
Theoretical Computer Science 30 (1984) 1-48
North-Holland

PROVING PROGRAM INCLUSION USING
HOARE'S LOGIC

J.A. BERGSTRA *
Department of Computer Science, University of Leiden, 2300 RA Leiden, The Netherlands

J.W. KLOP
Department of Computer Science, Mathematical Centre, 1098 SJ Amsterdam, The Netherlands

Communicated by C. Bohm
Received December 1981
Revised February 1983

Abstract. We explore conservative refinements of specifications. These form a quite appropriate
framework for a proof theory for program inclusion based on a proof theory fbr program correctness.

We propose two formalized proof methods for program inclusion and prove these to be sound.
Both methods are incomplete but seem to cover most natural cases.

Key words. Data type specification, program correctness, conservative refinement, program
inclusion, program equivalence, prototype proof, logical completion.

Contents

Introduction
1. Preliminaries
2. Conservative refinements
3. Definability
4. Program inclusions
5. Prototype proofs .
6. Completions . . .
7. Proving program inclusions
8. Abacus arithmetic
9. Domain inclusion

References

Introduction

1
5
7

13
15
22
29
32
41
44
47

This paper aims at a detailed study of program equivalence, seen from the point
of view of Hoare's logic for program correctness. Because program inclusion is just
halfway program equivalence we can safely restrict our attention to program

* Present affiliation: Department of Computer Science, Mathematical Centre, 1098 SJ Amsterdam,
The Netherlands.

0304-3975/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)
Pih'.:,-;thr:':'.I<

J.A. Bergstra, J. W. Klop

inclusion. Moreover, this has the advantage of connecting closely to the theory of

programming using stepwise refinements as described in [2].
Our work can be seen as belonging to the subject of axiomatic semantics for

programs. Its novelty lies in the precise mathematical analysis of the situation, in

addition to a rather strict adherence to first order proof systems and first order

semantics for data type specifications.
Deriving program equivalence from program correctness properties is, of course,

not a new idea. It occurs in compiler correctness proofs (for instance, [16, 23]) as

well as in the general theory of program correctness [15].
Because of our interest in a proper theoretical analysis, we try to minimize the

semantical problems by working with while-programs only; this by no means
trivializes the problem.

In the sequel of this Introduction an intuitive account is given of the key definitions
that underly the paper.

Intuition

Suppose that for 51, 52 E ''tVgJ>(.J:) we have

(i) Alg(l', E)F= 51 r;;; S2 (semantical inclusion)

and that we wish to prove this fact. Now obviously, (i) implies

(ii} Alg(l', E) I= {p} 52 {q} ::} Alg(.J:, E)F= {p} S1 {q} for all p, q E L(l').

However, there is no reason to expect that the reverse implication (ii) ::} (i) will

hold, since (ii) states only roughly that 51 r;;; 52 , where 'roughly' refers to the limited
expressive power of L(l'). (In fact, Remark 7.8(2) shows that indeed (ii) =;t;, (i).)
Now consider

(iii) 'V(l'', E')?:: (1:, E) 'Vp, q E L(.J:')

Alg(l'', E'P= {p} 52 {q}::::? Alg(l'', E') I= {p} 5 1 {q}.

Clearly (i)::::? (iii) ::::? (ii). (For (i) ::::? (iii), note that if (.J:', E') ~ (2:, E), then the
reducts of (1:'

1
, E'

1
)-algebras to l' form a subset of Alg(l', E); hence Alg(.J:, E) 1= 51 r;;;

S2 ::::? Alg(l' , E) I= S1 r;;; S2.)

In fact, we will restrict ?ur attention to a subclass of all refinements (~) of (1:, E),
namely to the conservative refinements (r:::) of (.J:, E), for reasons which will be
clear later. So consider

(iv) 't/(1'1,£1)1:::(1',E) 'tfp,qEL(1:')

Alg(X', E') f= {p} Sz{q}::::? Alg(1:', E') I= {p} 51 {q}.

Now we have (i) ::} (iii) ::::? (iv) ::::? (ii); and it turns out that (iv) ::} (i) (see

Remark _7·8~3)). The conclusion is that one can treat the 'semantical' inclusion (i)
by cons1dermg only first order properties of S 5 (.

1> 2 I.e., asserted programs

Proving program inclusion using Hoare' s logic 3

{p} S; {q}, i = l, 2), provided one is willing to consider not only (.};, E), but all its

(conservative) refinements.
This observation prepares the way for an approach via Hoare's logic of proving

asserted programs. First of all, define

(v) S;i;;;HLCI,E)S2 iff Vp,q(L(L")(HL(L",E)f-{p}Si{q}

~ HL(1:, E) f-{p} S1 {q}) (proof-theoretical inclusion)

and consider

(vi) V(1:', E') ~ (1:, E) S1 i;;;HL(I'.E'l S2 (derivable inclusion)

the proof-theoretical analogue of (iv). Indeed, it will turn out that this 'derivable

inclusion', written as HL(L", E) f- S1 i;;; S2 , implies the semantical inclusion (i). This

is our first 'proof system' for proving semantical inclusion; we will prove that (vi),

as a relation of Si. S2 , is semi-decidable in E.
One more remark about why it is natural to consider (vi), in casu the quantification

over all conservative refinements. The first reason of considering all (conservative)

refinements of (2:, E) is that, only then, one is able to give as refined as possible

first order descriptions of S1 i;; S2 • This holds already on the semantical level.

Moreover, in (vi) there is another reason: to prove { p} S { q} we need invariants for

the while-loops in S. It may be the case that these invariants cannot yet be expressed

in the present specification, so we have to go 'higher-up'. If one attributes a defining

power to statements S, namely to define the invariants of the while-loops, then one

could say that the defining power of SE 'W":!/>(1:) is sometimes ahead of that of the

assertion language L(1:).
Of course, the proof system given by (vi) is sound, i.e., (vi) ~ (i); otherwise it

did not deserve the name. Some simple program inclusions that are in its scope,

are program equivalences like 'loop-unwinding', and the kind of program equivalen

ces considered in [20]. However, this proof system is not yet complete. In order to

prove the semantical inclusion (i) it is sufficient that (see Fig. 1)
.· .·: ·.:·\ << HL(i:'',E") I- {pl s2 (qJ ·:>-·:.:.~: :·

,._ .'.~"·: HL(l:" E") I- {p} s {q} <:
' ' >):•;/,,.;·'.~·······

. '·: .
.......... : :. '.··.".:·" ,,,

··:·.

Fig. I. Partial order of conservative refinements.

4 J.A. Bergstra, 1 W. Klop

(vii) 3(1:', £') e: (I, E) V(I", £") e: (I', E') S1 i;;;HL(l:",E"J S2.

(Notation: HL(I, E) II- S 1 i;;;S2; in words: forced inclusion.)

The reason that (vii) ::} (i) is a simple consequence of the invariance of semantical
inclusion (i), i.e., if (I', E') e: (I, E) and Si. S2 E "Wf1>(I), then

Alg(I, E) I= S 1 i;;;S2 <=> Alg(I', E') I= Sii;;;Sz.

(This does not hold for~ instead of i:::: .) So in order to prove Alg(I, E) I= S1 i;;;; S2
it is sufficient to find some (I', E') i:::: (I, E) where Alg(I', E') I= S1 i;;; S2.

The proof system embodied by (vii) is stronger than that of the derivable inclusion
(vi), and we will give some examples of program inclusion (which seem to have
some practical interest, too) which require the extra strength of this last proof system.

Still, (vii) is not 'complete'-although it seems hard to find a non-pathological
example of a program inclusion which is semantical (i), but which cannot be forced
(vii). One can prove, however, that the following 'cofinal' inclusion is equivalent to
semantical inclusion:

(viii) 't/(I', E') e: (I, E) 3(I", E") t:::: (I', E') S 1 i:;;;HL(I",E"J S2 •

(The equivalence (i)<=>(viii) holds also when in (viii)i::::is replaced by~. However,
for e: we have (vii) ::} (viii), not so for 2:.)

One could suspect that there is a multitude of such relations obtained by repeated
alternating quantification V 3 't/ · · • from the basic relation i;;;HL(I,EJ (proof
theoretical inclusion). It is a pleasant surprise, suggesting the naturalness of the
notions involved, that this possible hierarchy does in fact not exist, and that one
has no more relations than in Fig. 2.

I
SI [S2

-HL(t ,E)
prooftheor.inc(v

\

HL(t ,E) f- s 1f; s2
derivable
inclusion (vi)

inclusion
in some
refinement

HL(E ,E) If- s l[s
forced - 2
inclusion (vii)

cofinal semantical
inclusion (viii ~ inclusion (i)

Fig. 2.

Proving program inclusion using Hoare's logic 5

As we have seen, conservative refinements (12:) are more natural for this theory
than general refinements (;;::::). The technical reason is that for conservative refine
ments the 'Joint Refinement Property' holds, stating that (almost) every two refine
ments (.I;, E;) 12: (.I, E) can be refined to a common refinement (.I3, £3) 12: (.Ii> EJ
(i = l, 2). (This is in fact a strengthened version of the well-known Robinson
Consistency Theorem.) Also for conservative refinements we have a useful upward
and downward invariance of the properties

Alg(.I',E')F={p}S{q} and Alg(2"',E 1)i=S 1 ~S2 for(.I',E')12:(.I,E).

This paper is built up as follows: in Section 1 some notions about logic, programs
and Hoare's logic are given. Section 2 gives a criterion and a characterization of
conservativity, and also Robinson's Consistency Theorem (our Corollary 2.6.2) is
stated. Section 3 states Padoa's method (our Theorem 3.3) and gives some applica
tions. Section 4 contains definitions of the various inclusions. In Section 5 we deal
with the technical concept of protototype proofs, which will be basic for the proof
systems in the sequel. In Section 6 a logical complete refinement is constructed for
each specification. In Section 7 one of the main theorems is proved, establishing
the existence of two proof systems for ~- In Section 8 we consider a prime example
to yield more insight in the relations between the various inclusions. In Section 9
we will show that some additional information about the domains of Sl> S2 can be
converted to information about semantical and forced inclusion S1 ~ S2 .

1. Preliminaries

In this section we will collect the necessary basic definitions and facts from logic
in general as well as Hoare's logic.

1.1. Preliminaries about programs and logic

The notions of first-order language, derivability (1--) and satisfiability (I=) are
supposed to be well known and we repeat them merely to fix the notations and
terminology used in the sequel.

In this paper we will exclusively deal with 'W9P(.I), the set of while-program S
defined inductively as follows:

S ::= x:= tlS1 ;S2 J if b then S1 else S2 filwhile b do Sod,

where t E Ter(.I), the set of terms over the signature .I, b is a boolean (i.e.,
quantifier-free) assertion E L(.I), the first-order language determined by .I. In
general, assertions E L(.I) will be denoted by p, q, r. The signature says what 'non
logical' symbols we are considering; here equality (=) is considered as a logical
symbol. We also allow infinite signatures. For a further definition of signatures and
specifications, see Definition 2.1. Note that the signature defined there is part of
the alphabet of L(.I).

6 J.A. Bergstra, J. W Klop

If (.I, E) is a specification (see again Definition 2.1), the algebras (or models) in
Alg(..I, E) will be denoted by .s1 =(A, ...) where A is the underlying set of the
algebraic structure S'i.

We will need the following well-known fact.

1.1.1. Godel's completeness theorem

(..I, E) 1-- p ~ Alg(2:, E) f= p for all pE L(.I).

We will also need the following lemma.

1.1.2. Computation Lemma. Let x = Xi. ... , xk and y =Yi. ... , Yk· Let S = S(x) E
"lf;"ff'(.1:) (i.e., S contains precisely the variables x).

Then for all n EN there is a quantifier-free assertion Comps,n(x) =yin L(.I) such
that, for every s1 E Alg(.l') and all a, b EA,

s1 f= Comps,nC~.) = !!_ ~ !S(a)I :5 n & S(a) =b.

Here f!,Q are constant symbols denoting a, band !S(a)i denotes the length of
the computation of S on a.

1.2. Preliminaries on Hoare' s logic

Let p,qEL(2:) and SE 'Wi?P(J:). Then the syntactic object {p} S {q} is called an
asserted program. If s1 E Alg(l), we define

df={p} S{q} ~ Va,bEA: S (a) i & S(a)=b <::> (df=p(Q)~q(!!)).

Furthermore, we define

Alg(.1:, E)F={p} S {q} ~ VS'i E Alg(.1', E) dF={p} S {q}.

Hoare's logic w.r.t. (.1:, E) is a proof system designed to prove facts like
Alg(.I, E) F= {p} S {q}. We will call this proof system HL(.I, E).It has the following
axioms and rules, by means of which we can derive asserted programs (notation:
HL(.I, E) 1--{p} S {q}):

(1) Assignment axiom:

{ p[t Ix]} x := t { p}

(2) Composition rule:

{p} S1 {r} {r} S2 {q}

{p} S1; S2 {q}

(3) Conditional rule:

{pAb}Si{q} {pr1b}S2 {q}
{ p} if b then S 1 else 52 fi { q}

Proving program inclusion using Hoare's logic

(4) Iteration rule:

{p11b}S{p}

{p} while b do Sod {pr1b}

(5) Consequence rule:

P~P1 {p1}S{q1} q1~q

{p} s {q}

where (I, E) I- p ~ p 1 and (I, E) I- q 1 ~ q.

