --» N and S:M -->> M'. Consider the reduction diagram

7

M

fig. 3 8 8/:R.

:R./8

Let R sub M be a redex. Then the residuals of R in N' are the same with respect to the two

reduction paths :R, *S/Rand S *:k/S. Here * denotes concatenation of reduction paths.

PROOF. The property holds for elementary reduction diagrams and therefore also for reduction

diagrams.~

In the sequel we will need the following fact

2.6. PROPOSITION. Consider the situation as infig.3. Let R sub M be a redex none of whose

residuals is contracted in :k. Let R' sub M' be a residual of R after reduction S. Then no residual of

R' is contracted in k/S.

PROOF. Suppose that a residual of R' is contracted in '.R../8. Since in :R./8 only those redexes are

contracted that are residuals of the ones contracted in :R., it follows by Proposition 2.5 that a

residual of R in a term of :R. is contracted. Contradiction. (For an alternative proof see the

Appendix.)~

We will need some following facts about reduction diagrams and the phenomenon of 'redex

creation'. We say that redex Sin M' is created by the step M--R--> M' if Sis not a residual of any

redex in M. Facts like the lemma 2.7 (ii) are a good illustration of the beneficial use of Uvy's

labels expounded in the Appendix, which speeds up otherwise very tedious case verifications.

2.7. LEMMA.Let M --->lmN andM __ R __ > M' .LetR subM.

(i) If R is not leftmost, then a common reduct of N and M' can be found by contracting the

leftmost redex in M', see fig.4.

8

M N M N
Im Im

fig.4 R -J.m fig.5
R

M' Im N' M' N'

(ii) Moreover, if S sub M' is a redex and S' sub N' is a residual of Sin N' via the contraction

M' --> lm N', then

S is created in M __ R --> M' => S' is created in N -->> N'.

(iii) If R is arbitrary, then we have the elementary diagram as infig.5.where M' _ _lm = --> N'

denotes either the leftmost step or an empty step (in which case M'= N'). Moreover

M' _ _lm = --> N' is the empty step if! R is the leftmost redex.

PROOF. (i) Routine. See for example Lemma 13.2.5 in Barendregt [1984].

(ii) By distinguishing some cases.(For an alternative proof see the appendix.)

(iii) Immediate by (i).~

2.8 PROPOSITION. (i) Let M -->>1m N and M -->> M'. Then the reduction diagram looks like

fig.6.

M N M N
Im Im

fig.6 fig. 7

M' Im ... N' M' Im ·~ N'

(ii) If moreover S sub M' is a redex created inM --» M' and S' sub N' is a residual of S, then

S is created in M --» M' => S' is created in N -->> N'.

(iii) Let M --> lm N and M -->> M'. Then the reduction diagram looks like fig .7. Moreover,

M'= N' holds if! the reduction M' -->> N' contracts a residual of the leftmost redex in M.

PROOF. (i) By Lemma 2.7 (iii) we can make a diagram chase as in fig. 8 and the result follows.

9

M lm Im lm N - - -- - , . , .. 1~ - ,
- -., Im ' ' ' ' Im - -'. - -

r ... Im - - • - -,,. lm - _ ... lm
p

- . ' Im - --~ ir
fig.8

r . ,. lm - -'"
' . , ,. Im ,,. Im - ' . - - -
•• .,. 1~ - ' . -. , lm ' ,. Im - -',. ...

Im -- ,
M . - - - - - N'

(ii) By the same diagram chase, using lemma 2.7(ii).

(iii) Again by lemma 2.7 (iii) and a simple diagram chase.~

3. NEEDED REDUCTION.

3.1 DEFINITION. Let R be a redex in M.

(i) R is needed in M (or just 'needed' when the context makes clear which M is intended) if

every reduction sequence of M to normal form reduces some residual of R.

(ii) R is head-needed if every reduction sequence of M to head normal form reduces some

residual of R.

(iii) A reduction sequence is (head-)needed if every reduction step in the sequence contracts a

(head-)needed redex.

3.2 EXAMPLE. Consider A.xy.Ix(Ky(Iy)). Then in this term Ix is needed and head-needed, Ky(Iy)

is needed but not head-needed and Iy is neither needed nor head-needed.

A head-needed redex is automatically needed since every reduction to normal form contains a

reduction to head-normal form. If there is no reduction sequence to (head-)normal form, then every

redex is (head-)needed. Each term M not in normal form has at least one needed redex, the leftmost

redex. The proof requires a routine argument which we omit. Similarly the head-redex of a term (if

there is one) is always head-needed.

3.3 DEFINITION. (i) Consider the reduction sequence.

'.R. : Mo·--> M 1 --> ... --> Mn.

Let R be a redex in Mo such that no residual of R is contracted in '.R. and such that Mn contains no

residuals of R. Then we say that redex R is erased in '.R..
(ii) Redex R in M is erasable if there is a reduction sequence '.R. beginning with Min which R

10

is erased.

The following fact, whose proof is immediate, gives a first and simple characterisation of the

needed redexes in a term.

3.4 PROPOSmON. Let M have a normal form. Then for any redex R in M we have

R is needed in M <=> R is not erasable in M. ~

Note that the restriction to terms with normal form in Proposition 3.4 is necessary: e.g. in

M=Q((Ax.I)R) where Q=(A.x.xx)(Ax.xx) and R is some redex, R is erasable but by the definition

3.1 also needed, as M does not have a normal form.

A consequence of proposition 3.4 is that in the A.I-calculus, where erasure of redexes is

impossible, every redex is needed.

We will now investigate how the properties of neededness and non-neededness propagate

along the lines of descendants (or residuals) of a redex in M, in some reduction sequence of M. As

one may expect, non-neededness is a persistent property.

3.5 THEOREM.Let M -->> M'. Let S be redex in Mand S' be a residual of Sin M'. Then

(i) Sis not needed ==> S' is not needed;

(ii) Sis not head-needed ==> S' is not head-needed.

Equivalently

S' is (head-)needed ==> Sis (head-)needed.

PROOF. (i) Suppose S is not needed. Then there exists a reduction sequence 8: M -->> N to normal

form Nin which no residual of Sis reduced. Let 8' be the projection of8 over M --» M'.

8
SsubM N

fig. 9

S' sub M' N
8'

In every reduction step in 8' a redex is contracted which is a residual of a redex contracted in 8.

11

Since 8 reduces no residuals of S it follows by proposition 2.6 that no residual of S' is contracted

in 8'. Hence S' is not needed.

(ii) Similarly. ~

We now consider how (head-)neededness propagates. If R is needed in M, and R has just one

residual R' in M' by reduction of some other redex in M, then it follows immediately from

Definition 3.1 that R' is needed. When R has more than one residual, it is easy to see that it is

possible that not all of them are needed. (Consider e.g. (A.x.x(Kix))R.) However, we do expect

that at least one residual is needed. The proof of this fact is not obvious. This is because if R has,

say, two residuals R 1 and R2 in M', one can imagine that every reduction sequence of M' to

normal form might reduce a residual of R 1 or of R2, but wi11 some of those sequences reducing

only residuals of Ri, and others reducing only residuals of R2. This does not happen. We will

obtain this fact in proposition 3.7 as an immediate consequence of another characterisation of

needed redexes, which says that for neededness it is sufficient to look only at the leftmost (or

'normal', as it is also called) reduction sequence, instead of looking at all reduction sequences of a

term to normal form.

3.6 THEOREM. Let R be a redex in M.

(i) Let L: M -->> N be the maximal leftmost reduction starting with M. Then N is the normal

form of Mand

R is needed <::::> some residual of R is contracted in L.

(ii) Let H: M -->>N be the maximal head-reduction starting with M. Then N is a head-normal

form of Mand

R is head-needed <::::> some residual of R is contracted in H.

