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Abstract. We explore conservative refinements of specifications. These form a quite appropriate 
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We propose two formalized proof methods for program inclusion and prove these to be sound. 
Both methods are incomplete but seem to cover most natural cases. 
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This paper aims at a detailed study of program equivalence, seen from the point 
of view of Hoare's logic for program correctness. Because program inclusion is just 
halfway program equivalence we can safely restrict our attention to program 
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inclusion. Moreover, this has the advantage of connecting closely to the theory of 

programming using stepwise refinements as described in [2]. 
Our work can be seen as belonging to the subject of axiomatic semantics for 

programs. Its novelty lies in the precise mathematical analysis of the situation, in 

addition to a rather strict adherence to first order proof systems and first order 

semantics for data type specifications. 
Deriving program equivalence from program correctness properties is, of course, 

not a new idea. It occurs in compiler correctness proofs (for instance, [16, 23 ]) as 

well as in the general theory of program correctness [15]. 
Because of our interest in a proper theoretical analysis, we try to minimize the 

semantical problems by working with while-programs only; this by no means 
trivializes the problem. 

In the sequel of this Introduction an intuitive account is given of the key definitions 
that underly the paper. 

Intuition 

Suppose that for 51, 52 E ''tVgJ>(.J:) we have 

(i) Alg(l', E)F= 51 r;;; S2 (semantical inclusion) 

and that we wish to prove this fact. Now obviously, (i) implies 

(ii} Alg(l', E) I= {p} 52 {q} ::} Alg(.J:, E)F= {p} S1 {q} for all p, q E L(l'). 

However, there is no reason to expect that the reverse implication (ii) ::} (i) will 

hold, since (ii) states only roughly that 51 r;;; 52 , where 'roughly' refers to the limited 
expressive power of L(l'). (In fact, Remark 7.8(2) shows that indeed (ii) =;t;, (i).) 
Now consider 

(iii) 'V(l'', E')?:: (1:, E) 'Vp, q E L(.J:') 

Alg(l'', E'P= {p} 52 {q}::::? Alg(l'', E') I= {p} 5 1 {q}. 

Clearly (i)::::? (iii) ::::? (ii). (For (i) ::::? (iii), note that if (.J:', E') ~ (2:, E), then the 
reducts of (1:'

1
, E'

1
)-algebras to l' form a subset of Alg(l', E); hence Alg(.J:, E) 1= 51 r;;; 

S2 ::::? Alg(l' , E ) I= S1 r;;; S2.) 

In fact, we will restrict ?ur attention to a subclass of all refinements ( ~) of ( 1:, E), 
namely to the conservative refinements (r:::) of (.J:, E), for reasons which will be 
clear later. So consider 

(iv) 't/(1'1,£1)1:::(1',E) 'tfp,qEL(1:') 

Alg(X', E') f= {p} Sz{q}::::? Alg(1:', E') I= {p} 51 {q}. 

Now we have (i) ::} (iii) ::::? (iv) ::::? (ii); and it turns out that (iv) ::} (i) (see 

Remark _7·8~3) ). The conclusion is that one can treat the 'semantical' inclusion (i) 
by cons1dermg only first order properties of S 5 (. 

1> 2 I.e., asserted programs 
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{p} S; {q}, i = l, 2), provided one is willing to consider not only (.};, E), but all its 

(conservative) refinements. 
This observation prepares the way for an approach via Hoare's logic of proving 

asserted programs. First of all, define 

(v) S;i;;;HLCI,E)S2 iff Vp,q(L(L")(HL(L",E)f-{p}Si{q} 

~ HL(1:, E) f-{p} S1 {q}) (proof-theoretical inclusion) 

and consider 

(vi) V(1:', E') ~ (1:, E) S1 i;;;HL(I'.E'l S2 (derivable inclusion) 

the proof-theoretical analogue of (iv). Indeed, it will turn out that this 'derivable 

inclusion', written as HL(L", E) f- S1 i;;; S2 , implies the semantical inclusion (i). This 

is our first 'proof system' for proving semantical inclusion; we will prove that ( vi), 

as a relation of Si. S2 , is semi-decidable in E. 
One more remark about why it is natural to consider (vi), in casu the quantification 

over all conservative refinements. The first reason of considering all (conservative) 

refinements of (2:, E) is that, only then, one is able to give as refined as possible 

first order descriptions of S1 i;; S2 • This holds already on the semantical level. 

Moreover, in ( vi) there is another reason: to prove { p} S { q} we need invariants for 

the while-loops in S. It may be the case that these invariants cannot yet be expressed 

in the present specification, so we have to go 'higher-up'. If one attributes a defining 

power to statements S, namely to define the invariants of the while-loops, then one 

could say that the defining power of SE 'W":!/>(1:) is sometimes ahead of that of the 

assertion language L(1:). 
Of course, the proof system given by (vi) is sound, i.e., (vi) ~ (i); otherwise it 

did not deserve the name. Some simple program inclusions that are in its scope, 

are program equivalences like 'loop-unwinding', and the kind of program equivalen

ces considered in [20]. However, this proof system is not yet complete. In order to 

prove the semantical inclusion (i) it is sufficient that (see Fig. 1) 
.· .·: ·.:·\ << HL(i:'',E") I- {pl s2 (qJ ·:>-·:.:.~: :· 

,._ .'.~"·: HL(l:" E") I- {p} s {q} <: ...... 
' ' >):•;/,,.;·'.~······· 

. '·: . 
.......... : ....... :. '.··.".:·" . ......... ,,, 

··:·. 

Fig. I. Partial order of conservative refinements. 
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(vii) 3(1:', £') e: (I, E) V(I", £") e: (I', E') S1 i;;;HL(l:",E"J S2. 

(Notation: HL(I, E) II- S 1 i;;;S2; in words: forced inclusion.) 

The reason that (vii) ::} (i) is a simple consequence of the invariance of semantical 
inclusion (i), i.e., if (I', E') e: (I, E) and Si. S2 E "Wf1>(I), then 

Alg(I, E) I= S 1 i;;;S2 <=> Alg(I', E') I= Sii;;;Sz. 

(This does not hold for~ instead of i:::: .) So in order to prove Alg(I, E) I= S1 i;;;; S2 
it is sufficient to find some (I', E') i:::: (I, E) where Alg(I', E') I= S1 i;;; S2. 

The proof system embodied by (vii) is stronger than that of the derivable inclusion 
(vi), and we will give some examples of program inclusion (which seem to have 
some practical interest, too) which require the extra strength of this last proof system. 

Still, (vii) is not 'complete'-although it seems hard to find a non-pathological 
example of a program inclusion which is semantical (i), but which cannot be forced 
(vii). One can prove, however, that the following 'cofinal' inclusion is equivalent to 
semantical inclusion: 

(viii) 't/(I', E') e: (I, E) 3(I", E") t:::: (I', E') S 1 i:;;;HL(I",E"J S2 • 

(The equivalence (i)<=>(viii) holds also when in (viii)i::::is replaced by~. However, 
for e: we have (vii) ::} (viii), not so for 2:.) 

One could suspect that there is a multitude of such relations obtained by repeated 
alternating quantification V 3 't/ · · • from the basic relation i;;;HL(I,EJ (proof
theoretical inclusion). It is a pleasant surprise, suggesting the naturalness of the 
notions involved, that this possible hierarchy does in fact not exist, and that one 
has no more relations than in Fig. 2. 

I 
SI [ S2 

-HL(t ,E) 
prooftheor.inc(v 

\ 

HL(t ,E) f- s 1f; s2 
derivable 
inclusion (vi) 

inclusion 
in some 
refinement 

HL(E ,E) If- s l[ s 
forced - 2 
inclusion (vii) 

cofinal semantical 
inclusion (viii ~ inclusion (i) 

Fig. 2. 
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As we have seen, conservative refinements (12:) are more natural for this theory 
than general refinements (;;::::). The technical reason is that for conservative refine
ments the 'Joint Refinement Property' holds, stating that (almost) every two refine
ments (.I;, E;) 12: (.I, E) can be refined to a common refinement (.I3, £3) 12: (.Ii> EJ 
(i = l, 2). (This is in fact a strengthened version of the well-known Robinson 
Consistency Theorem.) Also for conservative refinements we have a useful upward 
and downward invariance of the properties 

Alg(.I',E')F={p}S{q} and Alg(2"',E 1)i=S 1 ~S2 for(.I',E')12:(.I,E). 

This paper is built up as follows: in Section 1 some notions about logic, programs 
and Hoare's logic are given. Section 2 gives a criterion and a characterization of 
conservativity, and also Robinson's Consistency Theorem (our Corollary 2.6.2) is 
stated. Section 3 states Padoa's method (our Theorem 3.3) and gives some applica
tions. Section 4 contains definitions of the various inclusions. In Section 5 we deal 
with the technical concept of protototype proofs, which will be basic for the proof 
systems in the sequel. In Section 6 a logical complete refinement is constructed for 
each specification. In Section 7 one of the main theorems is proved, establishing 
the existence of two proof systems for ~- In Section 8 we consider a prime example 
to yield more insight in the relations between the various inclusions. In Section 9 
we will show that some additional information about the domains of Sl> S2 can be 
converted to information about semantical and forced inclusion S1 ~ S2 . 

1. Preliminaries 

In this section we will collect the necessary basic definitions and facts from logic 
in general as well as Hoare's logic. 

1.1. Preliminaries about programs and logic 

The notions of first-order language, derivability (1--) and satisfiability (I=) are 
supposed to be well known and we repeat them merely to fix the notations and 
terminology used in the sequel. 

In this paper we will exclusively deal with 'W9P(.I), the set of while-program S 
defined inductively as follows: 

S ::= x:= tlS1 ;S2 J if b then S1 else S2 filwhile b do Sod, 

where t E Ter(.I), the set of terms over the signature .I, b is a boolean (i.e., 
quantifier-free) assertion E L(.I), the first-order language determined by .I. In 
general, assertions E L( .I) will be denoted by p, q, r. The signature says what 'non
logical' symbols we are considering; here equality ( =) is considered as a logical 
symbol. We also allow infinite signatures. For a further definition of signatures and 
specifications, see Definition 2.1. Note that the signature defined there is part of 
the alphabet of L(.I). 
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If (.I, E) is a specification (see again Definition 2.1 ), the algebras (or models) in 
Alg(..I, E) will be denoted by .s1 =(A, ... ) where A is the underlying set of the 
algebraic structure S'i. 

We will need the following well-known fact. 

1.1.1. Godel's completeness theorem 

(..I, E) 1-- p ~ Alg(2:, E) f= p for all pE L(.I). 

We will also need the following lemma. 

1.1.2. Computation Lemma. Let x = Xi. ... , xk and y =Yi. ... , Yk· Let S = S(x) E 
"lf;"ff'(.1:) (i.e., S contains precisely the variables x). 

Then for all n EN there is a quantifier-free assertion Comps,n(x) =yin L(.I) such 
that, for every s1 E Alg(.l') and all a, b EA, 

s1 f= Comps,nC~.) = !!_ ~ !S(a)I :5 n & S(a) =b. 

Here f!,Q are constant symbols denoting a, band !S(a)i denotes the length of 
the computation of S on a. 

1.2. Preliminaries on Hoare' s logic 

Let p,qEL(2:) and SE 'Wi?P(J:). Then the syntactic object {p} S {q} is called an 
asserted program. If s1 E Alg(l), we define 

df={p} S{q} ~ Va,bEA: S (a) i & S(a)=b <::> (df=p(Q)~q(!!)). 

Furthermore, we define 

Alg(.1:, E)F={p} S {q} ~ VS'i E Alg(.1', E) dF={p} S {q}. 

Hoare's logic w.r.t. (.1:, E) is a proof system designed to prove facts like 
Alg(.I, E) F= {p} S {q}. We will call this proof system HL(.I, E).It has the following 
axioms and rules, by means of which we can derive asserted programs (notation: 
HL(.I, E) 1--{p} S {q}): 

( 1) Assignment axiom: 

{ p[ t Ix]} x := t { p} 

(2) Composition rule: 

{p} S1 {r} {r} S2 {q} 

{p} S1; S2 {q} 

(3) Conditional rule: 

{pAb}Si{q} {pr1b}S2 {q} 
{ p} if b then S 1 else 52 fi { q} 
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( 4) Iteration rule: 

{p11b}S{p} 

{p} while b do Sod {pr1b} 

(5) Consequence rule: 

P~P1 {p1}S{q1} q1~q 

{p} s {q} 

where (I, E) I- p ~ p 1 and (I, E) I- q 1 ~ q. 

1.2.1. Lemma. HL(I, E) is sound, i.e., for all p, S, q E L(I): 

HL(I, E) I- {p} S {q} ~ Alg(2:, E) I= {p} S {q}. 