1.2.1. Lemma. HL(I, E) is sound, i.e., for all p, S, q E L(I):

HL(I, E) I- {p} S {q} ~ Alg(2:, E) I= {p} S {q}.

Proof. For the proof, see, e.g., [13]. D

1.2.2. Definition. HL(2:, E) is logically complete, if, for all p, S, q E L(2:),

HL(2:, E) 1-{p} S {q} ~ Alg(2:, E) I= {p} S {q}.

7

(In general, HL(2:, E) is not logically complete. The notion of logical completeness
is studied in [7].)

From the axioms and rules of HL(I, E) one can derive the following useful rules.

1.2.3. (i) Conjunction rule:

{p1} s {q1} {p2} s {q2}

{ P1 11 P2} S {q1 11 q2}

(ii) Disjunction rule: The same as (i) with 11 replaced by v.
(iii) Invariance rule: If the free variables in p are disjoint from the variables in

S, then HL(2:,E)1-{p}S{p}
(iv) 3-rule:

{p} S {r}
provided z does not occur in S.

{3z p} S {r}

2. Conservative refinements

In this section we will collect some facts concerning the notion of refinement and,
especially, conservative refinement. These notions will be of fundamental importance
in the sequel. All the material in this section (and the next, on 'definability') is
standard in Mathematical Logic and can be found (e.g.) in [24, 21]. For easier

8 JA. Bergstra, J. W. Klop

reference and to conform to our notations, we will give a fairly extensive survey of
the subject. Since the arguments used in the proofs are relevant for the sequel, we
have included some of the proofs.

2.1. Definition. (i) A signature 2: is a set of nonlogical symbols to be used in
Predicate Logic. These may be constant, function or predicate symbols; the arity
of a function or predicate symbol is the number of arguments it is supposed to have.

(E.g., 2: ={Q, S, P, <} is a signature where .Q is a constant symbol, S and P are
unary function symbols and < is a binary predicate symbol.) L(.I) denotes the set
of assertions in which only nonlogical symbols w, a- E 2: occur.

(ii) If E ~ L(2:), the pair (2:, E) is called a specification.
(iii) Alg(.I) is the class of all 2:-algebras.
(E.g., .sd = (N, 0, s, p, k) E Alg(.I), where 2: is as in the example above. Here 0 is

a constant of .sd, s and p are unary functions and k is a binary relation. We will
also write SS!Z for the interpretation or semantics of Sin s!l., in casu s; for convenience
we will often neglect to distinguish notationally the symbol from its interpretation.)

(iv) Alg(1:, E) is the class of .I-algebras .sd such that .sd i== E.
(v) Alg(..l", E) F= p means: for all s!l. E Alg(l:, E), .sd F= p.

2.2. Definition. (i) If 2:' 2 2: and E' 2 E we write (2:', E');;:: (2:, E) and call
(.l', E') a refinement of (2:, E). Here E = {p E L(.J:) J E I- p }. We will always suppose
that E, E' are consistent.

(ii) If (.I', E') is finite (i.e., both 1:' and E' are finite), then we write (2: u 2:', E u
E') 2:r (2:, E).

(iii) Let d be some algebra. Then 2:.11 is the signature of s!l. and Ed is the theory
of d: ES!Z ={pEL(.J:S!Z)js!l. F= p}. Note that s!l. I== p <=:? Alg(l:.11, E.11) i== p.

(iv) Let (.I, E) be a specification. Then E is complete if '<fp E L(.J:), EI- p or
E 1-1p.

2.3. Definition. (i) Let (l:', E') 2: (2:, E) be a refinement such that: '<;/ p E

L(.I)E' I- p <=:? EI- p. In other words, such that E' n L(2:) =E. Then this refine
ment is called conservative over (.I, E). (So a conservative refinement does not
yield more theorems in the 'original' language L(l:).)

Notation: (.I', E') '2:. (1:, E)
(ii) (I', E') '2:.r (.I, E) <=:? (2:', E')r2 (2:, E) & (1:', E') 2'.:r (2:, E).

2.3.1. Remark. NotethatifEiscomplete,(2:',E');:::(.J:,E) ~ (2:',E')'i?.(,J;,E).

2.4. Definition. Let .I' 2 .I.

(i) If (.I', E') is a specification, then the restriction of (l:', E') to the signature
.I is (I,E) where E =E' nL(l:).

We write pf (l:', E') = (2:, E).

Proving program inclusion using Hoare's logic 9

(ii) If d' E Alg(.l'', E'), then the restriction of d' to 2 is obtained by deleting

all constants, functions, predicates in d' corresponding to symbols in 1:1 - 2. We

write pf (d') = s1 for this restriction. s1 is also called a reduct of d', and d' is
called an expansion of d.

We will also write s1 :s; d'.

(iii) Let X <;A. Then dx is the expansion of s1 obtained by adding the a EX
as designated constants. Instead of dA we write .if..

Example: For s1 as in Definition 2.1. (iii), .if.= (N, 0, 1, 2, 3, ... , s, p, k). (So in

L(2.£1) one can refer to all elements of A by name.)

2.4.1. Remark. Note that if d';:::: s4, then (2.'1., E srt') 12:: (2srt, E.v1).

2.5. Definition. Let s1, 973 E Alg(2). Then:

(i) ,s;i. = 813 (.s1., 973 are elementary equivalent) iff E.v1 = E,'IJ.
(ii) Let A<; B. Then s1 ~ i?l3 iff .if.= 03A-

(s1 is an elementary sub-algebra of :?JJ, or :?7J is an elementary extension of d.)

2.5.1. Remark. Note that s1,,,; i?l3 ~ s1 = :?JJ.

2.5.2. Proposition. s1. ,,,; 973 ~ 03 A I== E.'!,/ .

Proof. For the proof, see [24, p. 74]. D

In the sequel we will mostly deal with conservative refinements (12::). They have

the pleasant property that two refinements (2';, E;) 12:: (2, E) (i = 1, 2) can be joined

to a refinement (2 1 u 2 2 , E 1 u £ 2) 12:: (2, £), provided the obviously necessary

requirement that 2 1 ni·2 =2 is satisfied. This is a (strong) form of Robinson's

Consistency Theorem (RCT). The version we will need is slightly stronger than the

usual statement of RCT. For that reason we include part of the proof. We start

with the very useful Joint Consistency Theorem (JCT); for the (hard) proof we

refer to [24, p. 79]. From JCT the remaining theorems in this section easily follow.

In [21] another order of presentation is followed.

2.6. Joint Consistency Theorem (Craig-Robinson). Let (2, E) and (2', £') be

specifications. Then E u £' is inconsistent iff there is a closed assertion p E L(J: 1 n2:2)

such that EI-· p and E' f- ·1p.

2.6.1. Corollary (Craig Interpolation Lemma). Let p and q be closed assertions such

that f-· p-+ q. Then there is a closed assertion r such that

(i) f- p-+ r and f- r-+ q,
(ii) every nonlogical symbol occurring in r, occurs in both p and q.

Proof. Clearly the specification { p, 1q} is inconsistent: { p} n {-iq} I- p, p-+

q, q, 1q, false. Hence by Theorem 2.6 there exists a closed assertion rE L({p, 1q})

10 J.A. Bergstra, J. W. Klop

such that { p} f- r and { 1 q} f- 1r. By the Deduction Theorem it follows that f- P-? r
and f- 1q 417. 0

2.6.2. Corollary (Robinson's Consistency Theorem) (see Fig. 3). Let (2:;, E;) 12:
(Iti. £ 0), i = l, 2, such that 2:1 n2:2=2:0. Then

(i) E1 u E2 is consistent, moreover
(ii) (1:1 u1:2, E1 u E 2) e: (.l'0 , Eo), and even

(iii) (I1 u1:2 , E 1 u E2) e: (.l';, E;) (i = 1, 2).

Fig. 3.

Proof. Part (i) immediately follows from (ii), which follows by transitivity of 12:
from (iii).

Ad (iii): Suppose E 1 u £ 2 f- p for a closed assertion p E L(.l';).
Therefore, {ei. e2} f- p for some closed assertions e; E L(2:;), i = 1, 2, such that

E; f- e;. By the Deduction Theorem:

f- ez-4 (e1 -4 p).

By Craig's Interpolation Lemma 2.6.1:

and

for some rEL(2:1 n1:2)=L(l:0). By(*), we have E 2 f-r. Hence £ 0 f-r, since
(2:2, E2) 12: (1:0 , E0). So, by (* *), E0 f- e 1 -'? p. Therefore E 1 f- p; and this proves
(2:'1 u .l'z, E1 u E2) e: (1:i. £ 1). Likewise for (.l'2, E2). 0

Next, we will give a characterization of the conservativity of refinements. For
many purposes, however, the following criterion for conservativity is sufficient.

2.7. Definition. Let (I', E') be a refinement such that every s1 E Alg(2:, E) can be
expanded to an .stl.' E Alg(.l'', E'). Then this refinement is called simple (see Fig. 4).

Proving program inclusion using Hoare's logic 11

~--------------~ Alg(r')

Alg(i.' ,E')

,. 11''

Alg(i.)

Fig. 4.

2.7.1. Proposition (Criterion for conservativity). Simple refinements are con

servative.

Proof. Suppose (2:', E') is a simple refinement of (.I, E), i.e., V.rA E Alg(.I, E)

3 .X'i' E Alg(2:', E ') .X'i'? s1. Let E V p for some closed assertion p. Then by Godel's
Completeness Theorem 1.1. l, s4 lr" p for some sl E Alg(.I, E). So there is an st.' E

Alg(.2:', E') such that .X'i' 2: .r/l. Hence .<//.'I= 1p; reasoning backwards we have

E'Vp. D

In general, the situation is more complicated. If (.I', E')rc:(.I, E), it may be the
case that some .X'iEAlg(.I,E) cannot be expanded to an s1.'EAlg(.I',E'). So we

may 'lose' models when taking a refinement. However, such a 'lost' model st. is
always an elementary substructure of (and hence elementary equivalent to) an .r/l'

which is not 'lost' (see also Theorem 2. 7.3 below).

2.7.2. Example (Shoenfield [24, p. 96]). Let 2;' contain the constant symbols
c0 , c 1, c2 , ... and let E' = { C; i' c1 Ii¥ j}. Let (2:, E) be obtained by omitting c0 and

let .r4 be (N-{O}, I, 2, 3, ...). Then s1. cannot be expanded to an .'//.' E Alg(l"', E'),
since there is no 'room' for (an interpretation of) c0 .

2.7.3. Theorem (Characterization of conservativity) (see Fig. 5). Let (.I', E')2

(.I, E). Then the following statements are equivalent:

(iJ (2:', E'J [:O:' (2:, E).
(ii) 'r:J.w E. Alg(l", E) 3.w' c Alg(2.', h'J, ill" E Alg(..!", F) such that «N"' .vt < .c.4''.

(iii) E' u E." is consistent for all s4 E Alg(l', E).

(iv) E' u E.,1 is consistent for all .r/l. E Alg(..!', E).

12 JA. Bergstra, J. W. Klop

Alg(l:')

Fig. 5.

Proof. (ii)==} (i): Suppose E Vp, pEL(I). Then .stl. Vp for some .stl. E Alg(.l", E).
Now there are d'EAlg(I,E) and .stl."EAlg(.l"',E') such that .stl.~.stl.'s.stl.". By
Remark 2.5.1, d=d'. Hence also .stl.' I= 1p. Therefore, .stl." I= 1p; so E' Vp.

(i) ==} (iii): Let (I', E') 12:: (I, E) and suppose that, for some .stl. E Alg(.l", E),
E' u E 4 is inconsistent. By Theorem 2.6 there is a closed assertion p E L(2' n 2-<") =
L(I) such that E' I- p and Esz1, I- 1p. By conservativity, EI- p. Hence .st/. I= p; a
contradiction with E 4 I- 1p, because E -if/ I- 1p ~ .:# I= 1p ~ .stl. I= 1p.

(iii) ==} (ii): Suppose E' u E 4 is consistent. Then there is a fi!J" such that
9lJ"I= E'uE'<". Let [!JJ' be the reduct of 9l3" to the signature 2', and let [!JJ be the
reduct of [!JJ" to I. Then [!/JA I= E-!fl, so, by Proposition 2.5.2, .stl. ~ [!JJ; and trivially
[!JJ s; [!JJ'.

(iii) ==} (iv): Trivial.
(iv)==} (iii): Suppose E'uE-!fl is inconsistent. Then, by Theorem 2.6, E' I- p

and Es# 1- -ip for some pE L(2' n 2 4) = L(I). Now E 4 1- -ip ==} E...i I- 1p, since
E,,. is complete. Hence E' u E,,. is inconsistent. D

2.7.3.1. Example. Let .N'= (N, 0, l, +, x) and let .N'* be some non-standard model
of arithmetic, so .N'* = .N. Then (I .if*• E .if* 12:: (:Ix, Ex).

Proving program inclusion using Hoare' s logic 13

Proof: E<Y*u E."' is consistent for every d E Alg(.I'.,v, E.ff) (i.e., every d such that
d = .N) because Ed =Ex~ E <Y*· (Note that this refinement is not simple).