PROOF. (i) (=>) By the definition of neededness. ({:::) Leftmost redexes are needed. If some

residual of R is a leftmost redex, then by Theorem 3.5, also R is needed.

(ii) Similarly.~

This result can be reformulated as follows:

R is (head-)needed iff R is not erased in L (:J!)

iff R has a residual with respect to L(:J!) that is a leftmost redex.

In the sequel Ci will range over L and :K.

3.7 PROPOSITION. Suppose M has a (head-)normal form, and Risa (head-)needed redex of M.
"

Suppose S: M -->> N is a reduction sequence which does not reduce any residual of R. Then R

has a (head-)needed residual in N.

PROOF. Let Ci: N -->>No be the leftmost (head-)reduction sequence ofM to (head-)normal form.

12

Because R is (head-)needed in M, some residual R 1 of R must be reduced in 8 + 6.. Since 8

reduces no residuals of R,the redex R 1 must descend from some residual of Ro by 8 in N. Then Ro

is (head-)needed in N, by Theorem 3.6.~

3.8 PROPOSITION. Let M __ R __ > M'. IfQ is a (head-)needed redex inM' created by this contraction,

then R is (head-)needed in M.

PROOF. let 6.: M -->> N be the leftmost (head) reduction path to (head-)normal form. Let Q be a

created and needed redex in M'. Suppose towards a contradiction that R is not (head-)needed. Then

no residual of R is contracted in 6.. Since Q is neCcled, it has some residual Q' contracted in

6.'=6./R.

M N
........

R
fig. 10 =

/

M' N'
a·

Then Q' is a residual of a redex in 6., i.e. not created along a vertical downwards reduction. By

Proposition 2.8 (ii) it follows that Q is not created. Contradiction.~

A useful property is that '(head-)neededness is preserved upwards', with respect to the relation

'subterm of.

3.9 LEMMA. Let R sub S sub M, with R and S redexes.Then

R is (head-)needed in M => S is (head-)needed in M.

PROOF. If M has no (head-)normal form then this is trivial. Otherwise, let 6.: M --> N be the

leftmost (head-)reduction of M to its (head-)normal form. Suppose that S is not (head-)needed in M

in order to show that R is not (head-)needed in M. Then no residual of S is contracted in 6.. The

redex S is to the left of R and the same holds for the respective residuals. It follows that also no

residual ofR"is contracted in 6.. Therefore R is not (head-)needed by Theorem 3.5.~

3.10 PROPOSITION. Let M __ R -->> N and let S be a (head-)needed redex in M. Suppose that R is

not (head-)needed. Then S has a unique residual S' in N. Moreover S' is (head-)needed.

13

PROOF. Suppose that the (head-)needed redex S is multiplied by contracting R, then R is a supe:r

redex of Sand therefore by lemma 3.9 also R would be (head-)needed, contradiction. Moreover,

since S is (head-)needed it is different from R and cannot be erased by reducing R. It follows that S

has a unique residual S'. This S' is also (head-)needed by Proposition 3.7. ~

3.11 LEMMA. If F = f3 F', then

R (head-)needed inFR => R (head-)needed inF'R.

PROOF. By the Church-Rosser theorem one has F -->> F" and F' -->> F" for some F". Then

FR -->> F"R and F'R -->> F"R. Suppose R is (head-)needed in FR. Then also R is (head-)needed

in F"R by Proposition 3.7 and hence in F'R by Theorem 3.5. ~

Intuitively, (head-)neededness is related closely to termination. Consequently the following

result comes as no great surprise.

3.12 THEOREM. It is undecidable whether a red.ex in some term is (head-)needed.

PROOF. Scott's theorem (see Barendregt [1984], 6.6.2) states: "Let X be a set of lambda terms

which is closed under conversion. Moreover, let X not be the whole set of lambda terms nor be

empty. Then X is not recursive." Now consider the set

X = {FI R is (head-)needed in FR}.

Then X satisfies the criteria of Scott's theorem, by Lemma 3.11. Hence it is not decidable whether

R is (head-)needed in FR. From this it follows that it is in general not decidable whether a redex in

some term is (head-)needed.~

However, just as we can determine that certain programs terminate we can hope to identify at

least some (head-)needed redexes in some lambda terms. Theorem 3.12 does not say we cannot do

anything: it just tells us that perfection is not possible.

We will now proceed to give a surprisingly simple characterisation of the (head-)needed

redexes in M in terms of their behaviour with respect to the leftmost (head-)reduction sequence of

M to its (head) normal form. The following definition and treatment are suggested by the analogous

treatment in Huet and Levy [1979].

3.13 DEFINITION. (i) Let M be a term. Then the norm ofM, notation llMll, is the length (in number

of reduction steps) of the leftmost reduction sequence of M to normal form if this exists, and
' 'infinite' otherwise.

(ii) Similarly, the head-norm ofM, notation llMllh, is the length of the maximal head-reduction

sequence starting with M.

14

Note that llMllh:::;; llMll.

3.14 NOTATION. -->>n denotes the contraction of a needed redex and -->> _,n the contraction of a

non-needed redex. Similarly -->>hn denotes the contraction of a head-needed redex and -->> -,hn of

a redex that is not head-needed.

3.15 THEOREM. (i)Let M have normal form. Then

M -->>n N => llMll > llNll.

M -->>-in N => llMll = llNll.

(ii) Let M have a head-normal form. Then

M -->>hn N => llMllh > llNllh.

M -->> -.hn N => llMllh = llNllh.

PROOF. (i) Let R sub M be arbitrary and consider the leftmost reduction sequence

L: M=Mo -->> Mk to normal form Mk Let M __ R -->> N =No . By proposition 2.9 we can erect the

diagram in fig. 11.

fig. 11

M
0

R

M
1

N
1

M
2

L

L'

where L' is again leftmost.Hence in any case llMll ;;::: llNll.

M
k

N
k

If R is needed, at least one of its residuals is contracted in L. Say this is in the step Mi -->

Mi+ 1 · Since~ -->>Ni contracts all the residuals of R, it also contracts the leftmost redex in~

Therefore by Proposition 2.9 the reduction sequence Ni -->>Ni+ 1 is the empty step. Hence llMll >

llNll.

If R is not needed, then by Theorem 3.6 no residual of R is contracted in L. Therefore again
,,

by Proposition 2.9 each step Mi-> ~+l in L gives exactly one leftmost step Ni-> Ni+l in L'.

Thus Land L' have exactly the same length, and llMll = llNll.

(ii) Similarly. ~

15

The next theorem collects all our equivalent characterisations of (head-)neededness.

3.16 THEOREM (Equivalent characterisations of (head-)neededness).

(i) Let M have normal form N, and let R in M be a redex. Let L be the leftmost reduction

sequence from M to N. Then

R is needed in M <=> R is not erasable in M

<=> R has a residual contracted in L
<=> R is not erased in L
<=> R is norm-decreasing.

(ii) Let M have a head-normal form, and let R in M be a red.ex. Let 1l be the maximal leftmost

head-reduction sequence starting from M. Then

R is head-needed in M <=> R has a residual contracted in 1l
<=> R is head-norm-decreasing. ~

3.17 PROPOSITION. Let M have a (head-) normal form. Then the leftmost (head-) reduction

sequence of M has maximal length among the (head-) needed reduction sequences to (head-)

normal form. (There may of course be longer sequences, but these include redexes that are not

(head-) needed.)

PROOF. Every (head-)needed reduction reduces the (head-)norm by at least one. Therefore a

(head-)needed reduction sequence from M to (head-)normal form can have length no more than

llMll(h). But llMll(h) is the length of the leftmost (head-)reduction sequence to (head-)normal form.

~

This proposition implies that in the A.I-calculus the leftmost reduction sequence of M has

maximal length among all reduction sequences. This implies the well-known fact for the

A.1-calculus,that if M has a normal form, then all reductions starting with M terminate.

