
!NFORMA TION AND CONTROL 60, 109-13 7 (1984)

Process Algebra for Synchronous Communication

J. A. BERGSTRA AND J. W. KLOP

Centre for Mathematics and Computer Science. Amsterdam. The :Vetherlands

Within the context of an algebraic theory of processes. an equational
specification of process cooperation is provided. Four cases are considered: free
merge or interleaving. merging with communication, merging with mutual exclusion
of tight regions, and synchronous process cooperation. The rewrite system behind
the communication algebra is shown to be confluent and terminating (modulo its
permutative reductions). Further, some relationships are shown to hold between the
four concepts of merging. c I 984 Academic Press. Inc.

0. INTRODUCTION

0.1. General Motivation: Process Algebra

Our aim is to contribute to the theory of concurrency, along the lines of
an algebraic approach. The importance of a proper understanding of the
basic issues concerning the behaviour of concurrent systems or processes,
such as communication, is nowadays evident, and various formats have been
propqsed as a framework for concurrency. Without claiming historical
precision, it seems safe to say that the proper development of an algebra of
processes starts with the work of Milner (see his introductory work, (Milner,
1980)) in the form of his calculus of communicating systems (eeS). Milner
states his aim in (Milner, 1983) in his own words: "In a definitive calculus
there should be as few operators or combinators as possible, each of which
embodies some distinct and intuitive idea, and which together give
completely general expressive power." Milner (1983) proposes sees
(synchronous ees) based on four fundamental operators, and remarks:
"These four operators obey (as we show) several algebraic identities. It is not
too much to hope that a class of these identities may be isolated as axioms
of an algebraic 'concurrency" theory, analogous (say) to rings or vector
spaces." These two quotations denote precisely the general motivation
underlying also the present paper.

0.2. Aims of the Present Paper

More specifically, in this paper we propose an algebra of processes based
on elementary actions and on the operators + (alternative composition or

109
0019-9958;84 $3.00

Copyright ~· 1984 by Academic Press. Inc.
All rights of reproduction in any form reserved.

110 BERGSTRA AND KLOP

choice), . (sequential composition or product) and II (parallel composition or
merge). It turns out that in order to obtain an algebraically more satisfactory
set of axioms, much is gained with our introduction of an auxiliary operator
l (left-merge) which drastically simplifies computations and has some
desirable "metamathematical" consequences (finite axiomatisability if the
alphabet of elementary actions is finite; greater suitability for term rewriting
analysis) and moreover enhances the expressive power (more processes
definable). Using these operators we have a framework for processes whose
parallel execution is simply by interleaving ("free" merge): this is the axiom
system PA in Table II in Section 1. The axiom system ACP presented below
in Table III is devised to cover also processes that can communicate, by
sharing of actions. To this end a constant fJ for deadlock (or failure) is
introduced, another operator: I (communication merge), and finally, an
operator On for "encapsulation" of a process. Also this system, ACP for
algebra of communicating processes, is a finite axiomatisation of its intended
models (which we call process algebras).

Clearly there is a strong relation of the system ACP below to the system
CCS of Milner. In Milner (1980) some process domains are discussed which
can be seen as models of ACP. Determining the precise relationship is a
matter of detailed investigation. In advance to that, one might say that ACP
is an alternative formulation of CCS, at least of a part of CCS. (In this
paper we do not discuss the so-called "r-steps," or silent steps, obtained by
abstraction from "internal" steps.) Notably, several of the ACP operators
differ from those in CCS:

(i) multiplication · is general (not only prefix multiplication),

(ii) NIL is absent in ACP,

(iii) J, l, and I are not present in CCS.

The merge operator II is the same as in CCS, though it is differently (namely,
finitely) axiomatised. In ACP we have no explicit relabeling operators as in
CCS, or "morphisms" as ~hey are called in Milner (1983), except the encap­
sulation operators On which play the role of "restriction" in CCS and SCCS.

Also in ACP we have no r-steps (silent steps) and not the well-known r:­
laws (in Milner, 1980) for them; they can be added consistently, and even
conservatively, to ACP. The resulting axiom system ACP T is studied in
Bergstra and Klop (1984b). In general, ACP does not address the
complicated problem of "hiding" or abstraction in processes.

The choices of these operators can be seen as design decisions; of course
the basic insights into the algebraic nature of communicating processes are
already stated in Milner's book (Milner, 1980). Some of these design
decisions are motivated by our wish to optimize the facility of doing
calculations; some others to enhance the expressive power of the system. For

PROCESS ALGEBRA FOR COMMUNICATION 111

instance, having general multiplication available enables one to give a
specification of the process behaviour of stack in finitely many equations
which can be proved to be impossible with prefix multiplication (see Bergstra
and Klop, 1984a).

An explicit concern in the choice of the axiom systems has been an
attempt to modularize the problems. Thus PA is only about interleaving or
as we prefer to call it, free merge, that is, without communication; ACP
moreover treats communication; AMP treats the merge of processes with the
restriction of mutual exclusion of tight regions; and ACP, treats abstraction.
(See also our Remark 6.5 concerning terminology.)

Apart from the general motivation to use the system ACP for specification
and verification of processes, we have been concerned in subsequent work
with the detailed investigation of several of the models of ACP, as well as
mathematical properties of this axiom system itself. Also some extensions of
ACP were studied. This brings us to stating the aim of this paper: it is the
first of our series of papers consisting of the present one and (Bergstra and
Klop, 1983a, b; 1984a-d) on process algebra, meant first to present the
system ACP and second to establish some of its basic mathematical
properties (notably consistency of the axioms and a normal form theorem for
process expressions). In the concluding remarks we elaborate on some
applications which have been realised in these subsequent papers.

Though our central interest in this paper is for the "general purpose
system" ACP, we have also formulated some other "special purpose'' axiom
systems: AMP for merging with mutual exclusion of tight regions; ACMP, a
join of ACP and AMP; and ASP for synchronous process cooperation.
Some relationships between these systems are shown, e.g., an interpretation
of ASP in ACMP and an "implementation" of AMP and ASP in ACP.

0.3. Related Approaches

Since this is not a survey paper and since there are several approaches
related to the present one, it is not possible to discuss them while doing them
justice or giving a complete view. Yet we want to mention the following lines
of investigation. Closest to the present work (and its subsequent work in
(Bergstra and Klop, loc. cit.) is Milner's ces, which was above briefly
compared with the axioms below. Interestingly, Milner has proposed in
(Milner, 1983) a system sees which supersedes CCS and which has as
fundamental notion: synchronous process cooperation. It is argued that
asynchronous process cooperation (as in CCS and AeP) is a subcase in
some sense of the former one. The terminology synchronous versus
asynchronous is used in a different sense by different authors; see
Remark 6.5. Again, it would be very useful and interesting to determine the

643/60/1-3-8

112 BERGSTRA AND KLOP

precise mathematical relationships between those systems for synchrony and
asynchrony; a start has been made in Milner (1983).

Milner's work has been continued and extended in Hennessy and Plotkin
(1980) and a series of papers by Hennessy (1981-1983) in which a detailed
and extensive investigation is carried out often using operational preorders as
a means of establishing completeness results of various proof systems.
Completeness here is w.r.t. the semantical notions of observational
equivalence and/or versions of bisimulation. Hennessy (1982a, 1983) also
studies the differentiations of + according to whether a choice is made by the
process itself or by its environment. Further, the work of Hennessy and
Milner obtains several results in terms of modal characterisations of obser­
vational equivalence (Hennessy, 1983; Hennessy and Milner, 1980, 1983).
(See also Graf and Sifakis, 1984; and Brookes and Rounds, 1983.)

