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Process Algebra for Synchronous Communication 

J. A. BERGSTRA AND J. W. KLOP 

Centre for Mathematics and Computer Science. Amsterdam. The :Vetherlands 

Within the context of an algebraic theory of processes. an equational 
specification of process cooperation is provided. Four cases are considered: free 
merge or interleaving. merging with communication, merging with mutual exclusion 
of tight regions, and synchronous process cooperation. The rewrite system behind 
the communication algebra is shown to be confluent and terminating (modulo its 
permutative reductions). Further, some relationships are shown to hold between the 
four concepts of merging. c I 984 Academic Press. Inc. 

0. INTRODUCTION 

0.1. General Motivation: Process Algebra 

Our aim is to contribute to the theory of concurrency, along the lines of 
an algebraic approach. The importance of a proper understanding of the 
basic issues concerning the behaviour of concurrent systems or processes, 
such as communication, is nowadays evident, and various formats have been 
propqsed as a framework for concurrency. Without claiming historical 
precision, it seems safe to say that the proper development of an algebra of 
processes starts with the work of Milner (see his introductory work, (Milner, 
1980)) in the form of his calculus of communicating systems (eeS). Milner 
states his aim in (Milner, 1983) in his own words: "In a definitive calculus 
there should be as few operators or combinators as possible, each of which 
embodies some distinct and intuitive idea, and which together give 
completely general expressive power." Milner (1983) proposes sees 
(synchronous ees) based on four fundamental operators, and remarks: 
"These four operators obey (as we show) several algebraic identities. It is not 
too much to hope that a class of these identities may be isolated as axioms 
of an algebraic 'concurrency" theory, analogous (say) to rings or vector 
spaces." These two quotations denote precisely the general motivation 
underlying also the present paper. 

0.2. Aims of the Present Paper 

More specifically, in this paper we propose an algebra of processes based 
on elementary actions and on the operators + (alternative composition or 
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110 BERGSTRA AND KLOP 

choice), . (sequential composition or product) and II (parallel composition or 
merge). It turns out that in order to obtain an algebraically more satisfactory 
set of axioms, much is gained with our introduction of an auxiliary operator 
l (left-merge) which drastically simplifies computations and has some 
desirable "metamathematical" consequences (finite axiomatisability if the 
alphabet of elementary actions is finite; greater suitability for term rewriting 
analysis) and moreover enhances the expressive power (more processes 
definable). Using these operators we have a framework for processes whose 
parallel execution is simply by interleaving ("free" merge): this is the axiom 
system PA in Table II in Section 1. The axiom system ACP presented below 
in Table III is devised to cover also processes that can communicate, by 
sharing of actions. To this end a constant fJ for deadlock (or failure) is 
introduced, another operator: I (communication merge), and finally, an 
operator On for "encapsulation" of a process. Also this system, ACP for 
algebra of communicating processes, is a finite axiomatisation of its intended 
models (which we call process algebras). 

Clearly there is a strong relation of the system ACP below to the system 
CCS of Milner. In Milner (1980) some process domains are discussed which 
can be seen as models of ACP. Determining the precise relationship is a 
matter of detailed investigation. In advance to that, one might say that ACP 
is an alternative formulation of CCS, at least of a part of CCS. (In this 
paper we do not discuss the so-called "r-steps," or silent steps, obtained by 
abstraction from "internal" steps.) Notably, several of the ACP operators 
differ from those in CCS: 

(i) multiplication · is general (not only prefix multiplication), 

(ii) NIL is absent in ACP, 

(iii) J, l, and I are not present in CCS. 

The merge operator II is the same as in CCS, though it is differently (namely, 
finitely) axiomatised. In ACP we have no explicit relabeling operators as in 
CCS, or "morphisms" as ~hey are called in Milner ( 1983 ), except the encap­
sulation operators On which play the role of "restriction" in CCS and SCCS. 

Also in ACP we have no r-steps (silent steps) and not the well-known r:­
laws (in Milner, 1980) for them; they can be added consistently, and even 
conservatively, to ACP. The resulting axiom system ACP T is studied in 
Bergstra and Klop ( 1984b ). In general, ACP does not address the 
complicated problem of "hiding" or abstraction in processes. 

The choices of these operators can be seen as design decisions; of course 
the basic insights into the algebraic nature of communicating processes are 
already stated in Milner's book (Milner, 1980). Some of these design 
decisions are motivated by our wish to optimize the facility of doing 
calculations; some others to enhance the expressive power of the system. For 
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instance, having general multiplication available enables one to give a 
specification of the process behaviour of stack in finitely many equations 
which can be proved to be impossible with prefix multiplication (see Bergstra 
and Klop, 1984a). 

An explicit concern in the choice of the axiom systems has been an 
attempt to modularize the problems. Thus PA is only about interleaving or 
as we prefer to call it, free merge, that is, without communication; ACP 
moreover treats communication; AMP treats the merge of processes with the 
restriction of mutual exclusion of tight regions; and ACP, treats abstraction. 
(See also our Remark 6.5 concerning terminology.) 

Apart from the general motivation to use the system ACP for specification 
and verification of processes, we have been concerned in subsequent work 
with the detailed investigation of several of the models of ACP, as well as 
mathematical properties of this axiom system itself. Also some extensions of 
ACP were studied. This brings us to stating the aim of this paper: it is the 
first of our series of papers consisting of the present one and (Bergstra and 
Klop, 1983a, b; 1984a-d) on process algebra, meant first to present the 
system ACP and second to establish some of its basic mathematical 
properties (notably consistency of the axioms and a normal form theorem for 
process expressions). In the concluding remarks we elaborate on some 
applications which have been realised in these subsequent papers. 

Though our central interest in this paper is for the "general purpose 
system" ACP, we have also formulated some other "special purpose'' axiom 
systems: AMP for merging with mutual exclusion of tight regions; ACMP, a 
join of ACP and AMP; and ASP for synchronous process cooperation. 
Some relationships between these systems are shown, e.g., an interpretation 
of ASP in ACMP and an "implementation" of AMP and ASP in ACP. 

0.3. Related Approaches 

Since this is not a survey paper and since there are several approaches 
related to the present one, it is not possible to discuss them while doing them 
justice or giving a complete view. Yet we want to mention the following lines 
of investigation. Closest to the present work (and its subsequent work in 
(Bergstra and Klop, loc. cit.) is Milner's ces, which was above briefly 
compared with the axioms below. Interestingly, Milner has proposed in 
(Milner, 1983) a system sees which supersedes CCS and which has as 
fundamental notion: synchronous process cooperation. It is argued that 
asynchronous process cooperation (as in CCS and AeP) is a subcase in 
some sense of the former one. The terminology synchronous versus 
asynchronous is used in a different sense by different authors; see 
Remark 6.5. Again, it would be very useful and interesting to determine the 
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precise mathematical relationships between those systems for synchrony and 
asynchrony; a start has been made in Milner (1983). 