Proof. For the proof, see, e.g., [13]. D 

1.2.2. Definition. HL(2:, E) is logically complete, if, for all p, S, q E L(2:), 

HL(2:, E) 1-{p} S {q} ~ Alg(2:, E) I= {p} S {q}. 

7 

(In general, HL(2:, E) is not logically complete. The notion of logical completeness 
is studied in [7].) 

From the axioms and rules of HL( I, E) one can derive the following useful rules. 

1.2.3. (i) Conjunction rule: 

{p1} s {q1} {p2} s {q2} 

{ P1 11 P2} S {q1 11 q2} 

(ii) Disjunction rule: The same as (i) with 11 replaced by v. 
(iii) Invariance rule: If the free variables in p are disjoint from the variables in 

S, then HL(2:,E)1-{p}S{p} 
(iv) 3-rule: 

{p} S {r} 
provided z does not occur in S. 

{3z p} S {r} 

2. Conservative refinements 

In this section we will collect some facts concerning the notion of refinement and, 
especially, conservative refinement. These notions will be of fundamental importance 
in the sequel. All the material in this section (and the next, on 'definability') is 
standard in Mathematical Logic and can be found (e.g.) in [24, 21]. For easier 
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reference and to conform to our notations, we will give a fairly extensive survey of 
the subject. Since the arguments used in the proofs are relevant for the sequel, we 
have included some of the proofs. 

2.1. Definition. (i) A signature 2: is a set of nonlogical symbols to be used in 
Predicate Logic. These may be constant, function or predicate symbols; the arity 
of a function or predicate symbol is the number of arguments it is supposed to have. 

(E.g., 2: ={Q, S, P, <} is a signature where .Q is a constant symbol, S and P are 
unary function symbols and < is a binary predicate symbol.) L(.I) denotes the set 
of assertions in which only nonlogical symbols w, a- E 2: occur. 

(ii) If E ~ L(2:), the pair (2:, E) is called a specification. 
(iii) Alg(.I) is the class of all 2:-algebras. 
(E.g., .sd = (N, 0, s, p, k) E Alg(.I), where 2: is as in the example above. Here 0 is 

a constant of .sd, s and p are unary functions and k is a binary relation. We will 
also write SS!Z for the interpretation or semantics of Sin s!l., in casu s; for convenience 
we will often neglect to distinguish notationally the symbol from its interpretation.) 

(iv) Alg(1:, E) is the class of .I-algebras .sd such that .sd i== E. 
(v) Alg(..l", E) F= p means: for all s!l. E Alg(l:, E), .sd F= p. 

2.2. Definition. (i) If 2:' 2 2: and E' 2 E we write (2:', E');;:: (2:, E) and call 
(.l', E') a refinement of (2:, E). Here E = {p E L(.J:) J E I- p }. We will always suppose 
that E, E' are consistent. 

(ii) If (.I', E') is finite (i.e., both 1:' and E' are finite), then we write (2: u 2:', E u 
E') 2:r (2:, E). 

(iii) Let d be some algebra. Then 2:.11 is the signature of s!l. and Ed is the theory 
of d: ES!Z ={pEL(.J:S!Z)js!l. F= p}. Note that s!l. I== p <=:? Alg(l:.11, E.11 ) i== p. 

(iv) Let (.I, E) be a specification. Then E is complete if '<fp E L(.J:), EI- p or 
E 1-1p. 

2.3. Definition. (i) Let (l:', E') 2: (2:, E) be a refinement such that: '<;/ p E 

L(.I)E' I- p <=:? EI- p. In other words, such that E' n L(2:) =E. Then this refine
ment is called conservative over (.I, E). (So a conservative refinement does not 
yield more theorems in the 'original' language L(l:).) 

Notation: (.I', E') '2:. (1:, E) 
(ii) (I', E') '2:.r (.I, E) <=:? (2:', E')r2 (2:, E) & (1:', E') 2'.:r (2:, E). 

2.3.1. Remark. NotethatifEiscomplete,(2:',E');:::(.J:,E) ~ (2:',E')'i?.(,J;,E). 

2.4. Definition. Let .I' 2 .I. 

(i) If (.I', E') is a specification, then the restriction of (l:', E') to the signature 
.I is (I,E) where E =E' nL(l:). 

We write pf (l:', E') = (2:, E). 



Proving program inclusion using Hoare's logic 9 

(ii) If d' E Alg(.l'', E'), then the restriction of d' to 2 is obtained by deleting 

all constants, functions, predicates in d' corresponding to symbols in 1:1 - 2. We 

write pf (d') = s1 for this restriction. s1 is also called a reduct of d', and d' is 
called an expansion of d. 

We will also write s1 :s; d'. 

(iii) Let X <;A. Then dx is the expansion of s1 obtained by adding the a EX 
as designated constants. Instead of dA we write .if.. 

Example: For s1 as in Definition 2.1. (iii), .if.= (N, 0, 1, 2, 3, ... , s, p, k). (So in 

L(2.£1) one can refer to all elements of A by name.) 

2.4.1. Remark. Note that if d';:::: s4, then (2.'1., E srt') 12:: (2srt, E.v1). 

2.5. Definition. Let s1, 973 E Alg(2). Then: 

(i) ,s;i. = 813 ( .s1., 973 are elementary equivalent) iff E.v1 = E,'IJ. 
(ii) Let A<; B. Then s1 ~ i?l3 iff .if.= 03A-

( s1 is an elementary sub-algebra of :?JJ, or :?7J is an elementary extension of d.) 

2.5.1. Remark. Note that s1,,,; i?l3 ~ s1 = :?JJ. 

2.5.2. Proposition. s1. ,,,; 973 ~ 03 A I== E.'!,/ . 

Proof. For the proof, see [24, p. 74]. D 

In the sequel we will mostly deal with conservative refinements ( 12::). They have 

the pleasant property that two refinements (2';, E;) 12:: (2, E) ( i = 1, 2) can be joined 

to a refinement (2 1 u 2 2 , E 1 u £ 2 ) 12:: (2, £), provided the obviously necessary 

requirement that 2 1 ni·2 =2 is satisfied. This is a (strong) form of Robinson's 

Consistency Theorem (RCT). The version we will need is slightly stronger than the 

usual statement of RCT. For that reason we include part of the proof. We start 

with the very useful Joint Consistency Theorem (JCT); for the (hard) proof we 

refer to [24, p. 79]. From JCT the remaining theorems in this section easily follow. 

In [21] another order of presentation is followed. 

2.6. Joint Consistency Theorem (Craig-Robinson). Let (2, E) and (2', £') be 

specifications. Then E u £' is inconsistent iff there is a closed assertion p E L(J: 1 n2:2 ) 

such that EI-· p and E' f- ·1p. 

2.6.1. Corollary (Craig Interpolation Lemma). Let p and q be closed assertions such 

that f-· p-+ q. Then there is a closed assertion r such that 

(i) f- p-+ r and f- r-+ q, 
(ii) every nonlogical symbol occurring in r, occurs in both p and q. 

Proof. Clearly the specification { p, 1q} is inconsistent: { p} n {-iq} I- p, p-+ 

q, q, 1q, false. Hence by Theorem 2.6 there exists a closed assertion rE L({p, 1q}) 
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such that { p} f- r and { 1 q} f- 1r. By the Deduction Theorem it follows that f- P-? r 
and f- 1q 417. 0 

2.6.2. Corollary (Robinson's Consistency Theorem) (see Fig. 3). Let (2:;, E;) 12: 
(Iti. £ 0 ), i = l, 2, such that 2:1 n2:2=2:0. Then 

(i) E1 u E2 is consistent, moreover 
(ii) (1:1 u1:2, E1 u E 2) e: (.l'0 , Eo), and even 

(iii) (I1 u1:2 , E 1 u E2 ) e: (.l';, E;) (i = 1, 2). 

Fig. 3. 

Proof. Part (i) immediately follows from (ii), which follows by transitivity of 12: 
from (iii). 

Ad (iii): Suppose E 1 u £ 2 f- p for a closed assertion p E L(.l';). 
Therefore, {ei. e2} f- p for some closed assertions e; E L(2:;), i = 1, 2, such that 

E; f- e;. By the Deduction Theorem: 

f- ez-4 (e1 -4 p). 

By Craig's Interpolation Lemma 2.6.1: 

and 

for some rEL(2:1 n1:2)=L(l:0 ). By(*), we have E 2 f-r. Hence £ 0 f-r, since 
( 2:2, E2) 12: ( 1:0 , E0). So, by ( * *), E0 f- e 1 -'? p. Therefore E 1 f- p; and this proves 
(2:'1 u .l'z, E1 u E2) e: (1:i. £ 1). Likewise for (.l'2, E2). 0 

Next, we will give a characterization of the conservativity of refinements. For 
many purposes, however, the following criterion for conservativity is sufficient. 

2.7. Definition. Let (I', E') be a refinement such that every s1 E Alg(2:, E) can be 
expanded to an .stl.' E Alg(.l'', E'). Then this refinement is called simple (see Fig. 4 ). 
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~--------------~ Alg(r') 

Alg(i.' ,E') 

,. 11'' 

Alg( i.) 

Fig. 4. 

2.7.1. Proposition (Criterion for conservativity). Simple refinements are con

servative. 

Proof. Suppose (2:', E') is a simple refinement of (.I, E), i.e., V.rA E Alg(.I, E) 

3 .X'i' E Alg( 2:', E ') .X'i'? s1. Let E V p for some closed assertion p. Then by Godel's 
Completeness Theorem 1.1. l, s4 lr" p for some sl E Alg(.I, E ). So there is an st.' E 

Alg(.2:', E') such that .X'i' 2: .r/l. Hence .<//.'I= 1p; reasoning backwards we have 

E'Vp. D 

In general, the situation is more complicated. If (.I', E')rc:(.I, E), it may be the 
case that some .X'iEAlg(.I,E) cannot be expanded to an s1.'EAlg(.I',E'). So we 

may 'lose' models when taking a refinement. However, such a 'lost' model st. is 
always an elementary substructure of (and hence elementary equivalent to) an .r/l' 

which is not 'lost' (see also Theorem 2. 7.3 below). 

2.7.2. Example (Shoenfield [24, p. 96]). Let 2;' contain the constant symbols 
c0 , c 1, c2 , ... and let E' = { C; i' c1 Ii¥ j}. Let ( 2:, E) be obtained by omitting c0 and 

let .r4 be (N-{O}, I, 2, 3, ... ). Then s1. cannot be expanded to an .'//.' E Alg(l"', E' ), 
since there is no 'room' for (an interpretation of) c0 . 

2.7.3. Theorem (Characterization of conservativity) (see Fig. 5). Let (.I', E')2 

(.I, E). Then the following statements are equivalent: 

(iJ (2:', E'J [:O:' (2:, E). 
(ii) 'r:J.w E. Alg(l", E) 3.w' c Alg(2.', h'J, ill" E Alg(..!", F) such that «N"' .vt < .c.4''. 

(iii) E' u E." is consistent for all s4 E Alg( l', E). 

(iv) E' u E.,1 is consistent for all .r/l. E Alg( ..!', E). 
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Alg(l:') 

Fig. 5. 

Proof. (ii)==} (i): Suppose E Vp, pEL(I). Then .stl. Vp for some .stl. E Alg(.l", E). 
Now there are d'EAlg(I,E) and .stl."EAlg(.l"',E') such that .stl.~.stl.'s.stl.". By 
Remark 2.5.1, d=d'. Hence also .stl.' I= 1p. Therefore, .stl." I= 1p; so E' Vp. 

(i) ==} (iii): Let (I', E') 12:: (I, E) and suppose that, for some .stl. E Alg(.l", E), 
E' u E 4 is inconsistent. By Theorem 2.6 there is a closed assertion p E L(2' n 2-<") = 
L(I) such that E' I- p and Esz1, I- 1p. By conservativity, EI- p. Hence .st/. I= p; a 
contradiction with E 4 I- 1p, because E -if/ I- 1p ~ .:# I= 1p ~ .stl. I= 1p. 

(iii) ==} (ii): Suppose E' u E 4 is consistent. Then there is a fi!J" such that 
9lJ"I= E'uE'<". Let [!JJ' be the reduct of 9l3" to the signature 2', and let [!JJ be the 
reduct of [!JJ" to I. Then [!/JA I= E-!fl, so, by Proposition 2.5.2, .stl. ~ [!JJ; and trivially 
[!JJ s; [!JJ'. 