3. Definability

We now turn to a special kind of simple conservative refinement (the definitional
refinement), collect some material about definability, and use this to prove that '+'
is not definable in the algebra (N, 0, S, P) which will play an important role later on.

3.1. Definition. LetL1 s;;; 2: and consider (2:, E). An n-ary predicate symbol 7T E 2: - L1
is definable in terms of L1 in E, if there is an assertion p E L(Ll) such that

E f- 7r(Xi, . .. , Xn) ~ P

(where Xi. ... , xn are distinct variables). An n-ary function symbol </> E .l'-Ll is
definable in terms of L1 in E if there is an assertion p E L(Ll) such that

£ f- </>(Xi,. ·., Xn) = Y ~ P

(where x1, ••• , xm y are distinct variables).

3.2. Definition. (2, E') e:d (2:, E), in words: (.I'', E') is a definitional refinement
of (2:, E), if (2, E') ~ (2:, E) and every symbol E ~, - 2: is definable in terms of 2:
in E'.

3.3. Theorem (Padoa's method). Let (~u{7}, E) be a specification where 7~ .l'.
Then 7 is not definable in terms of 27 in E, if there are two models d, 9lJ E Alg(2: u { 7}, E)
such that A = B and u·'11 = u''IJ for every nonlogical symbol u E 2:, but 7·"' r6 7"8.

Proof. Let 7 be a predicate symbol. (The proof for function symbols, including the
constant symbols which can be considered as '0-ary' function symbols, is similar.)
Suppose .9'1, !?/J exist as given in the theorem, and suppose that 7 is definable in
terms of 2: in E. That is,

E f- 7(X) ~ p,

for some assertion p E L(.l'). Then for a EA we have

a E 7'4 ~ sd f= p[a J ~ !?/J f= p[a] ~ a E r'11

(where the middle equivalence follows since p E L(.I') and s1, 9lJ have the same
interpretation for every symbol in .l'). Hence 7'·1 = r'11 , contradiction. 0

3.3.1. Remark. (i) A much stronger theorem results when, in Theorem 3.3, 'if' is
replaced by 'iff', namely Beth's Definability Theorem (BOT).

14 J.A. Bergstra, J. W. Klop

(ii) Write (2', E') ?: 1 (I, E) iff .l'' -2 is a singleton. Then the version of BDT
as indicated in (i) can be paraphrased as (2', E') e:~ (2, E) ~ the mapping
Pi' : Alg(.l'', E') is injective.

A slightly stronger version of BDT as, e.g., in [24, p. 81] says the same
for e: d instead of I?~.

Noting further that '2:'.d implies '2:., we have the following model theoretic charac
terization of definitional refinements:

(2', E') e:d (2, E) ~

~ pf: Alg(I', E') ~ Alg(2, E) is injective

~ pf: Alg(I', E') ~ Alg(.l', E) is bijective.

3.3.2. Application. In the sequel we will need the following.
Fact. Let d = (N, 0, S, P). Then the function + is not definable in .sti.
Proof (by Padoa's method). (For another proof, using elimination of quantifiers,

see Section 8.) Suppose + is definable in d; i.e., for some assertion r we have

d I= r[a, b, c] ~ a + b = c.

Now let d' = (N, 0, S, P, +),so

d' I= r(x, y, z) x+ y = z.

Hence

E.91·1-r(x,y,z)- x+y=z,

so the symbol + is definable in terms of 2.'11 in E .'11'·

To show that this is contradictory, we use Padoa's method (Theorem 3.3): We
will try to find }{i. }{2, E Alg(2.91·, E.sa·) such that N 1 = N2 , a .. N 1 = aN2 for all a~+,
but +x, ~ +){2 • Two such models are readily obtained; we have to take 'non-standard'
models:

JV; = (N x{O}) u (7L. xN+), 0 0 , S, P, +;) (i = 1, 2),

where N+=N-{O}, and where we write ab instead of (a, b). Further, S(nm) =

(n + l)rn, P(n + l)m =nm, P(00) = 0 0 and nm +;n'm· = (n + n');<m+m') (i = 1, 2).
(Intuitively; the n0 are the standard numbers; there are nonstandard numbers

divided in copies of lL., indexed by positive integers. The point is that these indices
are so to speak indiscernible for the specification in question, so there is considerable
liberty in defining '+' on the non-standard part.)

3.3.3 Example. Some reducts of arithmetic. In the schema given by Fig. 6 most of
the above concepts are illustrated. Upward lines denote conservative refinements
(of the theory of the structure in question); the 'clusters' of structures are equivalence

Proving program inclusion using Hoare' s logic 15

(JN ,0, I, +,x,exp)

(JN ,0, I, +,x)

(JN ,0,S,P, +,x) full arithmetic

(JN ,o,s,x, +)

(JN ,0,S,P,x)

(JN ,0,S,x)

(/J

" 0
;;;::; w "' u s
UI " "' ;:l ...

""" "" >< 0
Q)

(/J > 0.

(IN ,0,1, +, S,P)

(IN , 0, I , +)
Prcsburger arithmetic

w

"" ·~ ~I Q)

"'
u I ;:l

u u A
-<(.... ,..,

Q) :>

(IN ,0,S,P, +)

(JN ,o,s, +)

"' "tl
0 (/J "' w .._,A

>. ... '" "' ,.. Q) (/J Q) s
0 0. w
()) CJ ._,A
A >. w "' "' w 0. c: c: "'"' ()) "' "'"' """ :l 4-< Q)

..0 w
"' "tl "' c: Q) ';;- Q)

"tl CJ >A u .n

(IN ,0,S,P)

(JN ,0, S)
Abacus arithmetic

u Q) "' ~ "' ()) c: c:
"tl :;:...,.,-1 :>,•,-!

(JN ,0,P)

..... """
""" c: Q) " CJ

0 "Cl 0 "tl

5

(IN)

Fig. 6.

classes w.r.t. the equivalence generated by e-:J. Simple refinements are indicated
with 's'. The most remarkable facts here are the definability of exponentiation from
0, 1, +, x, which is well known; and less well known, the definablity of+ in terms
of 0, S, X, by the following:

i+j=k ~ (i'k")'(j'k")'=((i'j')'(k"k"))',

where x' = Sx, x"= S(Sx) (see [11, p. 219]).

4. Program inclusions

We will now introduce the various notions of the inclusion [;;; between statements
Si. S2 E 'Wo/'(.I) that we will study, and prove some elementary facts about them.

4.1. Definition. Let SE 'Wo/'(J;) and .rA =(A, ...) E Alg(2:, E). Let S contain the
variables x 1, ••• , xn (n 2': 1). Then S v1 : A" --> A" i~ the partial function determined

16 J.A. Bergstra, J. W. Klop

by S, i.e.,

if S converges with input

(ai. ... , a,,) and yields (b1, ... , b,,),

otherwise.

4.1.1. Remark. The restriction to functions f: A"--'> A" is not essential. Instead of,
e.g., f(x1, x2 , x3) = x1 • x2 one may use j'(xi, x2, x3) = (x1 · X2, 0, 0).

4.2. Definition (Semantical inclusion). Let Si. 5 2 E 'Ul(!)l(X). Then

(i) Alg(X,E)F=S1r;;;;S2 ~ S~c;;Sf for all dEAlg(X,E).

This inclusion is said to be semantical. Instead of the left-hand side we will also use
the notation 51 r;;;;Alg(2:.El S2.

(ii) Semantical equivalence w.r.t. (X, E) is defined by

Alg(X, E)f= 5 1 = 52 ~ Alg(X, E) F= S1r;;;;52 & Alg(.l', E) F= 52r;;;;S1.

4.3. Definition (Proof-theoretical inclusion)

(i) S1 r;;;;HL(I.£l S2 iff, for all p, q E L(X),

HL(X, E) 1--{p} 5 2 {q} => HL(X, E) 1-{p} 51 {q}.

(Note the direction of the implication. Intuitively: 5 1 is less defined than 52 so
{p} S1 {q} is more often trivially true.)

(ii) 51 = HLtI.El 52 is the corresponding equivalence.

4.4. Definition (Derivable inclusion)

(i) HL(.l', E) I- SI r;;;; S2 ~ 'V(I'' E') 12: (X, E) S1 r;;;;HL(2:',E') 52.

(The terminology 'derivable' and the choice of the notation 'I-' is motivated by the
sequel: it will be proved that derivable inclusion w.r.t. (X, E) is semi-decidable in
E.) As before we define HL(X, E) I- S1 = S2 derivable equivalence w.r.t. (X, E).

(ii) HL(.l', E) 1-t S1 r;;;; S2 ~ V(I', E') 12: 1 (2,, E)S1 r;;;;HL(2:',E'l 52.

4.5. Definition (Forced inclusion)

HL(.l', E) If- 51 r;;;; S2 ~ 3(.l'', E') 12: (X, E) HL(X', E') r- 5 1 r;;;; S2 •

As before, forced equivalence w.r.t. (.l', E) is defined.

4.6. Definition. The inclusion 5 1 r;;;; 5 2 is cofinal, iff

V(.l'', E') 12: (.l', E) 3(.l'", E") 12: (I', E') 52 r;;;;HL(I",E"l Sz.

Proving program inclusion using Hoare's logic 17

It is clear that all inclusions (i;;;;) defined above are partial orders and that all
equivalences (=) are equivalence relations, except for forced and cofinal inclusion
resp. equivalence. For the last case, 'cofinal', we will eventually prove that 'cofinal ~
semantical', hence cofinal inclusion is indeed transitive. We will now prove that also
forced inclusion is transitive-hence it is a partial order and forced equivalence is
an equivalence relation indeed. First we need a simple proposition about renaming
of symbols.

4.7. Definition. (Ii. £ 1) == (I2, E2) ((I1, E 1) and (I2, E 2) are isomorphic specifica
tions) if (I17 E 1) can be obtained from (I2 , E 2) by renaming some of the nonlogical
symbols; distinct symbols must be replaced by distinct symbols.

4.7.1. Remark. So Robinsons Consistency Theorem 2.6.2 says (see Fig. 7) that if
(2j,EJe:(I,E),i=l,2, then for some variant (I2,R2)=(I2,E2) such that
(22, E2) e: (I, E) there exists a (I3, E3) e: (II> E1), (.1'2, E2).

Fig. 7.

4. 7.2. Proposition. Let SI> S2 E "WPJl(I). Suppose

(I1,E1),(I",E")e:(I,E), (.1'',E'):=(I",E") and I'nI"=I.

Then

(i) Si i;;;;IU.(l:',.E'J S2 ~ S1 i;;;;Hl.(l:",F'J S2.

(ii) HL(I', E') f-- Si i;;;; S2 ~ HL(I", E") f-- s Ii;;;; 52.

Proof. (i) routine; (ii) at once from (i). 0

18 J.A. Bergstra, J. W. Klop

4.8. Proposition. Let 51, 52 , S_, E "tfPJ>(l"). Then
HU.I, E) if- 51 :::;; 52 & HL(2:, E) If- S2 :;; 53 =? HL(2:, E) If- S1r;;53.

Proof. The assumptions are

) ('5' E) 'V(l'',',E;')r;;::(l';,E;) S;:;;HL(l:",E"lS;+1 (i=l,2) 3(1';, E; r;;:: .,,

(see Fig. 8).

Fig. 8.

Now consider such a (l';, E;), i = 1, 2. By Proposition 4. 7.2 we may suppose that l'inl'2=l'. Now by Robinsons Consistency Theorem 2.6.2, (2:*,E*)= (l'; u 1:~, E; u E~) '2: (2:, £). Also, by transitivity of r;;HL• in the 'upper cone' of (l"*, E*) we have 5 1 :;;HL 52. Hence HL(l', E) If- S1 r;; 53. 0

Another corollary of Robinson's Consistency Theorem (RCT) 2.6.2 is the following.

4.9. Proposition. Forced inclusion implies cofinal inclusion.

Proof. Suppose HL(l', E) If- S1 ~S2 , i.e.,

3(.r', E')'2: (l', E) 'r/(2,", E") '2: (l", E') S1 :;;HL(.t",E") S2 (1)

Proving program inclusion using Hoare's logic 19

We have to prove the following (see Fig. 9):

'V(.l';, E;) r2: (1:, E) 3(.l'T, ET) r2: (1:;, E;) S, i;;;;;HL(l:",E"> Sz. (2)

Fig. 9.

Take (1:', E') as in (I), and consider a p:;, E;) as in (2). By Proposition 4.7.2(ii)
we can 'shift' (1:', E') to an isomorphic variant (I'*, E'*) such that 1:'* n 1:' =I,
and still having the property that S, i;;;;;HL S2 in all refinements.

Then take (.l'T, E7) in (2) as the union of (1:;, E;) and (.l"*, £'*);by RCT 2.6.2
this is possible. D

4.9.1 Remark. For 2: instead of t?: the above proposition fails. E.g., take

S, =x:=O

S2 =if 0 > 1 then x := 0 else x := I fi.

Let I= {O, I,<}, E is the theory of partial order, £ 1 =Eu{O<1} and £ 2 = E u
{0> l}. Then HL(.l', E 2) 'f-' S, = 52, hence HL(I, E) 'If-' S, = 52• However, for all
(1:', E') 2: (I, Ei), S, ¥11ur.1,'> Sz.