Milner's work has been continued and extended in Hennessy and Plotkin 
(1980) and a series of papers by Hennessy (1981-1983) in which a detailed 
and extensive investigation is carried out often using operational preorders as 
a means of establishing completeness results of various proof systems. 
Completeness here is w.r.t. the semantical notions of observational 
equivalence and/or versions of bisimulation. Hennessy ( 1982a, 1983) also 
studies the differentiations of + according to whether a choice is made by the 
process itself or by its environment. Further, the work of Hennessy and 
Milner obtains several results in terms of modal characterisations of obser­
vational equivalence (Hennessy, 1983; Hennessy and Milner, 1980, 1983 ). 
(See also Graf and Sifakis, 1984; and Brookes and Rounds, 1983.) 

Milne (1982a, b), presents the "dot calculus": here · is concurrent 
composition. The dot calculus uses prefix multiplication as in the work of 
Milner and Hennessy (called "guarding" by Milne), operators +, EE> for 
choice (by environment resp. internal), LI for deadlock as well as successful 
termination. In contrast to CCS as in (Milner, 1980), the dot calculus 
supports not only binary communication but n-ary communication. (The 
latter is also present in subsequent work of Milner and Hennessy; and also in 
ACP.) The dot calculus presents algebraic laws for its operators; for · these 
are rather different than the ones for the corresponding parallel composition 
operators in CCS and ACP. 

In our view there is a noteworthy methodological difference between the 
approaches as mentioned above and the present one. Namely, it has been an 
explicit concern of ours to state first a system of axioms for communicating 
processes (of course, based on some a priori considerations of what features 
communicating processes should certainly have) and next study its models; 
the analogy with the axiomatic method in, say, group theory or the theory of 
vector spaces is clear. For instance, one can study a model of ACP 
containing only "finitely branching" processes; or one might be interested in 
processes which admit infinite branchings (in the sense of + ); or, one may 
study the process algebra of regular processes, i.e., processes with finitely 
many "states" (cf. Milner, 1982; Bergstra and Klop, 1984a). Also, one may 
build process algebras based on the fundamental and fruitful notion of 
bisimulation (introduced by Park ( 1981 ), as is done in, e.g., Milner 
(1982, 1983); or one may consider process algebras obtained by the purely 
algebraic construction of taking a projective limit {of process algebras 
consisting of finitely deep processes). This list could be extended to some 
dozens of interesting process algebras, all embodying different possible 
aspects of processes. To the best of our knowledge, an explicit adherence to 
this axiomatic methodology at which we are aiming, is not yet fully 
represented in related approaches to the understanding of concurrency. 
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As some other related approaches which are less algebraical in spirit than 

the aforementioned (ees, Sees, dot calculus, ACP) and which have a 

more denotational style we mention the work of De Bakker and Zucker 

(1982a, b ). They have studied several process domains as solutions of 

domain equations, using topological techniques and concepts such as 

metrical completion, compactness. In fact, their domain of "uniform" 

processes and a question thereabout (see De Bakker and Zucker, l 982a) 

were our incentive to formulate PA as in Table II below. The processes of 

De Bakker and Zucker include several programming concepts which are not 

discussed in ACP. In De Bakker et al. ( 1983) the central issue of LT (linear 

time) versus BT (branching time), which determines the essential difference 

between trace sets and processes, has been studied. Denotational models for 

communicating processes as in Hoare's CSP (see Hoare, 1978; 1980) have 

also been discussed from a uniform point of view in Olderog and Hoare 

(1983 ). For work discussing aspects of CCS and CSP, as well as 

connections between these two, we refer to Brookes (1983 ). Other work on 

concurrency in the denotational style includes Back and Mannila ( l 982a, b ). 

Pratt (1982), and Staples and Nguyen (1983). Finally, Winskel (1983a,b) 

discusses communication formats in languages such as CCS, CSP. 

1. PRELIMINARIES: PROCESSES WITH ALTERNATIVE 

AND SEQUENTIAL COMPOSITION 

Let A be a finite collection (alphabet) of atomic actions a, b, c, .... (We 

insist on a finite alphabet to safeguard the algebraic nature of the present 

work; specifically we wish to avoid here infinite sums whose algebraic 

specification is much less obvious than that of finite sums.) 

Finite processes are generated from the atomic processes in A using the 

two "basic" operations: 

+: alternative composition (choice), 

·:sequential composition (product). 

The following equational laws will hold for finite processes. (See Table 1 

where BPA stands for basic process algebra.) Here x.y, z vary over 

processes. Often x . y is written as xy. The initial term algebra of these 

equations is (Aw, +, . ). The elements of this algebra will be called "basic 

terms," i.e., terms modulo Al-5. 
The main source of process algebra in this style is Milner ( 1980 ). Exactly 

the above processes occur as finite uniform processes in De Bakker and 

Zucker ( 1982a, b ). After adding an extra equation: x( y + z) = xy + xz, one 

obtains a version of trace theory as described in Rem ( 1983 ). 
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x+y=y+x 

TABLE I 

BPA 

x + (y + z) = (x + y) + z 

x+x=x 
(x + y) · z = x · z + y · z 
(x·y)·Z=X·(Y·Z) 

Al 
A2 
A3 
A4 
A5 

For n ~ 1 we have the approximation map nn: Aw'""' Aw, inductively 
described by 

nn(x + y) = nn(x) + nn(Y) 

nn(a)=a 

n 1(ax) =a 

nn+ 1(ax) = an.(x). 

Interestingly, if An= jn.(p) IP EA} then (A., +n, ·n) is another model of 
BPA. Here the operations +n and ·n are defined by 

and likewise for product. 
Infinite processes can be obtained as a projective limit, called A 00 , of the 

structures An. Technically this means that A 00 is the set of all sequences 
p=(p.,p2 ,p3 ,. .. ) withp;EA; andp1 =n;(P;+ 1). Such sequences are called 
projective sequences. The operations + and · on A 00 are defined component­
wise: 

(p + q)n = (P)n + (q)., 

(p · q)n = ;rrn((P)n · (q)n), 

where (P)n is the nth component of p. Thus we obtain the process algebra 
(A 00 , +, · ). On A 00 a metric exists: 

d(p, q) = 0 if p=q, 

= 2-n with n minimal such that (P)n * (q). if p * q. 

(A 00 , d) is a complete metric space, in fact it is the metric completion of 
(Aw, d). The operations + and · are continuous. (A 00 , d) was introduced in 
De Bakker & Zucker (1982a). Milner (1982) uses charts modulo 
bisimulation (from Park, 1981) to obtain infinite processes from finite ones. 
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Working with trace sets under the extra assumption x(y + z) = xy + xz, this 
metric occurs in Nivat (1979). In De Bakker et al. (1983) the connections 
between (A 00 , d) and its corresponding trace space are investigated. 