Milne (1982a, b), presents the "dot calculus": here · is concurrent
composition. The dot calculus uses prefix multiplication as in the work of
Milner and Hennessy (called "guarding" by Milne), operators +, EE> for
choice (by environment resp. internal), LI for deadlock as well as successful
termination. In contrast to CCS as in (Milner, 1980), the dot calculus
supports not only binary communication but n-ary communication. (The
latter is also present in subsequent work of Milner and Hennessy; and also in
ACP.) The dot calculus presents algebraic laws for its operators; for · these
are rather different than the ones for the corresponding parallel composition
operators in CCS and ACP.

In our view there is a noteworthy methodological difference between the
approaches as mentioned above and the present one. Namely, it has been an
explicit concern of ours to state first a system of axioms for communicating
processes (of course, based on some a priori considerations of what features
communicating processes should certainly have) and next study its models;
the analogy with the axiomatic method in, say, group theory or the theory of
vector spaces is clear. For instance, one can study a model of ACP
containing only "finitely branching" processes; or one might be interested in
processes which admit infinite branchings (in the sense of +); or, one may
study the process algebra of regular processes, i.e., processes with finitely
many "states" (cf. Milner, 1982; Bergstra and Klop, 1984a). Also, one may
build process algebras based on the fundamental and fruitful notion of
bisimulation (introduced by Park (1981), as is done in, e.g., Milner
(1982, 1983); or one may consider process algebras obtained by the purely
algebraic construction of taking a projective limit {of process algebras
consisting of finitely deep processes). This list could be extended to some
dozens of interesting process algebras, all embodying different possible
aspects of processes. To the best of our knowledge, an explicit adherence to
this axiomatic methodology at which we are aiming, is not yet fully
represented in related approaches to the understanding of concurrency.

PROCESS ALGEBRA FOR COMMUNICATION 113

As some other related approaches which are less algebraical in spirit than

the aforementioned (ees, Sees, dot calculus, ACP) and which have a

more denotational style we mention the work of De Bakker and Zucker

(1982a, b). They have studied several process domains as solutions of

domain equations, using topological techniques and concepts such as

metrical completion, compactness. In fact, their domain of "uniform"

processes and a question thereabout (see De Bakker and Zucker, l 982a)

were our incentive to formulate PA as in Table II below. The processes of

De Bakker and Zucker include several programming concepts which are not

discussed in ACP. In De Bakker et al. (1983) the central issue of LT (linear

time) versus BT (branching time), which determines the essential difference

between trace sets and processes, has been studied. Denotational models for

communicating processes as in Hoare's CSP (see Hoare, 1978; 1980) have

also been discussed from a uniform point of view in Olderog and Hoare

(1983). For work discussing aspects of CCS and CSP, as well as

connections between these two, we refer to Brookes (1983). Other work on

concurrency in the denotational style includes Back and Mannila (l 982a, b).

Pratt (1982), and Staples and Nguyen (1983). Finally, Winskel (1983a,b)

discusses communication formats in languages such as CCS, CSP.

1. PRELIMINARIES: PROCESSES WITH ALTERNATIVE

AND SEQUENTIAL COMPOSITION

Let A be a finite collection (alphabet) of atomic actions a, b, c, (We

insist on a finite alphabet to safeguard the algebraic nature of the present

work; specifically we wish to avoid here infinite sums whose algebraic

specification is much less obvious than that of finite sums.)

Finite processes are generated from the atomic processes in A using the

two "basic" operations:

+: alternative composition (choice),

·:sequential composition (product).

The following equational laws will hold for finite processes. (See Table 1

where BPA stands for basic process algebra.) Here x.y, z vary over

processes. Often x . y is written as xy. The initial term algebra of these

equations is (Aw, +, .). The elements of this algebra will be called "basic

terms," i.e., terms modulo Al-5.
The main source of process algebra in this style is Milner (1980). Exactly

the above processes occur as finite uniform processes in De Bakker and

Zucker (1982a, b). After adding an extra equation: x(y + z) = xy + xz, one

obtains a version of trace theory as described in Rem (1983).

114 BERGSTRA AND KLOP

x+y=y+x

TABLE I

BPA

x + (y + z) = (x + y) + z

x+x=x
(x + y) · z = x · z + y · z
(x·y)·Z=X·(Y·Z)

Al
A2
A3
A4
A5

For n ~ 1 we have the approximation map nn: Aw'""' Aw, inductively
described by

nn(x + y) = nn(x) + nn(Y)

nn(a)=a

n 1(ax) =a

nn+ 1(ax) = an.(x).

Interestingly, if An= jn.(p) IP EA} then (A., +n, ·n) is another model of
BPA. Here the operations +n and ·n are defined by

and likewise for product.
Infinite processes can be obtained as a projective limit, called A 00 , of the

structures An. Technically this means that A 00 is the set of all sequences
p=(p.,p2 ,p3 ,. ..) withp;EA; andp1 =n;(P;+ 1). Such sequences are called
projective sequences. The operations + and · on A 00 are defined component­
wise:

(p + q)n = (P)n + (q).,

(p · q)n = ;rrn((P)n · (q)n),

where (P)n is the nth component of p. Thus we obtain the process algebra
(A 00 , +, ·). On A 00 a metric exists:

d(p, q) = 0 if p=q,

= 2-n with n minimal such that (P)n * (q). if p * q.

(A 00 , d) is a complete metric space, in fact it is the metric completion of
(Aw, d). The operations + and · are continuous. (A 00 , d) was introduced in
De Bakker & Zucker (1982a). Milner (1982) uses charts modulo
bisimulation (from Park, 1981) to obtain infinite processes from finite ones.

PROCESS ALGEBRA FOR COMMUNICATION 115

Working with trace sets under the extra assumption x(y + z) = xy + xz, this
metric occurs in Nivat (1979). In De Bakker et al. (1983) the connections
between (A 00 , d) and its corresponding trace space are investigated.

The processes discussed so far are provided with a bare minimum of
structure. The crux of the algebraic method lies in algebraically defining new
operators over the given process domains that will correspond to important
process composition principles. We will describe operators corresponding to
the following composition principles:

(i) free merge (Sect. 2)

(ii) merging with communication (Sect. 3)

(iii) merging processes with mutual exclusion for tight regions
(Sect. 4)

(iv) merging with communication and mutual exclusion for tight
regions (Sect. 5)

(v) merging with synchronous cooperation (Sect. 6).

2. FREE MERGE: THE AXIOM SYSTEM PA

The result of merging processes p and q is p II q. For algebraic reasons
(finite axiomatisability and ease of computation) an auxiliary operation l
(left-merge) is used. The process p l q stands for the result of merging p and
q but with the constraint that the first step must be one from p. Both
operations II and l are specified on (A"',+,·) by Eqs. Ml-M4 of the axiom
system PA in Table II. We call the set of axioms Al-AS (i.e., BPA) together
with M l-M4: PA. This axiom system describes the interleaving of processes
without communication, or as we prefer to call it, the free merge of
processes. In Table II x, y, z vary over all processes (i.e., elements of an

TABLE II

PA

x+y=y+x Al
x + (y +z)= (x +Y) +z A2
x+x=x A3
(x+y)z=xz+yz A4
(xy)z =x(yz) AS

xll.v=xly+y\Lx Ml
al x = ax M2
ax\Ly=a(xllY) M3
(x + y) IL z = x l z + y l z M4

116 BERGSTRA AND KLOP

algebra satisfying PA), while a is a variable over A. (This means that M2,
M3 are axiom schemes, having finitely many axioms as instances.)

Again the operations are extended to A 00 co6rdinate-wise:

and likewise for l. We omit the proof that these are indeed projective
sequences, i.e., that

and likewise for l. It also follows that II and l are continuous w.r.t. the
metric d.

3. MERGING WITH COMMUNICATION: THE AXIOM SYSTEM ACP

In order to describe communication we will need a distinguished symbol
6 EA, describing deadlock or failure. It is subject to the axioms x + 6 = x
and bx= 6 (A6, A 7 in Table III); 8 can be seen intuitively as the "action"
by which a process acknowledges that it is stagnating.