4.10. Remark. All inclusions introduced above, except semantical inclusion, were
obtained by quantification over the 'basic' proof-theoretical inclusion i;;;;;HI.· This
suggests looking at all inclusions of the following general form:

S, i;;;;;~i-~;}, S2 ~ 'V(.l'" E 1)r2: (I, E) 3(1:2 , E 2)r2: (I" E,)

'f (2.3, £3) (2: (Iz, E2) · · · 3(2'2m £2,,) t?: (1:211 1' E2n I)

and likewise S, i;;;;;~ij;::, S2, and the dual notions obtained by interchanging 3, 'V.

20 I.A. Bergstra, J. W. Klop

(Note that only alternating strings of quantifiers are interesting, since obviously
--VV--=--V-- and likewise for 3.) So derivable inclusion w.r.t. (..l',E) is
i;;;;~w:.Ei• forced inclusion is i;;;;~tcx,EJ• and cofinal inclusion is i;;;;~i.<I,EJ· (In the sequel
we will also consider 'inclusion in some refinement': G~L(I,EJ·)

Now between these generalized inclusions there are a priori the following implica
tions (see Fig. 10 where an implication is downward). (Only the quantifiers of
r;;;~i°(iE> are mentioned.)

\{ 3 \{ 'V3'V3'V

3 3 \{ 3

Fig. 10.

However, this hierarchy of inclusions 'collapses' because

(i)

(ii)

3'V - 'V3'V
GHL(I,EJ - !;;:;; HL(I,El>

i;;;;~i(I.E) = G~it7x.n

To see the nontrivial direction of (i), note that it was already proved in Proposition
4.9. By a similar argument (ii) also follows.

Now 3'v'3V = 33V = 3V, V3V3V = V3V = 3V, etc. Hence the only inclusions are
those displayed in Fig. 11.

3'V

3

Fig. 11.

(Remark: We did not prove that G~L<.I.EJ is a partial order. Question: Is it?).

4.11. Remark. All inclusions that are defined above exhibit the desirable property
of staying valid in a context: let Si. S2 e "Wl1J(..l') and let C[) be a context statement
(also in ..l'), i.e., a statement with a 'hole'. Then

S1GS2 ~ VC[]C[S1]GC[S2).

Proving program inclusion using Hoare' s logic 21

The proof follows in a straightforward manner by observing that

Vp, q E L(2) HL(2, E) I- {p} 5 2 {q} ~ HL(2, E) 1-{p} S1 {q}

implies

Vp, q E L(2) HL(.l', E) 1- {p} C[S2] {q} ~ HL(.l', E) 1- {p} C[S1] {q}.

4.12. Remark (Invariances). For a better insight in what happens inside the 'cone
of refinements', we will investigate whether the notions

(1)

(2)

(3)

Alg(2, E) F= p E 1- p,

Alg(.l', E) F= {p} S {q}; HL(2, E) I- {p} S {q},

are invariant under 'shifting (.l', E) upward or downward'.
Ad (1). Upward and downward invariant (i.e., V(2', E') 12: (.l', E)

(A1g(2, E) F= p <=> Alg(.l", E') F= p)); this follows simply from Godels Complete
ness Theorem 1.1. l and the definition of conservativity.

Ad (2). Here the situation is already somewhat more complicated:
Alg(,) F= {p} S {q} is upward and downward invariant (see Proposition 4.13).
However, for HL(,) I- {p} S {q} we only have the (trivial) upward invariance, i.e.,

V(2', E') 12: (2, E) HL(l:, E) I- {p} S {q} ~ HL(2', E') 1-{p} S {q}.

That here '<=' does not hold, is because an invariant needed for the proof of
1-{p} S {q} may be available in (2', E') but not yet in (2, E).

Ad (3). Again the semantical notion, Alg(,) F= S 1 GS2 , is invariant in both
directions. For 'upward' this is trivial; for 'downward' certainly not (see Lemma
4.14).

Finally, S 1 G1-1u.) S2 is neither upward, nor downward invariant. One can even
show that it may happen that S1 G1-1Lc,J S 2 is alternatingly true and false while
following some upward path (.l'0 , £ 0) :si (21> £ 1) :si · • · .

4.13. Proposition. Let (2',E')s;i(2,E), p,qEL(2) and SEWfJJ'(2). Then
Alg(2, E) F= {p} S {q} <=> Alg(.l", E') F= {p} S {q}.

Proof. (~). Trivial.
(<=). To prove the reverse, we use Theorem 2.7.3, which says that for every

sd E Alg(2, E) there is an sd' E Alg(.l', E) and an sd" E Alg(2', E') such that sd::;;; sd' :5

sd". By Remark 2.5.1 we have sd = sd'. Now the result follows by the following
lemma from [7]: "Let sd =@.Then sd F= {p} S {q} <=> r!J3 F= {p} S {q}". D

4.14. Lemma. Let (2', E') 12: (.l', E). Then, for all SI> S 2 E WfJJ'(2),

Alg(.l', E) F= S 1 GS2 <=> Alg(2', E') F= S 1GS2 .

22 I.A. Bergstra, J. W. Klop

Proof. (=>} is easy: take d' E Alg(l'', E'). Then pf (d') = d E Alg(.l', E). So
stl F= 51 i;; S2• But then trivially also d' F= S1 i;; S2, since the extra structure on d' does

not play a role.
(~). The proof of the reverse follows by contra position: Take d E Alg(.l', E)

such that d V S1 i;;S2• Then there are a= a1, ••• , a,. EA and b = b1, ... , bn EA such

that, par abus de language:

d F= S1(!!J = !!. and d V Si(~)=!.

More precisely, for some n and for all m:

where

c/> 11 (~, J!) = Comp51 , 11 (~) = !!. and l/lmC~ .• !) = 1Comp.si,m(f!) = !.

Let I' be the set of assertions {c/> 11 (~, !)}u{t/lm(a, b) Im EN}.
Claim. For some~. ~F=E'uI'. So ~VS1 i;;S2 , hence Alg(.l",E')VS1i;;S2

and we are through.
Proof of the claim. Suppose there is no such ~. i.e., E' u I' is inconsistent.

Then for some finite .:1 s;;; I' we have that E' u ..::1 is already inconsistent. Say
.:1 = {c/>,., -it/Jo, ... , 11/lk-i}. So E' I- 1(c/>n /I/\ i<k 1JiJ, hence

E' I- 13x, y (c/>11 (x, y) /I /\ 1/!i(x, y)).
i<k

By the conservativity of E' over E we can replace E' here by E. However, this
contradicts the fact that

dF=3x,y(c/>11 (x,y)!1 /\ tfi(x,y)). 0
i<k

5. Prototype proofs

Let us abbreviate the implication

HL(l'',E')1-{p}S2 {q} => HL(l'',E')l-{p}Si{q}

by <P(.!', E', p, q). So, by definition, HL(l', E) I- S1 i;;;; S2 is equivalent to

c/>(l",E',p, q) for all (l'', E')e: (l', E) and all p, q E L(l'').

No\ it t~ms out that among all these <P(l'', E', p, q) there is a 'generic' one,
<P(l' , E , r(x), r'(x)). I.e.,

<P(.!0 , E 0 , r(x), r'(x)) ~

~ V(l'', E')e: (l', E) \Ip, q E L(l'') CJ>(.!', E',p, q).

Proving program inclusion using Hoare' s logic 23

The situation is even further simplified, since the generic implication has an
antecedent HL(I0 , E 0) r--{r(x)} S2 {r'(x)} which is always true. This reduces
checking whether HL(I, E) f- S1 ~52 or not, to checking whether
HL(I0 , E 0) r--{r(x)} S 1 {r'(x)}, which is semi-decidable. (Hence our choice of the
notation f- in HL(I, E) r-- S 1 ~ S2 .)

Finding this generic implication is based on the observation that every proof
HL(I', E') r--{p} S {q} can be viewed as an instantiation of a prototype proof 7r(S).
In order to define this concept, we need an efficient notation for proofs of asserted
programs. One method is to consider a proof as a proof tree; a second way is to
consider a proof as a flow-diagram with assertions written at the cut-points. We
will use a more workable linear notation of proofs which will be introduced now.
First we will define the concept 'interpolated statement' which can be viewed as
the flow-diagram corresponding to the statement plus some assertions written at
some cutpoints.

5.1. Definition. The class IStat(I), with typical elements S*, Sf, S**, ... , of inter
polated statements is inductively defined by

S* ::= Sl{p}S*IS*{p}lif b then Sj else~ filwhile b do S* od.

Here SE 'W(JJ>CI). So the class of interpolated statements contains next to the
usual statements also asserted statements and statements interlaced with assertions
in an arbitrary way; but it contains also proofs of asserted statements. These will
be singled out by means of the following extended proof rules.

5.2. Definition. By means of the following axioms and extended proof rules we
can derive proofs of asserted statements:

(I) Assignment axiom scheme:

{p[t/x]} x ::= t{p}

(2) Extended composition rule:

{ p} St { r} { r} S~ { q}

{p} st {r} s~ {q}

(3) Extended conditional rule:

{ p} if b then { p /\ b} St { q} else { p /\ 1 b} ~ { q} fi { q}

(4) Extended iteration rule:

{ p /\ b} S* {p}

{ p} while b do { p /\ b} S* { p} od { p /\ 1 b}

24 J.A. Bergstra, 1. W. Klop

(5) Extended consequence rule:

p~p {p1}S*{q1} qi~q

{p} {p1} S* {q1} {q}

5.3. Definition and notation. (i) Let Pr(.I, E) be the class of proofs (interpolated
statements) which can be derived using this axiom scheme and extended proof rules,
such that in rule (5) only implications provable from E are used.

(ii) If S* E IStat(.I), then o-(S*) will denote the underlying statement obtained
by erasing all {p} in S*. (So o- can be inductively defined as follows:

o-(S) = S for SE W0"(2:)

o-(S*{p}) = o-({p} S*) = (]"(S*)

(]"(if b then Sf else S! fi) =if b then o-(St) else o-(S!) fi

u(while b do S* od) =while b do (]"(S*) od.)

(iii) If S* E Pr(.I, E), then K(S*) will denote the set of consequences p~ p' used
in the derivation of S*. Note that these consequences can be read of directly from
S*: K(S*) ={p ~ p' l{p}{p'} ~ S*}. (Here'<;:;;' denotes the relation of being contained
as a 'subword'.)

(iv) If S* E Pr(2:, E) and S* ={p} Si {q, then pre(S*) = p and post(S*) = q.
(v) Let S* E Pr(.I, E). Then S* is called a reduced proof, iff it contains no

occurrence of a triple {p}{q}{r}. (By the transitivity of ~, every proof may be
supposed to be reduced, up to equivalence.)

5.4. Definition. (1) Two interpolated statements S*, S** such that O"(S*) =
O"(S**) = S are called matching if at every place the same number of assertions
occur in S*,S**. (Notation: S*-S**.)

To be precise:

(i) S - S for SE W0"(.I),

(ii) S*-S**:::::} {p}S*-{q}S** and S*{p}-S**{q}
for all assertions p, q E L(.I),

(iii) Sf - Sf*, S! - S!* :::::}
if b then Si else S! fi - if b then Sf* else Sf* fi,

(iv) S* - S** :::::}
while b also S* od - while b do S** od.

(2) Let S* =--{p}-- be an interpolated statement containing {p}. Then S** =
--{p }{p }-- is called a trivial expansion of S*.

5.5. Defiiiition. In the following definition we will use a set of n-ary relation symbols
{r;I i E r.u }. If S* E IStat contains some of these r-symbols, [S*]i will be the result of

Proving program inclusion using Hoare's logic 25

replacing each occurrence of r; in S* by r(i,j) where (,): ~p ~ N is the usual bijective
pairing function. (This device merely serves to 'refresh' the r-symbols where
necessary.)

(i) Let SE 'WPJ>(2:) involve the variables x (= Xi, ... , xn). By induction on the
structure of S we define 1T 1

(S) as follows:

(1) 1T 1 (X; := t)={r0 (x)[t/x;]}x; := t{r0 (x)}.

(2) 1T 1 (S1; S2) = [1T 1 (S1)Jo [1T 1 (S2)]1.

(That is, 7T 1 (S1) and 1T 1(S2) are concatenated, without infix. Moreover, the r
symbols in [7r'(S1)]0 are made distinct from those in [7r'(S2)] 1.)

(3) 1T1 (if b then 5 1 else 52 fi) =

={r0 (x)} if b then {r0 (x) 11 b} [7r'(S1)]2 Vi(x)}

else {r0 (x) 111b}[1T1 (S2)]3 {r1(x)}

fi {r1 (x)}.

(4) 1T 1 (while b do Sod)=

= {r0(x)} while b do {r0(x) 11 b} S* od {r0(x) 11 1b }{r1 (x)}

where S*=[7r'(S)]4 and r0 (x)=post(S*).

(ii) Now 7r(S) ={r0 (x)}[1T'(S)]0{r1(x)}. 7T(S) is called the prototype proof of S.