The processes discussed so far are provided with a bare minimum of 
structure. The crux of the algebraic method lies in algebraically defining new 
operators over the given process domains that will correspond to important 
process composition principles. We will describe operators corresponding to 
the following composition principles: 

(i) free merge (Sect. 2) 

(ii) merging with communication (Sect. 3) 

(iii) merging processes with mutual exclusion for tight regions 
(Sect. 4) 

(iv) merging with communication and mutual exclusion for tight 
regions (Sect. 5) 

(v) merging with synchronous cooperation (Sect. 6). 

2. FREE MERGE: THE AXIOM SYSTEM PA 

The result of merging processes p and q is p II q. For algebraic reasons 
(finite axiomatisability and ease of computation) an auxiliary operation l 
(left-merge) is used. The process p l q stands for the result of merging p and 
q but with the constraint that the first step must be one from p. Both 
operations II and l are specified on (A"',+,·) by Eqs. Ml-M4 of the axiom 
system PA in Table II. We call the set of axioms Al-AS (i.e., BPA) together 
with M l-M4: PA. This axiom system describes the interleaving of processes 
without communication, or as we prefer to call it, the free merge of 
processes. In Table II x, y, z vary over all processes (i.e., elements of an 

TABLE II 

PA 

x+y=y+x Al 
x + (y +z)= (x +Y) +z A2 
x+x=x A3 
(x+y)z=xz+yz A4 
(xy)z =x(yz) AS 

xll.v=xly+y\Lx Ml 
al x = ax M2 
ax\Ly=a(xllY) M3 
(x + y) IL z = x l z + y l z M4 
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algebra satisfying PA), while a is a variable over A. (This means that M2, 
M3 are axiom schemes, having finitely many axioms as instances.) 

Again the operations are extended to A 00 co6rdinate-wise: 

and likewise for l. We omit the proof that these are indeed projective 
sequences, i.e., that 

and likewise for l. It also follows that II and l are continuous w.r.t. the 
metric d. 

3. MERGING WITH COMMUNICATION: THE AXIOM SYSTEM ACP 

In order to describe communication we will need a distinguished symbol 
6 EA, describing deadlock or failure. It is subject to the axioms x + 6 = x 
and bx= 6 (A6, A 7 in Table III); 8 can be seen intuitively as the "action" 
by which a process acknowledges that it is stagnating. 

Now, starting with (Aw,+, ·) plus a communication function · I · : 
A x A ->A which describes the effect of sharing (simultaneously executing) 
two atomic actions, three operations II, L and I are defined on Aw. Here I, 
the communication merge, extends the given communication function. The 
operators II and l coincide with the analogous operators defined in Section 2 
if the effect of a communication a I b is always 6 (i.e., no two atomic actions 
communicate). 

For the communication function we require commutativity, associativity, 
and 61a=6 for all a EA (resp. Cl, C2, C3 in Table III). The actions c for 
which there exists an action c' such that c I c' op. 6 are called subatomic or 
communication actions. 

Furthermore, II, L and I are specified by the axioms CM l-CM9 in 
Table III. (See next page.) Table III contains the axiom system ACP, for 
algebra of communicating processes. Here the subset H s;; A is a parameter 
of Ou, the encapsulation operator. Its function is to encapsulate a process p 
w.r.t. H, that is, Ou(P) cannot communicate with its environment via 
communication actions in H. In Table III, a and b range over the alphabet A. 

Note that in general on(X II y) of= ou(x) II ou(y). Thus 011 is a 
homomorphism on (Aw,+,., 8), the initial algebra of axioms Al-A7, but 
not on (Aw,+," II, LI, 6). 

An important observation concerning the difference between processes and 
trace sets is exhibited in the following example. Let A= {a,c 1 ,c2 ,c,6f and 
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x+y=y+x 

TABLE Ill 

ACP 

x + (y + z) = (x + y) + z 
x+x=x 
(x + y) z = xz + yz 
(xy) z = x(yz) 

x+o=x 
OX= 0 

alb=bla 
(a I b) I c =a I (b I c) 
o I a= o 

x 11 y = x l .v + y l x + x I y 
alx=ax 
(ax)ly=a(xllY) 
(x + y) l z = x l z + y l z 
(ax) I b= (a I b)x 
al(bx)=(alb)x 
(ax) I (by)= (a I b)(x II y) 
(x + y l I z = x I z + y I z 
xl(y+z)=xly+xlz 

fi 11(a)=aifaEH 
c'11(a) = o ifa E: H 
?u(x + y) = ;1u(x) + i-'11(.l') 
i'u(~\Y) = i711(x) · i:111(Y) 

Al 
A2 
A3 
A4 
AS 

A6 
A7 

Cl 
C2 
C3 

CM! 
CM2 
CM3 
CM4 
CMS 
CM6 
CM7 
CMS 
CM9 

DI 
02 
03 
04 

117 

let c 1 I c2 = c. All other communications result in 6. Now, writing c for 
O(Ci,Cil' We have 

and 

so the second process ac 1 + ac 2 has a deadlock possiblity in some context 
where the first one, a(c 1 + c2), has not. 

As before II, L I, and off can be extended to continuous operations on 
(A 00 , d). 

This formalism includes both message passing and synchronisation. In 
Milner ( 1980) and De Bakker & Zucker ( l 982a, b) synchronisation is 
modeled by having a I b = r whenever a I b =t- b, r denoting a silent move. (In 
this paper we will not consider r-steps.) 
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3.1. Remark. A comparison with some operators in related work: 

(i) Milne ( l 982a) employs an operator L1 with the axiom x + L1 = x, 
as our A6. However, L1 denotes there not only deadlock but also successful 
termination. The same is the case for Milner's constant NIL in (Milner, 
1980). On the other hand, 6 as in Table III corresponds precisely to the 
"empty" process 0 in the domain of uniform processes of De Bakker and 
Zucker (I 982a, b ). There a process ends (in a terminating branch) either in a 
stop process p 0 (successfully) or in 0 (deadlock). 

(ii) Requirements on communication similar to C 1-C3 are found in 
Hennessy ( 1981 ), except that 6 is absent there but a unit element I is 
present; i.e., (A, I,!) is an abelian monoid. See also Milner (1983), who has 
similar postulates, viz. (A, I) is an abelian semigroup; he also works with 
(A, I, 1, -) as a commutative group. 

(iii) In Hennessy and Plotkin (1980) a definition corresponding to the 
equation CM 1: x II y = x l y + y l x + x I y occurs. 

(iv) In Hennessy (198la) an auxiliary operator y is used which is 
related to our auxiliary operators l and I as follows: 

xyy=xl y + x IY· 

Then one has 

x 11 y = x y y + y y x; 

also y is linear in its left component: 

(x + y) y z = x y z + y y z. 

(This follows by axioms CM4, CMS in Table III.) The operator y does not 
seem to yield a finite axiomatisation, however. Of course in the absence of 
communication, i.e., x I y = 6, so that ACP "reduces to" PA, the operators y 
and l coincide. 