Now, starting with (Aw,+, ·) plus a communication function · I · :
A x A ->A which describes the effect of sharing (simultaneously executing)
two atomic actions, three operations II, L and I are defined on Aw. Here I,
the communication merge, extends the given communication function. The
operators II and l coincide with the analogous operators defined in Section 2
if the effect of a communication a I b is always 6 (i.e., no two atomic actions
communicate).

For the communication function we require commutativity, associativity,
and 61a=6 for all a EA (resp. Cl, C2, C3 in Table III). The actions c for
which there exists an action c' such that c I c' op. 6 are called subatomic or
communication actions.

Furthermore, II, L and I are specified by the axioms CM l-CM9 in
Table III. (See next page.) Table III contains the axiom system ACP, for
algebra of communicating processes. Here the subset H s;; A is a parameter
of Ou, the encapsulation operator. Its function is to encapsulate a process p
w.r.t. H, that is, Ou(P) cannot communicate with its environment via
communication actions in H. In Table III, a and b range over the alphabet A.

Note that in general on(X II y) of= ou(x) II ou(y). Thus 011 is a
homomorphism on (Aw,+,., 8), the initial algebra of axioms Al-A7, but
not on (Aw,+," II, LI, 6).

An important observation concerning the difference between processes and
trace sets is exhibited in the following example. Let A= {a,c 1 ,c2 ,c,6f and

PROCESS ALGEBRA FOR COMMUNICATION

x+y=y+x

TABLE Ill

ACP

x + (y + z) = (x + y) + z
x+x=x
(x + y) z = xz + yz
(xy) z = x(yz)

x+o=x
OX= 0

alb=bla
(a I b) I c =a I (b I c)
o I a= o

x 11 y = x l .v + y l x + x I y
alx=ax
(ax)ly=a(xllY)
(x + y) l z = x l z + y l z
(ax) I b= (a I b)x
al(bx)=(alb)x
(ax) I (by)= (a I b)(x II y)
(x + y l I z = x I z + y I z
xl(y+z)=xly+xlz

fi 11(a)=aifaEH
c'11(a) = o ifa E: H
?u(x + y) = ;1u(x) + i-'11(.l')
i'u(~\Y) = i711(x) · i:111(Y)

Al
A2
A3
A4
AS

A6
A7

Cl
C2
C3

CM!
CM2
CM3
CM4
CMS
CM6
CM7
CMS
CM9

DI
02
03
04

117

let c 1 I c2 = c. All other communications result in 6. Now, writing c for
O(Ci,Cil' We have

and

so the second process ac 1 + ac 2 has a deadlock possiblity in some context
where the first one, a(c 1 + c2), has not.

As before II, L I, and off can be extended to continuous operations on
(A 00 , d).

This formalism includes both message passing and synchronisation. In
Milner (1980) and De Bakker & Zucker (l 982a, b) synchronisation is
modeled by having a I b = r whenever a I b =t- b, r denoting a silent move. (In
this paper we will not consider r-steps.)

118 BERGSTRA AND KLOP

3.1. Remark. A comparison with some operators in related work:

(i) Milne (l 982a) employs an operator L1 with the axiom x + L1 = x,
as our A6. However, L1 denotes there not only deadlock but also successful
termination. The same is the case for Milner's constant NIL in (Milner,
1980). On the other hand, 6 as in Table III corresponds precisely to the
"empty" process 0 in the domain of uniform processes of De Bakker and
Zucker (I 982a, b). There a process ends (in a terminating branch) either in a
stop process p 0 (successfully) or in 0 (deadlock).

(ii) Requirements on communication similar to C 1-C3 are found in
Hennessy (1981), except that 6 is absent there but a unit element I is
present; i.e., (A, I,!) is an abelian monoid. See also Milner (1983), who has
similar postulates, viz. (A, I) is an abelian semigroup; he also works with
(A, I, 1, -) as a commutative group.

(iii) In Hennessy and Plotkin (1980) a definition corresponding to the
equation CM 1: x II y = x l y + y l x + x I y occurs.

(iv) In Hennessy (198la) an auxiliary operator y is used which is
related to our auxiliary operators l and I as follows:

xyy=xl y + x IY·

Then one has

x 11 y = x y y + y y x;

also y is linear in its left component:

(x + y) y z = x y z + y y z.

(This follows by axioms CM4, CMS in Table III.) The operator y does not
seem to yield a finite axiomatisation, however. Of course in the absence of
communication, i.e., x I y = 6, so that ACP "reduces to" PA, the operators y
and l coincide.

3.2. ACP seems to provide a concise formulation of the algebraic
essence of communication. Therefore we review its structure in detail here.
We will show that the new operators are indeed well defined by A6, A 7,
CMI-CM9, Dl-D4 over Al-A5 + Cl-C3. To this end we will rearrange
ACP into a TRS (term rewrite system) which is shown to be confluent and
strongly terminating modulo the permutative reductions A 1, A2. As a conse­
quence we find that each term built from A by +, ., II, L I, oH can be proved
equal to a unique term in Aw in ACP.

Finally we prove that II is associative, as well as several other useful iden­
tities in Theorem 3.3.

PROCESS ALGEBRA FOR COMMUNICATION l 19

For technical reasons we associate to each a EA a unary operator a*
which acts as follows:

a*x =a· x.

(That is, we consider the restriction to prefix-multiplication as in Milner
(1980, 1982, 1983). For finite processes, as we will consider in the following
analysis, general multiplication and prefix-multiplication are equivalent.
Working with prefix-multiplication frees us from considering the permutative
axiom AS, which is bothersome in a term rewriting analysis, in Table Ill.)

On the term system generated by A, +. ·, II, L I. a* (a EA), (' 11 we
introduce two norms I· I and 11 ·II- Here intuitively j SI computes an upper
bound for the path lengths in S and II S II computes an upper bound of the
number of (nontrivial) summands in which S decomposes. (See Table IV.)

Now consider the following term rewrite system RACP (which will only
be needed for the proof of Theorem 3.3) in Table V below. Here in
RCM5'-RCM7 the symbol cu,h denotes the atom ajbEA. The axioms
C 1-C 3 of AC P translate into the commutativity and associativity of c and
c0 ,0 = 6 for all a EA.

In the following theorem, =R denotes convertibility in RACP (i.e., the
equivalence relation generated by -+).

3.3. THEOREM. For all ACP-terms without variables:

(i) ACP f-- S = T <=> S =RT

(ii) ACP f-- S = S' for some S' not containing II, lL I. Du

(iii) ACP ~- S' = S" <=>Al-A? f-- S' = S" for S', S" not containing

!I, L 1.oH
(iv) S · (T · U) =R (S · T) · U

(v) RACP is weakly confluent, H'Orking modulo Al, A2.

(vi) RACP is strongly terminating, modulo Al, A2.

(vii) RAC P is confluent (has the Church-Rosser property).

lal= I
la*xl =I+ lxi
lx·.vl=lxl+IYI
Ix+ YI= max(lx!, I YI)
lxl.rl=lxl+l.vl-1
lxll.vl=lxl+l.vl
lxll.vl=lxl+IYI
lilu{x)I =Ix!

TABLE IV

l!aij =I
lla*x!I =I
l!x ·.vii= :!xl!
llx + yll = llxl! -t-1! yll
llx I .vii= lixll ·II y:I
llxllyll=llx!!
llx II .vii= llxll +II Y!I + 1:x11 · :1 J'li
!lilu(x)I! = llx'!