3.18 LEMMA. (i) Let
M __ R __ > N __ s __ > L

with R non-needed and S needed. Then there is a term N' such that
S' M -- --> N' ---->> L

where S' is a needed red.ex and N' ---->> L consists of non-needed reduction steps, see fig .12.

:M: ,.----~~R~~-n~... N

S' I s
fig. 12

nl n

t N'~.~-~~~-:....n~ L

16

(ii) An analogo-us statement holds for head-neededness.

PROOF. (i) By Proposition 3.7 non-needed redexes never create needed redexes, so S must be a

residual by R of some redex S' in M. By Corollary 3.10, S must be the only residual of S'.

Therefore we can make the above reduction diagram. Hence by Theorem 3.5, the redexes reduced

in N' -->> L are non-needed. That S' is needed follows also by 3.5.

(ii) Similarly.~

3.19 THEOREM. Let 1l: M -->> N be a reduction sequence. Then there are sequences S: M -->> L

and T: L -->> N such that S is needed, T is non-needed, and 1l = S. 7. ("Non-needed reductions

can be postponed.") Similarly for non-head-needed reductions.

PROOF. By Lemma 3.18 using some "diagram chasing".~

The word 'needed' refers to the fact that, by definition, some residual of the needed redex must

be contracted in order to reach normal form. Now we will show that reduction of needed redexes is

not only necessary, but also sufficient to reach the normal form. More generally, we will show that

if an arbitrary finite number of non- needed steps is allowed between needed steps, the resulting

reduction sequence is still sufficient to reach normal form. That is: 'quasi-needed reduction is

normalising'.

3.20 DEFINITION. Consider the (finite or infinite) reduction sequence

R =Mo __ Ro--> M 1 __ Rl--> M2 __ R2 -->

(i) R is called a quasi-needed reduction sequence if

V'i 3 j,~i Rj is needed in Mj.

(ii) Similarly we define quasi-head-needed.

So the quasi-needed reduction discipline has the nice property that one is free to perform,

between needed reduction steps, an arbitrary finite reduction sequence.

3.211lIEOREM.(i) Let M have a normal form. Then every quasi-needed reduction sequence

starting with M terminates.

(ii) Similarly, if M has a head-normal form, then every quasi-head-needed reduction starting

with M terminates.

PROOF. (i) By theorem 3.15, needed reductions are norm-decreasing, while non-needed reductions
IA

are norm-preserving. Hence a quasi-needed reduction sequence starting from a term with a finite

norm (i.e. having a normal form), must end in a term with norm 0 (i.e. a normal form).

(ii) Similarly-~

17

It follows that if a term has a (head-)normal form, then a quasi-(head-)needed reduction is able

to find it (one).

4. SPINE REDUCTIONS.

As shown in 3.12, neededness of a redex R in M is undecidable in general. In practical cases

we usually work with terms having a (head) normal form. In these cases we can decide whether R

is (head) needed: reduce M by the leftmost reduction path L to (head) normal form; if (a residual of)

R is reduced in L, then R is (head-) needed, otherwise not. (A leftmost reduction to head normal

form is a head reduction.) This is however not a practical algorithm: it uses (unpredictably long)

look-ahead.

Practical algorithms for identifying needed redexes should be efficient: the number of steps

required should be bounded by some linear function of the size of a term. This motivates the

various notions of spine red.ex introduced below. These come in two groups: various notions of

head-spine redex and spine red.ex. These are generalisations of the notions of head redex and

leftmost redex respectively. The redexes belonging to these families are all needed. Moreover we

will give efficient algorithms to test whether a redex in a term belongs to one of the classes.

4.1 DEFINITION. The set HS(M) of head spine redexes in a lambda-expression Mis defined as

follows.

HS(M) =0 if Mis in head normal form

HS(M) = {(Ay.P)Q} u HS(P) ifM = Ax1··xn.((Ay.P)Q)R1···Rm, for some n,m;;:: 0.

Note that the head spine redexes of M can be identified during a single traversal of the left

spine of M. It follows that there exists an efficient algorithm for identifying the head spine redexes.

4.2 DEFINITION. For a lambda-expression M we define hs(M); this will be the same term with

some underlining:

hs(x) = .?S.

hs(Ax.P) = A.?S..hs(P)

hs(PQ) = hs(P)Q

It is easy to see that a redex R in M is a head spine redex iff the A of R is underlined in hs(M).

4.3 DEFINITION. Every lambda-expression can be written in the form

18

where n>O, the xo, .. .,xn,P 1, ... ,P n + 1 are vectors, i.e. xo =xo 1 •x02•··· etc. Note that such

vectors are not subterrns, but lists of subterrns. E.g. in (*) below D 1 D2 is not a subterrn. The

vectors xo and P n+ 1 may be empty, but the remaining xi and Pi are nonempty. Note that with

more parentheses we have M = ~<<h1.« ... «A.xn..UP n+l))P n)) ...))P1).

The head spine corresponds to the underlined portion of M. The variable y is called the head

variable ofM. By analogy with the notion of "spine", the terms Pij are called the ribs ofM.

For example a term with n=2 looks like

~1..&z.~P3)P2)P1;
and when the vectors are written out e.g. like

fig. 13

EXAMPLE. In tree notation the term(*) looks

like fig. 13. The head-spine corresponds to the

leftspine of the tree and is displayed.

The leftmost reduction sequence of M

begins by reducing all the head spine redexes,

from the outermost inwards. If in a leftmost

reduction some rib Pi is substituted for the head

variable of M, the head spine of M is extended

by the head spine of Pi• and the head spine

redexes of Pi will have residuals on the spine of

the resulting expression. It follows from the

contrapositive formulation of Theorem 3.6 that

all the head spine redexes of Pi are needed in M.

These observations provide a basis for a better

approximation to neededness than that offered

by head spine redexes.

4.4 DEFINITION. (i) Let M be as above and let

Pi=Pn,Pi2 ••• and xi=xil'xi2.... Then M has

the head spine target Pn if y = xil with i>O.

This subterm will be substituted for the head

spine variable when normalising M.

(ii) M has the polyadic head spine target Pij

if y = xij with i>O and Pij exists (i.e. Pi has at

leastj elements).

19

4.5 EXAMPLE. Consider M:: (A.x1x2x3.((A.y1y2.((A.z1Zi,z3z4.yW 1W2)Z1))Y 1 Y2Y3)); then

y = y 1 => Y 1 is the (polyadic) head spine target.

y = y 2 => Y 2 is the polyadic head spine target.

y = z 1 => z1 is the (polyadic) head spine target.

y = z2 => there is no (polyadic) head spine target

y is free => there is no (polyadic) head spine target.

4.6 DEFlNITION. Let M be a term with head spine target N. An exteruled head spine redex of M is a

head spine redex ofM or an extended head spine redex ofN.

Let M be a term with polyadic head spine target N. A polyadic head spine redex of Mis a

head spine redex of Mor a simple polyadic head spine redex of N.

Recall that the active components of M are the maximal subterms of M not in head normal

form.

For example if M = A.x.(A.y .P)QR, then M is the only active component of itself. If M =
A.x.yRl···Rm, then the active components of Mare the ones ofR1, ... ~ together.

4.7 DEFINITION. (i) A spine redex of Mis a head spine redex of an active component ofM.

(ii) Similarly, extended or polyadic spine redexes are respectively the extended or polyadic

head-spine redexes of an active component in M.

4.8 LEMMA. Let A sub M be an active component. Then

R is head-needed in A ==> R is needed in M.

PROOF. Induction on the length of M. If M is not in head-normal form, then A = M and the

statement is trivial.

Otherwise, M = A.x 1 ... xn·Y A 1 ···Am and A is an active component of say Ai. By the induction

hypothesis R is needed in Ai, hence in M.~

4.9 1HEOREM. (i) Head spine, exteruled head spine and polyadic head spine redexes are all head

needed.