3.2. ACP seems to provide a concise formulation of the algebraic 
essence of communication. Therefore we review its structure in detail here. 
We will show that the new operators are indeed well defined by A6, A 7, 
CMI-CM9, Dl-D4 over Al-A5 + Cl-C3. To this end we will rearrange 
ACP into a TRS (term rewrite system) which is shown to be confluent and 
strongly terminating modulo the permutative reductions A 1, A2. As a conse­
quence we find that each term built from A by +, ., II, L I, oH can be proved 
equal to a unique term in Aw in ACP. 

Finally we prove that II is associative, as well as several other useful iden­
tities in Theorem 3.3. 
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For technical reasons we associate to each a EA a unary operator a* 
which acts as follows: 

a*x =a· x. 

(That is, we consider the restriction to prefix-multiplication as in Milner 
( 1980, 1982, 1983 ). For finite processes, as we will consider in the following 
analysis, general multiplication and prefix-multiplication are equivalent. 
Working with prefix-multiplication frees us from considering the permutative 
axiom AS, which is bothersome in a term rewriting analysis, in Table Ill.) 

On the term system generated by A, +. ·, II, L I. a* (a EA), (' 11 we 
introduce two norms I· I and 11 ·II- Here intuitively j SI computes an upper 
bound for the path lengths in S and II S II computes an upper bound of the 
number of (nontrivial) summands in which S decomposes. (See Table IV.) 

Now consider the following term rewrite system RACP (which will only 
be needed for the proof of Theorem 3.3) in Table V below. Here in 
RCM5'-RCM7 the symbol cu,h denotes the atom ajbEA. The axioms 
C 1-C 3 of AC P translate into the commutativity and associativity of c and 
c0 ,0 = 6 for all a EA. 

In the following theorem, =R denotes convertibility in RACP (i.e., the 
equivalence relation generated by -+ ). 

3.3. THEOREM. For all ACP-terms without variables: 

(i) ACP f-- S = T <=> S =RT 

(ii) ACP f-- S = S' for some S' not containing II, lL I. Du 

(iii) ACP ~- S' = S" <=>Al-A? f-- S' = S" for S', S" not containing 

!I, L 1.oH 
(iv) S · (T · U) =R (S · T) · U 

(v) RACP is weakly confluent, H'Orking modulo Al, A2. 

(vi) RACP is strongly terminating, modulo Al, A2. 

(vii) RAC P is confluent (has the Church-Rosser property). 

lal= I 
la*xl =I+ lxi 
lx·.vl=lxl+IYI 
Ix+ YI= max(lx!, I YI) 
lxl.rl=lxl+l.vl-1 
lxll.vl=lxl+l.vl 
lxll.vl=lxl+IYI 
lilu{x)I =Ix! 

TABLE IV 

l!aij =I 
lla*x!I =I 
l!x ·.vii= :!xl! 
llx + yll = llxl! -t-1! yll 
llx I .vii= lixll ·II y:I 
llxllyll=llx!! 
llx II .vii= llxll +II Y!I + 1:x11 · :1 J'li 
!lilu(x)I! = llx'! 
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x+y->y+x 
x + ( y + z)-> (x + y) + z 
(x+y)+z->x + (y+z) 
x+x->x 
(x + y) · z-> x · z + y · z 
a·x->a*x 
(a*x) · y-> a*(x · y) 
x+o->x 
o*x-> 0 

TABLE V 

RACP 

x !I y _, x l _v + _v l x + x I y 
alx->a*x 
(a*x)ly->a*(xll y) 
(x + y) l z-> x l z + y l z 
alb-tca.b 
(a*x) I b-> c;j'.bx 
a I b*x-> c;:,bx 
(a*x) I (b*y)-t c:.tV II y) 
(x + .vl I z _, x I z + y I z 
x!(y+z)->xly+xlz 
c11(a)->a ifa EH 
c11(a)->oifaEH 
c11(x + y)-> c 11(x) + o11(y) 
Cu(X ·)')->cu(x). ou(Y) 
i'u(X ·Y)->cu(X). 011(.V) 
o11 (a*x) __, a*oH(x) if a EH 
c8 (a*x) __, o*o11 (x) if a EH 

RAJ 
RA2 
RA2' 
RA3 
RA4 
RA5' 
RA5 
RA6 
RA7 
RCMl 
RCM2 
RCM3 
RCM4 
RCM5' 
RCM5 
RCM6 
RCM7 
RCMS 
RCM9 
RDJ 
RD2 
RD3 
RD3 
RD4 
RDl' 
RD2' 

Proof We start with (vi) and we introduce the auxiliary notion of the 
multiset of direct subterms DS(T) of a term T: 

DS(a)=0 

DS(a*x) = DS(x) 

DS(x + y) = DS(x) U DS(y) 

DS(x Dy)= jx Dyf U DS(x) U DS(y) (here Dis ., II, Lor I) 
DS(ou(x)) = DS(x). 

Here U denotes the multi set union. Let [ S] be the mapping from terms to 
w X w defined by 

[Sj = CISI, llSll). 
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This mapping is extended to multisets over terms. thus producing multisets 
over u> X w: 

l VJ= {[S 11 s E Vf. 

On w X w there is the lexicographic well-ordering < which indu):es a well­
ordering <i; on finite multisets over w X w. We now observe that along a 
reduction path 

we have 

if R; is not RA I. RA2. RA2'. 

and 

if R; is RA I. RA2. or RA2'. 

From this observation strong termination of RAC P modulo A I and A2 
follows. 

Instead of a proof of the observation we provide two characteristic 
examples. 

(I) a·x->a*x.Then: 

IDS(a · x)I =\a· xl U [DS(x)I and [DS(a*x) = IDS(x}I. 

Now I a · x I majorizes each element of [ DS(x) J because 

\SI E [DS(x)I => ISI ~ lxl => ISI < ja · xl. 

Hence [DS(a · x)\ ~ [DS(a*x)I. 

and 

(2) xlly->xly+ylx+xly. Then: 

IDS(xll.vll =[xii Yi U \DS(x)I U \DS(yll 

l DS (x Lr + y l x + x I y) I = Ix lL y I U \ D S (x)] U \ DS ( Y) I 
U \y lx]U [DS(xll U [DS(y)J 

U [x IYJ U IDS(x)] U [DS(y)j. 

Again \x II y] majorizes all of \x l y I. [ y l x ]. [x I y I. \DS(x) J. I DS(y) ]. the 
first three in width and the second two in depth. 

An alternative proof of termination can be given by ranking all 
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occurrences of II, L I by the I· I-norm of the term of which they are the 
leading operator. Using this extended set of operators a recursive path 
ordering can be found which is decreasing in all rewrite steps except the first 
three (RA!, RA2, RA2'). See Dershowitz (1982). A proof along this line 
has been given in Bergstra and Klop ( l 984b ). 

Proof of (v). RACP is weakly confluent modulo "'• the congruence 
generated by A 1 and A2. (We are here working in congruence classes and 
reductions have the form [S] - -t [S'] - whenever S-t S'.) This is a 
matter of some 400 straightforward verifications. (Of course left to the 
reader as an exercise.) 