120 BERGSTRA AND KLOP

x+y->y+x
x + (y + z)-> (x + y) + z
(x+y)+z->x + (y+z)
x+x->x
(x + y) · z-> x · z + y · z
a·x->a*x
(a*x) · y-> a*(x · y)
x+o->x
o*x-> 0

TABLE V

RACP

x !I y _, x l _v + _v l x + x I y
alx->a*x
(a*x)ly->a*(xll y)
(x + y) l z-> x l z + y l z
alb-tca.b
(a*x) I b-> c;j'.bx
a I b*x-> c;:,bx
(a*x) I (b*y)-t c:.tV II y)
(x + .vl I z _, x I z + y I z
x!(y+z)->xly+xlz
c11(a)->a ifa EH
c11(a)->oifaEH
c11(x + y)-> c 11(x) + o11(y)
Cu(X ·)')->cu(x). ou(Y)
i'u(X ·Y)->cu(X). 011(.V)
o11 (a*x) __, a*oH(x) if a EH
c8 (a*x) __, o*o11 (x) if a EH

RAJ
RA2
RA2'
RA3
RA4
RA5'
RA5
RA6
RA7
RCMl
RCM2
RCM3
RCM4
RCM5'
RCM5
RCM6
RCM7
RCMS
RCM9
RDJ
RD2
RD3
RD3
RD4
RDl'
RD2'

Proof We start with (vi) and we introduce the auxiliary notion of the
multiset of direct subterms DS(T) of a term T:

DS(a)=0

DS(a*x) = DS(x)

DS(x + y) = DS(x) U DS(y)

DS(x Dy)= jx Dyf U DS(x) U DS(y) (here Dis ., II, Lor I)
DS(ou(x)) = DS(x).

Here U denotes the multi set union. Let [S] be the mapping from terms to
w X w defined by

[Sj = CISI, llSll).

PROCESS ALGEBRA FOR COMMUNICATION 121

This mapping is extended to multisets over terms. thus producing multisets
over u> X w:

l VJ= {[S 11 s E Vf.

On w X w there is the lexicographic well-ordering < which indu):es a well­
ordering <i; on finite multisets over w X w. We now observe that along a
reduction path

we have

if R; is not RA I. RA2. RA2'.

and

if R; is RA I. RA2. or RA2'.

From this observation strong termination of RAC P modulo A I and A2
follows.

Instead of a proof of the observation we provide two characteristic
examples.

(I) a·x->a*x.Then:

IDS(a · x)I =\a· xl U [DS(x)I and [DS(a*x) = IDS(x}I.

Now I a · x I majorizes each element of [DS(x) J because

\SI E [DS(x)I => ISI ~ lxl => ISI < ja · xl.

Hence [DS(a · x)\ ~ [DS(a*x)I.

and

(2) xlly->xly+ylx+xly. Then:

IDS(xll.vll =[xii Yi U \DS(x)I U \DS(yll

l DS (x Lr + y l x + x I y) I = Ix lL y I U \ D S (x)] U \ DS (Y) I
U \y lx]U [DS(xll U [DS(y)J

U [x IYJ U IDS(x)] U [DS(y)j.

Again \x II y] majorizes all of \x l y I. [y l x]. [x I y I. \DS(x) J. I DS(y)]. the
first three in width and the second two in depth.

An alternative proof of termination can be given by ranking all

122 BERGSTRA AND KLOP

occurrences of II, L I by the I· I-norm of the term of which they are the
leading operator. Using this extended set of operators a recursive path
ordering can be found which is decreasing in all rewrite steps except the first
three (RA!, RA2, RA2'). See Dershowitz (1982). A proof along this line
has been given in Bergstra and Klop (l 984b).

Proof of (v). RACP is weakly confluent modulo "'• the congruence
generated by A 1 and A2. (We are here working in congruence classes and
reductions have the form [S] - -t [S'] - whenever S-t S'.) This is a
matter of some 400 straightforward verifications. (Of course left to the
reader as an exercise.)

Proof of (vii). Working modulo - RACP is strongly terminating in view
of (vi). Now combining (v) and (vi) and using Newman's lemma (see Klop,
1980, Lemma 5.7.(1); or Huet, 1980, where more information about
reduction modulo equivalence can be found), we find that RACP is confluent
modulo "' and consequently it is confluent because the reductions generating
- are symmetric.

Proof of (ii). This follows immediately from (vi).

Proof of (iv). First one proves the associativity of · for terms not
containing II, l, I, 8H using induction on the structure of S. The result then
immediately folows using (ii).

Proof of (i). S =RT=> ACP f- S = T is immediate. For the other
direction one uses (iv).

Proof of (iii). If ACP r- S' = S" then by (i) S' =R S" and by (vii) for
some S"': S'-++ S"' and S"-++ S"' (here-++ is the transitive reflexive closure
of -t). Now because S' and S" are free of II, l, I, 811 we see that
S'-++ S"' ++-- S" is just a proof in Al, ... , A 7.

3.4. THEOREM. The following identities hold in (Aw,+,·, II, l. I, 011):

(1) xly=ylx

(2) x 11 y = y 11 x

(3) xl(ylz)=(xly)lz

(4) (xly)lz=xl(yllz)

(5) xl(ylz)=(xly)lz

(6) x 11 (y 11 z) = (x 11y)11 z.

Proof All proofs use induction on the structure of x, y, x written as a
term over (A,+, ·), which is justified by Theorem 3.3 (ii). We write

PROCESS ALGEBRA FOR COMMUNICATION

x = '\' a.x. +\'a' _ l I -.... .J
i j

y = \' b y + \' b' _ k k _ I
k I

z = \' c z + \' c' _ m m _ n·
m n

(1) and (2) are proved in a simultaneous induction:

x I Y = L (a; I bk)(x; II hl + L (a; I bi) X;

+ L (a} I bk)Yk + L (a} I bi)

= L (bk I a;)(yk II X;) + L (b; I a;) X;

Here we use C 1 and the induction hypothesis for X; II Yk = Yk ii X;·

123

(2) x II)' = x l Y + Y l x + x I y = Y l x + x l y + y Ix =.vii x. The
proof of (3), ... , (6) is also done using one simultaneous induction.

(3) Write x = x' + x", where x' = .L a;x; and x" =La;. Likewise
)' =y' + y" and z = z' + z". Then

Now

x I (y I z) = x' I (y' I z') + x' I (y" I z') + x' I (y' I z")
+ x' I (y" I z") + x" I (y' I z') + x" I (y" I z')

+ x" I (y' I z") + x" I (y" I z").

x' I (y' I z') =\'(a; I (bk I cm))(x; II (Yk II zm))

=\'((a; I bk) I cm)((x; II .V.) II zm)

= (x' l.v') I z'.

Here we used C2 and the induction hypothesis for (6). The other summands
of x I (y I z) are treated similarly. Hence x I (y I z) = (x I Y) I z.

(4)

(x l y) l z = (('\' a; x; + '\' a j) l Y) l z

= ('\'a;(x;llY)+\'aj·Y)lz

124

Now

BERGSTRA AND KLOP

= \' a;((x; II y) II z) + \'aJ(.v 11 z)

= \' a;(X; II (J' II z)) + \' aJ(Y II z)

= (\'a;x;+\'a;)l(Yllz)

= x l (y 11 z).

(induction hypothesis on (6))

(5) Let x = x' + x" and y = y' + y" as in the proof of (3). Then

x I (y l z) = x' I (y' l z) + x' I (y" l z)

+ x" I (y' l z) + x" I (y" l z).

x' I (y' lz)= (\' a;x;) I(\' bkYk) lz)

=(\'a;x;)I (''bk(ydz))

='\'(a; I bk)(x; II (h II z))

='\'(a; I bk)((x; II Yk) II z)

=(''(a; I bk)(x; II Yk)) l z

= (x' I y') l z.

(induction hypothesis on (6))

The other three summands are treated similarly. Hence x I (y l z) =
(x I y)l z.

(6) WriteAxCv,z)=xl(Yllz)andBx(J',z)=(ylz)lx.Then:

x II (y II z) = x l (y II z) + (y II z) l x + x I (y II z)

=Ax(y,z)+ (ylz)lx+ (zly)l x

+ (y I z) l x + x I (y l z) + x I (z l y) + x I (y I z)
=A x(y, z) + Y l (z II x) + z l (y II x) + B x(y, z)

+ (x I y) l z + (x I z) l y + x I (y I z)

= Ax(y, z) +A y(z, x) + Az(y, x) + B x(Y, z)

+ Bz(y, x) + By(x, z) + x I (y I z).