5.5.1. Example. Let S be x1 := O; x2 := 1; while x2 > x3 do if x 1 =0 then x 3 := 0 else
x1 := x2 +1 fi od; x1 := x1 + x2 • Then

7T(S) =

x2 := 1

{r1(Xi, Xz, X3)}

{r2(0, X2, X3)}

{r2(X1, Xz, X3)}

{r3(Xi, 1, X3)}

{r3(X1' Xz, X3)}

{r6 (x1> x2 , x3)}

while x2 > x3 do

26 I.A. Bergstra, 1. W. Klop

if x 1 =0 then

else

fi

od

{r4(x1, x2, x3) 11 x1 = O}

{r5(x1, Xi, O)

{rs(XI> X2, X3)}

{r6(X1, X2, X3)}

{r4 (x1, x2, x3) 111x1 = O}

{r7(X2+l,X2,X3)}

{r7(X1, Xz, X3)}

{r6(X1, X2, X3)}

{r6(X1, X2, X3) /I I Xz > X3}

{rs(X1 + X2, X2, X3)}

{r3(X1> Xz, X3)}

{r9(X1> Xz, X3)}

5.5.2. Proposition. Let r be a 'new' relation symbol occurring in rr(S). Then r has
an occurrence in 7T(S) of the form {r(x)}, i.e., the arguments are all variables.

Proof. Evident by inspection of the definition of 7T(S). 0

5.6. Definition. Let S* E IStat(.r) contain the n-ary relation symbol r, and let
p = p(x1> ... , Xn) E L(I). (Note that p may contain other variables than those
displayed.)

Then <Pf (S*) is the result of replacing each r(tI> ... , tn), occurring in S*, by
p(t1, ••• , tnl· Likewise we define <Pfi1,'. . .','f; (S*).

5.6.1. Remark. One can think of the prototype proof rr(S) as an initial object in

Proving program inclusion using Hoare's logic 27

the category of proofs {p} S* {q} (where o-(S*) = S); morphisms between proofs
are the substitutions ef>.

5.7. Lemma. Let S* E Pr(.l', E) be a reduced proof such that o-(S*) = S. Then
<P: 1T(S) ~ S* for some substitution <Pas in Definition 5 .6. (So every proof is an instance
of the prototype proof)

Proof. Consider S, S* as in the claim of the lemma. We may suppose that S* and
1T(S) are matching; if not, only some trivial expansions (Definition 5.4) of S* are
required.

We will construct by induction on the structure of Sa substitution <P: 1T(S) ~ S*.
Case I. S = x := t(y, x, z), where all variables in tare displayed. Now

7r(S) = {r1 (y, x, z)} h(y, t, z)} x := t {r2(y, x, z)} {r3 (y, x, z)}

and

So the substitution will be <P: r;(y, x, z) 1---7 Pi (i = 1, 2, 3).
Case 2. S = S1; S2. So S* ={poHP1} Sf {P2} S':\'. {p3}{p4}.
By induction hypothesis we have substitutions

Now

7r(S1: S2) ={ro(x)} 7T 1 (51) 7T 1 (52) {r1(x)}

={r0 (x)} · · · {r0(x)}{r'1 (x)} · · · {r1(x)}

where --= 7r(S1) and - - - - = 7r(S2). From this it is evident how to construct
the desired </>. (Remark: The arity of the new r-symbols in 1T(S;), i = 1, 2, is that
of S (i.e., n if S has the variables x 1, ••• , xn).)

Case 3. S =if b then 5 1 else 5 2 fi. Then 7r(S) and S* are as follows:

7r(S) = {r0(x)} {r1 (x)} if b then {r1 (x) /\ b} 1T1 (51) {r2(x)}

else{r1(x) /\ 1b} 1T 1 (S2) {r2(x)}

fi {ri(x)} h(x)},

S*={po}{p1} if b then{p1 Ab}Sf {p2}

else {p1 /\1b} S':\'. {p2}

fi {p2} {p3}.

28 I.A. Bergstra, J. W. Klop

Again <fJ:r;(X)l-'>p;(i=O,l,2,3); the induction hypothesis takes care
correspondence between 7T 1(S;) and S'l' (i = 1, 2).

Case 4. S =while b do S' od. (In the following 'r;' stands for 'r;(x) '.)

7T(S) ={r0}{r1} while b do{r1 /\ b} 7T 1 (S') od {r1/\1b} {r2}

· · I I I I :,:o:~:;, I I
S*= {p0}{p1}while bdo{p1/\b}S*od {P1/\1b}{p2}

Here r 1 =post(7T 1 (S')) and p1 = post(S*). D

of the

In the sequel we will need a simple proof-theoretical fact, stating that derivability
in first order predicate logic is invariant under substitutions <P (as in Definition 5.6).

5.8. Proposition. Let (l', £) be a specification andp, q E L(2.). Let <P be a substitution
of assertions p; for relation symbols r;. as in Definition 5.6. (The p; 's are not necessarily
in L(l').) Let </J(E) ={<P(p') Jp' E £}. Then

(i) £1-p :=;, </>(E)l-</>(p),

(ii) El-p 4 </>(E)1-r:/J(p)4</J(q).

Proof. (i) A routine induction on the length of the derivation E 1- p.
(ii) follows from (i), noting that </J(p4q) = </J(p)4 <P(q). D

5.9. Proposition. Let l'0 =l'u2'-,,.(s) and E 0 =EuK(7T(S)). Then (l'0,£0)e:r
(2:, E).

Proof. Take arbitrary p, q such that HL(l', E) 1-{p} S {q}. (E.g., take q =true.) Let
{p} S* {q} E Pr(l', E) be the corresponding proof; we may suppose it matches 7T(S).

Now let .sd E Alg(.l', £),so by soundness of HL we have .sd I= {p} S {q}. Further,
it is not hard to see that the r;(x) can be interpreted in .sd just like the matching
assertions in { p} S* { q}.

Hence every s1 E Alg(l', £) can be expanded to an .sd. 0 E Alg(l'0 , £ 0). So, by the
conservativity criterium (Proposition 2. 7.1), we have (2:0 , £ 0) e: (l', E). The finite
ness is obvious. D

5.10. Lemma. Letl'0 =l'ul'rr1s,J, E 0 =EuK(7T(S2)) and letr(x), r'(x) be respec
tively the assertions at the head and at the tail of 7T(S2).

Then the following statements are equivalent:

(i) HL(l', £) 1- S1i;;;;53 ,

(ii) HL(l', E) 1-1 S1 r;;:; S2

Proving program inclusion using Hoare's logic 29

(iii) HL(1:'0 , E 0) 1-{r(x)} S2 {r'(x)} ~ HL(I0 , E 0) I- {r(x)} S1 {r'(x)}

(iv) HL(1:'0 , E 0) 1-{r(x)} S 1 {r'(x)}.

Proof. (i) ~ (ii) is trivial, (ii) ~ (iii) follows from Proposition 5. 9, and (iii) ~ (iv)
follows because it is obvious from the construction that HL(I0 , E) 1-
{r(x)} S2 {r'(x)}. It remains to prove that (iv) ~ (i).

Assume (iv): let {r0 (x)} Sf {r1 (x)} E Pr(2°, E 0) be the corresponding proof.
Further, suppose for some (I',E')12:(I,E), p,qeL(I') that we have
HL(I',E')l-{p}S2 {q}. Let {p}~ {q}ePr(I',E') be the corresponding proof,
which we may suppose matching with 1T(S2). By Lemma 5.7, {p} S~ {q} is an
instance of 1T(S2) via some substitution <f>.

Now consider <f>({r0(x)} Sf {r1(x}) ={p} <f>(~) {q}. From the construction and by
Proposition 5.8 it follows that this is a proof in Pr(2', E'). Hence
HL(2', E') 1-{p} Si{q}. D

5.11. Theorem. HL(2, E) I- S 1 i;;;S2 and HL(I, E) I- S 1 = S2 , as predicates of S1 , S2 ,

are semi-decidable in E.

Proof. This follows immediately by noting that (I0 , E 0) can effectively be computed
from S2, given (I, E), and using the equivalence (i) ~ (iv) in Lemma 5.10. 0

6. Completions

In Section 7 we will need the possibility of taking, for given (I, E), a refinement
(2', E') 12: (2, E) which is logically complete (see Definition 1.2.2). Also we will use
a refinement (2", E") 12: (2, E) which has an SP-calculus (see Definition 6.3). The
concepts and theorems thereabout, used below, are from Bergstra and Tucker [9, 10]
and Bergstra and Terlouw [6]. There, however, the following restriction is made:
E must have only infinite models. Since we want to develop the present theory in
full generality (also for, e.g., E = 0), we will extend the above mentioned results
by some 'formal' constructions which do not require the restriction on E, and which
are made possible by the concept of a prototype proof 7r(S). The disadvantage is
that in this way we will need an infinite signature extension I'~ I, but for our
purpose that is no objection. (Question: Given a specification (I, E) such that E
has finite models, is there a logical complete (1:' u L1, E') 12:: (I, E) where L1 is finite?)

6.1. Theorem. For every (2,E) there is a (1:',E')12::(I,E) such that (2',E') is
logically complete.

Proof. The proof is by a construction of length w 2• The first w steps are as follows.

30 I.A. Bergstra, J. W. Klop

Enumerate "Wrl'(.I) as {S,. In 'EN} and let {(p"' qn) In EN} be an enumeration of the
pairs of assertions E L(.I). Now consider the sequence of asserted programs an=
{pu,J,J Srni, {q(n)J where ()0 , () 1 are the projections corresponding to the well
known bijection (,): N2 --> N. Note that every {p} S {q} occurs in this sequence.

Now we define by induction on n the specification (.Im En).
Basis: (1:0 , E 0) =(.I, E).
Induction step: Let (.I,., En) be defined, and consider a,,+1·

Case 1. Alg(1:m En) t;t" ll'.n+I· Then (.In+!> En+1) =(.Im En).
Case 2. Alg(1:,,, E,,) F= an+i· Say the prototype proof 1T(S(n+ll,) has the form

{r(x)} Sfn+IJi {r'(x)} and let (.I', E') be the specification corresponding to 1T(Srn+11 1).

Then define

(The r-symbols in 1T(S(n+Ili) have to be fresh compared to previous r-symbols in
(1:,,, En).)

Further, let (l'w> Ew) = UnFw (1',,, En).

Claim 1. (l'o, Bo) Sl (l'i, E1) Sl · · · $l (1:", E,,) Sl · · · $l (.Iw, Ew).
Proof of Claim 1. To show that (1:,,, E,,) Sl (l'n+i. En+i) for all n E w, we use the

conservativity criterion of Proposition 2.7.1. Since we know (in Case 2 above) that
an+i is true in every sd E Alg(.I,,, En), the newly added r-symbols can be interpreted
in sd; that is, sd can be expanded to an .sil' E Alg(1'n+ 1 , En+ 1).

To show that (1:,,, E,,) si (l'w. Ew) for all n E w, suppose Ew f-- p, for some p E L(l'n)·
Then, for some finite D ~ E'"' D f-- p. Hence, for some m :2:: n, Em f-- p. Since
(1:,,, En) Sl (.Im, Em) as just shown, En f-- p.

Now that (.Iw, Ew) is constructed, the statements E "tf/'l:!J'>(l'w) and assertions
E L(.Iw) are again enumerated, and the procedure is repeated to yield
((.l'wL,(Ew\.J=(.l'w.2,Ew2). Likewise (l'w.mEw.n) is constructed, and we put
(.I'' E') = LJnEw (l'wn• E w.n).

Claim 2. (.Iw.n• E w.n) :SI (1", E') for all n E w; and (.I', E') is logically complete.
Proof of Claim 2. The first part is as in the proof of Claim 1. The logical

completeness is shown as follows. Let Alg(.I', E') F= {p} S {q}, where {p} S {q} E

L(.I'). Then {p}S{q}EL(.Iw.n•Ew.n) for some nEw, and Alg(.Iw.n,Ew.n)F=
{p} S {q} follows from Proposition 4.13. (Alternative argument: Because no models
were 'lost' in the construction, i.e., p(Alg(.I', E') = Alg(l'w.n• E w.n) for the suit
able reduction operator p.) Hence Ew.(n+ll contains K({p} 7T(S) {q}), that is,
HL(.Iw(n+I)> Ew.(n+I)) f-{p} S {q}. D

6.2. Corollary. Let Alg(.I, E) F= S1 i;;;; S2 • Then

3(.l'', E') '2:. (1:, E) S1 i;;;;HL(l:'.E') S2.

Proof. Let (.l'', E') be a logically complete refinement of (.l', E); by the preceding

Proving program inclusion using Hoare's logic

theorem this exists. By Lemma 4.13 we have

Alg(..l', E) I= S1i:;::;S2 ~ Alg(..l'', E') I= S1 i:;::;S2•

Now Alg(..l'', E') I= S1 i:;::;52 implies

Vp, q E L(..l") (Alg(..l'', E') I= {p} 52 {q}::::;. Alg(..l'', E') I= {p} Si{q}).