(ii) Spine, extended spine and polyadic spine redexes are all needed.

PROOF. (i) From the definition of head spine redexes it is clear that these will be contracted on the

head reduction path. Hence by 3.6 (ii) such redexes are head needed. From the definition of

extended or polyadic head spine redexes it also is clear that these will become head redexes;

therefore they are also needed.

(ii) By (i) and Lemma 4.8.~

20

Summarising we have for the classes of redexes the situation as shown in fig. 14.

head spine c spine

1n in

extended head spine c extended spine

in in
fig. 14 c

polyadic head spine polyadic spine

1n in

head-needed c needed

Now we will turn to the algorithms that detect the various classes of needed redex. First we
give a non-computable version in order to make clear the idea

4.10 DEFINITION. The selection number of a A-term M, notation Sel(M), is defined as follows.
Sel(M) = t (undefined), if M has no head-normal form;

=0,

= i, (>0)

ifM has a head-normal form with a free head variable;

if M has a head-normal form AX 1 ···xn.xiM I ···Mm.

Clearly Sel is a partial recursive function on (the codes of) terms.

The selection number is related to the notion of head-neededness. In the following definition
Al stands for the set of lambda terms extended with a new constant ..L.

4.11 DEFINITION. The map<>: A ~ A..L is defined as follows.

<X> = x;

<Ax.P> = Ax.<P>;

<PQ> = <P><Q>, if Sel(P) = 1,

= <P> ..L, else.

EXAMPLE. Let ,,
Mi= Aw.(Axy.yAB)((A.z.w)B);

M1 = Aw.(A.xy.xAB)((A.z.w)B).

Then

21

<M1>=A.w.(A.xy.yil)1-;

<M2> = A.w.(A.xy.x J_J_)((A.z.w) 1-).

4.12 DEFINffiON. Referring to the previous example we say that the redex (A.z.w)B is visible in
<M2>, but not in <M1>.

4.13 DEFINITION. Let R be a redex in M.

(i) R is called< >-preserved if R is visible in <M>.

(ii) R is called< >-needed if R is < >-preserved in an active component of M.

4.14 PROPOSmON. (i) R is< >-preserved => R is head-needed.

(ii) R is< >-needed => R is needed.

PROOF. Induction on M of which R is a subterm. If M = x, then the result is trivial. If M = A.x.P,
then the result follows from the induction hypothesis (Ill). If M = PQ, then there are three
subcases.

R = PQ. Then R is head needed.

R subP. Then

R < >-preserved => R visible in <M>

RsubQ. Then

=> Rhead-needed in P, by the Ill

=> R head-needed in M.

R <>-preserved => R visible in <M> = <P><Q> & Sel(P)=l

=> R visible in <Q> & Sel(P)= 1

=> Rhead-needed in Q & P-->>h A.x1···xn-x1N1···Nk
=> R head-needed in PQ = M.

(ii) By (i) and Lemma 4.8.~

The converse does not hold: R in (A.x.xR(A.y.y))(A.pq.p) is head-needed, but not< >-preserved.
Now we will define several computable approximations to Sel: Sel1, ... ,Sel4. These partial

recursive functions are computable in the sense that their domains are recursive. The definition of

Seli is simultaneous with that of< >i·

In the following definition i denotes "undefined" and a ... b is a - b if this is not negative, 0
otherwise.

4.15 DEFINITioN. (i) < >i is defined by replacing Sel in the definition of< > by Seli.

(ii) Sel1(P) =i,forallP.

22

(iii)

(iv)

(v)

Sel2(x) = O;

Sel2(PQ) = i;
Sel2(A.x.P) = 1,

= i'
= O;

= Sel3(P) .. 1,

= i,
= 1,

= Sel3(P) + 1,

=0,

= O;

if XE FV(<P>2),

otherwise.

if Sel3(P);t:l,

otherwise;

if xeFV(<P>3),

. if xeFV(<P>3) & Sel3(P) > 0,

otherwise.

= Sel4(P) .. 1, if Sel4(P):;el,

= Sel4(Q) - lengthtail(P), if Sel4(P)=l and Sel4(Q) > lengthtail(P)

= i, otherwise;

Sel4(A.x.P) = 1,

= Sel4(P) + 1,

= 0,

Here lengthtail(P) is defmed by:

if xeFV(<P>4),

if xeFV(<P>4) & Sel4(P) > 0,

otherwise.

if P has as head-normal form A.x1 ... xm·YQ1 ... Qn (with n,~0), then lengthtail(P) = n,

otherwise i. Moreover we have the property

Sel4(P) = 1 => lengthtail(P) is defined.

We will not prove this fact here as it will follow from a more precise analysis later on. See the end

of this section.

4.16 DEFINITION. LetR be aredex sub M.

(i) A redex R sub Mis called a generalised head spine redex if R is < >4-preserved.

(ii) R is a generalised spine red.ex if R is a generalised head spine redex of an active component

ofM.

It is clear that for the partial functions Seli we have

Sel ::> Sel4 ::> Sel3 ::> Sel2 ::> Sel 1 •

i.e. the Seli are successively better approximations of Sel.

In the next proposition ::> denotes Bohm-tree inclusion of AL-terms, that is M ::> N iff M

results by replacing some occurrences of J_ by arbitrary ll-terms.E.g. A.x.xy ;;;;;? A.x.tl. ,,

4.17 PROPOSmON. For all terms M we have

<M> =><M>4 =><M>3=> <M>2 => <M>J·

PROOF. By the previous remark.~

EXAMPLE. Let M = I(K*I((Ax.xI)K*(II)))(rol(Il)), where K* = A.xy.y and ro = A.x.xx. Then

<M>1 = LLL;

<M>2 = I(K*il)l_;

<M>3 = I(K*l_((Ax.xI)K*l_))1-;

<M>4 = I(K*l.((A.x.xI)K*(II)))((Ax.tl)ll);

<M> = I(K*l.((Ax.xl)K*(II)))((Ax.tl)I(II)).

4.18 DEFINmON. Let R be a redex in M.

(i) R is< >rpreserved ifR is visible in <M>i·

(ii) R is < > rneeded if R is < >-preserved in an active component of M.

4.19PROPOSmON. (i)R < >rpreserved =>Rhead-needed.

(ii) R < >rneeded =>R needed.

23

PROOF. (i) By proposition 4.17 it follows that if R is visible in <M>i, then also in <M> and

therefore< >-preserved. Hence by Proposition 4.14 we are done.

(ii) By (i) and lemma 4.8.~

4.20 PROPOSITION. (i) R is a head-spine red.ex <=> R is < > z-preserved.

(ii) R is a spine redex <=> R is a < > i-needed.

(iii) R is an extended head spine red.ex ==> R is< >2-preserved.

(iv) R is an extended spine redex ==> R is < >2-needed.

(v) R is a polyadic head spine redex ==> R is < > 3-preserved.

(vi) R is a polyadic spine redex ==> R is < > 3-needed.

PROOF. For the statements including "head-" this follows by induction on the structure of M in

which R occurs. The case distinctions are best made according to the shape of M displayed in

Definition 4.3. As a typical example let us show (iii) with M = ((Ax1 x2.(AY1Y2·x2Z)Y)X1)X2

and let R sub M in fact be sub X2. Then

R polyadic head-needed in M => R polyadic head-needed in X2

=> R visible in <X2>3, by the Ill

=> R visible in <M>3 = ((Ax1x2.(AY1Y2·x21.)1.)1.)<Xz>3

since Sel3((A.x1x2.(AY1Y2·x2Z)Y)X1) = Sel3((AY1Y2·x2Z)Y) +1+1-1 = 1.