Proof of (vii). Working modulo - RACP is strongly terminating in view 
of (vi). Now combining (v) and (vi) and using Newman's lemma (see Klop, 
1980, Lemma 5.7.(1); or Huet, 1980, where more information about 
reduction modulo equivalence can be found), we find that RACP is confluent 
modulo "' and consequently it is confluent because the reductions generating 
- are symmetric. 

Proof of (ii). This follows immediately from (vi). 

Proof of (iv). First one proves the associativity of · for terms not 
containing II, l, I, 8H using induction on the structure of S. The result then 
immediately folows using (ii). 

Proof of (i). S =RT=> ACP f- S = T is immediate. For the other 
direction one uses (iv). 

Proof of (iii). If ACP r- S' = S" then by (i) S' =R S" and by (vii) for 
some S"': S'-++ S"' and S"-++ S"' (here-++ is the transitive reflexive closure 
of -t ). Now because S' and S" are free of II, l, I, 811 we see that 
S'-++ S"' ++-- S" is just a proof in Al, ... , A 7. 

3.4. THEOREM. The following identities hold in (Aw,+,·, II, l. I, 011 ): 

(1) xly=ylx 

(2) x 11 y = y 11 x 

(3) xl(ylz)=(xly)lz 

(4) (xly)lz=xl(yllz) 

(5) xl(ylz)=(xly)lz 

(6) x 11 (y 11 z) = (x 11y)11 z. 

Proof All proofs use induction on the structure of x, y, x written as a 
term over (A,+, · ), which is justified by Theorem 3.3 (ii). We write 
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x = '\' a.x. +\'a' _ l I -.... .J 
i j 

y = \' b y + \' b' _ k k _ I 
k I 

z = \' c z + \' c' _ m m _ n· 
m n 

(1) and (2) are proved in a simultaneous induction: 

x I Y = L (a; I bk)(x; II hl + L (a; I bi) X; 

+ L (a} I bk)Yk + L (a} I bi) 

= L (bk I a;)(yk II X;) + L (b; I a;) X; 

Here we use C 1 and the induction hypothesis for X; II Yk = Yk ii X;· 
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(2) x II )' = x l Y + Y l x + x I y = Y l x + x l y + y Ix =.vii x. The 
proof of ( 3 ), ... , ( 6) is also done using one simultaneous induction. 

(3) Write x = x' + x", where x' = .L a;x; and x" =La;. Likewise 
)' =y' + y" and z = z' + z". Then 

Now 

x I (y I z) = x' I (y' I z') + x' I (y" I z') + x' I (y' I z") 
+ x' I (y" I z") + x" I (y' I z') + x" I (y" I z') 

+ x" I (y' I z") + x" I (y" I z"). 

x' I (y' I z') =\'(a; I (bk I cm))(x; II (Yk II zm)) 

=\'((a; I bk) I cm)((x; II .V.) II zm) 

= (x' l.v') I z'. 

Here we used C2 and the induction hypothesis for (6). The other summands 
of x I (y I z) are treated similarly. Hence x I (y I z) = (x I Y) I z. 

(4) 

(x l y) l z = ( ( '\' a; x; + '\' a j ) l Y) l z 

= ('\'a;(x;llY)+\'aj·Y)lz 
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Now 
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= \' a;((x; II y) II z) + \'aJ(.v 11 z) 

= \' a;(X; II (J' II z)) + \' aJ(Y II z) 

= (\'a;x;+\'a;)l(Yllz) 

= x l (y 11 z). 

(induction hypothesis on ( 6)) 

(5) Let x = x' + x" and y = y' + y" as in the proof of (3 ). Then 

x I (y l z) = x' I (y' l z) + x' I (y" l z) 

+ x" I (y' l z) + x" I (y" l z). 

x' I (y' lz)= (\' a;x;) I(\' bkYk) lz) 

=(\'a;x;)I (''bk(ydz)) 

='\'(a; I bk)(x; II (h II z)) 

='\'(a; I bk)((x; II Yk) II z) 

=(''(a; I bk)(x; II Yk)) l z 

= (x' I y') l z. 

(induction hypothesis on ( 6)) 

The other three summands are treated similarly. Hence x I ( y l z) = 
(x I y)l z. 

(6) WriteAxCv,z)=xl(Yllz)andBx(J',z)=(ylz)lx.Then: 

x II (y II z) = x l (y II z) + (y II z) l x + x I (y II z) 

=Ax(y,z)+ (ylz)lx+ (zly)l x 

+ (y I z) l x + x I (y l z) + x I (z l y) + x I (y I z) 
=A x(y, z) + Y l (z II x) + z l (y II x) + B x(y, z) 

+ (x I y) l z + (x I z) l y + x I (y I z) 

= Ax(y, z) +A y(z, x) + Az(y, x) + B x(Y, z) 

+ Bz(y, x) + By(x, z) + x I (y I z). 
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(x II y) z = z II (x II y) = z II (y II x) 

=Az(y, x) +Ay(x, z) +A..(y, z) + Bz(y,x) 

+ Bx(y,z) +By(z,x) + z I (y Ix) 

= Ax(y, z) + Ay(x, z) + A,(y, x) + B x(y, z) 

+ By(z, x) + Bz(Y, x) + (x I y) I z, 
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which equals ( *) using the commutativity of the A 's and B's and the 
induction hypothesis on (x I y) I z. 

3.5. Remark. The identity ( 4) in Theorem 3.3 also holds for the operator 
y in Hennessy ( 1981 a) (discussed above in Remark 3. I (iv)); indeed this 
identity (x Y y) Y z = x Y (y 11 z) occurs in (Hennessy, 198Ia). Note that the 
identity follows from Theorem 3.4 and the definition of y, that is 
xy y =x!L y + x I y, as follows: 

(x yy) y z = (x lL y) y z + (x I y) y z 

= (x 1L y) 1L z + (x l y) I z + (x I y) 11 z + (x I .v) I z 

(Theorem 3.4) 

= x IL (y II z) + x I (z IL y) + x I (y l z) + x I (y I z) (CM9) 

= x IL (y II z) + x I (z 1L y + y l z + y I z) (CMI) 

= x l <.v 11 z) + x I <.v 11 z) = x y (y 11 z). 

3.6. Remark. Note that Theorem 3.4 (2), (4), (5) hold a fortiori for the 
initial algebra of PA in Table II, since PA is the specialisation of ACP where 
communication is absent (x I .v = o). 