(iii) ==} (iv): Trivial. 
(iv)==} (iii): Suppose E'uE-!fl is inconsistent. Then, by Theorem 2.6, E' I- p 

and Es# 1- -ip for some pE L(2' n 2 4 ) = L(I). Now E 4 1- -ip ==} E...i I- 1p, since 
E,,. is complete. Hence E' u E,,. is inconsistent. D 

2.7.3.1. Example. Let .N'= (N, 0, l, +, x) and let .N'* be some non-standard model 
of arithmetic, so .N'* = .N. Then (I .if*• E .if* 12:: (:Ix, Ex). 
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Proof: E<Y*u E."' is consistent for every d E Alg(.I'.,v, E.ff) (i.e., every d such that 
d = .N) because Ed =Ex~ E <Y*· (Note that this refinement is not simple). 

3. Definability 

We now turn to a special kind of simple conservative refinement (the definitional 
refinement), collect some material about definability, and use this to prove that '+' 
is not definable in the algebra (N, 0, S, P) which will play an important role later on. 

3.1. Definition. LetL1 s;;; 2: and consider (2:, E ). An n-ary predicate symbol 7T E 2: - L1 
is definable in terms of L1 in E, if there is an assertion p E L(Ll) such that 

E f- 7r(Xi, . .. , Xn) ~ P 

(where Xi. ... , xn are distinct variables). An n-ary function symbol </> E .l'-Ll is 
definable in terms of L1 in E if there is an assertion p E L(Ll) such that 

£ f- </>(Xi,. ·., Xn) = Y ~ P 

(where x1, ••• , xm y are distinct variables). 

3.2. Definition. (2, E') e:d (2:, E), in words: (.I'', E') is a definitional refinement 
of ( 2:, E), if (2, E') ~ (2:, E) and every symbol E ~, - 2: is definable in terms of 2: 
in E'. 

3.3. Theorem (Padoa's method). Let (~u{7}, E) be a specification where 7~ .l'. 
Then 7 is not definable in terms of 27 in E, if there are two models d, 9lJ E Alg( 2: u { 7}, E) 
such that A = B and u·'11 = u''IJ for every nonlogical symbol u E 2:, but 7·"' r6 7"8. 

Proof. Let 7 be a predicate symbol. (The proof for function symbols, including the 
constant symbols which can be considered as '0-ary' function symbols, is similar.) 
Suppose .9'1, !?/J exist as given in the theorem, and suppose that 7 is definable in 
terms of 2: in E. That is, 

E f- 7(X) ~ p, 

for some assertion p E L(.l'). Then for a EA we have 

a E 7'4 ~ sd f= p[ a J ~ !?/J f= p[ a] ~ a E r'11 

(where the middle equivalence follows since p E L(.I') and s1, 9lJ have the same 
interpretation for every symbol in .l'). Hence 7'·1 = r'11 , contradiction. 0 

3.3.1. Remark. (i) A much stronger theorem results when, in Theorem 3.3, 'if' is 
replaced by 'iff', namely Beth's Definability Theorem (BOT). 
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(ii) Write (2', E') ?: 1 (I, E) iff .l'' -2 is a singleton. Then the version of BDT 
as indicated in (i) can be paraphrased as (2', E') e:~ (2, E) ~ the mapping 
Pi' : Alg(.l'', E') is injective. 

A slightly stronger version of BDT as, e.g., in [24, p. 81] says the same 
for e: d instead of I?~. 

Noting further that '2:'.d implies '2:., we have the following model theoretic charac
terization of definitional refinements: 

(2', E') e:d (2, E) ~ 

~ pf: Alg(I', E') ~ Alg(2, E) is injective 

~ pf: Alg(I', E') ~ Alg(.l', E) is bijective. 

3.3.2. Application. In the sequel we will need the following. 
Fact. Let d = (N, 0, S, P). Then the function + is not definable in .sti. 
Proof (by Padoa's method). (For another proof, using elimination of quantifiers, 

see Section 8.) Suppose + is definable in d; i.e., for some assertion r we have 

d I= r[ a, b, c] ~ a + b = c. 

Now let d' = (N, 0, S, P, +),so 

d' I= r(x, y, z) ..... x+ y = z. 

Hence 

E.91·1-r(x,y,z)- x+y=z, 

so the symbol + is definable in terms of 2.'11 in E .'11'· 

To show that this is contradictory, we use Padoa's method (Theorem 3.3): We 
will try to find }{i. }{2, E Alg(2.91·, E.sa·) such that N 1 = N2 , a .. N 1 = aN2 for all a~+, 
but +x, ~ +){2 • Two such models are readily obtained; we have to take 'non-standard' 
models: 

JV; = (N x{O}) u (7L. xN+), 0 0 , S, P, +;) (i = 1, 2), 

where N+=N-{O}, and where we write ab instead of (a, b). Further, S(nm) = 

(n + l)rn, P(n + l)m =nm, P(00 ) = 0 0 and nm +;n'm· = (n + n');<m+m') (i = 1, 2). 
(Intuitively; the n0 are the standard numbers; there are nonstandard numbers 

divided in copies of lL., indexed by positive integers. The point is that these indices 
are so to speak indiscernible for the specification in question, so there is considerable 
liberty in defining '+' on the non-standard part.) 

3.3.3 Example. Some reducts of arithmetic. In the schema given by Fig. 6 most of 
the above concepts are illustrated. Upward lines denote conservative refinements 
(of the theory of the structure in question); the 'clusters' of structures are equivalence 
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Fig. 6. 

classes w.r.t. the equivalence generated by e-:J. Simple refinements are indicated 
with 's'. The most remarkable facts here are the definability of exponentiation from 
0, 1, +, x, which is well known; and less well known, the definablity of+ in terms 
of 0, S, X, by the following: 

i+j=k ~ (i'k")'(j'k")'=((i'j')'(k"k"))', 

where x' = Sx, x"= S(Sx) (see [11, p. 219]). 

4. Program inclusions 

We will now introduce the various notions of the inclusion [;;; between statements 
Si. S2 E 'Wo/'(.I) that we will study, and prove some elementary facts about them. 

4.1. Definition. Let SE 'Wo/'(J;) and .rA =(A, ... ) E Alg(2:, E). Let S contain the 
variables x 1, ••• , xn ( n 2': 1). Then S v1 : A" --> A" i~ the partial function determined 
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by S, i.e., 

if S converges with input 

(ai. ... , a,,) and yields (b1, ... , b,,), 

otherwise. 

4.1.1. Remark. The restriction to functions f: A"--'> A" is not essential. Instead of, 
e.g., f(x1, x2 , x3) = x1 • x2 one may use j'(xi, x2, x3 ) = (x1 · X2, 0, 0). 

4.2. Definition (Semantical inclusion). Let Si. 5 2 E 'Ul(!)l(X). Then 

(i) Alg(X,E)F=S1r;;;;S2 ~ S~c;;Sf for all dEAlg(X,E). 

This inclusion is said to be semantical. Instead of the left-hand side we will also use 
the notation 51 r;;;;Alg(2:.El S2. 

(ii) Semantical equivalence w.r.t. (X, E) is defined by 

Alg(X, E)f= 5 1 = 52 ~ Alg(X, E) F= S1r;;;;52 & Alg(.l', E) F= 52r;;;;S1. 

4.3. Definition (Proof-theoretical inclusion) 

(i) S1 r;;;;HL(I.£l S2 iff, for all p, q E L(X), 

HL(X, E) 1--{p} 5 2 {q} => HL(X, E) 1-{p} 51 {q}. 

(Note the direction of the implication. Intuitively: 5 1 is less defined than 52 so 
{p} S1 {q} is more often trivially true.) 

(ii) 51 = HLtI.El 52 is the corresponding equivalence. 

4.4. Definition (Derivable inclusion) 

(i) HL(.l', E) I- SI r;;;; S2 ~ 'V(I'' E') 12: (X, E) S1 r;;;;HL(2:',E') 52. 

(The terminology 'derivable' and the choice of the notation 'I-' is motivated by the 
sequel: it will be proved that derivable inclusion w.r.t. (X, E) is semi-decidable in 
E.) As before we define HL(X, E) I- S1 = S2 derivable equivalence w.r.t. (X, E). 

(ii) HL(.l', E) 1-t S1 r;;;; S2 ~ V(I', E') 12: 1 (2,, E)S1 r;;;;HL(2:',E'l 52. 

4.5. Definition (Forced inclusion) 

HL(.l', E) If- 51 r;;;; S2 ~ 3(.l'', E') 12: (X, E) HL(X', E') r- 5 1 r;;;; S2 • 

As before, forced equivalence w.r.t. (.l', E) is defined. 

4.6. Definition. The inclusion 5 1 r;;;; 5 2 is cofinal, iff 

V(.l'', E') 12: (.l', E) 3(.l'", E") 12: (I', E') 52 r;;;;HL(I",E"l Sz. 
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It is clear that all inclusions (i;;;;) defined above are partial orders and that all 
equivalences ( =) are equivalence relations, except for forced and cofinal inclusion 
resp. equivalence. For the last case, 'cofinal', we will eventually prove that 'cofinal ~ 
semantical', hence cofinal inclusion is indeed transitive. We will now prove that also 
forced inclusion is transitive-hence it is a partial order and forced equivalence is 
an equivalence relation indeed. First we need a simple proposition about renaming 
of symbols. 

4.7. Definition. (Ii. £ 1) == (I2, E2) ((I1, E 1) and (I2, E 2) are isomorphic specifica
tions) if (I17 E 1) can be obtained from (I2 , E 2 ) by renaming some of the nonlogical 
symbols; distinct symbols must be replaced by distinct symbols. 

4.7.1. Remark. So Robinsons Consistency Theorem 2.6.2 says (see Fig. 7) that if 
(2j,EJe:(I,E),i=l,2, then for some variant (I2,R2)=(I2,E2) such that 
( 22, E2) e: (I, E) there exists a (I3, E3) e: (II> E1), (.1'2, E2 ). 

Fig. 7. 

4. 7.2. Proposition. Let SI> S2 E "WPJl(I). Suppose 

(I1,E1),(I",E")e:(I,E), (.1'',E'):=(I",E") and I'nI"=I. 

Then 

(i) Si i;;;;IU.(l:',.E'J S2 ~ S1 i;;;;Hl.(l:",F'J S2. 

(ii) HL(I', E') f-- Si i;;;; S2 ~ HL(I", E") f-- s Ii;;;; 52. 

Proof. (i) routine; (ii) at once from (i). 0 
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4.8. Proposition. Let 51, 52 , S_, E "tfPJ>(l"). Then 
HU.I, E) if- 51 :::;; 52 & HL(2:, E) If- S2 :;; 53 =? HL(2:, E) If- S1r;;53. 

Proof. The assumptions are 

) ( '5' E) 'V(l'',',E;')r;;::(l';,E;) S;:;;HL(l:",E"lS;+1 (i=l,2) 3(1';, E; r;;:: .,, 

(see Fig. 8). 

Fig. 8. 

Now consider such a (l';, E; ), i = 1, 2. By Proposition 4. 7.2 we may suppose that l'inl'2=l'. Now by Robinsons Consistency Theorem 2.6.2, (2:*,E*)= (l'; u 1:~, E; u E~) '2: (2:, £). Also, by transitivity of r;;HL• in the 'upper cone' of (l"*, E*) we have 5 1 :;;HL 52. Hence HL(l', E) If- S1 r;; 53. 0 

Another corollary of Robinson's Consistency Theorem (RCT) 2.6.2 is the following. 

4.9. Proposition. Forced inclusion implies cofinal inclusion. 

Proof. Suppose HL(l', E) If- S1 ~S2 , i.e., 

3(.r', E')'2: (l', E) 'r/(2,", E") '2: (l", E') S1 :;;HL(.t",E") S2 (1) 
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We have to prove the following (see Fig. 9): 

'V(.l';, E;) r2: (1:, E) 3(.l'T, ET) r2: (1:;, E;) S, i;;;;;HL(l:",E"> Sz. (2) 

Fig. 9. 

Take (1:', E') as in (I), and consider a p:;, E;) as in (2). By Proposition 4.7.2(ii) 
we can 'shift' (1:', E') to an isomorphic variant (I'*, E'*) such that 1:'* n 1:' =I, 
and still having the property that S, i;;;;;HL S2 in all refinements. 

Then take (.l'T, E7) in (2) as the union of (1:;, E;) and (.l"*, £'*);by RCT 2.6.2 
this is possible. D 

4.9.1 Remark. For 2: instead of t?: the above proposition fails. E.g., take 

S, =x:=O 

S2 =if 0 > 1 then x := 0 else x := I fi. 

Let I= {O, I,<}, E is the theory of partial order, £ 1 =Eu{O<1} and £ 2 = E u 
{0> l}. Then HL(.l', E 2 ) 'f-' S, = 52, hence HL(I, E) 'If-' S, = 52• However, for all 
(1:', E') 2: (I, Ei), S, ¥11ur.1,'> Sz. 