Also

PROCESS ALGEBRA FOR COMMUNICATION

(x II y) z = z II (x II y) = z II (y II x)

=Az(y, x) +Ay(x, z) +A..(y, z) + Bz(y,x)

+ Bx(y,z) +By(z,x) + z I (y Ix)

= Ax(y, z) + Ay(x, z) + A,(y, x) + B x(y, z)

+ By(z, x) + Bz(Y, x) + (x I y) I z,

125

which equals (*) using the commutativity of the A 's and B's and the
induction hypothesis on (x I y) I z.

3.5. Remark. The identity (4) in Theorem 3.3 also holds for the operator
y in Hennessy (1981 a) (discussed above in Remark 3. I (iv)); indeed this
identity (x Y y) Y z = x Y (y 11 z) occurs in (Hennessy, 198Ia). Note that the
identity follows from Theorem 3.4 and the definition of y, that is
xy y =x!L y + x I y, as follows:

(x yy) y z = (x lL y) y z + (x I y) y z

= (x 1L y) 1L z + (x l y) I z + (x I y) 11 z + (x I .v) I z

(Theorem 3.4)

= x IL (y II z) + x I (z IL y) + x I (y l z) + x I (y I z) (CM9)

= x IL (y II z) + x I (z 1L y + y l z + y I z) (CMI)

= x l <.v 11 z) + x I <.v 11 z) = x y (y 11 z).

3.6. Remark. Note that Theorem 3.4 (2), (4), (5) hold a fortiori for the
initial algebra of PA in Table II, since PA is the specialisation of ACP where
communication is absent (x I .v = o).

4. MERGING WITH MUTUAL EXCLUSION OF TIGHT REGIONS: AMP

4.1. The Tight Region Operator

In the framework of ACP as introduced above, one can treat process
cooperation where processes have tight regions which are to be executed
without any interruption. This is substantially more complicated (see
Remark 4.2.3 below) than the following more direct way: Table VI contains
an axiom system AMP for processes with tight regions without
communication. It is an extension of the axiom system PA for free merge in
Table II: the additions in the signature consist of an unary operator x H ~.

126 BERGSTRA AND KLOP

the tight region operator (in the literature ~ is also denoted as <x)), and an
inverse operator rp which removes the constraints of tight regions. Intuitively,
the underlined parts in a process expression (the tight regions) are to be
executed in a cooperation as a single atomic step-that is, no interruption by
an action from a parallel process is possible. Indeed we have as an
immediate consequence of axioms CRMl and Ml in Table VI:

4. 1.1. PROPOSITION. ~ II t = ~\'. . t + {' . ~·
Note that in general x II y *~II y. A prooftheoretical analysis of AMP can

be given analogous to the one in Section 3 for ACP, resulting in

4.1.2. THEOREM. (i) Using the axioms Ml-M4, TR1-TR3, TRMI,
,...RM2, F l-F4 as rewrite rules from left to right, every closed term T in the

~nature of AMP can be proved equal to a unique basic term T' (i.e., a term
ilt from +, · only and modulo Al-AS).

(ii) AMP is a conservative extension of PA. Hence AMP is consistent.

Writing n(T) for the unique basic term T' as in Theorem 4.l.2(i), it is easy
to assign the ("intuitively" correct) semantics ··~Mr(T) in (Aw,+,·) to a
closed AMP-term T:

c·~Mr(T) = [n(rp(T)H,

where [J is the semantics of basic terms in (Aw,+,·); E.g.,

x+y=y+x
(x + y)+z =x + (y+z)
x+x=x
(x + y) z = xz + yz
(xy)z=x(yz)

x 11 y = x 1L y + y u x
allx=ax
ax lL y = a(x 11 y)

(x +)') IL z = x IL z + y l z

c.i=a
x+y=o"<+Y -- -

"/(AMP(ab II cd) = abcd + cdab.

TABLE VI

AMP

Al
A2
A3
A4
AS

Ml

M2 JlY=J·Y
M3 J·ylz=J(Yllz)
M4

TRI ~(a)=a

TR2 ~(x + y) = ~(x) + ql(y)
TR3 ~(J)=~(x)

~(x · y) = ~(x) · ~(y)

TRMl
TRM2

Fl
F2
F3
F4

PROCESS ALGEBRA FOR COMMUNICATION 127

4.2. Tight Multiplication

A shortcoming in expressive power of the tight region operator in AMP is
that it does not allow us to specify a process a · (b · x + c . r l with the
restriction that only after the first step a and before the subpro~css hx +
no interruption by a parallel process is possible. Therefore we consider a
binary operator : ('"tight" multiplication) with the interpretation that .\': y is
like x · y but with the proviso that in a merge, no step from a parallel
process can be interleaved between x and y. Then a: (b . x + c . y) is the
process intended above. Table VII contains an axiom system AMP(: which
is an extension of AMP by this new operator and corresponding axioms.

The axiom system AMP(:) is redundant when only jinite processes are
considered: then '"_" can be eliminated in favor of'":" (but not. as
remarked, reversely), and also for finite processes some of the axioms in
AMP(:) can be proved inductively from the other, e.g .. TR3.

The operator '":" has distinct advantages above '"_ ": apart from its

greater expressive power. it is more suitable for a treatment of infinite
processes. both via projective sequences (as used above) and via bisimulation
(not considered here).

A prooftheoretical analysis can be given analogous to the one in Section 3
for AC P and yielding a result analogous to Theorem 4.1.2. Likewise each
closed AMP(:)-term T has an obvious semantics '.\\iPi:i(T) in (A .. ,.+.·).

similar to the case of AMP. (We will drop the subscript AMP(:) sometimes.)

x+y=y+x
(x+,r)+z=x+(y+z)
x+x=x
(xty) · Z =X · Z +_r · Z
(x · y) · z = x · (y · z)

x l! .r = x il .r + y u x
aly=ay
axl y = a(x ll y)
(X t y) il_ Z = X l Z t _\' l Z

!l =a
x+,r=,\'t,!'

X~}=~-:t

x_:y =~~ :-!'

643/60/1-3-9

TABLE VII

AMP(:)

Al
A2
A3
A4 (x+y):z=x:z+y:z
AS (x : y) : z = x : (y : z)

(x:y)·z=x:(Y·z)
(x·y):z=x· (y:z)

Ml
M2
M3 (a: x) l y =a: (x l .rl
M4

TRI ll!(a) =a
TR2 o(x+y)=IP(X)+C(y)

TR3 C(,\') = ll!(X)

TR4 C(x·y)=O(x)·O(Y)

TRS O(X :y) = o(xl. c>(y)

AT!
AT2
AT3
AT4

TRM

Fl
F2
F3
F4
F5

128 BERGSTRA AND KLOP

EXAMPLE. . lf(a : b If c : d) = abcd + cdab.

Note that .l(is a homomorphism w.r.t. +and·, but not w.r.t. II- As before
we have by a simple inductive proof:

4.2.1. THEOREM. For all x. y. z in the initial algebra of AMP(:) we have:

(i) (xl.v)lz=xl(.vllz)
(ii) (xllYlllz=xll(Yllz).

4.2.2. Remark. Note that the axioms in Table VI for AMP:

~l.v=::XJ'

~ylz=~(Yllz)

and their immediate consequence

(TRMl)

(TRM2)

(Proposition 4.1.1)

can now be proved in AMP(:) from the axiom

(a:x)ly=a:(xly) (TRM)

for finite closed terms (using an induction on term formation).