For the statements without "head-", the validity follows from lemma 4.8.~
"

The reverse implications in (ii) and (iii) do not hold. Consider e.g. M = (Ax.(Ay.yA)x)R. Then

R is not an extended (nor polyadic) head spine redex, although R is visible in <M>2·

24

As to the length of the different spine reductions, we can state the following simple

observation.

4.21 PROPOSITION. All spine reduction sequences of a given term to normal form have the same

length.

PROOF. Note that if Ro and R 1 are two different spine redexes in M, then Ro and R 1 can neither

multiply nor erase each other. Hence we have the elementary reduction diagram in fig. 15.

fig. 15

R
1

Now the statement follows by a simple diagram chase.~

For extended and polyadic spine reductions this is not true, since, for example, a polyadic

spine redex may be duplicated by a spine redex to its left.

An algorithm for detecting generalised (head) spine redexes.

The definition of Sel4 contains an unsatisfactory element, namely the appeal to lengthtail(M)

for which the head-normal form of M must be determined. It would be better to have a more

explicit algorithm to determine lengthtail (M). Such an algorithm is given by the following

definition. The operation L gives what was called above lengthtail. K is an auxiliary function; see

theorem 4.31 below. K(M), Sel4(M), L(M) are defined simultaneously; therefore it is convenient to

work with triples (K(M),Sel4(M),L(M)), abbreviated as KSL(M) and varying over

N3 u {(*,*,*)}.The operation+ on this set works coordinatewise with the understanding that

n + * = *.

4.22 DEFINITION. (i) KSL(J_) = (*,*,*)

(ii) KSL(x) = (0,0,0)

(iii) "KSL(A.x.P) = KSL(P) + (1,1,0) if x e FV(<l'>4) orFV(<l'>4)= 0
KSL(P) + (1,0,0) otherwise.

(iv) KSL(PQ) = KSL(P) E9 KSL(Q), where E9 is recursively defined by

(1) (*,*,*) e (x,y,z) = (*,*,*)

(2) (0,0,j) e (x,y ,z) = (0,0,j+ 1)

(3) (k+l,0,j) E0 (x,y,z) = (k,0,j)

(4) (k+l,l,j) $ (*,*,*) - (* * *) - ' '
(5) (k+l,1,j) ED (0,0,j') = (k,O,j+j')

(6) (k+l,n+2,j) $ (x,y,z) = (k,n+l,j)

(7) (k+l,1,0) $ (k'+ 1,0,j') = (k+k'+ 1,0,j')

(8) (k+l,1,j+l) $ (k' + 1,0,j') = (k+l,l,j) E0 (k',O,j')

(9) (k+l,1,0) ED (k'+ 1,1,j') = (k+k'+ 1,k+ 1,j')

(10) (k+l,1,j+l) $ (k'+l,l,j') - (* * *) - ' '
(11) (k+l,1,0) ED (k'+l,n'+2j') = (k+k'+l,k+n'+2,j')

(12) (k+l,l,j+l) ED (k'+l,n'+2j') = (k+l,l,j) E0 (k',n'+l,j').

As to the intuition for KSL(M), the following will be proved:

KSL(M) = (k,s,j) => M has a head-normal form of the form Az1 ... zk.zsN1 ... Nj.

The reverse implication does not hold; M = (h.xI)I has a head-normal form I, but

KSL(M) = KSL(Ax.xl) E0 KSL(I) = (KSL(xI) + (1,1,0)) E0 KSL(I) =
((KSL(x) E0 KSL(I)) + (1,1,0)) E0 KSL(I) =
(((0,0,0) $ (1,1,0)) + (1,1,0)) E0 (1,1,0) =
((0,0,1) + (1,1,0)) E0 (1,1,0) =
(1,1,1) E0 (1,1,0) =
(*,*,*).

25

The reason is that the computation of the head-normal form of M uses the underlined subterm in

(Ax.xDI whereas the definition of< >4 (for which KSL is a subroutine) is such that every vector

xP 1 ... Pj is replaced by x.1L (j times ..L; this is abbreviated as x.il). One can formulate a restricted

A-calculus embodying these restrictions (namely that no information is visible of a vector xP1 ... Pj

except the head variable and the length j of the tail) in the calculation of KSL and therefore of< > 4,

and obtain a precise characterisation of when KSL(M) = (*, *, *) as follows.

4.23 DEFINffiON. ll -calculus has as terms the set Al and as rules

(i) ..L M --> ..L,

(ii) Ax . ..L --> ..L,

(iii) xP 1 ···pj --> ~, j;;::::O, .

(iv) (Ax 1 ... xk.x 1..Ll)P --> Ax2 ... xk.P ..LJ, k;;::::l, j;;::::Q,

(v) (h1 ... xk-Xn ..Lj)P --> Ax2 ... xk.xn..Lj, k;;::::l, j;;::::O, n ~ 1.

Note again that the ..Lj are not subterms.
"

EXAMPLE. In ll: (Ax.xx)(Ax.xx) --» (Ax.x.l)(Ax.x.1) --> (Ax.x.1)..L --> ..L..L --> ..L.

26

4.24 PROPOSmON. U-calculus is terminating and Church-Rosser. The normal forms are J_ and

Ax I·· .x k·xn J_ i.

PROOF. Every reduction decreases the length of a term, hence the system is terminating. The

Church-Rosser property follows via Newman's Lemma, see Barendregt [1984], Proposition

3.1.25, since the system is easily proved to be weakly Church-Rosser.~

4.25. LEMMA. (i) KSL(l_) = (*,*,*).

(ii) KSL(AxJ···xk.xnJ.JJ = (k,nJ), if l~nSk.
(iii) KSL(AxJ···xk.x_J}) = (k,OJ), ifx i5 {xJ•···,xkJ.

PROOF. By the definition.~

4.26. LEMMA. KSL is substitutive. That is, if KSL(E) = KSL(F), then for any G, KSL(G[y:=E])

= KSL(G[y:=F]) (where by the usual variable convention the substitution automatically renames

variables in E to avoid captures).

PROOF. By induction on the structure of G.

(i) G = x. Trivial

(ii) G = A.x.P. Write GE f G[y:=E]. Now

KSL(GE) = KSL(lx.PE)) + (1,1,0) or (1,0,0)

= KSL(PE)) + (1,1,0) or (1,0,0)

= KSL(PF)) + (1,1,0) or (1,0,0), by the induction hypothesis,

= KSL(GF)),

since x e FV(<PE >4) <=> x e FV(<PF >4) because x -.:J: y and x is not free in E or F

(iii) G = PQ. Similar but more easy. ~

4.27. LEMMA. Let Ebe a A1--redex without proper subredexes. Let F be the contractum of E.

Then KSL(E) = KSL(F).

PROOF. By cases of U-reduction, and by induction, firstly on the size of E, and then (when E is

an application) on the size of the rator of E. See definition 4.24.

Case (i) E = .lM. Then F = .1. Now KSL(E) = (*,*,*) $ KSL(M) = (*,*,*) = KSL(F).

Case (ii) E = A.x .. L Then F = J_. Now KSL(E) = (*, *, *) = KSL(F).

Case (iii) E = xP1 ... Pj- Then. F = tll Now KSL(E) = ~0,0,j) = KSL(F).

Case (iv~E = (A.x1···xk-xlJ_J)P. Then F :="-x2···xk.P .. LJ. Now

KSL(E) = KSL(A.x 1···xk.x1 J_J) $ KSL(P)

= (k, 1,j) $ KSL(P)

We compute KSL(F) according to the following subsubcases (4), (5), (7) - (12) corresponding to

the definition of $.

27

(4). KSL(P) =(*,*,*).Then P = ..L. Now F = A.x2···xk..L..Lj and KSL(F) = (*,*,*) = KSL(E) .

. , ., .
(5). KSL(P) = (0,0,j'). Then P = y..LJ. Now F = A.x2···xk·Y ..LJ ..LJ and

KSL(E) = (k,l,j) $ (0,0,j') = (k-1,0,j+j') = KSL(F) .