4.10. Remark. All inclusions introduced above, except semantical inclusion, were 
obtained by quantification over the 'basic' proof-theoretical inclusion i;;;;;HI.· This 
suggests looking at all inclusions of the following general form: 

S, i;;;;;~i-~;}, S2 ~ 'V(.l'" E 1)r2: (I, E) 3(1:2 , E 2 )r2: (I" E,) 

'f (2.3, £3) (2: (Iz, E2) · · · 3( 2'2m £2,,) t?: (1:211 1' E2n I) 

and likewise S, i;;;;;~ij;::, S2, and the dual notions obtained by interchanging 3, 'V. 
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(Note that only alternating strings of quantifiers are interesting, since obviously 
--VV--=--V-- and likewise for 3.) So derivable inclusion w.r.t. (..l',E) is 
i;;;;~w:.Ei• forced inclusion is i;;;;~tcx,EJ• and cofinal inclusion is i;;;;~i.<I,EJ· (In the sequel 
we will also consider 'inclusion in some refinement': G~L(I,EJ·) 

Now between these generalized inclusions there are a priori the following implica
tions (see Fig. 10 where an implication is downward). (Only the quantifiers of 
r;;;~i°(iE> are mentioned.) 

\{ 3 \{ 'V3'V3'V 

3 3 \{ 3 

Fig. 10. 

However, this hierarchy of inclusions 'collapses' because 

(i) 

(ii) 

3'V - 'V3'V 
GHL(I,EJ - !;;:;; HL(I,El> 

i;;;;~i(I.E) = G~it7x.n 

To see the nontrivial direction of (i), note that it was already proved in Proposition 
4.9. By a similar argument (ii) also follows. 

Now 3'v'3V = 33V = 3V, V3V3V = V3V = 3V, etc. Hence the only inclusions are 
those displayed in Fig. 11. 

3'V 

3 

Fig. 11. 

(Remark: We did not prove that G~L<.I.EJ is a partial order. Question: Is it?). 

4.11. Remark. All inclusions that are defined above exhibit the desirable property 
of staying valid in a context: let Si. S2 e "Wl1J(..l') and let C[ ) be a context statement 
(also in ..l'), i.e., a statement with a 'hole'. Then 

S1GS2 ~ VC[ ]C[S1]GC[S2). 
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The proof follows in a straightforward manner by observing that 

Vp, q E L(2) HL(2, E) I- {p} 5 2 {q} ~ HL(2, E) 1-{p} S1 {q} 

implies 

Vp, q E L(2) HL(.l', E) 1- {p} C[S2 ] {q} ~ HL(.l', E) 1- {p} C[S1] {q}. 

4.12. Remark (Invariances). For a better insight in what happens inside the 'cone 
of refinements', we will investigate whether the notions 

(1) 

(2) 

(3) 

Alg(2, E) F= p E 1- p, 

Alg(.l', E) F= {p} S {q}; HL(2, E) I- {p} S {q}, 

are invariant under 'shifting (.l', E) upward or downward'. 
Ad ( 1). Upward and downward invariant (i.e., V(2', E') 12: (.l', E) 

(A1g(2, E) F= p <=> Alg(.l", E') F= p)); this follows simply from Godels Complete
ness Theorem 1.1. l and the definition of conservativity. 

Ad (2). Here the situation is already somewhat more complicated: 
Alg( , ) F= {p} S {q} is upward and downward invariant (see Proposition 4.13). 
However, for HL( , ) I- {p} S {q} we only have the (trivial) upward invariance, i.e., 

V(2', E') 12: (2, E) HL(l:, E) I- {p} S {q} ~ HL(2', E') 1-{p} S {q}. 

That here '<=' does not hold, is because an invariant needed for the proof of 
1-{p} S {q} may be available in (2', E') but not yet in (2, E). 

Ad (3). Again the semantical notion, Alg(,) F= S 1 GS2 , is invariant in both 
directions. For 'upward' this is trivial; for 'downward' certainly not (see Lemma 
4.14). 

Finally, S 1 G1-1u.) S2 is neither upward, nor downward invariant. One can even 
show that it may happen that S1 G1-1Lc,J S 2 is alternatingly true and false while 
following some upward path (.l'0 , £ 0 ) :si (21> £ 1) :si · • · . 

4.13. Proposition. Let (2',E')s;i(2,E), p,qEL(2) and SEWfJJ'(2). Then 
Alg(2, E) F= {p} S {q} <=> Alg(.l", E') F= {p} S {q}. 

Proof. (~ ). Trivial. 
(<=). To prove the reverse, we use Theorem 2.7.3, which says that for every 

sd E Alg(2, E) there is an sd' E Alg(.l', E) and an sd" E Alg(2', E') such that sd::;;; sd' :5 

sd". By Remark 2.5.1 we have sd = sd'. Now the result follows by the following 
lemma from [7]: "Let sd =@.Then sd F= {p} S {q} <=> r!J3 F= {p} S {q}". D 

4.14. Lemma. Let (2', E') 12: (.l', E). Then, for all SI> S 2 E WfJJ'(2), 

Alg(.l', E) F= S 1 GS2 <=> Alg(2', E') F= S 1GS2 . 
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Proof. (=>} is easy: take d' E Alg(l'', E'). Then pf (d') = d E Alg(.l', E). So 
stl F= 51 i;; S2• But then trivially also d' F= S1 i;; S2, since the extra structure on d' does 

not play a role. 
( ~). The proof of the reverse follows by contra position: Take d E Alg(.l', E) 

such that d V S1 i;;S2• Then there are a= a1, ••• , a,. EA and b = b1, ... , bn EA such 

that, par abus de language: 

d F= S1(!!J = !!. and d V Si(~)=!. 

More precisely, for some n and for all m: 

where 

c/> 11 (~, J!) = Comp51 , 11 (~) = !!. and l/lmC~ .• !) = 1Comp.si,m(f!) = !. 

Let I' be the set of assertions {c/> 11 (~, !)}u{t/lm(a, b) Im EN}. 
Claim. For some~. ~F=E'uI'. So ~VS1 i;;S2 , hence Alg(.l",E')VS1i;;S2 

and we are through. 
Proof of the claim. Suppose there is no such ~. i.e., E' u I' is inconsistent. 

Then for some finite .:1 s;;; I' we have that E' u ..::1 is already inconsistent. Say 
.:1 = {c/>,., -it/Jo, ... , 11/lk-i}. So E' I- 1( c/>n /I/\ i<k 1JiJ, hence 

E' I- 13x, y (c/>11 (x, y) /I /\ 1/!i(x, y)). 
i<k 

By the conservativity of E' over E we can replace E' here by E. However, this 
contradicts the fact that 

dF=3x,y(c/>11 (x,y)!1 /\ tfi(x,y)). 0 
i<k 

5. Prototype proofs 

Let us abbreviate the implication 

HL(l'',E')1-{p}S2 {q} => HL(l'',E')l-{p}Si{q} 

by <P(.!', E', p, q). So, by definition, HL(l', E) I- S1 i;;;; S2 is equivalent to 

c/>(l",E',p, q) for all (l'', E')e: (l', E) and all p, q E L(l''). 

No\ it t~ms out that among all these <P(l'', E', p, q) there is a 'generic' one, 
<P(l' , E , r(x), r'(x)). I.e., 

<P(.!0 , E 0 , r(x), r'(x)) ~ 

~ V(l'', E')e: (l', E) \Ip, q E L(l'') CJ>(.!', E',p, q). 
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The situation is even further simplified, since the generic implication has an 
antecedent HL(I0 , E 0 ) r--{r(x)} S2 {r'(x)} which is always true. This reduces 
checking whether HL(I, E) f- S1 ~52 or not, to checking whether 
HL(I0 , E 0 ) r--{r(x)} S 1 {r'(x)}, which is semi-decidable. (Hence our choice of the 
notation f- in HL(I, E) r-- S 1 ~ S2 .) 

Finding this generic implication is based on the observation that every proof 
HL(I', E') r--{p} S {q} can be viewed as an instantiation of a prototype proof 7r(S). 
In order to define this concept, we need an efficient notation for proofs of asserted 
programs. One method is to consider a proof as a proof tree; a second way is to 
consider a proof as a flow-diagram with assertions written at the cut-points. We 
will use a more workable linear notation of proofs which will be introduced now. 
First we will define the concept 'interpolated statement' which can be viewed as 
the flow-diagram corresponding to the statement plus some assertions written at 
some cutpoints. 

5.1. Definition. The class IStat(I), with typical elements S*, Sf, S**, ... , of inter
polated statements is inductively defined by 

S* ::= Sl{p}S*IS*{p}lif b then Sj else~ filwhile b do S* od. 

Here SE 'W(JJ>CI). So the class of interpolated statements contains next to the 
usual statements also asserted statements and statements interlaced with assertions 
in an arbitrary way; but it contains also proofs of asserted statements. These will 
be singled out by means of the following extended proof rules. 

5.2. Definition. By means of the following axioms and extended proof rules we 
can derive proofs of asserted statements: 

(I) Assignment axiom scheme: 

{p[t/x]} x ::= t{p} 

(2) Extended composition rule: 

{ p} St { r} { r} S~ { q} 

{p} st {r} s~ {q} 

( 3) Extended conditional rule: 

{ p} if b then { p /\ b} St { q} else { p /\ 1 b} ~ { q} fi { q} 

( 4) Extended iteration rule: 

{ p /\ b} S* {p} 

{ p} while b do { p /\ b} S* { p} od { p /\ 1 b} 
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(5) Extended consequence rule: 

p~p {p1}S*{q1} qi~q 

{p} {p1} S* {q1} {q} 

5.3. Definition and notation. (i) Let Pr(.I, E) be the class of proofs (interpolated 
statements) which can be derived using this axiom scheme and extended proof rules, 
such that in rule (5) only implications provable from E are used. 

(ii) If S* E IStat(.I), then o-(S*) will denote the underlying statement obtained 
by erasing all {p} in S*. (So o- can be inductively defined as follows: 

o-(S) = S for SE W0"(2:) 

o-(S*{p}) = o-({p} S*) = (]"(S*) 

(]"(if b then Sf else S! fi) =if b then o-(St) else o-(S!) fi 

u(while b do S* od) =while b do (]"(S*) od.) 

(iii) If S* E Pr(.I, E), then K(S*) will denote the set of consequences p~ p' used 
in the derivation of S*. Note that these consequences can be read of directly from 
S*: K(S*) ={p ~ p' l{p}{p'} ~ S*}. (Here'<;:;;' denotes the relation of being contained 
as a 'subword'.) 

(iv) If S* E Pr(2:, E) and S* ={p} Si {q, then pre(S*) = p and post(S*) = q. 
(v) Let S* E Pr(.I, E). Then S* is called a reduced proof, iff it contains no 

occurrence of a triple {p}{q}{r}. (By the transitivity of ~, every proof may be 
supposed to be reduced, up to equivalence.) 

5.4. Definition. (1) Two interpolated statements S*, S** such that O"(S*) = 
O"(S**) = S are called matching if at every place the same number of assertions 
occur in S*,S**. (Notation: S*-S**.) 

To be precise: 

(i) S - S for SE W0"(.I), 

(ii) S*-S**:::::} {p}S*-{q}S** and S*{p}-S**{q} 
for all assertions p, q E L(.I), 

(iii) Sf - Sf*, S! - S!* :::::} 
if b then Si else S! fi - if b then Sf* else Sf* fi, 

(iv) S* - S** :::::} 
while b also S* od - while b do S** od. 

(2) Let S* =--{p}-- be an interpolated statement containing {p}. Then S** = 
--{p }{p }-- is called a trivial expansion of S*. 

5.5. Defiiiition. In the following definition we will use a set of n-ary relation symbols 
{r;I i E r.u }. If S* E IStat contains some of these r-symbols, [S*]i will be the result of 
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replacing each occurrence of r; in S* by r(i,j) where (,): ~p ~ N is the usual bijective 
pairing function. (This device merely serves to 'refresh' the r-symbols where 
necessary.) 

(i) Let SE 'WPJ>(2:) involve the variables x ( = Xi, ... , xn). By induction on the 
structure of S we define 1T 1 

( S) as follows: 

(1) 1T 1 (X; := t)={r0 (x)[t/x;]}x; := t{r0 (x)}. 

(2) 1T 1 (S1; S2) = [ 1T 1 (S1)Jo [ 1T 1 (S2)]1. 

(That is, 7T 1 (S1) and 1T 1(S2) are concatenated, without infix. Moreover, the r
symbols in [7r'(S1)]0 are made distinct from those in [7r'(S2)] 1.) 