4.2.3. Remark. AMP(:) can be "implemented" by ACP in the following
sense. Let P, Q. R be closed AMP(:)-terms (the general case involving terms
P 1 ••••• P n is similarly treated). Then we have in (A,,,, +. ·, 6), the initial
algebra of A 1-A 7:

where. ~\MPl:P defined above, yields the semantics in (A"''+.·, O) of the
AMP(:)-term P II Q II R and . ~\CP is the semantics of the ACP-term
(11rCf!' II Q' II B' II C)" in that algebra. Here the terms E', Q', B ', and C are
defined as follows:

(i) f results from P by replacing every substring a: by g ·, where g is
a new atom; e.g. a 1 : (a 2 • a 3 + a4 : a 5) yields g 1 • (a 2 • a 3 + g 4 • a 5). Likewise
for Q, R.

(ii) f', Q', B' are copies off, Q, B obtained by renaming such that
their alphabets are pairwise disjoint. Say f' contains only actions 9;, aj; Q'
contains only actions }J k, b 1; and B' only S:m, c,,.

(iii) The control process C has alphabet j a, g, fJ, (J, y, y f and is recur-
sively defined by - -

PROCESS ALGEBRA FOR COMMUNICATION

C=Ca+C8 +c)'
Ca= a· C +g. Ca

C13 =fJ·C+f!·C13

C,=y·C+J·Cr

129

(iv) The communication function to be used in evaluating the merges
in the RHS of (*) is given by

and likewise for /J, y. All other communications equal J. H contains all
communication actions a, g., ... , fJi, ai'"".

Further, ? H(· · ·) 11 in the RHS of (*) denotes a suitable renaming of i'u(...)
into the original alphabets of P, Q, R.

Finaly, the presence of b in the LHS of (*) is due to the fact that C has no
finite branches.

5. MERGING WITH COMMUNICATION AND MUTUAL EXCLUSION
OF TIGHT REGIONS: ACMP

The facilities of merge with communication (ACP) and merge with mutual
exclusion of tight regions (AMP(:)) can be joined in a smooth way. (This is
not self-evident; e.g., it seems not clear at all how to join tight multiplication
as in AMP(:) with r-steps.)

The result of this join is the axiom system ACMP in Table VIII. The left
column contains ACP with a slight alteration for convenience: CMS* is
added (cf. Tables III and VIII) which saves us some axioms. The right
column consists of the axioms in AMP(:) (see Table VII) for the operators :,
_ , and ~. where the axiom

(a: x) ILY =a: (x IL_y) TRM

is now "extended" to

(a :x) IL_y=a: (x ILY +x IY) CTRMI.

The axiom CTRMI can be understood as follows: The process (a: x) ILJ'
has a double commitment: IL insists that the first step in the cooperation
between a : x and y is taken from a : x and : insists that after performing a, a
step from x must follow without interruption. This double restraint is
respected in a : (x IL y + x I y). After a, the required step from x may be an
"autonomous" step of x, as in x IL_y, or a simultaneous step in x and y, as in

130 BERGSTRA AND KLOP

x I y. (Note that when communication is absent, i.e., x I y = '5, CTRM 1

specializes to TRM.) Moreover axiom A TS is new and so are

CTRM2-CTRM4 which specify : versus I·
By means of a tedious prooftheoretic analysis analogous to the one for

ACP one can prove consistency of ACMP and that ACMP is a conservative

extension of both ACP and AMP(:). Also associativity of II holds for

ACMP: intuitively this can be seen via a graph representation of closed

ACMP-terms as in Example 5.1.
It turns out that the combination of asynchronous cooperation as in ACP

with "tight'' multiplication as in AMP(:) is able to give an interpretation of

synchronous cooperation. This will be stated more precisely in the next

section where a direct axiomatisation of synchronous cooperation is given.

5.1. EXAMPLE. a : b II e : d =a : b l e : d + e : d lL a : b + a : b I e : d
=a : (be: d +b I e: d) + e: (da : b +d I a : b)+(a \ e) : (b Id)= a : (be : d

x+y=y+x
(x + y)+ z = x + (.r + z)

x+x=x
(X + }') Z = XZ +)'Z

(xy) z =x'(yz)

x+o=x
OX= 6

a;b=hia
(a b)lc=ai(bjc)
a 16 =o

x I')'= x lL y +)' l x + y Ix
ali_x=ay

axli. y=a(x'I y)

(x+y)lz=xly+ylz
x'y=ylx
a I by= (a ! b) y
ax I by= (a. b)(xii y)

(x + yl I z = x I z + y i z

rH(a)=aifa~H

(· 11 (a) = i5 if a E H

C'11(X + y) = c'H(x) + C'11(.Y)
f· 11(x · y) = b11(x) · ?11(y)

TABLE VIII

ACMP

Al (x+y):z=x:z+y:z AT!

A2 (x:y):z=x:(y:z) AT2

A3 (x:y)·z=x:(y·z) AT3

A4 (x·y):z=x·(y:z) AT4

AS 6 :x=O ATS

A6
A? (a:x)ly=a:(xly+xly) CTRMl

(a: x) I lb :y) =(a I b): (x I y) CTRM2

(a: x) I (by)= (a I h): (x LI'+ x I y) CTRMJ

(a:x)lb=(a\b):x CTRM4

Cl
C2
C3

CM! g=a

CM2 X±Y = >: + ~·
CM3 { =c<

CM4 x · v = x : 1·

CMS* x: J' = c~: .~·
CM6 -

CM? IP(a) =a

CMS (l!(x + y) = j'J(x) + j'J(y)

9(>:) = j'J(x)
Dl j'J(x · y) = j'J(x) · j'!(y)

D2 ~(x :y) = 9(x) · (l!(y)
D3
D4

TRl
TR2
TR3
TR4
TR5

Fl
F2
F3
F4
FS

a:
1'i
p
C•
p
s:

t]

t.:
c

PROCESS ALGEBRA FOR COMMUNICATION 131

(a)
(b I

FIGURE I

+ (b I c): d) + c: (da : b + (d I a) : b) +(a I c): (b Id). There is a simple
graphical method for evaluating such expressions, as suggested by Fig. I a.
(This is moreover relevant since it enables us to define simple graph models
for ACMP; we will not do so here.) In the figure black nodes indicate tight
multiplication. After "unraveling" shared subgraphs we arrive at the correct
evaluation of a: b II c: d, as in Fig. lb. (For the merge II in PA and ACP
there are analogous ways: merging two process graphs in the PA sense
consists of taking the full cartesian product graph; in ACP diagonal edges
for the results of communication have to be added. See Bergstra and Klop,
1983a).

6. SYNCHRONOUS COOPERATION: ASP

We will briefly comment in this section on the distinction between
asynchronously versus synchronously cooperating processes (in the sense of
Milner 1983); ACP, just as CCS, describes the asynchronous cooperation of
processes. The axiom system ASP in Table IX describes synchronous
cooperation of processes, in the sense that the cooperation of processes
P 1, ••• , P n, notation P 1 IP 2 I · · · I P n, proceeds by taking in each of the P;
simultaneously steps on the (imaginary) pulses of a global clock.

Formally, the relation of ASP to ACP is clear; it originates by leaving out
the results of the free merge, that is, in axiom CM! of ACP

x 11 y = x 1L y + y 1L x + x I y,

the first two summands are discarded (so that
communication merge).

is in effect I, the

132 BERGSTRA AND KLOP

x+y=y+x
(x + y) + z = x + (y + z)
x+x=x
(x + y) z = xz + yz
(xy)z =x(yz)
x+o=x
ox=O

alb=bla
(alb)lc=al (blc)
a I o= o

(x+y)lz=xlz+ylz
x I (y + z l = x I y + x I z
ax I by= (a I b)(x I y)
a I by= (a I b) y
axlb=(aib)x

TABLE IX

ASP

Al
A2
A3
A4
AS
A6
A7

Cl
C2
C3

SM!
SM2
SM3
SM4
SM5

ASP bears a strong resemblance to Milner's SCCS (Milner, 1983) (see
also Hennessy (1981); the most notable difference is 6 which does part of the
work done in SCCS by restriction operators. (In SCCS "incompatibility" of
atoms a, b cannot be expressed, so that certain superfluous subprocesses of a
cooperation must be pruned away after the evaluation of the cooperation by
a restriction operator. In ASP this incompatibility is stated as a I b = o.)
Another notable difference is that SCCS admits also infinite sums.