4. MERGING WITH MUTUAL EXCLUSION OF TIGHT REGIONS: AMP 

4.1. The Tight Region Operator 

In the framework of ACP as introduced above, one can treat process 
cooperation where processes have tight regions which are to be executed 
without any interruption. This is substantially more complicated (see 
Remark 4.2.3 below) than the following more direct way: Table VI contains 
an axiom system AMP for processes with tight regions without 
communication. It is an extension of the axiom system PA for free merge in 
Table II: the additions in the signature consist of an unary operator x H ~. 
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the tight region operator (in the literature ~ is also denoted as <x) ), and an 
inverse operator rp which removes the constraints of tight regions. Intuitively, 
the underlined parts in a process expression (the tight regions) are to be 
executed in a cooperation as a single atomic step-that is, no interruption by 
an action from a parallel process is possible. Indeed we have as an 
immediate consequence of axioms CRMl and Ml in Table VI: 

4. 1.1. PROPOSITION. ~ II t = ~\'. . t + {' . ~· 
Note that in general x II y *~II y. A prooftheoretical analysis of AMP can 

be given analogous to the one in Section 3 for ACP, resulting in 

4.1.2. THEOREM. (i) Using the axioms Ml-M4, TR1-TR3, TRMI, 
,...RM2, F l-F4 as rewrite rules from left to right, every closed term T in the 

~nature of AMP can be proved equal to a unique basic term T' (i.e., a term 
ilt from +, · only and modulo Al-AS). 

(ii) AMP is a conservative extension of PA. Hence AMP is consistent. 

Writing n(T) for the unique basic term T' as in Theorem 4.l.2(i), it is easy 
to assign the ("intuitively" correct) semantics ··~Mr(T) in (Aw,+,·) to a 
closed AMP-term T: 

c·~Mr(T) = [n(rp(T)H, 

where [ J is the semantics of basic terms in (Aw,+,· ); E.g., 

x+y=y+x 
(x + y)+z =x + (y+z) 
x+x=x 
(x + y) z = xz + yz 
(xy)z=x(yz) 

x 11 y = x 1L y + y u x 
allx=ax 
ax lL y = a(x 11 y) 

(x + )') IL z = x IL z + y l z 

c.i=a 
x+y=o"<+Y -- -

"/(AMP(ab II cd) = abcd + cdab. 

TABLE VI 

AMP 

Al 
A2 
A3 
A4 
AS 

Ml 

M2 JlY=J·Y 
M3 J·ylz=J(Yllz) 
M4 

TRI ~(a)=a 

TR2 ~(x + y) = ~(x) + ql(y) 
TR3 ~(J)=~(x) 

~(x · y) = ~(x) · ~(y) 

TRMl 
TRM2 

Fl 
F2 
F3 
F4 
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4.2. Tight Multiplication 

A shortcoming in expressive power of the tight region operator in AMP is 
that it does not allow us to specify a process a · (b · x + c . r l with the 
restriction that only after the first step a and before the subpro~css hx + 
no interruption by a parallel process is possible. Therefore we consider a 
binary operator : ('"tight" multiplication) with the interpretation that .\': y is 
like x · y but with the proviso that in a merge, no step from a parallel 
process can be interleaved between x and y. Then a: (b . x + c . y) is the 
process intended above. Table VII contains an axiom system AMP(: which 
is an extension of AMP by this new operator and corresponding axioms. 

The axiom system AMP(:) is redundant when only jinite processes are 
considered: then '"_" can be eliminated in favor of'":" (but not. as 
remarked, reversely), and also for finite processes some of the axioms in 
AMP(:) can be proved inductively from the other, e.g .. TR3. 

The operator '":" has distinct advantages above '"_ ": apart from its 

greater expressive power. it is more suitable for a treatment of infinite 
processes. both via projective sequences (as used above) and via bisimulation 
(not considered here). 

A prooftheoretical analysis can be given analogous to the one in Section 3 
for AC P and yielding a result analogous to Theorem 4.1.2. Likewise each 
closed AMP(:)-term T has an obvious semantics '.\\iPi:i(T) in (A .. ,.+.·). 

similar to the case of AMP. (We will drop the subscript AMP(:) sometimes.) 

x+y=y+x 
(x+,r)+z=x+(y+z) 
x+x=x 
(xty) · Z =X · Z +_r · Z 
(x · y) · z = x · (y · z) 

x l! .r = x il .r + y u x 
aly=ay 
axl y = a(x ll y) 
(X t y) il_ Z = X l Z t _\' l Z 

!l =a 
x+,r=,\'t,!' 

X~}=~-:t 

x_:y =~~ :-!' 

643/60/1-3-9 

TABLE VII 

AMP(:) 

Al 
A2 
A3 
A4 (x+y):z=x:z+y:z 
AS (x : y) : z = x : ( y : z) 

(x:y)·z=x:(Y·z) 
(x·y):z=x· (y:z) 

Ml 
M2 
M3 (a: x) l y =a: (x l .rl 
M4 

TRI ll!(a) =a 
TR2 o(x+y)=IP(X)+C(y) 

TR3 C(,\') = ll!(X) 

TR4 C(x·y)=O(x)·O(Y) 

TRS O(X :y) = o(xl. c>(y) 

AT! 
AT2 
AT3 
AT4 

TRM 

Fl 
F2 
F3 
F4 
F5 
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EXAMPLE. . lf(a : b If c : d) = abcd + cdab. 

Note that .l( is a homomorphism w.r.t. +and·, but not w.r.t. II- As before 
we have by a simple inductive proof: 

4.2.1. THEOREM. For all x. y. z in the initial algebra of AMP(:) we have: 

(i) (xl.v)lz=xl(.vllz) 
(ii) (xllYlllz=xll(Yllz). 

4.2.2. Remark. Note that the axioms in Table VI for AMP: 

~l.v=::XJ' 

~ylz=~(Yllz) 

and their immediate consequence 

(TRMl) 

(TRM2) 

(Proposition 4.1.1) 

can now be proved in AMP(:) from the axiom 

(a:x)ly=a:(xly) (TRM) 

for finite closed terms (using an induction on term formation). 

4.2.3. Remark. AMP(:) can be "implemented" by ACP in the following 
sense. Let P, Q. R be closed AMP(:)-terms (the general case involving terms 
P 1 ••••• P n is similarly treated). Then we have in (A,,,, +. ·, 6), the initial 
algebra of A 1-A 7: 

where. ~\MPl:P defined above, yields the semantics in (A"''+.·, O) of the 
AMP(:)-term P II Q II R and . ~\CP is the semantics of the ACP-term 
( 11rCf!' II Q' II B' II C)" in that algebra. Here the terms E', Q', B ', and C are 
defined as follows: 

( i) f results from P by replacing every substring a: by g ·, where g is 
a new atom; e.g. a 1 : (a 2 • a 3 + a4 : a 5) yields g 1 • (a 2 • a 3 + g 4 • a 5). Likewise 
for Q, R. 

(ii) f', Q', B' are copies off, Q, B obtained by renaming such that 
their alphabets are pairwise disjoint. Say f' contains only actions 9;, aj; Q' 
contains only actions }J k, b 1; and B' only S:m, c,,. 