(3) 1T1 (if b then 5 1 else 52 fi) = 

={r0 (x)} if b then {r0 (x) 11 b} [7r'(S1)]2 Vi(x)} 

else {r0 (x) 111b}[ 1T1 (S2)]3 {r1(x)} 

fi {r1 (x )}. 

(4) 1T 1 (while b do Sod)= 

= {r0(x)} while b do {r0(x) 11 b} S* od {r0(x) 11 1b }{r1 (x)} 

where S*=[7r'(S)]4 and r0 (x)=post(S*). 

(ii) Now 7r(S) ={r0 (x)}[1T'(S)]0{r1(x)}. 7T(S) is called the prototype proof of S. 

5.5.1. Example. Let S be x1 := O; x2 := 1; while x2 > x3 do if x 1 =0 then x 3 := 0 else 
x1 := x2 +1 fi od; x1 := x1 + x2 • Then 

7T(S) = 

x2 := 1 

{r1(Xi, Xz, X3)} 

{r2(0, X2, X3)} 

{r2(X1, Xz, X3)} 

{r3(Xi, 1, X3)} 

{r3(X1' Xz, X3)} 

{r6 (x1> x2 , x3)} 

while x2 > x3 do 
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if x 1 =0 then 

else 

fi 

od 

{r4(x1, x2, x3) 11 x1 = O} 

{r5(x1, Xi, O) 

{rs(XI> X2, X3)} 

{r6(X1, X2, X3)} 

{r4 (x1, x2, x3) 111x1 = O} 

{r7(X2+l,X2,X3)} 

{r7(X1, Xz, X3)} 

{r6(X1, X2, X3)} 

{r6(X1, X2, X3) /I I Xz > X3} 

{rs(X1 + X2, X2, X3)} 

{r3(X1> Xz, X3)} 

{r9(X1> Xz, X3)} 

5.5.2. Proposition. Let r be a 'new' relation symbol occurring in rr(S). Then r has 
an occurrence in 7T(S) of the form {r(x)}, i.e., the arguments are all variables. 

Proof. Evident by inspection of the definition of 7T(S). 0 

5.6. Definition. Let S* E IStat(.r) contain the n-ary relation symbol r, and let 
p = p(x1> ... , Xn) E L(I). (Note that p may contain other variables than those 
displayed.) 

Then <Pf (S*) is the result of replacing each r(tI> ... , tn), occurring in S*, by 
p(t1, ••• , tnl· Likewise we define <Pfi1,'. . .','f; (S*). 

5.6.1. Remark. One can think of the prototype proof rr(S) as an initial object in 
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the category of proofs {p} S* {q} (where o-(S*) = S); morphisms between proofs 
are the substitutions ef>. 

5.7. Lemma. Let S* E Pr(.l', E) be a reduced proof such that o-(S*) = S. Then 
<P: 1T( S) ~ S* for some substitution <Pas in Definition 5 .6. (So every proof is an instance 
of the prototype proof) 

Proof. Consider S, S* as in the claim of the lemma. We may suppose that S* and 
1T(S) are matching; if not, only some trivial expansions (Definition 5.4) of S* are 
required. 

We will construct by induction on the structure of Sa substitution <P: 1T( S) ~ S*. 
Case I. S = x := t(y, x, z), where all variables in tare displayed. Now 

7r(S) = {r1 (y, x, z)} h(y, t, z)} x := t {r2(y, x, z)} {r3 (y, x, z)} 

and 

So the substitution will be <P: r;(y, x, z) 1---7 Pi ( i = 1, 2, 3). 
Case 2. S = S1; S2. So S* ={poHP1} Sf {P2} S':\'. {p3}{p4}. 
By induction hypothesis we have substitutions 

Now 

7r(S1: S2) ={ro(x)} 7T 1 (51) 7T 1 (52 ) {r1(x)} 

={r0 (x)} · · · {r0(x)}{r'1 (x)} · · · {r1(x)} 

where --= 7r(S1) and - - - - = 7r(S2). From this it is evident how to construct 
the desired </>. (Remark: The arity of the new r-symbols in 1T(S;), i = 1, 2, is that 
of S (i.e., n if S has the variables x 1, ••• , xn).) 

Case 3. S =if b then 5 1 else 5 2 fi. Then 7r(S) and S* are as follows: 

7r( S) = {r0(x)} {r1 (x)} if b then {r1 (x) /\ b} 1T1 (51) {r2(x)} 

else{r1(x) /\ 1b} 1T 1 (S2) {r2(x)} 

fi {ri(x)} h(x)}, 

S*={po}{p1} if b then{p1 Ab}Sf {p2} 

else {p1 /\1b} S':\'. {p2} 

fi {p2} {p3}. 
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Again <fJ:r;(X)l-'>p;(i=O,l,2,3); the induction hypothesis takes care 
correspondence between 7T 1(S;) and S'l' (i = 1, 2). 

Case 4. S =while b do S' od. (In the following 'r;' stands for 'r;(x) '.) 

7T(S) ={r0}{r1} while b do{r1 /\ b} 7T 1 (S') od {r1/\1b} {r2} 

· · I I I I :,:o:~:;, I I 
S*= {p0}{p1}while bdo{p1/\b}S*od {P1/\1b}{p2} 

Here r 1 =post( 7T 1 (S')) and p1 = post(S*). D 

of the 

In the sequel we will need a simple proof-theoretical fact, stating that derivability 
in first order predicate logic is invariant under substitutions <P (as in Definition 5.6). 

5.8. Proposition. Let (l', £) be a specification andp, q E L(2.). Let <P be a substitution 
of assertions p; for relation symbols r;. as in Definition 5.6. (The p; 's are not necessarily 
in L(l').) Let </J(E) ={<P(p') Jp' E £}. Then 

(i) £1-p :=;, </>(E)l-</>(p), 

(ii) El-p 4 </>(E)1-r:/J(p)4</J(q). 

Proof. (i) A routine induction on the length of the derivation E 1- p. 
(ii) follows from (i), noting that </J(p4q) = </J(p)4 <P(q). D 

5.9. Proposition. Let l'0 =l'u2'-,,.(s) and E 0 =EuK(7T(S)). Then (l'0,£0 )e:r 
(2:, E). 

Proof. Take arbitrary p, q such that HL(l', E) 1-{p} S {q}. (E.g., take q =true.) Let 
{p} S* {q} E Pr(l', E) be the corresponding proof; we may suppose it matches 7T(S). 

Now let .sd E Alg(.l', £),so by soundness of HL we have .sd I= {p} S {q}. Further, 
it is not hard to see that the r;(x) can be interpreted in .sd just like the matching 
assertions in { p} S* { q}. 

Hence every s1 E Alg(l', £) can be expanded to an .sd. 0 E Alg(l'0 , £ 0 ). So, by the 
conservativity criterium (Proposition 2. 7.1), we have (2:0 , £ 0 ) e: (l', E). The finite
ness is obvious. D 

5.10. Lemma. Letl'0 =l'ul'rr1s,J, E 0 =EuK(7T(S2)) and letr(x), r'(x) be respec
tively the assertions at the head and at the tail of 7T(S2 ). 

Then the following statements are equivalent: 

(i) HL(l', £) 1- S1i;;;;53 , 

(ii) HL(l', E) 1-1 S1 r;;:; S2 
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(iii) HL(1:'0 , E 0 ) 1-{r(x)} S2 {r'(x)} ~ HL(I0 , E 0 ) I- {r(x)} S1 {r'(x)} 

(iv) HL(1:'0 , E 0 ) 1-{r(x)} S 1 {r'(x)}. 

Proof. (i) ~ (ii) is trivial, (ii) ~ (iii) follows from Proposition 5. 9, and (iii) ~ (iv) 
follows because it is obvious from the construction that HL(I0 , E) 1-
{r(x)} S2 {r'(x)}. It remains to prove that (iv) ~ (i). 

Assume (iv): let {r0 (x)} Sf {r1 (x)} E Pr(2°, E 0 ) be the corresponding proof. 
Further, suppose for some (I',E')12:(I,E), p,qeL(I') that we have 
HL(I',E')l-{p}S2 {q}. Let {p}~ {q}ePr(I',E') be the corresponding proof, 
which we may suppose matching with 1T(S2 ). By Lemma 5.7, {p} S~ {q} is an 
instance of 1T(S2) via some substitution <f>. 

Now consider <f>({r0(x)} Sf {r1(x}) ={p} <f>(~) {q}. From the construction and by 
Proposition 5.8 it follows that this is a proof in Pr(2', E'). Hence 
HL(2', E') 1-{p} Si{q}. D 

5.11. Theorem. HL(2, E) I- S 1 i;;;S2 and HL(I, E) I- S 1 = S2 , as predicates of S1 , S2 , 

are semi-decidable in E. 

Proof. This follows immediately by noting that (I0 , E 0 ) can effectively be computed 
from S2, given (I, E), and using the equivalence (i) ~ (iv) in Lemma 5.10. 0 

6. Completions 

In Section 7 we will need the possibility of taking, for given (I, E), a refinement 
(2', E') 12: (2, E) which is logically complete (see Definition 1.2.2). Also we will use 
a refinement (2", E") 12: (2, E) which has an SP-calculus (see Definition 6.3). The 
concepts and theorems thereabout, used below, are from Bergstra and Tucker [9, 10] 
and Bergstra and Terlouw [6]. There, however, the following restriction is made: 
E must have only infinite models. Since we want to develop the present theory in 
full generality (also for, e.g., E = 0), we will extend the above mentioned results 
by some 'formal' constructions which do not require the restriction on E, and which 
are made possible by the concept of a prototype proof 7r(S). The disadvantage is 
that in this way we will need an infinite signature extension I'~ I, but for our 
purpose that is no objection. (Question: Given a specification (I, E) such that E 
has finite models, is there a logical complete (1:' u L1, E') 12:: (I, E) where L1 is finite?) 

6.1. Theorem. For every (2,E) there is a (1:',E')12::(I,E) such that (2',E') is 
logically complete. 

Proof. The proof is by a construction of length w 2• The first w steps are as follows. 
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Enumerate "Wrl'(.I) as {S,. In 'EN} and let {(p"' qn) In EN} be an enumeration of the 
pairs of assertions E L(.I). Now consider the sequence of asserted programs an= 
{pu,J,J Srni, {q(n)J where ( )0 , ( ) 1 are the projections corresponding to the well
known bijection (,): N2 --> N. Note that every {p} S {q} occurs in this sequence. 

Now we define by induction on n the specification (.Im En). 
Basis: (1:0 , E 0 ) =(.I, E). 
Induction step: Let (.I,., En) be defined, and consider a,,+1· 

Case 1. Alg(1:m En) t;t" ll'.n+I· Then (.In+!> En+1) =(.Im En). 
Case 2. Alg(1:,,, E,,) F= an+i· Say the prototype proof 1T(S(n+ll,) has the form 

{r(x)} Sfn+IJi {r'(x)} and let (.I', E') be the specification corresponding to 1T(Srn+11 1 ). 

Then define 

(The r-symbols in 1T(S(n+Ili) have to be fresh compared to previous r-symbols in 
(1:,,, En).) 

Further, let (l'w> Ew) = UnFw (1',,, En). 

Claim 1. (l'o, Bo) Sl (l'i, E1) Sl · · · $l (1:", E,,) Sl · · · $l (.Iw, Ew). 
Proof of Claim 1. To show that (1:,,, E,,) Sl (l'n+i. En+i) for all n E w, we use the 

conservativity criterion of Proposition 2.7.1. Since we know (in Case 2 above) that 
an+i is true in every sd E Alg(.I,,, En), the newly added r-symbols can be interpreted 
in sd; that is, sd can be expanded to an .sil' E Alg(1'n+ 1 , En+ 1). 

To show that (1:,,, E,,) si (l'w. Ew) for all n E w, suppose Ew f-- p, for some p E L(l'n)· 
Then, for some finite D ~ E'"' D f-- p. Hence, for some m :2:: n, Em f-- p. Since 
(1:,,, En) Sl (.Im, Em) as just shown, En f-- p. 

Now that (.Iw, Ew) is constructed, the statements E "tf/'l:!J'>(l'w) and assertions 
E L(.Iw) are again enumerated, and the procedure is repeated to yield 
((.l'wL,(Ew\.J=(.l'w.2,Ew2). Likewise (l'w.mEw.n) is constructed, and we put 
(.I'' E') = LJnEw (l'wn• E w.n ). 