Milner (1983) gives an ingenuous implementation of asynchronous
processes (as in CCS) in terms of SCCS, via some "delay-operators" and
argues that synchronous cooperation is a more fundamental notion than
asynchronous cooperation. However, the reverse position can be argued too,
since many synchronous processes can be implemented in ACP (see
Remark 6.3).

Synchronous cooperation as axiomatised by ASP can be interpreted in
ACMP, as the next theorem states (the routine proof is omitted).

6.1. THEOREM. Let x, y be basic terms. Then x I y evaluates in ASP to
the same basic term as ~(~I y) in ACMP.

Phrased differently, Theorem 6.1 says that in the algebra

.'4' =(A,+,.,:, II, ll, 1, I*,_,~, af" o)

PROCESS ALGEBRA FOR COMMUNICATION 133

which has as reducts

(A,+,·, I*, 15),

the initial algebra of ASP, and

the initial algebra of ACMP, we have

.w F x I* y = ~(~ I }').

6.2. EXAMPLE. ~(ab I al) = ~(a : b I c : d) = ~((a I c) : (b I d)) = (a i
c)(b Id)= ab I* ed.

6.3. Remark. Another possibility, only slightly less direct than the inter­

pretation in ACMP above, is to ''implement" ASP in ACP as follows. Let

P1 I · · · IP n be a closed ASP-term; the P; are basic. Let A;<;:;; A be the set of
actions occurring in P; (i = 1, .. ., n), and H =A 1 U · · · U An.

Suppose that H does not contain results of H-communications:

H n (HI Hu HI HI Hu · · · J = 0.

(Here HI H = {c I 3a, b EH a I b = cf, etc.) Then

.4'Asp(P1 I··· I Pn) = ll'Acp(8H(P1 II .. · II P11)),

where .R'Asr, ~er denote the semantics of ASP-, ACP-terms m the
respective initial algebras.

6.4. EXAMPLE. In ASP: ab I cd =(a I c)(b Id). Suppose a I c, b Id E

\a, b, c, df = H, then also in ACP:

Ou(ab II cd) = Du(ab l cd) + Ou(cd lab)+ oH(ab i cd)

= ofl(a(b II cd) + 8 u(c(d II ab)) + 8H((a I c)(c II d))

= c5 + /5 +(a I c)(b Id)= (a I c)(b Id).

6.5. Remark. Asynchronous communication. There does not seem to be

a consensus as regards the use of the terms "synchronous" vs.

"asynchronous.'' The terminology that we have adopted and used in the

preceding pages, distinguishes "cooperation" from ''communication" and is

stated more explicitly as follows:

(i) ASP, SCCS have synchronous cooperation and synchronous com­

munication;

134 BERGSTRA AND KLOP

(ii) ACP, CCS have asynchronous cooperation and synchronous com­
munication.

(iii) ACMP combines synchronous and asynchronous cooperation
and has synchronous communication.

A third format, not considered above but used in some programming
languages, is "asynchronous cooperation with asynchronous
communication." Here the communication is asynchronous in the sense that,
e.g., a process P sends a message c! to a process Q such that P can proceed
while the message cl to Q is "on the way."

7. CONCLUDING REMARKS

We have introduced axiom systems as in the enclosed part of Fig. 2. Here
each heavy arrow denotes a conservative extension, the arrow from ASP to
ACMP denotes an "interpretation" and the dashed arrows denote an
'"implementation" (in the vague sense of a less direct interpretation).

For the main axiom system ACP basic properties such as consistency and
an elimination theorem have been proved. For the other systems similar
results follow by a similar proof. It is claimed that ACP and the other axiom
systems codify central concepts in concurrency: free merge, merge with
communication by action sharing, merge with mutual exclusion of tight
regions, synchronous vs. asynchronous process cooperation. Also some of
these concepts are shown to be related as indicated in the diagram in Fig. 2.

Clearly, as we discussed in the Introduction, this work is strongly related
to other algebraic approaches of concurrency. In this paper we did not study
the effect of adding mechanisms for recursive definitions, such as µ­
expressions (cf. Milner, 1982), or systems of recursion equations as in
Bergstra and Kl op, 19 84a). For each of the systems such an addition is
possible; for BPA, PA, and ACP the relative expressive power, after adding
recursion facilities, is studied in (Bergstra and Klop, 1984a). For instance,

ACP 1 + rules

FIGURE 2

PROCESS ALGEBRA FOR COMMUNICATION 135

one can show that the process B recursively defined by B = (aa' + bb')ll_ B
over PA cannot be recursively defined over BP A, i.e., without merge or left­
merge. (B is the behaviour of a "bag" over a data domain consisting of two
elements.)

Also not touched in this paper is the problem of abstraction ("hiding"). In
, (Bergstra and Klop, l 984b) an extension ACP, (see Fig. 2) of ACP has been

defined and studied, which basically consists of ACP plus Milner's r-laws, in
1 order to deal with abstraction of internal steps. An application of ACP

yielding such internal steps, is given in (Bergstra and Klop, l 983a), where
the operational semantics of data flow networks is defined in terms of ACP.
Further applications of ACP include finite specifications of the behaviours of
processes like stack, bag, and queue, as well as algebraic verifications such
as that the juxtaposition of two bags is again equivalent to a bag-after
abstraction from internal steps. In (Bergstra and Klop l 983b) a connection
between processes and abstract data types is investigated, with the purpose
of providing the means of validating some process specifications against their
abstract data types specifications.

In (Bergstra and Klop, J 984c) a simple version of the alternating bit
protocol is proved correct in the framework of AC P, plus some extra rules,
using only algebraic calculations.

There exists a rich model theory for ACP. In this paper we have only
mentioned (apart from the obvious initial algebras) the projective limit
algebra. A fruitful concept for building process algebras is the notion of
bisimulation (see Park, 1981) between process graphs. Process algebras
obtained in this way are defined and studied in (Bergstra and Klop, l 984b).

We would like to mention that K. Ripken pointed out a serious error
regarding terminology in an earlier version of this paper. In particular we
incorrectly used "critical region" instead of "tight region"-the difference
being that critical regions allow interleavings by other actions provided these
are not themselves contained in a critical region.

RECEIVED: September l, 1983; ACCEPTED: March 7, 1984

REFERENCES

BACK, R. J. R., AND MANNILA, H. (l 982a), A refinement of Kahn's semantics to handle
nondeterminism and communication, in ACM Conf. on Principles of Distributed

Computing, Ottawa.
BACK, R. J. R., AND MANNILA, H. (1982b), "On the Suitability of Trace Semantics for

Modular Proofs of Communicating Processes," Dept. of Computer Science, University of
Helsinki.

DE BAKKER, J. W., AND ZUCKER, J. I. (1982a), Denotational semantics of concurrency, in
"Proc. 14th ACM Sympos. on Theory of Computing," 153-158.

DE BAKKER, J. W., AND ZUCKER, J. I. (1982b), Processes and the denotational semantics of

concurrency, Inform. Control 54, No. 1/2, 70-120.

136 BERGSTRA AND KLOP

DE BAKKER, J. w., BERGSTRA, J. A., KLOP, J. w., AND MEYER, J.-J. CH. (1983), Linear time
and branching time semantics for recursion with merge, in "Proc. 1 Oth lot. Colloq.
Automat. Lang. & Programming, Barcelona" (J. Diaz, Ed.), Lecture Notes in Computer
Science No. 154, 39-51, Springer-Verlag, New York/Berlin; expanded version, Theoret.
Comput. Sci .• in press.