Hence, by logical completeness of (..l'', E'), we have

Vp, q E L(..l'') (HL(..l'', E') 1-{p} S2 {q} ::::;. HL(..l", E') I= {p} S1 {q}),

31

6.3. Definition. Let (..l', E) be a specification. We say that (..l', E) has an SP-calculus

(strongest postcondition calculus), if for each p E L(.2:), SE "W(!J>(..l') there exists an
assertion SP(p, S) E L(..l') such that

(i) HL(..l', E) 1- {p} S {SP(p, S)},

(ii) if HL(..l', E) 1- {p} S {q }, then (..l', E) 1- q ~ SP(p, S).

6.4. Theorem. Let (2:, E) be a specification without finite models. Then there is a
conservative refinement PA(..l', E) of (2:, E), called the Peano companion of (2:, E),
which has an SP-calculus.

Proof. For the definition of PA(..l', E) and the proof that it has an SP-calculus, see

[10] and [6]. D

6.4.1. Remark. It is possible to construct a 'formal' companion having an SP

calculus, without the restriction on E, but at the cost of an infinite signature extension.

For the sequel we will not need the full strength of an SP-calculus and we will be

satisfied with the following proposition.

6.4.2. Proposition. Let p, q E L(..l') and SE "W(!J>(.2:).
(i) Let p ~5 q abbreviate V(SP(p, S) ~ q), where V denotes the universal closure.

Then

PA(..l', E) 1-{p "P ~5 q}S{q}

(a kind of 'S-modus ponens').
(ii) Let p :=;.5 q abbreviate V(/\ K({p}7r(S){q})), i.e., the universal closure of the

conjunction of the consequences in {p} 7r(S) {q}. Let 2:' = 2: u ..l',,.<SJ· Then

(..l'', 0) 1-{p /\ p::::;, 5 q} S {q}.

Proof. (i) Follows at once from the definitions.
(ii) Follows by a tedious but routine verification by induction on S. D

I. A. Bergstra, J. W. K lop

7. Proving program inclusion

We are now in a position to prove one of the main theorems of this paper, viz.
the equivalence of semantical and cofinal inclusion. After that we will show how
this fact can be exploited to give formal proofs of program inclusion.

7.1. Theorem. Semantical and cofinal inclusion coincide; i.e.,

Proof.(::::?). Suppose Alg(X,E)l=S1 i;;;;S2 and consider (X',E')>2:(2:',E). By
Theorem 6.1 there is a (,I", E") '2! (.I', E') which is logically complete. From
Alg(.I",E")I= S1i;;;;S2 we have

'rip, q E L(.I") (Alg(.I", E") F= {p} 5 2 {q}=?Alg(.I", E") I= {p} S1 {q}).

By the logical completeness we can replace 'Alg(X", E") I=' by 'HL(.I", E") 1-'. This
results in S 1 i;;;;HLIX".E"l Sz.

(<=). Let E have no finite models. (The case that E has finite models, can be
dealt with analogously, as suggested by Proposition 6.4.2.)

Suppose Alg(.I, E) V 51 i;;;; S2• Then also Alg(PA(.I, E)) i7=S 1 i;;;; S by Lemma 4.14.
So there is an .s4. E Alg(PA(.I, E)) such that .sd V S1 i;:;; S2 • Hence for some a, b EA
we have '.s4. F= 5 1 (a)= b' but '.sd F= S2 (a) ~ b', par abus de language. These facts can
be properly expressed by

e = (x = !! ,_,..sz x ~ 'Q) /\ Compn,S1 (g_) = 'Q,

for some n (see Computation Lemma 1.1.2). The g_, !!.. are new constant symbols.
Let d' 2: .s4. be the expansion of .sd with distinguished elements a, b, and let (X', E')
be the conservative refinement of PA(l:', E) obtained by adding a, b to the signature.
(By Lemma 2.7.l this is indeed conservative.) Now

(i) HL(.I', E') 1-{e /\ x = g_} 52 {x -:I .Q},

(ii) HL(.I', E') [,L { 19 11 x = g_} S1 {x -:I l!}.

Ad (i). This is Proposition 6.4.2(i).
Ad (ii) . .s4.' V{e 11 x = Q} S1 {x -:I]!}, hence Alg(X', E') F' {O 11 x = .Q} S 1 {x -:I _Q}. By

soundness of HL, (ii) follows.
Finally, we note that (i) also holds in refinements of (.I', E'), trivially; and the

same for (ii) by the downward invariance of Alg(,) F= {p} S {q} (Proposition 4.13).
Therefore, S1 i;:;;tI",E"l S2 for all (1:"', E")>2: (X', E'). 0

We now know that the schema, given in Fig. 12, holds, and we want to prove
that, in general, all implications are displayed in this figure. First we will show in

Proving program inclusion using Hoare's logic 33

s c s
I -HL(l:,E) 2

~=========.---~~~~
o:,E) logical lf3 Alg(l:,E) I=
complete S C S ~

I -HL(l:,E) 2 5 1 r;_ 52

s c 3 s ~
I -HL(l:,E) 2 <.<""

Fig. 12.

Examples 7.2 and 7.3 that ~HU.l.E:J and ~AJg<.l',EI are incomparable (see also Fig.
13). Then, in Example 7.4, we show that derivable inclusion is strictly stronger than
forced inclusion, in general. (I.e., the proof system corresponding to derivable
inclusion proves less inclusions than the one corresponding to forced inclusion.)
Further, it will be shown in the next section (Theorem 8.5) that forced inclusion
and semantical inclusion are in general not equivalent. In other words, the proof
system corresponding to forced inclusion is incomplete.

Finally, at the end of this section (Remark 7.8), we will prove that the 'dashed'
implication for logical complete (I, E) (see Fig. 12) can in general not be reversed,
and we will prove some assertions in the part 'Intuition' of the Introduction.

7.2. Example. Let .'4 = (N, 0, S, P), the 'abacus-algebra' as in Section 8, and con
sider (I_.4, E .. t1). Define

S1 = y := O; S' where S' =while x 7'= 0 do y :=Sy; x := Px od

S2 = y := x; x := 0.

So Alg(I.v1, E.v1) I= S1 ~ S2. However, S1 ~ Hui..,,c., 1 S2 because

(i) HL(l: .. 4, E ... ,) f- {x = z} S2 {x = 0" y = z},

(ii) HL(I;, E.4) V{x = z} S1 {x=0" y = z}.

Proof of (ii). Suppose not (ii). Then

HL(l:_.4, E_.,,) f- {x = z" y = O} S' {x = 0" y = z}.

Hence there must be an invariant r(x, y, z) such that £ .. " f- <P 1 " </1 2 " <P.1 where

</> J = X = Z f\ y = () °' r(X, y, Z),

</>2 = 3x', y' [x' 7'= 0 f\ x = Px'" y =Sy' f\ r(x', y', z)] ~ r(x, y, z),

<l>J = x = 0" r(x, y, z) ~ y = z.

34 I.A. Bergstra, J. W. Klop

• Ex. 7 . 3 fl Question: give a

5

6

'natural' example

of a semantical but

not forced inclusion

,....- Ex. 7. 2 (= 7. 4)

.. Ex. 7. 5

E.g.

'loop-unwinding'

(Ex. 7. 6)

Fig. 13. Venn-diagram of the various notions of inclusion.

1. Logical inclusion (i.e., HL(l:, 0) f- S1 i;;; S2 , see Examples 7.6 and 7. 7).
2. Derivable inclusion.
3. Forced inclusion.
4. Semantical inclusion= cofinal inclusion.
5. Prooftheoretic inclusion.
6. Inclusion in some extension.

Also .s1 I= </> 1 /\ </> 2 /\ r_/) 3• However, a simple proof then shows that .s1 I= r(g_,]!_,.f.) <::>

a+ b = c, in contradiction with the non-definability of+ in d (see Remarks 8.3.1
and 3.3.2).

7.3. Example. Let .N'= (N, 0, S, +, x), 1: the signature of JV and E =Ex.
Furthermore,

S1 = x := O; while x ;t. y do x := x + 1 od

S2=x:= y

Then (i) S1 =ttL(X,EJ S2, but (ii) S1 'i"' Aig(X,E) S2.

Proving program inclusion using Hoare's logic 35

Proof. (i) HL is relatively complete for}{, i.e.,

}{ F= {p} S {q} ~ HL(1:, E) 1-{p} S {q}.

Now}{ F= S 1 = S2 implies

or equivalently

'tfp,q HL(1:,E)1-{p}Si{q} ~ HL(I,E)r-{p}S2 {q},

i.e., S1 = HL<I.EJ S2. Since in our case indeed }{ F= S1 = S2, we have (i).
(ii) However, in a nonstandard model}{* E Alg(1:, E), S1 will diverge when y is

nonstandard. So }{* fiC S 1 = S2, hence Alg(I, E) I?" S1 = S2.

7.4. Example. Back to Example 7.2, which shows moreover that

HL(1:, E) I- S1 i;;;; S2 ~ HL(I, E) If- S1 i;;;; S2•

From S1 !Z:HL(I,.,E..,J S2 it follows trivially that S1 G S2 is not derivable. However, for
(I', E') = (1:,,,z·, E.91·) where d' = (~, 0, S, P, +)we do have

The proof of (*) is by the method of prototype proofs, as follows. Consider 77'(S2),

this is given by

{r0 (x, y)}{r1 (x, x)} y := x {r1 (x, y)}{r2(0, y)}x := 0 {ri(x, y)}{r3(x, y)}.

So we have to find a proof of {r0(x, y)} S1 {r3(x, y)} in the theory

E ·"'' u {r0 (x, y) -+r1 (x, x), r1 (x, y) ~ r2(0, y), r2(x, y) _. r3(x, y)}.

This is indeed possible:

y:=O

h(O, x)" y = O}

{3x0 [r3(0, Xo) "x = Xo" Y =OJ}

{3x0 [r3(0, x0) /\ x + y = xo]}

while xr!: 0 do

y:=Sy

{3x0 [r3(0, x0) /\ x + y = x0 " x 7': OJ}

{3x0 [r3 (0, x0) "Px +Sy= x0 " x 7': OJ}

{3x0 [r3(0, x0) /\ Px + y = x0 " x 7': OJ}

36

x:=Px

od

J.A. Bergstra, J. W. Klop

{3x0 [r3(0, x0) 11x+y=x0]11 x = O}

{3x0 [r3(0, x0) 11y=X0 11 x = O]}

{r3(X, y)}.

The above concepts and theorems generalize without any effort (other than
notational) to the case of multi-sorted signatures and algebras. To substantiate this
claim, we give the following example.

7.5. Example. Let }; be the multi-sorted signature consisting of

domains : NUM, VEC, FUN

constants ; 0, .1 E NUM, 0 E VEC

functions +: NUM x NUM ~ NUM

·: NUMXNUM~NUM

AP:VECxNUM~ VEC

INP: VEC x VEC ~ NUM

ROW:FUNXNUM~ VEC

EV AL: FUN x NUM ~ NUM

variables x, y, z E NUM

X, Y,ZEVEC

a, /3 EFUN

The specification (I, E) we are interested in has the following axioms, describing
how the inproduct between two vectors should behave:

E = {Peano +all induction axioms

INP(0, Z) = INP(Z, 0) = 0

INP(AP(Z, x), AP(Z', x')) = INP(Z, Z') + x · x'

AP(Z, x) =AP(Z', x')~Z=Z' 11 x=x'

ROW(a, 0)=0

ROW(a, x+l) =AP(ROW(a, x), EVAL(a, x+ 1))

Vx EVAL(a, x) = EVAL(/3, x) ~a= /3}.

Proving program inclusion using Hoare' s logic 37

Furthermore, let S 1, S 2 E W{J}l(.J;) be the following programs, both computing the
inproduct of two vectors:

S 1 =A:=0, B := 0; z := O; x := O;

while x ?":- y do x:= x+ 1;

z := z + EV AL(a, x) · EV AL((3, x)

od x:= 0,

S2 =A:= ROW(a, y); B := ROW(/3, y); z := INP(A, B);
x:= O; A:=0; B:=0.

Now we want to prove that Alg(.J:, E) I= S 1 !;;;; S2 • (The reverse does not hold by
the presence of nonstandard models in Alg(.l', E).) (This can be done by proving
that HL(.l', E) I- S1 !;;;; S 2 , using the method of prototype proofs, as follows. First we
write down 7r(S2):

A:= ROW(a, y)

B := ROW(/3, y)

z := INP(A, B)

x:=O

A:=0

B:=0

{r0 (x, y, z, A, B)}

{r1(x, y, z, ROW(a, y), B)}

{r1 (x, y, z, A, B)}

{rz(x, y, z, A, ROW(/3, y))}

{r2(x, y, z, A, B)}

{r3 (x, y, INP(A, B), A, B)}

{r3(X, y, Z, A, B)}

{r4 (0, y, z, A, B)}

{r4 (x, y, z, A, B)}

{ rs(X, y, Z, 0, B)}

{r:;(x, y, z, A, B)}

{r6 (x, y, z, A, 0)}

{r6 (x, y, z, A, B)}

{h(X, y, z, A, B)}

38 I.A. Bergstra, J. W. Klop

So K (7T(S2)), the set of consequences used in 7T(S2), entails the following implications:

r0(x, y, z, A, B) _,.

r1(x, y, z, ROW(a, y), B) _,.

r2(x, y, z, ROW(a, y), ROW(/3, y))_,.

r3(x, y, INP(ROW(a, y), ROW(/3, y)), ROW(a, y), ROW(/3, y))-?

r4 (0, y, INP(ROW(a, y), ROW(/3, y)), ROW(a, y), ROW(/3, y))-?

r5(0, y, INP(ROW(a, y), ROW(/3, y)), 0, ROW(/3, y))-?

r6 (0, y, INP(ROW(a, y), ROW(/3, y)), 0, 0)-?

r7 (0, y, INP(ROW(a, y), ROW(/3, y)), 0, 0).