Claim 2. (.Iw.n• E w.n) :SI (1", E') for all n E w; and (.I', E') is logically complete. 
Proof of Claim 2. The first part is as in the proof of Claim 1. The logical 

completeness is shown as follows. Let Alg(.I', E') F= {p} S {q}, where {p} S {q} E 

L(.I'). Then {p}S{q}EL(.Iw.n•Ew.n) for some nEw, and Alg(.Iw.n,Ew.n)F= 
{p} S {q} follows from Proposition 4.13. (Alternative argument: Because no models 
were 'lost' in the construction, i.e., p(Alg(.I', E') = Alg(l'w.n• E w.n) for the suit
able reduction operator p.) Hence Ew.(n+ll contains K({p} 7T(S) {q}), that is, 
HL(.Iw(n+I)> Ew.(n+I)) f-{p} S {q}. D 

6.2. Corollary. Let Alg(.I, E) F= S1 i;;;; S2 • Then 

3(.l'', E') '2:. (1:, E) S1 i;;;;HL(l:'.E') S2. 

Proof. Let (.l'', E') be a logically complete refinement of (.l', E); by the preceding 
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theorem this exists. By Lemma 4.13 we have 

Alg(..l', E) I= S1i:;::;S2 ~ Alg(..l'', E') I= S1 i:;::;S2• 

Now Alg(..l'', E') I= S1 i:;::;52 implies 

Vp, q E L(..l") (Alg(..l'', E') I= {p} 52 {q}::::;. Alg(..l'', E') I= {p} Si{q}). 

Hence, by logical completeness of (..l'', E'), we have 

Vp, q E L(..l'') (HL(..l'', E') 1-{p} S2 {q} ::::;. HL(..l", E') I= {p} S1 {q}), 
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6.3. Definition. Let (..l', E) be a specification. We say that (..l', E) has an SP-calculus 

(strongest postcondition calculus), if for each p E L(.2:), SE "W(!J>(..l') there exists an 
assertion SP( p, S) E L(..l') such that 

(i) HL(..l', E) 1- {p} S {SP( p, S)}, 

(ii) if HL(..l', E) 1- {p} S {q }, then (..l', E) 1- q ~ SP( p, S). 

6.4. Theorem. Let (2:, E) be a specification without finite models. Then there is a 
conservative refinement PA(..l', E) of (2:, E), called the Peano companion of (2:, E), 
which has an SP-calculus. 

Proof. For the definition of PA(..l', E) and the proof that it has an SP-calculus, see 

[10] and [6]. D 

6.4.1. Remark. It is possible to construct a 'formal' companion having an SP

calculus, without the restriction on E, but at the cost of an infinite signature extension. 

For the sequel we will not need the full strength of an SP-calculus and we will be 

satisfied with the following proposition. 

6.4.2. Proposition. Let p, q E L(..l') and SE "W(!J>(.2:). 
(i) Let p ~5 q abbreviate V(SP( p, S) ~ q), where V denotes the universal closure. 

Then 

PA(..l', E) 1-{p "P ~5 q}S{q} 

(a kind of 'S-modus ponens'). 
(ii) Let p :=;.5 q abbreviate V(/\ K({p}7r(S){q})), i.e., the universal closure of the 

conjunction of the consequences in {p} 7r(S) {q}. Let 2:' = 2: u ..l',,.<SJ· Then 

(..l'', 0) 1-{p /\ p::::;, 5 q} S {q}. 

Proof. (i) Follows at once from the definitions. 
(ii) Follows by a tedious but routine verification by induction on S. D 
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7. Proving program inclusion 

We are now in a position to prove one of the main theorems of this paper, viz. 
the equivalence of semantical and cofinal inclusion. After that we will show how 
this fact can be exploited to give formal proofs of program inclusion. 

7.1. Theorem. Semantical and cofinal inclusion coincide; i.e., 

Proof.(::::?). Suppose Alg(X,E)l=S1 i;;;;S2 and consider (X',E')>2:(2:',E). By 
Theorem 6.1 there is a (,I", E") '2! (.I', E') which is logically complete. From 
Alg(.I",E")I= S1i;;;;S2 we have 

'rip, q E L(.I") (Alg(.I", E") F= {p} 5 2 {q}=?Alg(.I", E") I= {p} S1 {q}). 

By the logical completeness we can replace 'Alg(X", E") I=' by 'HL(.I", E") 1-'. This 
results in S 1 i;;;;HLIX".E"l Sz. 

( <=). Let E have no finite models. (The case that E has finite models, can be 
dealt with analogously, as suggested by Proposition 6.4.2.) 

Suppose Alg(.I, E) V 51 i;;;; S2• Then also Alg(PA(.I, E)) i7=S 1 i;;;; S by Lemma 4.14. 
So there is an .s4. E Alg(PA(.I, E)) such that .sd V S1 i;:;; S2 • Hence for some a, b EA 
we have '.s4. F= 5 1 (a)= b' but '.sd F= S2 (a) ~ b', par abus de language. These facts can 
be properly expressed by 

e = (x = !! ,_,..sz x ~ 'Q) /\ Compn,S1 (g_) = 'Q, 

for some n (see Computation Lemma 1.1.2). The g_, !!.. are new constant symbols. 
Let d' 2: .s4. be the expansion of .sd with distinguished elements a, b, and let (X', E') 
be the conservative refinement of PA(l:', E) obtained by adding a, b to the signature. 
(By Lemma 2.7.l this is indeed conservative.) Now 

(i) HL(.I', E') 1-{e /\ x = g_} 52 {x -:I .Q}, 

(ii) HL(.I', E') [,L { 19 11 x = g_} S1 {x -:I l!}. 

Ad (i). This is Proposition 6.4.2(i). 
Ad (ii) . .s4.' V{e 11 x = Q} S1 {x -:I]!}, hence Alg(X', E') F' {O 11 x = .Q} S 1 {x -:I _Q}. By 

soundness of HL, (ii) follows. 
Finally, we note that (i) also holds in refinements of (.I', E'), trivially; and the 

same for (ii) by the downward invariance of Alg(,) F= {p} S {q} (Proposition 4.13). 
Therefore, S1 i;:;;tI",E"l S2 for all (1:"', E")>2: (X', E'). 0 

We now know that the schema, given in Fig. 12, holds, and we want to prove 
that, in general, all implications are displayed in this figure. First we will show in 
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s c s 
I -HL(l:,E) 2 

~=========.---~~~~ 
o:,E) logical lf3 Alg(l:,E) I= 
complete S C S ~ 

I -HL(l:,E) 2 5 1 r;_ 52 

s c 3 s ~ 
I -HL(l:,E) 2 <.<"" 

Fig. 12. 

Examples 7.2 and 7.3 that ~HU.l.E:J and ~AJg<.l',EI are incomparable (see also Fig. 
13 ). Then, in Example 7.4, we show that derivable inclusion is strictly stronger than 
forced inclusion, in general. (I.e., the proof system corresponding to derivable 
inclusion proves less inclusions than the one corresponding to forced inclusion.) 
Further, it will be shown in the next section (Theorem 8.5) that forced inclusion 
and semantical inclusion are in general not equivalent. In other words, the proof 
system corresponding to forced inclusion is incomplete. 

Finally, at the end of this section (Remark 7.8), we will prove that the 'dashed' 
implication for logical complete (I, E) (see Fig. 12) can in general not be reversed, 
and we will prove some assertions in the part 'Intuition' of the Introduction. 

7.2. Example. Let .'4 = (N, 0, S, P), the 'abacus-algebra' as in Section 8, and con
sider ( I_.4, E .. t1). Define 

S1 = y := O; S' where S' =while x 7'= 0 do y :=Sy; x := Px od 

S2 = y := x; x := 0. 

So Alg(I.v1, E.v1) I= S1 ~ S2. However, S1 ~ Hui..,,c., 1 S2 because 

(i) HL(l: .. 4, E ... ,) f- {x = z} S2 {x = 0" y = z}, 

(ii) HL(I .. ..;, E.4 ) V{x = z} S1 {x=0" y = z}. 

Proof of (ii). Suppose not (ii). Then 

HL(l:_.4, E_.,,) f- {x = z" y = O} S' {x = 0" y = z}. 

Hence there must be an invariant r( x, y, z) such that £ .. " f- <P 1 " </1 2 " <P.1 where 

</> J = X = Z f\ y = () °' r( X, y, Z), 

</>2 = 3x', y' [x' 7'= 0 f\ x = Px'" y =Sy' f\ r(x', y', z )] ~ r( x, y, z ), 

<l>J = x = 0" r(x, y, z) ~ y = z. 
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• Ex. 7 . 3 fl Question: give a 

---

5 

6 

'natural' example 

of a semantical but 

not forced inclusion 

,....- Ex. 7. 2 ( = 7. 4) 

.. Ex. 7. 5 

E.g. 

'loop-unwinding' 

(Ex. 7. 6) 

Fig. 13. Venn-diagram of the various notions of inclusion. 

1. Logical inclusion (i.e., HL(l:, 0) f- S1 i;;; S2 , see Examples 7.6 and 7. 7). 
2. Derivable inclusion. 
3. Forced inclusion. 
4. Semantical inclusion= cofinal inclusion. 
5. Prooftheoretic inclusion. 
6. Inclusion in some extension. 

Also .s1 I= </> 1 /\ </> 2 /\ r_/) 3• However, a simple proof then shows that .s1 I= r(g_, ]!_,.f.) <::> 

a+ b = c, in contradiction with the non-definability of+ in d (see Remarks 8.3.1 
and 3.3.2). 

7.3. Example. Let .N'= (N, 0, S, +, x), 1: the signature of JV and E =Ex. 
Furthermore, 

S1 = x := O; while x ;t. y do x := x + 1 od 

S2=x:= y 

Then (i) S1 =ttL(X,EJ S2, but (ii) S1 'i"' Aig(X,E) S2. 
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Proof. (i) HL is relatively complete for}{, i.e., 

}{ F= {p} S {q} ~ HL(1:, E) 1-{p} S {q}. 

Now}{ F= S 1 = S2 implies 

or equivalently 

'tfp,q HL(1:,E)1-{p}Si{q} ~ HL(I,E)r-{p}S2 {q}, 

i.e., S1 = HL<I.EJ S2. Since in our case indeed }{ F= S1 = S2, we have (i). 
(ii) However, in a nonstandard model}{* E Alg(1:, E), S1 will diverge when y is 

nonstandard. So }{* fiC S 1 = S2, hence Alg(I, E) I?" S1 = S2. 

7.4. Example. Back to Example 7.2, which shows moreover that 

HL(1:, E) I- S1 i;;;; S2 ~ HL(I, E) If- S1 i;;;; S2• 

From S1 !Z:HL(I,.,E..,J S2 it follows trivially that S1 G S2 is not derivable. However, for 
(I', E') = (1:,,,z·, E.91·) where d' = (~, 0, S, P, +)we do have 

The proof of ( *) is by the method of prototype proofs, as follows. Consider 77'( S2), 

this is given by 

{r0 (x, y )}{r1 (x, x)} y := x {r1 (x, y )}{r2(0, y)}x := 0 {ri(x, y)}{r3(x, y)}. 

So we have to find a proof of {r0(x, y)} S1 {r3(x, y)} in the theory 

E ·"'' u {r0 (x, y) -+r1 (x, x), r1 (x, y) ~ r2(0, y ), r2(x, y) _. r3(x, y )}. 

This is indeed possible: 

y:=O 

h(O, x)" y = O} 

{3x0 [r3(0, Xo) "x = Xo" Y =OJ} 

{3x0 [r3(0, x0) /\ x + y = xo]} 

while xr!: 0 do 

y:=Sy 

{3x0 [r3(0, x0 ) /\ x + y = x0 " x 7': OJ} 

{3x0 [r3 (0, x0 ) "Px +Sy= x0 " x 7': OJ} 

{3x0 [r3(0, x0 ) /\ Px + y = x0 " x 7': OJ} 
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x:=Px 

od 
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{3x0 [r3(0, x0 ) 11x+y=x0 ]11 x = O} 

{3x0 [r3(0, x0) 11y=X0 11 x = O]} 

{r3(X, y)}. 

The above concepts and theorems generalize without any effort (other than 
notational) to the case of multi-sorted signatures and algebras. To substantiate this 
claim, we give the following example. 