(iii) The control process C has alphabet j a, g, fJ, (J, y, y f and is recur-
sively defined by - -
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C=Ca+C8 +c)' 
Ca= a· C +g. Ca 

C13 =fJ·C+f!·C13 

C,=y·C+J·Cr 
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(iv) The communication function to be used in evaluating the merges 
in the RHS of ( *) is given by 

and likewise for /J, y. All other communications equal J. H contains all 
communication actions a, g., ... , fJi, ai'"". 

Further, ? H( · · ·) 11 in the RHS of ( *) denotes a suitable renaming of i'u( ... ) 
into the original alphabets of P, Q, R. 

Finaly, the presence of b in the LHS of ( *) is due to the fact that C has no 
finite branches. 

5. MERGING WITH COMMUNICATION AND MUTUAL EXCLUSION 
OF TIGHT REGIONS: ACMP 

The facilities of merge with communication (ACP) and merge with mutual 
exclusion of tight regions (AMP(:)) can be joined in a smooth way. (This is 
not self-evident; e.g., it seems not clear at all how to join tight multiplication 
as in AMP(:) with r-steps.) 

The result of this join is the axiom system ACMP in Table VIII. The left 
column contains ACP with a slight alteration for convenience: CMS* is 
added (cf. Tables III and VIII) which saves us some axioms. The right 
column consists of the axioms in AMP(:) (see Table VII) for the operators :, 
_ , and ~. where the axiom 

(a: x) ILY =a: (x IL_y) TRM 

is now "extended" to 

(a :x) IL_y=a: (x ILY +x IY) CTRMI. 

The axiom CTRMI can be understood as follows: The process (a: x) ILJ' 
has a double commitment: IL insists that the first step in the cooperation 
between a : x and y is taken from a : x and : insists that after performing a, a 
step from x must follow without interruption. This double restraint is 
respected in a : (x IL y + x I y ). After a, the required step from x may be an 
"autonomous" step of x, as in x IL_y, or a simultaneous step in x and y, as in 
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x I y. (Note that when communication is absent, i.e., x I y = '5, CTRM 1 

specializes to TRM.) Moreover axiom A TS is new and so are 

CTRM2-CTRM4 which specify : versus I· 
By means of a tedious prooftheoretic analysis analogous to the one for 

ACP one can prove consistency of ACMP and that ACMP is a conservative 

extension of both ACP and AMP(:). Also associativity of II holds for 

ACMP: intuitively this can be seen via a graph representation of closed 

ACMP-terms as in Example 5.1. 
It turns out that the combination of asynchronous cooperation as in ACP 

with "tight'' multiplication as in AMP(:) is able to give an interpretation of 

synchronous cooperation. This will be stated more precisely in the next 

section where a direct axiomatisation of synchronous cooperation is given. 

5.1. EXAMPLE. a : b II e : d =a : b l e : d + e : d lL a : b + a : b I e : d 
=a : (be: d +b I e: d) + e: (da : b +d I a : b)+(a \ e) : (b Id)= a : (be : d 

x+y=y+x 
(x + y )+ z = x + (.r + z) 

x+x=x 
(X + }') Z = XZ + )'Z 

(xy) z =x'(yz) 

x+o=x 
OX= 6 

a;b=hia 
(a b)lc=ai(bjc) 
a 16 =o 

x I')'= x lL y + )' l x + y Ix 
ali_x=ay 

axli. y=a(x'I y) 

(x+y)lz=xly+ylz 
x'y=ylx 
a I by= (a ! b) y 
ax I by= (a. b )(xii y) 

(x + yl I z = x I z + y i z 

rH(a)=aifa~H 

(· 11 (a) = i5 if a E H 

C'11(X + y) = c'H(x) + C'11(.Y) 
f· 11(x · y) = b11(x) · ?11(y) 

TABLE VIII 

ACMP 

Al (x+y):z=x:z+y:z AT! 

A2 (x:y):z=x:(y:z) AT2 

A3 (x:y)·z=x:(y·z) AT3 

A4 (x·y):z=x·(y:z) AT4 

AS 6 :x=O ATS 

A6 
A? (a:x)ly=a:(xly+xly) CTRMl 

(a: x) I lb :y) =(a I b): (x I y) CTRM2 

(a: x) I (by)= (a I h): (x LI'+ x I y) CTRMJ 

(a:x)lb=(a\b):x CTRM4 

Cl 
C2 
C3 

CM! g=a 

CM2 X±Y = >: + ~· 
CM3 { =c< 

CM4 x · v = x : 1· 

CMS* x: J' = c~: .~· 
CM6 -

CM? IP(a) =a 

CMS (l!(x + y) = j'J(x) + j'J(y) 

9(>:) = j'J(x) 
Dl j'J(x · y) = j'J(x) · j'!(y) 

D2 ~(x :y) = 9(x) · (l!(y) 
D3 
D4 

TRl 
TR2 
TR3 
TR4 
TR5 

Fl 
F2 
F3 
F4 
FS 

a: 
1'i 
p 
C• 
p 
s: 

t] 

t.: 
c 
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(a) 
(b I 

FIGURE I 

+ (b I c): d) + c: (da : b + (d I a) : b) +(a I c): (b Id). There is a simple 
graphical method for evaluating such expressions, as suggested by Fig. I a. 
(This is moreover relevant since it enables us to define simple graph models 
for ACMP; we will not do so here.) In the figure black nodes indicate tight 
multiplication. After "unraveling" shared subgraphs we arrive at the correct 
evaluation of a: b II c: d, as in Fig. lb. (For the merge II in PA and ACP 
there are analogous ways: merging two process graphs in the PA sense 
consists of taking the full cartesian product graph; in ACP diagonal edges 
for the results of communication have to be added. See Bergstra and Klop, 
1983a). 

6. SYNCHRONOUS COOPERATION: ASP 

We will briefly comment in this section on the distinction between 
asynchronously versus synchronously cooperating processes (in the sense of 
Milner 1983); ACP, just as CCS, describes the asynchronous cooperation of 
processes. The axiom system ASP in Table IX describes synchronous 
cooperation of processes, in the sense that the cooperation of processes 
P 1, ••• , P n, notation P 1 IP 2 I · · · I P n, proceeds by taking in each of the P; 
simultaneously steps on the (imaginary) pulses of a global clock. 

Formally, the relation of ASP to ACP is clear; it originates by leaving out 
the results of the free merge, that is, in axiom CM! of ACP 

x 11 y = x 1L y + y 1L x + x I y, 

the first two summands are discarded (so that 
communication merge). 

is in effect I, the 
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x+y=y+x 
(x + y) + z = x + (y + z) 
x+x=x 
(x + y) z = xz + yz 
(xy)z =x(yz) 
x+o=x 
ox=O 

alb=bla 
(alb)lc=al (blc) 
a I o= o 

(x+y)lz=xlz+ylz 
x I (y + z l = x I y + x I z 
ax I by= (a I b )(x I y) 
a I by= (a I b) y 
axlb=(aib)x 

TABLE IX 

ASP 

Al 
A2 
A3 
A4 
AS 
A6 
A7 

Cl 
C2 
C3 

SM! 
SM2 
SM3 
SM4 
SM5 

ASP bears a strong resemblance to Milner's SCCS (Milner, 1983) (see 
also Hennessy (1981); the most notable difference is 6 which does part of the 
work done in SCCS by restriction operators. (In SCCS "incompatibility" of 
atoms a, b cannot be expressed, so that certain superfluous subprocesses of a 
cooperation must be pruned away after the evaluation of the cooperation by 
a restriction operator. In ASP this incompatibility is stated as a I b = o.) 
Another notable difference is that SCCS admits also infinite sums. 