Using these implications together with theory E, we can prove {r0 (x, y, z, A, B)}
S1 {r7(x, y, z, A, B)} (and by Lemma 5.10 this proves HL(.l', E) f- S1 i;;;;S2):

{ro(X, y, Z, A, B)}

{r7 (0, y, INP(ROW(a, y), ROW(/3, y)), 0, 0)}

A:=0;

{r7 (0, y, INP(ROW(a, y), ROW(/3, y)), A, 0)}

B:=0;

{r7(0, y, INP(ROW(a, y), ROW(/3, y)), A, B)} (abbreviation: r~)

z:=O;

{r'y11z=O}

x:=O;

{r'y 11z=011 x = O}

{r'y 11 z=INP(ROW(a, x), ROW(/3, x))}

while x ¥ y do

(r'y 11 z = INP(ROW(a, x), ROW(/3, x)) 11 x ¥ y}

x:= x+ l;

{r'y 11 3x' (z = INP(ROW(a, x'), ROW(/3, x')) 11x=x'+1

/\ x' ¥ y)}

z := z+ EVAL(a, x) · EVAL(/3, x)

{r'y 113x', z' (z' = INP(ROW(a, x'), ROW(/3, x') 11x=x'+1

11x'r&-y11 z = z' + EVAL(a, x) · EVAL(/3, x))}

Proving program inclusion using Hoare's logic

(Now use E)

od

x:=O

{r; "3x' (z = INP(ROW(a, x' + 1), ROW({3, x' + 1))

/\ x = x' + 1 /\ x' ;e y)}

{r; "z = INP(ROW(a, x), ROW({3, x))}

{r; "z = INP(ROW(a, x), ROW({3, x)) "x = y}

{r7(0, y, z, A, B)}

{r7 (x, y, z, A, B)}.

Hence Alg(..l', E) F= S1 r;;;; S2 .

39

7.6. Example. Define (as a special case of derivable inclusion) logical inclusion of

S1 in S2 as follows: HL(..l', 0) f- S1 r;;;; S2 . Now the following well-known equivalences

are 'logical':
(i) (Loop-unwinding)

S1 =while bdoSod; D(D=x:=x),

S2 =if b then while b do Sod; D else D.

The proof that HL(..l', 0) f- S1 r;;;; S2 immediately follows by computing 11"(S1) and

using the thus obtained set of consequences K(11"(S1)):

r0 (x)....,. r1(x),

r 1(x) /\b...,. r 2(0),

r 1(x) /\-,b....,. r3(x),

to prove that {r0 (x)} S2 {r3(x)}. Likewise for the reverse inclusion.

(ii) Another example of logical inclusion, which is equally simple to verify:

S1 =while true do S od, S2 is arbitrary.

Then HL(..l', 0) f- S1 !;;;;; S2 . This example is from [4, p. 93] as well as the next one:

(iii) S1 =while b1 v b2 do S od

S2 =while b1 do Sod; while b2 do S; while b1 do Sod od.

Here also a simple computation yields the logical equivalence of S1 , S2•

7.7. Example. Manna [20, p. 251, p. 259] gives several examples of program

equivalence which are all 'logical':

40 J.A. Bergstra, J. W. Klop

(ii) S1 =while p(x2) do x1 := g(x1 , x3) od D

S2 =if p(x2) than DIV else D fi

Here DIV=while x=xdox:=x, and D=x:=x

(iii) 5 1 = x := y + 1 ; if x = 1 then z := 0 else y := y + 1 ;

if y = l then z := 1 else z := 2 fi fi

52 = x := y + 1; if x = 1 then z := 0 else y := y + 1;

z := 2 fi.

(Adapted from [20, p. 252]. Note that 5 1 contains a useless branch.)

7.8. Remarks. (1) Abbreviate

'<Jp,qEL(.'I) Alg(.'I,E)F={p}5i{q} ~ Alg(1:,E)t={p}S2{q}

by S1 ~Pc(.r,E) 52 (where PC stands for partial correctness).
Then, for (.'I, E) logically complete, it follows at once from Definition 1.2.2 that

t;;;HL(I.EJ and ~Pc(I,EJ coincide.
Since 5 1 ~Alg(.r.E) S2 implies S1 ~Pcc.r,Ei 52 (trivially) for all (.'£, E), we have

therefore, for logical complete (.'£, E),

The reverse implication does not hold. We give a counterexample:

51 =x:=0, y := 0,

S2 =while x ,P y do x == x + 1 od; x := 0; y := 0,

(.'£, E) =(.'Ix, Ex) where J{= (N, 0, 1, +, x).

Now (.'£, E) is logical complete (see [7]) and HL is relatively complete for J{ (see
[4, Chapter 3]). From the last fact it follows that S 1 =Hui.Bi S 2 • However, due to
the presence of nonstandard models in Alg(.'I, E), we have S1 ¥ Aig(X,El S2 •

(2) Note that (1) also establishes that (ii) ~ (i) (i.e., 5 1 ~PC(X,E> S 2 ::4
S 1 ~Aig(X.EJ S2), as claimed in the Introduction. For another counterexample, see
[5, Theorem 5.8].

(3) As claimed in the Introduction:

Alg(.'I, E) t= S1 ~ S2 <==> '</(.'£', E') re:(.'£, E) 51 ~PC(X',E' 1 S2.

Here (:::;>) is trivial.

Proof of (~): Assume the right-hand side, and suppose Alg(I, E) Ft S1 ~52 •
Then since semantical and co final inclusion coincide (Theorem 7 .1), we have

3(1:', E') ~(I, E) V(I", £")re: (.r'' E') 51 r;j;_ HL(l:.",E") S2.

Proving program inclusion using Hoare' s logic 41

Now consider such a (.I', E'), and a (.l'", E") which is logically complete. Then by

the assumption of the right-hand side, S 1 i;;Pcc.:r",E"l S 2 ; and by logical completeness,
S1 r;;;;Hu2·".E"l S2; a contradiction.

8. Abacus arithmetic

In this section we will consider our paradigm algebra .s4 = (N, 0, S, P). It is useful

by the following two well-known facts (already mentioned in Example 3.3.3).

8.1. Proposition. (i) Ed is a decidable theory, and (ii) every partial recursive function
can be computed in .s4 by some SE "W'fJl(.I'A)-

Using this proposition we will calculate the degrees in the arithmetical hierarchy
of the various inclusions S 1 r;;;; S2 (as predicates of SI> S2) w.r.t. (.I"", E.w).

For a proof of Proposition 8.l(ii), see, e.g., [11, Chapters 6 and 7], where results

from [19] are presented. The proof there uses in fact not while-programs, but
flow-diagrams composed of only two operations:

assignments: x" := S(x,J (n = 0, 1, 2, ...)

branching operations:

x = 0
n

(As pointed out in [19], such a flow-diagram is in fact computing on an infinite

abacus. Variables as in such a diagram are known as counters.) Combined with the

equally well-known fact that for every flow-diagram there is an equivalent whlle
program (see, e.g., [19]) we have Proposition 8.l(ii).

For the sake of completeness, we will now outline a proof of Proposition 8.l(i),
as given in [14].

8.2. Definition. Let A be some set and let R s A" be an n-ary relation. Let

a 1 , ••• , an-i EA be fixed. Then {x E Al R(a1> ... , a;- 1, x, a;, ... , a,,_ 1)} is called a

section of R (where 1 ~ i < n).

8.3. Proposition. (a) Let sd' = (N, 0, S). Then
(i) E .w' is decidable,

(ii) Ed' admits elimination of quantifiers,
(iii) a subset X s N is definable in .s4' if! X is finite or cofinite (i. e., N- X is finite).

More general, every definable n-ary relation R s N" has only finite or cofinite sections.

(b) The same as in (a) holds ford= (N, 0, S, P).

(c) Likewise for (.l, 0, S, P).

42 J.A. Bergstra, J. W. Klop

Proof. (a) (see (14]). (i) is proved there by considering the following axiomatization
of E 91.:

S(x) ""0,

S(x)=S(y)"' x=y,

y-;tf0"' 3x (y=S(x)),

S(x) # x, S(S(x)) # x, ... , S"(x) # x,... (for all n).

Using the Los-Vaught test it is proved that this axiomatization is complete.
Obviously it is also decidable. Hence Ed' is decidable.

(ii) As demonstrated in [14], for every assertion pEL(J:91 ,) there is a quantifier
free assertion q such that E 91 , f- p ~ q. (This 'elimination of quantifiers' yields
another proof of (i).)

(iii) Routine from (ii).
(b) Note that P is definable in .sll' = (N, 0, S), by

P(x) = y ~x = y = 0 v S(y) = x.

Now use (a).

(c) A routine adaptation of (b). D

8.3.1. Remark. Note that Proposition 8.3(b)(iii) yields an alternative proof of the
nondefinability of + in .sll. For, using a supposed definition of + one could define
the set X of even numbers in .sll; a contradiction since X and its complement are
both infinite.

8.4. Application. The following is an example of S1, S2 such that the domain
inclusion Dom(S 1) i;;;;Dom(S2) is not derivable but can be forced (see Example
9.5(ii)).

Let .sll be (Z:, 0, S, P) and (I, E) = (..l'd, Ed). Let

S1 = y := O; while x # y do y := S(y) od;

y:=O; while x# y do y:=P(y) od
and

S2 = y := O; if x = 0 then x := x else DIV fi
where

DIV =while x = x do x:= x od.

Clearly, S1 and S2 converge on x = 0 and nowhere else.
Now HL(.l', E) f-{x # O} S2 {false}, as can easily be proved; however,

HL(I, E)V{x # O} S1 {false}. This can be made plausible by considering an informal
proof of {x -;tf O} S1 {false}; then somehow one must mention the ordering < on "Ji...
However,< is not present in ..l', and not even definable in (I, E). (The nondefinability
of < in (I, E) can easily be proved using Padoa's method (Theorem 3.3), by

Proving program inclusion using Hoare' s logic 43

permuting some of the nonstandard copies of Zin a nonstandard model of (I, E);
cf. 3.3.2.)

That HL(I, E) V{x ;t. 0} S1 {false} can be made precise as follows. If
HL(I, E) I- {x r!: O} S1 {false}, then, using x = S(y) +'» P(x) = y, one easily shows that
the two invariants r 1(x, y), r2(x, y) in S1 must satisfy:

(1) x >6 0 ~ r1 (x, O),

(2) X >6 y 1H1(X, y) ~ r1(x, S(y)),

(3) r1(x, x)' r2(x, O),

(4) x >6 y A r2(x, y) ' r2 (x, P(y)),

(5) 1r2(x, x).

There are several 'solutions' for rh r 2 as subsets of Z2. However, using (1)-(5) we
have r1(1, O), hence r1(1, 1), hence r2(1, O), hence r2(1, n) for all n :s; 0. Moreover,
from (4) and (5), 1r2(1, m) for all m =::: 1. Therefore, every solution r2 has a section
which is neither finite nor cofinite; so, by Proposition 8.3 (c) (iii), r2 is not definable.

As promised in Section 7, we will now show that semantical inclusion and forced
inclusion are in general not equivalent.

8.5. Theorem. The proof system HL(I, E) If- S1 i;;;;; S2 is in general not complete for
S1 i;;;;;Aig(I,El Sz.

Proof. Let I be the signature of .91=(N,0, S, P). From Proposition 8.3(b) we know
that E =Ed is decidable. Let f l: 'Wgi>(I) ~ w be an effective coding of programs;
we will write s for f S l R and r are two relations on pairs of codes of programs
as follows:

r(s1, s2) <=> HL(I, E) If- S1 i;;;;;S2 ,

R(s1> Sz) <=> S1 i;;;;;Aig(I,EJ Sz.

The incompleteness of If- for i;;;;;Aig is shown by considering the specification (I, E)
and demonstrating that R >6 r. It turns out that R and r have different positions in
the arithmetical hierarchy. As a matter of fact r is I~ but R is complete II~, and
a fortiori r and R must differ.

We will first consider r. Working from its formal definition we obtain

r(S1, S2) <=> 3(.l'', E') 12:. (I, E) [HL(I, E) 1-- S 1 i;;;;; S2]

(1) •
<=> 3(I', £ 1)12:. (I, E) [(I, E) consistent & HL(I, E) 1-- S1 i;;;;;S2]

~ 3(I',E*)finite[I'2I& (I',E*uE) consistent

44 J.A. Bergstra, J. W. Klop

\ 1 is justified by the completeness of (..l', E) which entails that each consistent

refinement of it is a conservative one. Step (2) follows from Lemma 5.1 O(ii) which

savs that the refinement in the definition of If- can be taken finite if one wants.