. ,
(7). KSL(P) = (k'+l,O,j') & j=O. Then P = AYl···Yk'+l ·Y..LJ. Now F = A.x2···xkP and

KSL(E) = (k,1,0) E9 (k'+l,O,j') = (k+k',O,j') = KSL(F).

(8) and (12) can be treated simultaneously. KSL(P) = (k'+l,O,j') and k,j>O.
- ., . ·-1

P = A.yl ···Yk'+l ·YJ_J. Now F = A.x2···xkP ..LJ. Let G = (A.x1 ... xk.x1..LJ)(P .l). Then G -->F.

From the definition of$ we have

KSL(E) = (k,l,j) $ (k'+l,O,j') = (k,l,j-1) $ (k',O,j') = KSL(G)

We must prove KSL(G) = KSL(F). If P ..L is not a redex, then by induction, this follows from the

lemma applied to G. Suppose that P ..L is a redex. Let P' be the result of reducing it. It is clear that

P ..L contains no proper subredexes and is smaller than E; therefore by the induction hypothesis

KSL(P .l) = KSL(P'). By substitutivity of KSL one has KSL(G) = KSL(G'), where

G' = (A.x1···xkx1..Lj-l)P'. Let F' = A.x2···xkP'..Lj-l. Then G' --> F' and F --> F'. Both G' and

F' are smaller than E, and are both redexes not containing subredexes. Therefore by the induction

hypothesis KSL(G') = KSL(F') = KSL(F), and the result is proved. (9), (11). KSL(P) =

(k'+l,n'+l,j') & k > 0, j = 1. Then P = AY1···Yk'+l·Yn'+1..Lf. Now .,
F = A.x2···xk.P = A.x2···XkYl ···Yk'+l ·Yn'+l ..LJ ·

KSL(E) = (k,1,0) $ (k'+l,n'+l,j') = (k+k',k+n'+l,j') = KSL(F) .

. , .
(10). KSL(P) = (k'+l,1,j') & k,j>O. Then P =A.y1 .. ·Yk'+l·Y1..LJ. Now F=A.x2 ... xkP..LJ.

KSL(E) = (k,l,j) $ (k'+l,l,j') = (*,*,*)

KSL(F) = (KSL(P) $ KSL(..L) $... $ KSL(..L)) + .. .

= ((k'+l,l,j') $ (*,*,*) $... $ (*,*,*)) + .. .

= (*,*,*) + ...

= (*,*,*)

Case (v). E = (A.x 1 ···xkXn..Lj)P & k ~ 1, n #: 1. Now F = A.x2···xk·Xn ..Lj.

KSL(E) = KSL(A.x 1 ···xk.xn..LJ) $ KSL(P)

= (k,n,j) $ KSL(P).

We compute KSL(F) according to cases (3) and (6) of the definition of$.

(3) n = 0. KSL(E) = (0,0,j) $ KSL(P) = (k-1,0,j) = KSL(F)

(6) n ~ 2. KSL(E) = (k,n,j) $ (KSL(P) = (k-l,n-1,j) = KSL(F). ~

4.28 PROPOSITION. If li/-- E = F, then KSL(E) = KSL(F). In particular, KSL(E) = KSL(Enf),

where Enf is the normal form of E.

28

PROOF. From lemmas 4.26 and 4.27, if U I- E --> F, then KSL(E) = KSL(F). The proposition

follows.~

4.29 PROPOSITION.{i) KSL(M) = (k,nj) <:::> li /- M -->> AxJ··.xk.xn .JJ.
(ii) KSL(M) = (*,*,*) <=> JJ.. /- M -->> L

PROOF. The normal forms of A...L are A.x1···xk-xn J_j and ..L. Every A...L-expression has a normal

form. Hence the proposition follows from lemma 4.25 and proposition 4.28. ~

4.30 PROPOSITION. If A..1. /- M -->> Ax[···xk.xn .JJ, then A. /- M --->>AxJ··.xk.xn PJ···Pj>for

some expressions PI ···pi

PROOF. All U-reductions can be mimicked in A.. ~

4.31 THEOREM. KSL(M) = (k,sj) => M has a hnf of the form AZJ···zk.Z~J···Nj-

PROOF. From Proposition 4.29 and Proposition 4.30. ~

5 CONCLUSION.

We will make some remarks on the relation of the present work with 'strictness analysis' and

with the various concepts of 'sequentiality'.

Strictness.

As the bare essence of 'strictness analysis' we understand the following. Given a domain D of

data, including an undefined element ..L, and some space F of functions over D (not necessarily

only unary functions) we will understand 'strictness analysis' to designate the endeavour of (1)

giving characterisations of some classes of strict functions. from F, (2) giving computable

approximations (that is: subclasses) of some classes of strict functions from F. Here a unary

function f in JF is strict if f (..L) = ..L, meaning that non-zero information output can only be obtained

by non-zero information input. Further, a binary function g in JF is strict in both arguments if

g(..L,x) =g(x,..L) = ..L, and likewise for n-ary functions.

In our ~etting, the data domain D is the set of A-terms modulo equality as obtained by

~-reduction plus the rule M --> ..L for all M without head normal form. Thus all terms without

head normal form are considered to be meaningless and identified with the undefined element ..L. In

Barendregt [1984] eh. 16 this lambda theory is called K. The space of n-ary functions JF consists

of contexts C[, ... ,] with n (or less) holes; here n~l. We now have the following result, due to

H. Mulder.

5.1 PROPOSmON. For every context C[] and every redex R we have:

the unary function associated with C[] is strict <=> R is head needed in C[R].

PROOF. We show that the negations of both sides are equivalent.

C[..L] =t: ..L ~ C[..L] has a head normal form

It follows that

~ C[..L] --»head A.x1···xn.xiM1···Mm

~ C[R] --»head A.x1···xn.xiM1 * ... Mm*, without reducing R,

~ R not head needed in C[R].~

C[] is strict in [] ~ V'R R is head needed in C[R]

~ 3R R is head needed in C[R].

29

Thus our computable approximations of the concept of head needed redex, such as head spine

redex, generalized head spine redex etc., can be perceived as strictness analysis.

Berry sequentiality.

At this point it is worth-while to note that in the pure A-calculus there are no nontrivial n-ary (with n

~ 2) functions which are strict in all their arguments. That is, if C[M, ..L] = C[..L,M] = ..L for all M,

then the function associated with this binary context is identically ..L. This follows from a theorem

of G. Berry [1978] who refers to this fact as the 'sequentiality' of A-calculus. It is therefore slightly

puzzling that an operator as + can be defined in A-calculus by a term PLUS such that

PLUS n m -->> n+m; apparently the operator+ which is strict in both arguments in some setting

(D,F) can only be implemented in A-calculus such that the dependence on one argument is

non-strict; indeed, the usual definition of PLUS will be such that PLUS ..L m = ..L, whereas

PLUS n ..L =t: ..L. The 'Berry-sequentiality' of A-calculus entails that PLUS reads in and

processes its input in a sequential way.

Of course the concept of strictness depends entirely on what is taken to be as ..L; a typical

example is the following: in A.I-calculus with 'hC:lving no head-normal form' standing for

'undefined' we have, as we just saw, no binary contexts strict in both 'arguments'. However, if

we take as notion of undefined: 'having no normal form' (so M--> ..L ifM has no nf) then there are

binary functions strict in both arguments; just take the context A.z.z[][]. (The restriction to

A.I-calculus is necessary for this example, since in A-calculus it is not possible to identify all terms

without normil form.) See the discussion on "undefined" in Barendregt [1977].