Milner ( 1983) gives an ingenuous implementation of asynchronous 
processes (as in CCS) in terms of SCCS, via some "delay-operators" and 
argues that synchronous cooperation is a more fundamental notion than 
asynchronous cooperation. However, the reverse position can be argued too, 
since many synchronous processes can be implemented in ACP (see 
Remark 6.3 ). 

Synchronous cooperation as axiomatised by ASP can be interpreted in 
ACMP, as the next theorem states (the routine proof is omitted). 

6.1. THEOREM. Let x, y be basic terms. Then x I y evaluates in ASP to 
the same basic term as ~(~I y) in ACMP. 

Phrased differently, Theorem 6.1 says that in the algebra 

.'4' =(A,+,.,:, II, ll, 1, I*,_,~, af" o) 
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which has as reducts 

(A,+,·, I*, 15), 

the initial algebra of ASP, and 

the initial algebra of ACMP, we have 

.w F x I* y = ~(~ I }' ). 

6.2. EXAMPLE. ~(ab I al) = ~(a : b I c : d) = ~((a I c) : (b I d)) = (a i 
c)(b Id)= ab I* ed. 

6.3. Remark. Another possibility, only slightly less direct than the inter­

pretation in ACMP above, is to ''implement" ASP in ACP as follows. Let 

P1 I · · · IP n be a closed ASP-term; the P; are basic. Let A;<;:;; A be the set of 
actions occurring in P; (i = 1, .. ., n), and H =A 1 U · · · U An. 

Suppose that H does not contain results of H-communications: 

H n (HI Hu HI HI Hu · · · J = 0. 

(Here HI H = {c I 3a, b EH a I b = cf, etc.) Then 

.4'Asp(P1 I··· I Pn) = ll'Acp(8H(P1 II .. · II P11 )), 

where .R'Asr, ~er denote the semantics of ASP-, ACP-terms m the 
respective initial algebras. 

6.4. EXAMPLE. In ASP: ab I cd =(a I c)(b Id). Suppose a I c, b Id E 

\a, b, c, df = H, then also in ACP: 

Ou(ab II cd) = Du(ab l cd) + Ou(cd lab)+ oH(ab i cd) 

= ofl(a(b II cd) + 8 u(c(d II ab )) + 8H( (a I c)(c II d)) 

= c5 + /5 +(a I c)(b Id)= (a I c)(b Id). 

6.5. Remark. Asynchronous communication. There does not seem to be 

a consensus as regards the use of the terms "synchronous" vs. 

"asynchronous.'' The terminology that we have adopted and used in the 

preceding pages, distinguishes "cooperation" from ''communication" and is 

stated more explicitly as follows: 

(i) ASP, SCCS have synchronous cooperation and synchronous com­

munication; 
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(ii) ACP, CCS have asynchronous cooperation and synchronous com­
munication. 

(iii) ACMP combines synchronous and asynchronous cooperation 
and has synchronous communication. 

A third format, not considered above but used in some programming 
languages, is "asynchronous cooperation with asynchronous 
communication." Here the communication is asynchronous in the sense that, 
e.g., a process P sends a message c! to a process Q such that P can proceed 
while the message cl to Q is "on the way." 

7. CONCLUDING REMARKS 

We have introduced axiom systems as in the enclosed part of Fig. 2. Here 
each heavy arrow denotes a conservative extension, the arrow from ASP to 
ACMP denotes an "interpretation" and the dashed arrows denote an 
'"implementation" (in the vague sense of a less direct interpretation). 

For the main axiom system ACP basic properties such as consistency and 
an elimination theorem have been proved. For the other systems similar 
results follow by a similar proof. It is claimed that ACP and the other axiom 
systems codify central concepts in concurrency: free merge, merge with 
communication by action sharing, merge with mutual exclusion of tight 
regions, synchronous vs. asynchronous process cooperation. Also some of 
these concepts are shown to be related as indicated in the diagram in Fig. 2. 

Clearly, as we discussed in the Introduction, this work is strongly related 
to other algebraic approaches of concurrency. In this paper we did not study 
the effect of adding mechanisms for recursive definitions, such as µ­
expressions ( cf. Milner, 1982), or systems of recursion equations as in 
Bergstra and Kl op, 19 84a ). For each of the systems such an addition is 
possible; for BPA, PA, and ACP the relative expressive power, after adding 
recursion facilities, is studied in (Bergstra and Klop, 1984a). For instance, 

ACP 1 + rules 

FIGURE 2 
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one can show that the process B recursively defined by B = (aa' + bb')ll_ B 
over PA cannot be recursively defined over BP A, i.e., without merge or left­
merge. (B is the behaviour of a "bag" over a data domain consisting of two 
elements.) 

Also not touched in this paper is the problem of abstraction ("hiding"). In 
, (Bergstra and Klop, l 984b) an extension ACP, (see Fig. 2) of ACP has been 

defined and studied, which basically consists of ACP plus Milner's r-laws, in 
1 order to deal with abstraction of internal steps. An application of ACP 

yielding such internal steps, is given in (Bergstra and Klop, l 983a), where 
the operational semantics of data flow networks is defined in terms of ACP. 
Further applications of ACP include finite specifications of the behaviours of 
processes like stack, bag, and queue, as well as algebraic verifications such 
as that the juxtaposition of two bags is again equivalent to a bag-after 
abstraction from internal steps. In (Bergstra and Klop l 983b) a connection 
between processes and abstract data types is investigated, with the purpose 
of providing the means of validating some process specifications against their 
abstract data types specifications. 

In (Bergstra and Klop, J 984c) a simple version of the alternating bit 
protocol is proved correct in the framework of AC P, plus some extra rules, 
using only algebraic calculations. 

There exists a rich model theory for ACP. In this paper we have only 
mentioned (apart from the obvious initial algebras) the projective limit 
algebra. A fruitful concept for building process algebras is the notion of 
bisimulation (see Park, 1981) between process graphs. Process algebras 
obtained in this way are defined and studied in (Bergstra and Klop, l 984b ). 

We would like to mention that K. Ripken pointed out a serious error 
regarding terminology in an earlier version of this paper. In particular we 
incorrectly used "critical region" instead of "tight region"-the difference 
being that critical regions allow interleavings by other actions provided these 
are not themselves contained in a critical region. 

RECEIVED: September l, 1983; ACCEPTED: March 7, 1984 
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