7.5. Example. Let }; be the multi-sorted signature consisting of 

domains : NUM, VEC, FUN 

constants ; 0, .1 E NUM, 0 E VEC 

functions +: NUM x NUM ~ NUM 

·: NUMXNUM~NUM 

AP:VECxNUM~ VEC 

INP: VEC x VEC ~ NUM 

ROW:FUNXNUM~ VEC 

EV AL: FUN x NUM ~ NUM 

variables x, y, z E NUM 

X, Y,ZEVEC 

a, /3 EFUN 

The specification (I, E) we are interested in has the following axioms, describing 
how the inproduct between two vectors should behave: 

E = {Peano +all induction axioms 

INP(0, Z) = INP(Z, 0) = 0 

INP(AP(Z, x), AP(Z', x')) = INP(Z, Z') + x · x' 

AP(Z, x) =AP(Z', x')~Z=Z' 11 x=x' 

ROW(a, 0)=0 

ROW( a, x+l) =AP(ROW(a, x), EVAL(a, x+ 1)) 

Vx EVAL(a, x) = EVAL(/3, x) ~a= /3}. 
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Furthermore, let S 1, S 2 E W{J}l(.J;) be the following programs, both computing the 
inproduct of two vectors: 

S 1 =A:=0, B := 0; z := O; x := O; 

while x ?":- y do x:= x+ 1; 

z := z + EV AL( a, x) · EV AL((3, x) 

od x:= 0, 

S2 =A:= ROW( a, y); B := ROW(/3, y); z := INP(A, B); 
x:= O; A:=0; B:=0. 

Now we want to prove that Alg(.J:, E) I= S 1 !;;;; S2 • (The reverse does not hold by 
the presence of nonstandard models in Alg(.l', E).) (This can be done by proving 
that HL(.l', E) I- S1 !;;;; S 2 , using the method of prototype proofs, as follows. First we 
write down 7r(S2): 

A:= ROW( a, y) 

B := ROW(/3, y) 

z := INP(A, B) 

x:=O 

A:=0 

B:=0 

{r0 (x, y, z, A, B)} 

{r1(x, y, z, ROW( a, y), B)} 

{r1 (x, y, z, A, B)} 

{rz(x, y, z, A, ROW(/3, y))} 

{r2(x, y, z, A, B)} 

{r3 (x, y, INP(A, B), A, B)} 

{r3(X, y, Z, A, B)} 

{r4 (0, y, z, A, B)} 

{r4 (x, y, z, A, B)} 

{ rs( X, y, Z, 0, B)} 

{r:;(x, y, z, A, B)} 

{r6 (x, y, z, A, 0)} 

{r6 (x, y, z, A, B)} 

{h(X, y, z, A, B)} 
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So K ( 7T(S2) ), the set of consequences used in 7T(S2 ), entails the following implications: 

r0(x, y, z, A, B) _,. 

r1(x, y, z, ROW( a, y), B) _,. 

r2(x, y, z, ROW( a, y), ROW(/3, y))_,. 

r3(x, y, INP(ROW(a, y), ROW(/3, y)), ROW( a, y), ROW(/3, y))-? 

r4 (0, y, INP(ROW(a, y), ROW(/3, y)), ROW( a, y), ROW(/3, y))-? 

r5(0, y, INP(ROW(a, y), ROW(/3, y)), 0, ROW(/3, y))-? 

r6 (0, y, INP(ROW(a, y), ROW(/3, y)), 0, 0)-? 

r7 (0, y, INP(ROW(a, y), ROW(/3, y)), 0, 0). 

Using these implications together with theory E, we can prove {r0 (x, y, z, A, B)} 
S1 {r7(x, y, z, A, B)} (and by Lemma 5.10 this proves HL(.l', E) f- S1 i;;;;S2 ): 

{ro(X, y, Z, A, B)} 

{r7 (0, y, INP(ROW( a, y), ROW(/3, y) ), 0, 0)} 

A:=0; 

{r7 (0, y, INP(ROW(a, y), ROW(/3, y)), A, 0)} 

B:=0; 

{r7(0, y, INP(ROW( a, y ), ROW(/3, y) ), A, B)} (abbreviation: r~) 

z:=O; 

{r'y11z=O} 

x:=O; 

{r'y 11z=011 x = O} 

{r'y 11 z=INP(ROW(a, x), ROW(/3, x))} 

while x ¥ y do 

(r'y 11 z = INP(ROW(a, x), ROW(/3, x)) 11 x ¥ y} 

x:= x+ l; 

{r'y 11 3x' (z = INP(ROW(a, x'), ROW(/3, x')) 11x=x'+1 

/\ x' ¥ y)} 

z := z+ EVAL(a, x) · EVAL(/3, x) 

{r'y 113x', z' (z' = INP(ROW(a, x'), ROW(/3, x') 11x=x'+1 

11x'r&-y11 z = z' + EVAL(a, x) · EVAL(/3, x))} 
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(Now use E) 

od 

x:=O 

{r; "3x' (z = INP(ROW(a, x' + 1), ROW({3, x' + 1)) 

/\ x = x' + 1 /\ x' ;e y)} 

{r; "z = INP(ROW(a, x), ROW({3, x))} 

{r; "z = INP(ROW(a, x), ROW({3, x)) "x = y} 

{r7(0, y, z, A, B)} 

{r7 (x, y, z, A, B)}. 

Hence Alg(..l', E) F= S1 r;;;; S2 . 
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7.6. Example. Define (as a special case of derivable inclusion) logical inclusion of 

S1 in S2 as follows: HL(..l', 0) f- S1 r;;;; S2 . Now the following well-known equivalences 

are 'logical': 
(i) (Loop-unwinding) 

S1 =while bdoSod; D(D=x:=x), 

S2 =if b then while b do Sod; D else D. 

The proof that HL(..l', 0) f- S1 r;;;; S2 immediately follows by computing 11"(S1) and 

using the thus obtained set of consequences K( 11"(S1)): 

r0 (x)....,. r1(x), 

r 1(x) /\b...,. r 2(0), 

r 1(x) /\-,b....,. r3(x), 

to prove that {r0 (x)} S2 {r3(x)}. Likewise for the reverse inclusion. 

(ii) Another example of logical inclusion, which is equally simple to verify: 

S1 =while true do S od, S2 is arbitrary. 

Then HL(..l', 0) f- S1 !;;;;; S2 . This example is from [ 4, p. 93] as well as the next one: 

(iii) S1 =while b1 v b2 do S od 

S2 =while b1 do Sod; while b2 do S; while b1 do Sod od. 

Here also a simple computation yields the logical equivalence of S1 , S2• 

7.7. Example. Manna [20, p. 251, p. 259] gives several examples of program 

equivalence which are all 'logical': 
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(ii) S1 =while p(x2 ) do x1 := g(x1 , x3 ) od D 

S2 =if p(x2) than DIV else D fi 

Here DIV=while x=xdox:=x, and D=x:=x 

(iii) 5 1 = x := y + 1 ; if x = 1 then z := 0 else y := y + 1 ; 

if y = l then z := 1 else z := 2 fi fi 

52 = x := y + 1; if x = 1 then z := 0 else y := y + 1; 

z := 2 fi. 

(Adapted from [20, p. 252]. Note that 5 1 contains a useless branch.) 

7.8. Remarks. (1) Abbreviate 

'<Jp,qEL(.'I) Alg(.'I,E)F={p}5i{q} ~ Alg(1:,E)t={p}S2{q} 

by S1 ~Pc(.r,E) 52 (where PC stands for partial correctness). 
Then, for (.'I, E) logically complete, it follows at once from Definition 1.2.2 that 

t;;;HL(I.EJ and ~Pc(I,EJ coincide. 
Since 5 1 ~Alg(.r.E) S2 implies S1 ~Pcc.r,Ei 52 (trivially) for all (.'£, E), we have 

therefore, for logical complete (.'£, E), 

The reverse implication does not hold. We give a counterexample: 

51 =x:=0, y := 0, 

S2 =while x ,P y do x == x + 1 od; x := 0; y := 0, 

(.'£, E) =(.'Ix, Ex) where J{= (N, 0, 1, +, x). 

Now (.'£, E) is logical complete (see [7]) and HL is relatively complete for J{ (see 
[4, Chapter 3]). From the last fact it follows that S 1 =Hui.Bi S 2 • However, due to 
the presence of nonstandard models in Alg(.'I, E), we have S1 ¥ Aig(X,El S2 • 

(2) Note that (1) also establishes that (ii) ~ (i) (i.e., 5 1 ~PC(X,E> S 2 ::4 
S 1 ~Aig(X.EJ S2), as claimed in the Introduction. For another counterexample, see 
[5, Theorem 5.8]. 

(3) As claimed in the Introduction: 

Alg(.'I, E) t= S1 ~ S2 <==> '</(.'£', E') re:(.'£, E) 51 ~PC(X',E' 1 S2. 

Here ( :::;>) is trivial. 

Proof of (~): Assume the right-hand side, and suppose Alg(I, E) Ft S1 ~52 • 
Then since semantical and co final inclusion coincide (Theorem 7 .1), we have 

3(1:', E') ~(I, E) V(I", £")re: (.r'' E') 51 r;j;_ HL(l:.",E") S2. 
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Now consider such a (.I', E'), and a (.l'", E") which is logically complete. Then by 

the assumption of the right-hand side, S 1 i;;Pcc.:r",E"l S 2 ; and by logical completeness, 
S1 r;;;;Hu2·".E"l S2; a contradiction. 

8. Abacus arithmetic 

In this section we will consider our paradigm algebra .s4 = (N, 0, S, P). It is useful 

by the following two well-known facts (already mentioned in Example 3.3.3). 

8.1. Proposition. (i) Ed is a decidable theory, and (ii) every partial recursive function 
can be computed in .s4 by some SE "W'fJl(.I'A)-

Using this proposition we will calculate the degrees in the arithmetical hierarchy 
of the various inclusions S 1 r;;;; S2 (as predicates of SI> S2 ) w.r.t. (.I"", E.w ). 

For a proof of Proposition 8.l(ii), see, e.g., [11, Chapters 6 and 7], where results 

from [19] are presented. The proof there uses in fact not while-programs, but 
flow-diagrams composed of only two operations: 

assignments: x" := S(x,J (n = 0, 1, 2, ... ) 

branching operations: 

x = 0 
n 

(As pointed out in [19], such a flow-diagram is in fact computing on an infinite 

abacus. Variables as in such a diagram are known as counters.) Combined with the 

equally well-known fact that for every flow-diagram there is an equivalent whlle
program (see, e.g., [19]) we have Proposition 8.l(ii). 

For the sake of completeness, we will now outline a proof of Proposition 8.l(i), 
as given in [14]. 

8.2. Definition. Let A be some set and let R s A" be an n-ary relation. Let 

a 1 , ••• , an-i EA be fixed. Then {x E Al R(a1> ... , a;- 1, x, a;, ... , a,,_ 1)} is called a 

section of R (where 1 ~ i < n). 

8.3. Proposition. (a) Let sd' = (N, 0, S). Then 
(i) E .w' is decidable, 

(ii) Ed' admits elimination of quantifiers, 
(iii) a subset X s N is definable in .s4' if! X is finite or cofinite (i. e., N- X is finite). 

More general, every definable n-ary relation R s N" has only finite or cofinite sections. 

(b) The same as in (a) holds ford= (N, 0, S, P). 

(c) Likewise for (.l, 0, S, P). 
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Proof. (a) (see (14]). (i) is proved there by considering the following axiomatization 
of E 91.: 

S(x) ""0, 

S(x)=S(y)"' x=y, 

y-;tf0"' 3x (y=S(x)), 

S(x) # x, S(S(x)) # x, ... , S"(x) # x,... (for all n). 

Using the Los-Vaught test it is proved that this axiomatization is complete. 
Obviously it is also decidable. Hence Ed' is decidable. 

(ii) As demonstrated in [14], for every assertion pEL(J:91 ,) there is a quantifier
free assertion q such that E 91 , f- p ~ q. (This 'elimination of quantifiers' yields 
another proof of (i).) 

(iii) Routine from (ii). 
(b) Note that P is definable in .sll' = (N, 0, S), by 

P(x) = y ~x = y = 0 v S(y) = x. 

Now use (a). 

(c) A routine adaptation of (b). D 

8.3.1. Remark. Note that Proposition 8.3(b)(iii) yields an alternative proof of the 
nondefinability of + in .sll. For, using a supposed definition of + one could define 
the set X of even numbers in .sll; a contradiction since X and its complement are 
both infinite. 

8.4. Application. The following is an example of S1, S2 such that the domain 
inclusion Dom(S 1) i;;;;Dom(S2) is not derivable but can be forced (see Example 
9.5(ii)). 

Let .sll be (Z:, 0, S, P) and (I, E) = (..l'd, Ed). Let 

S1 = y := O; while x # y do y := S(y) od; 

y:=O; while x# y do y:=P(y) od 
and 

S2 = y := O; if x = 0 then x := x else DIV fi 
where 

DIV =while x = x do x:= x od. 