The remark above on the non-existence of binary functions (as given by contexts) strict in both

arguments can be paraphrased in another way. In a A-term M we can discern the head needed

redexes Ri.····Rn· Each redex Rican be replaced by an arbitrary redex which still is head needed if

30

the other redexes are kept the same. So we have determined head needed 'places'; but the place

occupied by Ri, while independent of Ri, does depend on the other redexes. In fact, Berry's
sequentiality theorem states that there is no binary context such that both places are head needed

regardless of the contents; the head neededness of one place depends on the actual content of the

other place.

Huet-Levy sequentiality.

The terminology of 'needed places' brings us to another concept of sequentiality, that of Huet
& Levy [1979], which should not be confused with Berry's notion of sequentiality. While Berry's

notion refers to the way in which data are read in and processed in a A-term, regardless of any
'reduction strategy', the notion of Huet and Levy says that a sequential reduction strategy (as
opposed to a parallel one) is adequate for reaching (head) normal forms. This in contrast with some
rewriting systems for which no adequate sequential reduction strategy exists and for which one
must adopt a parallel strategy in order to be sure of finding (head) normal forms whenever they
exist. In the terminology of Huet and Levy, a rewrite system is sequential if for every n-ary context
C[, ... ,] in normal form and for every substitution with redexes Ri such that the result
C[R 1, ... ,Rn] has a normal form, there exists at least one redex Ri which is needed. A
short-coming of this notion is that in general it can not be decided whether a rewrite system has this
property; and secondly that even if the rewrite system has this sequentiality property, such a needed
redex can not always be indicated in a computable way. Therefore they introduce a stronger
concept: a rewrite system is strongly sequential if for every n-ary context C[, ... ,] in normal form
there exists a needed place, say the i-th place. This means that after filling up the context with

redexes Ri such that C[R1, ... ,Rn] has a normal form, the i-th redex is needed. Clearly, A-calculus
is strongly sequential in this sense: the leftmost place in C[, ... ,] is always needed.

Summarizing: (i) A-calculus is strongly sequential in the sense of Huet and Levy;

(ii) A-calculus with identification of terms without head normal form is sequential in the sense

of Berry.

To see the difference between the two notions even more sharply, one may consider the

extension of A-calculus with an new constant + satisfying n + m --> n + m , .L + n --> .L and
n + .L --> .L. This extension is still strongly sequential in the sense of Huet and Levy, but it is not

Berry-sequential. Another extension of A-calculus, with m:(T,x) --> T, m:(x,T) --> T and

m:(F,F) -->Fis neither Huet- Levy sequential nor Berry-sequential. The first operator, +, is strict in

both argumsmts, the second, m:, is strict in neither of its arguments. Nevertheless, there exists a

sequential strategy for lambda calculus with m:, see Kennaway [1986].

31

An extension of lambda calculus with the strict operator +.

It is of interest to note that our algorithms for the determination of (a subset of) the head

needed and needed redexes, can easily be extended to such extensions of A-calculus with strict

operators such as+. We will show that the algorithms for Seli and< >i (see definition 4.15) can

easily be extended to the case where a 'demand-forking' operator like'+' is present. We will only

do this for i = 3.

Consider the extension of A.-calculus with a binary operator +, and numerals n for each natural

number n. Apart from the P-reduction rule there are the rules +(n,m) -->n+m for all n,m. An

expression +(n.,.m) is a "+-redex". Call this extension A. +-calculus. An example of a A.+ -term is

(A.x.+(x,x)).3.. (Note that +(x,x) is not a redex.)

We have to define what a head-normal form in A. +-calculus is: it is a term such that neither a

P-redex nor a +-redex is in 'head position'. More precisely:

5.2 DEFINITION. (i) Let M be a A. +-term. A redex R sub Mis in head-position if the leading symbol

ofR (that is A. or+) is only preceded by occurrences of+ or A. where the latter are not redex-A.'s.

Here the precedence ordering is as follows: (1) if s,t are symbol occurrences in an application PQ, s

in P and tin Q, then s precedes t; (2) in +(P,Q) the+ precedes all symbols of P,Q, but there is no

relation between s in P and tin Q.

(ii) A A. +-term Mis a head-normal form if there is no redex R sub Min head-position.

EXAMPLE. +((A.x.+Q,2.)),1) is not a head-normal form; A.xy.+((A.x.+(x,x)),y) is a head-normal

form.

The notion of (head-)needed is analogous to the case without+.

Now Sel3(M), for a J..+-term M, is defined as follows. It will be a set of non-zero natural

n um b e r s . First a notation: if X is such a set, then

X -- 1 = {n I n+le X} - {O}

X++l = {n+l In e X}.

Simultaneously with Sel3(M), we define <M>3.

5.3 DEFINITION.

(a) = x, <n>3 = n.;.

= A.x.<P>3;

= <P>3<Q>3, if le Sel3(P),

= <P>3 J_, otherwise;

<+(P,Q)>3 = +(<P>3,<Q>3).

32

(b) Sel3(n) = Sel3(x) = 0;

Sel3(PQ) = Sel3(P) -- 1;

Sel3(A.x.P) = (Sel3(P)++l) u {1}, if xeFV(<P>3),

= Sel3(P)++l, otherwise;

Sel3(+(P,Q)) = Sel3(P) u Sel3(Q).

(Note that the role of i in definition 4.15 is now played by 0).

EXAMPLE. (i) Sel3(A.xyz.+(z,+(x,z))) = {1,3}.

(ii) <(A.xyz.+(z,+(x,z)))PQRS>3 = (A.xyz.+(z,+(x,z)))<l»3 .l <R>3 .l.

The proof of the following fact follows the same lines as the case without +, and is omitted.

5.4 THEOREM. All redexes visible in <M> 3 1 where Mis a A +-term, are (head-)needed. ~

Concluding remarks.

The introduction motivated the precise identification of the concept of needed redex in a lambda

term, and the requirement for efficient algorithms which yield approximations to this undecidable

notion. Following a section which introduced the basic concepts and notation used in the paper,

section 3 developed the main technical result which is that quasi-needed reduction sequences are

normalising.Section 4 identified a range of algorithms which identify increasingly better

approximations to the the set of needed redexes in a term.

Section 3 gives a very precise characterisation of neededness. Particular note should be taken

of the norm-reducing characterisation of needed redexes identified in section 3. Also notable is the

resilience of needed reduction to introduction of contractions of non-needed redexes (quasi-needed

reduction is normalising).

Section 4 begins the work of identifying efficient algorithms for computing neededness.

Whether such algorithms are best employed at compile or run time is very much a matter for the

implementor, and the technology available to him. At the time of writing he will achieve some

benefit from including an algorithm for detecting neededness in a compiler for a sequential

machine. Future implementors may find it useful to embody algorithms for recognising needed

redexes in hardware.

6. APPENDIX: LEVY'S LABELLED LAMBDA CALCULUS

Uvy's labelled A-calculus is a powerful instrument to trace in a precise way what happens in a

reduction sequence. Many arguments using the terminology of reduction diagrams, residuals of

redexes and creation of redexes as explained in the Introduction can be dealt with in a more succinct

33

way using Levy's labels. In this Appendix we will introduce Uvy's labelled A-calculus and use it
to obtain some alternative proofs for propositions in this paper, in particular those propositions
which required for a complete proof very verbose arguments and elaborate casuistics, which,
therefore, we have only sketched. Besides giving additional credibility to some of those technical
propositions, we feel that Levy-labelled A-calculus can play a beneficial role in investigations
similar to the present one. Levy-labelled A-calculus was introduced in Levy [1975]; we will present
and use the simplified version in Klop [1980] (in Barendregt [1984] present as Exercise 14.5.5).

6.1. DEFINITION. (i) Let Lo= {a,b,c, ... } be an infinite set of symbols. The set L of (Uvy) labels
is defined inductively by

we Lo ~ weL

w,ve L ~ wve L

WE L ~ Yl,E L.

Here wv is the concatenation (without brackets) of the words wand v. Note that labels may have
nested underlinings, as in a~ahca.