B~cause '(.!', E* u El is consistent' is a Il\1 predicate and HL(~', E * u E) f- S 1 r;;;; S2

is Sy (due to Theorem 5.11 and the decidability of E), r must be ..l'~.
Then consider R. 51 !;;;;_,,,.ig<.l.Ei S2 is in general II~ in E, R is at most II~. We have

to show that it is complete II~. A well-known example of a complete II~ relation

is the following one: t(s) <:::> S computes a totalfunction on d (for more information,

see We show that t is 1-1 reducible to R. Let X 5 ={x1, •• • , xk(sl} be the set

of variables occurring in S. For x E X 5 , H(x) abbreviates the program while x ~

Odo x:""P(xl od. H(X5) abbreviates H(x1);H(x2); ••• ;H(k<s>)· The reduction
of t to R works as follows:

t(fSI) <:::> R(rH(Xsll. fS;H(Xs)l).

To see ('*=l, assume H(X5) !;;;;Alg<E.EJ S; H(X5); then in d: H(X5)k; S; H(Xs);
because H(Xs) is total on S!l., S must be total on d as well, i.e., t(f S l) holds. On

the other hand assume t(f S l). Let 93 E Alg(..l', £); clearly d is isomorphic to a

substructure of .JJ. As H(X5) and S; H(X5) can only produce output 0 it is sufficient

to show Dom{H(Xx)) ~ Dom(S; H(X8)). Dom(H(X5)) = dk(S>, thus Sis defined

on Dom(H(Xs)) and yields values in S!l.k<si on such arguments; on these values in
turn, HL(Xsl is defined. D

9. Domain inclusion

In this section we will show that given some additional information about the
domains of S,, S2, sernantical inclusion and forced inclusion S 1 r;;;; S 2 coincide.

9.1. Definition. (i) (Semantical inclusion of domains).

':e~· ~.1.S:clld',(;). Then ~lg(..l',E)l=Dom(S 1).::;Dom(S2) if, for all si.E

:A.lg(.-. El. Dom(S,)~Dom(S2). Note that Alg(..l',E)l=Dom(S1)i;;;;Dom(S2)
1mphes

Alg(l:, E) I= {p} S2 {false}::::} Alg(I, E) I= {p} S1 {false}.

(HL-inclusion of domains) Dom(S) c:: Dom(S) ·ff
· I -HL(:!:,E) 2 1

HU.!, E) 1- {p} S2 {false} ::::} HL(l:, E) 1-{p} S 1 {false} for all p E L(2).

(iii) \Derivable inclusion of domains). HL(I, E) 1- Dom(S1) i;;;; Dom(S
2

) iff

(ivl

'r/' ""' £') . "" \- · . e: (...... , E) Dom(S1) !;;;;HL<E'.E'l Dorn(S2).

(Forced inclusion of domains). HL(.r, E) I= Dom (Si) .::; Dom (Sz) iff

3(1:', E')e: (..l', E) HL(I', E') I- Dom(S,).::;Dom(S2).

Proving program inclusion using Hoare's logic 45

9.1.1. Remark. The mathematical theory of domain inclusion is quite complicated
in fact. For instance, a pentagon of inclusion relations similar to the one after
Theorem 7.1, can be constructed and will turn out to have analogous properties.

In order to prove the main theorem of this section, we need the following
proposition.

9.2. Proposition. Let S1 , S2 e "Wr!P(.r) contain both the variables x 1, •.• , Xn and
suppose Alg(.r, E) I= S1 r;; S2 • Then there is a (.r', E') ~ (.r, E) such that I';:::; .r u

Ui. · · ·, fn}, where !1> ... , fn are 'fresh' n-ary function symbols, and such that

HL(.r', E') I- {x = z} S;{x = f(x)}, i = 1, 2.

(Here X = f(z) abbreviates: x 1 = f 1(x 1, ••• , Xn), ... , Xn = fn(x,, , Xn).)

Proof. Let .r" = .r u U1' ... 'fn} and E" = E u r where

I'={Compn,s.(z) = x~ x = f(z) In ;:;:;Q, i = 1, 2}

(for 'Comp', see Lemma 1.1.2).
Now every .st1 E Alg(.r, E) can be expanded to an .sf/.' E Alg(.r", E"), since

Alg(.r, E) F= S, i;;;; S2 • Choose for the interpretation f stl an arbitrary total function
extending the partial function S"f (which extends itself Sf'). Therefore, by the
criterion for conservativity (Proposition 2. 7.1), (.r", E") ~ (.r, E). Clearly,
Alg(.r", E") F= {x = z} S; {x = f(z)}, i = l, 2.

Now let (.r', E') be a logical completion of (.r", E"). (By Theorem 6.1 this exists.)
Then Alg(I', E') I= {x = z} S;{x = f(z)}, i = 1, 2, and by the logical completeness
we have

HL(I',E')l-{x=z}S;{x=f(z)}. D

9.3. Theorem. Suppose HL(I, E) If- Dom(S1)r;;Dom(S2). Then

Alg(I, E) F= S1 r;; S2 ~ HL(.r, E) If- S1 r;; S2•

Proof. ('*'=) is already done in Section 7.
(~). Let S 1, S2 e "Wr!P(.r) be such that

HL(I, E) If- Dom(S1) i;;;; Dom(S2) and Alg(.r, E) I= S, 6 S2.

Let x = x1> ... , Xn be the variables occurring in S1, S2 •

Step 1. Extend .r to .r1 containing n-ary function symbols / 1, •.• , fn and E to
E 1 such that (.r1> E 1) ~ (.r, E) and HL(.r" E 1) 1-{x = z} S; {x = f(z)}, i = 1, 2. This
is possible by Proposition 8.2.

By assumption, there is a (.r2 , E 2) ~ (.r, E) such that HL(.r2, E 2) 1- Dom(S,) r;;
Dom(S2 }. We may suppose .r2 n .r1 = .r (cf. Proposition 4. 7.2), hence by Robinson's

46 J.A. Bergstra, J. W. Klop

Consistency Theorem 2.6.2, (2:'', E') = (2: 1 u2:'2 , E 1 u E 2) is a conservative refine
ment of (.I, E).

Claim. HL(.I', E') I- 51 i;;::;52 • (Then we are through.)
Proof of the Claim. Consider a refinement (.I", E") 12: (2:'', E') such that

HL(.I", E") 1-{p} S2 {q}.

We have to prove

(0) HL(.I", E") 1- {p} S1 {q}.

Obviously, since q[f(x)/(x] /I. 1q [f(x)/x] is a tautology, (O) is equivalent with (1)
& (2) as follows:

(1) HL(.I", E") 1- {p A q[f(x)/ x]} 5 1 {q},

(2) HL(.I", E") 1-{p A -iq[f(x)/x]} S1 {q}.

Proof of (1). By the rule of consequence, it is sufficient to prove that

HL(1:", E") 1-{q[f(x)/x]} 51 {q}.

We know that

hence, trivially,

HL(.I", E") I- {x = z} S1 {x = f(z)}.

By Proposition 1.2.3 it follows that

HL(.I", E") I- {x = z A q[f(z)/ z]} S1 {x = f(z) A q[/(z)/ z]}.

Hence indeed HL(.I", £")I- {q[/(x)/ x]} S1 {q }.
Proof of (2). We know that HL(.I", E") 1-{p} 52 {q}. So, by the Conjunction rule

(l.2.3(i)) and Invariance rule (l.2.3(iii)) we have

HL(.I", E") I- {x = z A p 11 -iq[f(z)/ x]} 52 {q Ax= f(z) A -iq[f(z)/ x]}

where the postcondition obviously implies {false}. By the assumption
HL(.I2 , £ 2) I- Dom(S1) i;;; Dom(S2) we have, therefore, the same for S 1:

HL(.I", E") I- {x = z A p 11 -iq[f(z)/ x]} 5 1 {false}.

By the rule of consequence we have

HL(.I", E") 1- {x = z A p A 1q[f(z)/ x]} 5 1 {q }.

By Proposition l.2.3(iv) we have

HL(.I", E") I- {3z(x = z A p A -iq[f(z)/ x]} S1 {q}.

I.e., indeed HL(.I", E") 1-{p A 1q[f(x)/ x]} 51 {q}. 0

Proving program inclusion using Hoare's logic 47

9.4. Corollary. Let S1 , S2 E "W'9i'(I) and suppose that S2 is everywhere converging,
for all .s4 E Alg(I, E). Then

Alg(I, E) t= S1 r;;;; S2 ~ HL(I, E) If- S1 i;;;; S2•

Proof. (<=) has already been proved in Section 7.
(~). By the soundness of HL (Lemma 1.2.1) we seethatHL(I, E) V{p} S2 {false}

for all p E L(I). Hence trivially

HL(I, E) f-{p} S2 {false} ~ HL(I, E) r-{p} S1 {false},

i.e., HL(I, E) f- Dom(Si) r;;;;Dom(S2).

Therefore, also trivially, HL(I, E) If- Dom(S1) i;;;; Dom(S2). Now apply the preced
ing theorem. 0

9.5. Example. (i) Let Si. S2 be as in Example 7.5. Then HL(..!'.,;, E_ot) If- 51 i;;;;S2 and
52 is always converging. Hence by 8.4, Alg(I.,;, E.,;) I= S1 i;;;; Sz.

(ii) In Example 9.S(i) the domain inclusion is already derivable. An example
where domain inclusion is not derivable but can be forced, was given in 8.4.

References

[1] K.R. Apt, Ten years of Hoare's logic-A survey, in: F.V. Jensen, B.H. Mayoh and K.K. M111ller,
eds., Proc. 5th Scandinavian Logic Symp. (Aalborg University Press, Aalborg, 1979) pp. 1-44.

[2] R.J. Back, Correctness Preserving Program Refinements: Proof Theory and Applications, Mathemati
cal Centre Tracts 131 (Mathematical Centre, Amsterdam, 1980).

[3] J.W. De Bakker, Recursive Procedures, Mathematical Centre Tracts 24 (Mathematical Centre,
Amsterdam, 1973).

[4] J.W. De Bakker, Mathematical Theory of Program Correctness (Prentice-Hall, London, 1980).
[5] J.A. Bergstra, J. Tiuryn and J.V. Tucker, Floyd's principle, correctness theories and program

equivalence, Theoret. Comput. Sci. 17 (1982) 113-149.
[6] J.A. Bergstra and J. Terlouw, A characterisation of program equivalence in terms of Hoare's logic,

in: Proc. G.I. lahrestagung, Miinchen, 1981, Lecture Notes in Comput. Sci. 123 (Springer, Berlin,
1981).

[7] J.A. Bergstra and J.V. Tucker, Expressiveness and the completeness of Hoare's logic, J. Comput.
System Sci. 25 (1982) 267-284.

[8] J. Bergstra and J.V. Tucker, The refinement of specifications and the stability of Hoare's logic, in: D.
Kozen, ed., Logics of Programs, Lecture Notes in Com put. Sci. 131 (Springer, Berlin, 1982) pp. 24-36.

[9] J.A. Bergstra and J.V. Tucker, Hoare's logic and Peano's arithmetic, Theoret. Comput. Sci. 22 (1983)
265-284.

[1 O] J .A. Bergstra and J. V. Tucker, Two theorems about the completeness of Hoare's logic,lnform. Process.
Lett. 15 (1982) 143-149.

[11] G .S. Boolos and R.C. Jeffrey, Computability and Logic (Cambridge University Press, 1974/ 1980).
[12] E.M. Clarke, Programming language constructs for which it is impossible to obtain good Hoare-like

axioms, 1. Assoc. Comput. Mach. 26 (1979) 129-147.
[13] S.A. Cook, Soundness and completeness of an axiom system for program verification, SIAM 1.

Comput. 7 (1978) 70-90.
[14] H.B. Enderton, A Mathematica/ Introduction to Logic (Academic Press, New York, 1972).
[15] D. Hare!, A. Pnueli and J. Stavi, A complete axiom system for proving deduction about recursive

programs, in: Proc. 9th ACM Symp. on Theory of Computing, Boulder, 1977.

48 I.A. Bergstra, J. W Klop

[16] C. Hemerik, Relaties tussen taaldefinitie en taalimplementatie, in: J.C. van Vliet, red., Coll. Capita
lmplernentatie van Programmeerta/en, MC. Syllabus 42 (Mathematical Centre, Amsterdam, 1980)
(in Dutch).

[17] C.A.R. Hoare and P. Lauer, Consistent and complementary formal theories of the semantics of
programming languages, Acta Inform. 3 (1974) 135-155.

[18] C.A.R. Hoare, An axiomatic basis for computer programming, Comm. ACM 12 (1967) 576-580.
[19] J. Lambek, How to program an infinite abacus, Canad. Math. Bulletin 4 (1961) 295-302.
[20] Z. Manna, Mathematica/ Theory of Computation (McGraw-Hill, New York, 1974).
[21] J.D. Monk, Mathematical Logic (Springer, Berlin, 1976).
[22] H. Rogers, Theory of Recursive Functions and Effective Computability (McGraw-Hill, New York,

1967).
[23] B. Russell, Correctness of the compiling process based on axiomatic semantics, Acta Inform.14 (1980)

1-20.
[24] J. Shoenfield, Mathematical Logic (Addison-Wesley, Reading, MA, 1967).
[25] M. Wand, A new incompleteness result for Hoare's system, I. Assoc. Comput. Mach. 25 (1978)

168-175.