Clearly, S1 and S2 converge on x = 0 and nowhere else. 
Now HL(.l', E) f-{x # O} S2 {false}, as can easily be proved; however, 

HL(I, E)V{x # O} S1 {false}. This can be made plausible by considering an informal 
proof of {x -;tf O} S1 {false}; then somehow one must mention the ordering < on "Ji... 
However,< is not present in ..l', and not even definable in (I, E). (The nondefinability 
of < in (I, E) can easily be proved using Padoa's method (Theorem 3.3), by 
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permuting some of the nonstandard copies of Zin a nonstandard model of (I, E); 
cf. 3.3.2.) 

That HL(I, E) V{x ;t. 0} S1 {false} can be made precise as follows. If 
HL(I, E) I- {x r!: O} S1 {false}, then, using x = S(y) +'» P(x) = y, one easily shows that 
the two invariants r 1(x, y), r2(x, y) in S1 must satisfy: 

(1) x >6 0 ~ r1 (x, O), 

(2) X >6 y 1H1(X, y) ~ r1(x, S(y)), 

(3) r1(x, x)' r2(x, O), 

(4) x >6 y A r2(x, y) ' r2 (x, P(y)), 

(5) 1r2(x, x). 

There are several 'solutions' for rh r 2 as subsets of Z2. However, using (1)-(5) we 
have r1(1, O), hence r1(1, 1), hence r2(1, O), hence r2(1, n) for all n :s; 0. Moreover, 
from (4) and (5), 1r2(1, m) for all m =::: 1. Therefore, every solution r2 has a section 
which is neither finite nor cofinite; so, by Proposition 8.3 ( c) (iii), r2 is not definable. 

As promised in Section 7, we will now show that semantical inclusion and forced 
inclusion are in general not equivalent. 

8.5. Theorem. The proof system HL(I, E) If- S1 i;;;;; S2 is in general not complete for 
S1 i;;;;;Aig(I,El Sz. 

Proof. Let I be the signature of .91=(N,0, S, P). From Proposition 8.3(b) we know 
that E =Ed is decidable. Let f l: 'Wgi>(I) ~ w be an effective coding of programs; 
we will write s for f S l R and r are two relations on pairs of codes of programs 
as follows: 

r(s1, s2) <=> HL(I, E) If- S1 i;;;;;S2 , 

R(s1> Sz) <=> S1 i;;;;;Aig(I,EJ Sz. 

The incompleteness of If- for i;;;;;Aig is shown by considering the specification (I, E) 
and demonstrating that R >6 r. It turns out that R and r have different positions in 
the arithmetical hierarchy. As a matter of fact r is I~ but R is complete II~, and 
a fortiori r and R must differ. 

We will first consider r. Working from its formal definition we obtain 

r(S1, S2) <=> 3(.l'', E') 12:. (I, E) [HL(I, E) 1-- S 1 i;;;;; S2] 

(1) • 
<=> 3(I', £ 1 )12:. (I, E) [(I, E) consistent & HL(I, E) 1-- S1 i;;;;;S2 ] 

~ 3(I',E*)finite[I'2I& (I',E*uE) consistent 



44 J.A. Bergstra, J. W. Klop 

\ 1 is justified by the completeness of (..l', E) which entails that each consistent 

refinement of it is a conservative one. Step (2) follows from Lemma 5.1 O(ii) which 

savs that the refinement in the definition of If- can be taken finite if one wants. 

B~cause '( .!', E* u El is consistent' is a Il\1 predicate and HL( ~', E * u E) f- S 1 r;;;; S2 

is Sy (due to Theorem 5.11 and the decidability of E), r must be ..l'~. 
Then consider R. 51 !;;;;_,,,.ig<.l.Ei S2 is in general II~ in E, R is at most II~. We have 

to show that it is complete II~. A well-known example of a complete II~ relation 

is the following one: t(s) <:::> S computes a totalfunction on d (for more information, 

see We show that t is 1-1 reducible to R. Let X 5 ={x1, •• • , xk(sl} be the set 

of variables occurring in S. For x E X 5 , H(x) abbreviates the program while x ~ 

Odo x:""P(xl od. H(X5 ) abbreviates H(x1);H(x2); ••• ;H(k<s>)· The reduction 
of t to R works as follows: 

t(fSI) <:::> R(rH(Xsll. fS;H(Xs)l). 

To see ( '*=l, assume H(X5 ) !;;;;Alg<E.EJ S; H(X5 ); then in d: H(X5 )k; S; H(Xs); 
because H(Xs) is total on S!l., S must be total on d as well, i.e., t(f S l) holds. On 

the other hand assume t(f S l). Let 93 E Alg(..l', £); clearly d is isomorphic to a 

substructure of .JJ. As H(X5 ) and S; H(X5 ) can only produce output 0 it is sufficient 

to show Dom{H(Xx)) ~ Dom(S; H(X8 )). Dom(H(X5 )) = dk(S>, thus Sis defined 

on Dom(H(Xs)) and yields values in S!l.k<si on such arguments; on these values in 
turn, HL(Xsl is defined. D 

9. Domain inclusion 

In this section we will show that given some additional information about the 
domains of S,, S2, sernantical inclusion and forced inclusion S 1 r;;;; S 2 coincide. 

9.1. Definition. (i) (Semantical inclusion of domains). 

':e~· ~.1.S:clld',(;). Then ~lg(..l',E)l=Dom(S 1 ).::;Dom(S2 ) if, for all si.E 

:A.lg(.-. El. Dom(S, )~Dom(S2 ). Note that Alg(..l',E)l=Dom(S1)i;;;;Dom(S2) 
1mphes 

Alg(l:, E) I= {p} S2 {false}::::} Alg(I, E) I= {p} S1 {false}. 

(HL-inclusion of domains) Dom(S ) c:: Dom(S ) ·ff 
· I -HL(:!:,E) 2 1 

HU.!, E) 1- {p} S2 {false} ::::} HL(l:, E) 1-{p} S 1 {false} for all p E L(2). 

(iii) \Derivable inclusion of domains). HL(I, E) 1- Dom(S1) i;;;; Dom(S
2

) iff 

(ivl 

'r/' ""' £') . "" \- · . e: ( ...... , E) Dom(S1) !;;;;HL<E'.E'l Dorn(S2). 

( Forced inclusion of domains). HL( .r, E) I= Dom (Si) .::; Dom ( Sz) iff 

3(1:', E')e: (..l', E) HL(I', E') I- Dom(S,).::;Dom(S2). 
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9.1.1. Remark. The mathematical theory of domain inclusion is quite complicated 
in fact. For instance, a pentagon of inclusion relations similar to the one after 
Theorem 7.1, can be constructed and will turn out to have analogous properties. 

In order to prove the main theorem of this section, we need the following 
proposition. 

9.2. Proposition. Let S1 , S2 e "Wr!P(.r) contain both the variables x 1, •.• , Xn and 
suppose Alg(.r, E) I= S1 r;; S2 • Then there is a (.r', E') ~ (.r, E) such that I';:::; .r u 

Ui. · · ·, fn}, where !1> ... , fn are 'fresh' n-ary function symbols, and such that 

HL(.r', E') I- {x = z} S;{x = f(x)}, i = 1, 2. 

(Here X = f(z) abbreviates: x 1 = f 1(x 1, ••• , Xn), ... , Xn = fn(x,, .... , Xn).) 

Proof. Let .r" = .r u U1' ... 'fn} and E" = E u r where 

I'={Compn,s.(z) = x~ x = f(z) In ;:;:;Q, i = 1, 2} 

(for 'Comp', see Lemma 1.1.2). 
Now every .st1 E Alg(.r, E) can be expanded to an .sf/.' E Alg(.r", E"), since 

Alg(.r, E) F= S, i;;;; S2 • Choose for the interpretation f stl an arbitrary total function 
extending the partial function S"f (which extends itself Sf'). Therefore, by the 
criterion for conservativity (Proposition 2. 7.1), (.r", E") ~ (.r, E). Clearly, 
Alg(.r", E") F= {x = z} S; {x = f(z)}, i = l, 2. 

Now let (.r', E') be a logical completion of (.r", E"). (By Theorem 6.1 this exists.) 
Then Alg(I', E') I= {x = z} S;{x = f(z)}, i = 1, 2, and by the logical completeness 
we have 

HL(I',E')l-{x=z}S;{x=f(z)}. D 

9.3. Theorem. Suppose HL(I, E) If- Dom(S1)r;;Dom(S2). Then 

Alg(I, E) F= S1 r;; S2 ~ HL(.r, E) If- S1 r;; S2• 

Proof. ('*'=) is already done in Section 7. 
(~). Let S 1, S2 e "Wr!P(.r) be such that 

HL(I, E) If- Dom(S1) i;;;; Dom(S2 ) and Alg(.r, E) I= S, 6 S2. 

Let x = x1> ... , Xn be the variables occurring in S1, S2 • 

Step 1. Extend .r to .r1 containing n-ary function symbols / 1, •.• , fn and E to 
E 1 such that (.r1> E 1) ~ (.r, E) and HL(.r" E 1) 1-{x = z} S; {x = f(z)}, i = 1, 2. This 
is possible by Proposition 8.2. 

By assumption, there is a (.r2 , E 2) ~ (.r, E) such that HL(.r2, E 2 ) 1- Dom(S,) r;; 
Dom(S2 }. We may suppose .r2 n .r1 = .r (cf. Proposition 4. 7.2), hence by Robinson's 
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Consistency Theorem 2.6.2, (2:'', E') = (2: 1 u2:'2 , E 1 u E 2) is a conservative refine
ment of (.I, E). 

Claim. HL(.I', E') I- 51 i;;::;52 • (Then we are through.) 
Proof of the Claim. Consider a refinement (.I", E") 12: (2:'', E') such that 

HL(.I", E") 1-{p} S2 {q}. 

We have to prove 

(0) HL(.I", E") 1- {p} S1 {q}. 

Obviously, since q[f(x)/(x] /I. 1q [f(x)/x] is a tautology, (O) is equivalent with (1) 
& (2) as follows: 

(1) HL(.I", E") 1- {p A q[f(x)/ x]} 5 1 {q}, 

(2) HL(.I", E") 1-{p A -iq[f(x)/x]} S1 {q}. 

Proof of (1 ). By the rule of consequence, it is sufficient to prove that 

HL(1:", E") 1-{q[f(x)/x]} 51 {q}. 

We know that 

hence, trivially, 

HL(.I", E") I- {x = z} S1 {x = f(z)}. 

By Proposition 1.2.3 it follows that 

HL(.I", E") I- {x = z A q[f(z)/ z ]} S1 {x = f(z) A q[/(z)/ z ]}. 

Hence indeed HL(.I", £")I- {q[/(x)/ x]} S1 {q }. 
Proof of (2). We know that HL(.I", E") 1-{p} 52 {q}. So, by the Conjunction rule 

(l.2.3(i)) and Invariance rule (l.2.3(iii)) we have 

HL(.I", E") I- {x = z A p 11 -iq[f(z)/ x]} 52 {q Ax= f(z) A -iq[f(z)/ x ]} 

where the postcondition obviously implies {false}. By the assumption 
HL(.I2 , £ 2 ) I- Dom(S1) i;;; Dom(S2) we have, therefore, the same for S 1: 

HL(.I", E") I- {x = z A p 11 -iq[f(z)/ x]} 5 1 {false}. 

By the rule of consequence we have 

HL(.I", E") 1- {x = z A p A 1q[f(z)/ x]} 5 1 {q }. 

By Proposition l.2.3(iv) we have 

HL(.I", E") I- {3z(x = z A p A -iq[f(z)/ x]} S1 {q}. 

I.e., indeed HL(.I", E") 1-{p A 1q[f(x)/ x]} 51 {q}. 0 
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9.4. Corollary. Let S1 , S2 E "W'9i'(I) and suppose that S2 is everywhere converging, 
for all .s4 E Alg(I, E). Then 

Alg(I, E) t= S1 r;;;; S2 ~ HL(I, E) If- S1 i;;;; S2• 

Proof. ( <=) has already been proved in Section 7. 
(~). By the soundness of HL (Lemma 1.2.1) we seethatHL(I, E) V{p} S2 {false} 

for all p E L(I). Hence trivially 

HL(I, E) f-{p} S2 {false} ~ HL(I, E) r-{p} S1 {false}, 

i.e., HL(I, E) f- Dom(Si) r;;;;Dom(S2). 

Therefore, also trivially, HL(I, E) If- Dom(S1) i;;;; Dom(S2 ). Now apply the preced
ing theorem. 0 

9.5. Example. (i) Let Si. S2 be as in Example 7.5. Then HL(..!'.,;, E_ot) If- 51 i;;;;S2 and 
52 is always converging. Hence by 8.4, Alg(I.,;, E.,;) I= S1 i;;;; Sz. 

(ii) In Example 9.S(i) the domain inclusion is already derivable. An example 
where domain inclusion is not derivable but can be forced, was given in 8.4. 
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