(ii) The set AL of labelled A-terms is inductively defined by:

xe Av
M,Ne AL~(MN)e Av
ME AL ~ (AX.M) E Av
Me AL ~(MW)e Av

Since the first three clauses generate unlabelled terms, this means that we have defined terms with
partial labellings (i.e. not every subterm bears a label; equivalently, some subterms may have the
'empty label').

Multiple labellings as in (Mw) v will be simplified to Mwv; this simplification is executed as
soon as possible.

(iii) Labelled 13-reduction -->L (where the subscript L will often be dropped) is defined by

i.e. each occurrence of x in the (labelled) term M(x) is replaced by Nw (note that N may have some
labels itself; see example below) and the result is labelled by w. The label w appearing in this
definition is called the degree of the redex in the LHS. An example of a labelled reduction step is:

Note that this step has taken place in the labelled context []e; and that substituting (Ay.B)dk in
xa has yielded (Ay.B)dka.

34

The following fact is proved in Levy [1975] and Klop [1980].

6.2. THEOREM. Labelled A-calculus is confluent. ~

6.3. EXAMPLE.

(A.x.xaxbf((A.y.y)dz) ----------->

i
(((A.y.y)dz)~a((A.y.y)dz~b~ -----------> >

Residuals of redexes are defined in the case of labelled reductions just as in the unlabelled case.

We can now state the first benefit of the labelled version of reductions: let R in the unlabelled term

M be a redex, and suppose M --» N. To determine the residuals of R in N, we attach an atomic

label, say 'a', as the degree of R (that is, R = (A.x.A)B is replaced by (A.x.A)aB). The result is a

(partially) labelled term MI where I denotes the labelling. The given reduction M --» N can now in

the obvious way be 'lifted' to the labelled case; we find a labelled reduction MI -->>L NJ where NJ

is N together with a labelling J. Now all redexes R', R", in NJ with degree 'a', are residuals of

the original redex R, and they are the only ones. (The proof is a routine exercise.)

Creation of redexes can also neatly be expressed in the formalism of labelled reduction. Given

an unlabelled reduction step M -->R N obtained by contraction of redex R in M, we say that redex

Sin N is created by the R-contraction if Sis not the residual of a any redex in M. Now if the

present reduction step takes place in the labelled setting: MI -->RNJ, it turns out that the degree of

the created redex S in NJ contains the underlined degree of the creator redex Ras a subword. We

give an example.

6.4. EXAMPLE. (i) M:: R:: (A.x.xuB)v(A.x.A)w --> ((A.x.A)WYUB)Y = S = N.

Indeed the degree wyu of the created redex contains the underlined degree v as a subword.

(ii) (A.x.xU)V(A.y.A)WB --> (A.y.A)W.Y:UYB

(iii) (A.x. A.y.xu)vCB --> (A.y.CYU)YB.

(Essentially these are all 'types of creation' that exist.) Theorem 6.2 can in fact be strengthened in

the same way as for unlabelled reductions, see 2.3 of the preliminary section: the common reduct

can be found by completing a reduction diagram (now for the labelled case) by adding 'elementary

labelled reduction diagrams' of which one is displayed above in Example 6.3. In such elementary

diagrams the redexes contracted in opposite sides have the same degree; so one might say that

degrees prQpagate without changing in horizontal and vertical direction, in the construction of a

reduction diagram. Therefore, in a completed composite labelled reduction diagram, the degrees of

the redexes contracted in the top side of the diagram coincide exactly with the degrees of the

redexes contracted in the bottom side, and likewise for left side and right side. Bearing in mind that

residuals have the same degree as their ancestor redex, we have an immediate proof of Proposition

35

2. 7 (ii) in the preliminary section.

Finally, an alternative proof for Proposition 2.7(i) can be obtained easily using the above.

mentioned facts for labelled reductions. However, with the available power of labelled reductions,

it is just as easy to skip Proposition 2.7 and prove Proposition 2.6 directly; the latter proposition

follows at once from the following.

6.5. PROPOSmON. Let a reduction diagram as infig.16 be given, such that no residual or redex R

in Mis contracted in the reduction :R, = M -->> N. Let red.ex Sin M be created by the step

M --->RM'. Then in the projected reduction :R,/[R} no residual of Sis contracted.

M '.R N

fig. 16 R

SsubM' Rl{R}

, ' 1,
N'

PROOF. Label M partially by assigning degree 'a' to Rand degree 'b' to all other redexes in M.

Then every redex contracted in the reduction M --» N has degree containing 'b' as its only atomic

label. The same therefore holds true for the projected reduction M' -->> N'. This means that no

residual of Sis contracted in that reduction, since in the labelled reduction diagram (obtained by

lifting the given reduction diagram starting with the before mentioned labelling of M) the degree of

redex S in M' contains an occurrence of the symbol 'a'.~

ACKNOWLEDGEMENTS

Inspiration for the paper was obtained on the island of U stica at the First autumn seminar and

conference on reduction machines (organised by C. Bohm) where we had stimulating discussions

among others with Arvind. The various algorithms in section 4 are also described in van Eekelen

and Plasmeijer [1985] who introduced them independently.

REFERENCES

Barendregt, H.P.

[1977] Solvability in lambda calculi, in: Colloqµe International de Logiqµe. Editions du

Centre National de la Recherche Scientifique, Paris, 209-220.

[1984] The Lambda Calculus, North Holland, Amsterdam.

36

Berry, G.

[1978] Sequentialite de l'evaluation formelle des A-expressions, in Proc. 3-e Colloque

International sur la Prgrammation, Dunod, Paris.

Bum, G.L., C.L. Hankin and S. Abramsky

[1985] Strictness analysis for higher-order functions, preprint, Imperial College of Science

and Technology, Queens Gate, London.

Burstall, R. M., D.B. MacQueen and D.T.Sannella

[1981] HOPE: an experimental applicative language, in: proceedings First LISP Conference,

Stanford, 136-143.

van Eekelen, M.C.J.D. and M.J. Plasmeijer

[1985] Avoiding redex copying in lambda reduction, preprint, Informatica, Toumooiveld 1,

6525 ED Nijmegen, The Netherlands.

Gordon, M.J., A.J.R.G. Milner and C.P. Wadsworth

[1979] Edinburgh LCF, Lecture Notes in Computer Science 78, Springer, Heidelberg.

Huet, G. and J.-J. Levy

[1979] Call by need computations in non-ambiguous linear term rewriting systems, preprint

359, INRIA, B.P. 105, Le Chesnay 78150, France.

Kennaway, J.R.

[1986] Recursive one-step strategiees for weakly regular combinatory reduction systems, to

appear, School of Information Systems, University of East Anglia, Norwich

NR4 7TJ, England.

Klop, J.W.

[1980] Combinator_y Reduction Systems, Mathematical Centre Tracts 127, Kruislaan 413,

1098 SJ Amsterdam.

Landin, P.

[1964] The mechanical evaluation of expressions, Computer Journal 6, 308-320.

[1966] The next 700 programming languages,Comm. ACM 9,157-166.

McCarthy, J., P.W. Abrahams, D.J. Edwards, T.P. Hart and M.I. Levin

[1962] The LISP 1.5 Programmers' Manual, MIT Press, Cambridge, MA.

37

Mycroft, A.

[1981] Abstract interpretation and optimising transformations for applicative programs,

Ph.D. thesis, University of Edinburgh.

Turner, D.

[1979] A new implementation technique for applicative languages, Software practice and

experience 9, 31-49.

[1985] Miranda: a non-strict functional language with polymorphic types, in: Functional

Programming Languages and Computer Architecture (ed. J.-P. Jouannaud), Lecture

Notes inComputer Science 201, Springer, Heidelberg, 1-16.

Wadsworth, C.P.

[1971] Semantics and pragmatics of the lambda calculus, D.Phil. thesis, Oxford University.