BERGSTRA, J. A. AND KLOP, J. w. (1983a), "A Process Algebra for the Operational
Semantics of Static Data Flow Networks," Report IW222/83, Mathematisch Centrum,

Amsterdam.
BERGSTRA, J. A. AND KLOP, J. w. (1983b), "An Algebraic Specification Method for

Processes over a Finite Action Set," Report IW 232/83, Mathematisch Centrum,

Amsterdam.
BERGSTRA, J. A. AND KLOP, J. W. (1984a), The algebra of recursively defined processes and

the algebra of regular processes, in "Proc. I Ith lnt. Colloq. Automat. Lang. &
Programming, Antwerpen" (J. Paredaens, Ed.), Lecture Notes in Computer Science
No. 172, 82-94, Springer-Verlag, New York/Berlin.

BERGSTRA, J. A. AND KLOP, J. W. (1984b), "Algebra of Communicating Processes with
Abstraction," Report CS-R8403, Centrum voor Wiskunde en lnformatica, Amsterdam.

BERGSTRA, J. A. AND KLOP, J. w. (1984c), "Verification of an Alternating Bit Protocol by
Means of Process Algebra," Report CS-R8404, Centrum voor Wiskunde en lnformatica,
Amsterdam.

BERGSTRA, J. A. AND KLOP, J. w. (1984d), "Fair FIFO Queues Satisfy an Algebraic
Criterion for Protocol Correctness," Report CS-R8405, Centrum voor Wiskunde en lnfor­
matica, Amsterdam.

BROOKES, S. D. (1983), On the relationship of CCS and CSP, in "Proc. !Oth lot. Colloq.
Automat. Lang. & Programming, Barcelona" (J. Diaz, Ed.), Lecture Notes in Computer
Science No. 154, 83-96, Springer-Verlag, New York/Berlin.

BROOKES, S. D. AND ROUNDS, W. C. (1983), Behavioural equivalence relations induced by
programming logics, in "Proc. !Oth Int. Colloq. Automat. Lang. & Programming,
Barcelona" (J. Diaz, Ed.), 97-108, Lecture Notes in Computer Science, Springer-Yerlag,
New York/Berlin.

DERSHOWITZ, N. (1982). Orderings for term-rewriting systems, Theoret. Comput. Sci. 17,
279-301.

GRAF. S. AND SIFAKIS, J. (1984), A modal characterization of observational congruence on
finite terms of CCS, in "Proc. I Ith Int. Colloq. Automat. Lang. & Programming,
Antwerpen" (J. Paredaens, Ed.), Lecture Notes in Computer .Science No. 172, 222-234,
Springer-Verlag, New York/Berlin.

HENNESSY, M. (!98!a), "On the Relationship Between Time and Interleaving," Univ. of
Edinburgh.

HENNESSY, M. (1981b), A term model for synchronous processes, Jriform. Control 51, 58-75.
HENNESSY. M. (! 982a), "Synchronous and Asynchronous Experiments on Processes," Report

CSR-125-82, Univ. of Edinburgh.
HENNESSY, M. (1982b), "Axiomatising Finite Delay Operators," Report CSR-124-82, Univ.

of Edinburgh.
HENNESSY, M. (1983), "A model for Nondeterministic Machines," CSR-135-83, Univ. of

Edinburgh.
HENNESSY, M. AND MILNER, R. (1980), On observing nondeterminism and concurrency, in

"Proc. 7th lnt. Colloq. Automat. Lang. & Programming," 299-309, Lecture Notes in
Computer Science No. 85, Springer-Verlag, New York/Berlin.

HENNESSY, M. AND MILNER, R. (1983), "Algebraic Laws for Nondeterminism and
Concurrency," Report CSR-133-83, Univ. of Edinburgh; J. Assoc. Comput. Mach., in
press.

HENNESSY, M. AND DE NICOLA, R. (1982), "Testing Equivalences for Processes," Report
CSR-123-82, Univ. of Edinburgh.

PROCESS ALGEBRA FOR COMMUNICATION 137

HENNESSY, M. AND PLOTKIN, G. (1980), A term model for ccs. in "Proc. 9th Mathematical
Foundations of Computer Science" (P. Dembinski, Ed.), Lecture Notes in Computer
Science No. 88, Springer Verlag, New York/Berlin.

HOARE, C. A. R. (1978), Communicating sequential processes, Comm. ACM 21 666-677.

HOARE, C. A. R. (1980), A model for communicating sequential processes. in. "On the
Construction of Programs" (R. M. McKeag and A. M. McNaghton, Eds.). pp. 229. 243,
Cambridge Univ. Press, London/New York.

HOARE. C., BROOKES. S., AND ROSCOE, w. (1981). "A Theory of Communicating Sequential
Processes," J. Assoc. Compul. Mach. 31, No. 3. 560-599.

HuET, G. (1980). Confluent reductions: Abstract properties and applications to term rewriting
systems, J. Assoc. Comput. Mach. 27. No. 4, 797-821.

KLOP, J. W. (1980). "Combinatory Reduction Systems," Mathematical Centre Tracts
No. 127, Mathematisch Centrum. Amsterdam.

MILNE, G. (J 982a), Abstraction and nondeterminism in concurrent systems. 3rd International
Conference on Distributed Systems, Florida, Oct. 1982, IEEE. p. 358-364.

MILNE, G. (1982b), "'CIRCAL: A Calculus for Circuit Description."' INTEGRATION. the
VLSI journal I (1983), 121-160.

MILNE. G. AND MILNER. R. (1979). Concurrent processes and their syntax, J. Assoc. Compur.

Mach. 26, No. 2. 302-321.
MILNER. R. (1980), "'A Calculus of Communicating Systems," Lecture Notes in Computer

Science No. 92, Springer Verlag, New York/Berlin.
MILNER. R. (1984). A complete inference system for a class of regular behaviours. J. Compul.

and Syst. Sci. 28 439-466.

MILNER. R. (1983). Calculi for synchrony and asynchrony. Theorer. Compur. Sci. 25 (1983),
p. 267-310.

NIVAT, M. (1979). Infinite words, infinite trees. infinite computations. in "Foundations of
Computer Science 11!.2" (J. W. de Bakker and J. van Leeuwen. Eds.), pp. 3-52.
Mathematical Centre Tracts No. 109, Mathematisch Centrum, Amsterdam.

NIVAT, M. (1980). Synchronization of concurrent processes. in "Formal Language Theory"
(R. V. Book. Ed.). pp. 429-454. Academic Press. New York.

OLDEROG, E.-R. AND HOARE, C. A. R. (1983), Specification-oriented semantics for

communicating processes, in "Proc. lOth lnt. Colloq. Automat. Lang. & Programming.
Barcelona," 561-572, Lecture Notes in Computer Science No. 154. Springer-Verlag New
York/Berlin; expanded version. Technical Monograph PRG-37. Oxford Univ. Comput.

Lab .. February 1984.
PARK, D. M. R. (1981). Concurrency and automata on infinite sequences, in "Proc. 5th G!

(Gesellschaft fiir lnformatik) Conference, Lecture Notes in Computer Science No. 104.

Springer-Verlag. New York/Berlin.
PRATT, V. R. (1982). On the composition of processes, in "Proc. 9th ACM Sympos. on Prin­

ciples of Programming Languagues," pp. 213-223.
REM, M. (1983). Partially ordered computations. with applications to VLSI design. in "Proc.

4th Advanced Course on Foundations of Computer Science, Part 2"" (J. W. de Bakker and
J. van Leeuwen. Eds.). l-44. Mathematical Centre Tracts No. 159. Mathematisch

Centrum, Amsterdam.
STAPLES, J. AND NGUYEN, V. L. (1983), "A Fixpoint Semantics for Nondeterministic Data

Flow," Report No. 48, Dept. of Comput. Sci .. Univ. of Queensland. Australia.
WINSKEL. G. (l 983a). Event structure semantics for CCS and related languages. in "Proc. lnt.

Colloq. Automat. Lang. & Programming. 561-576. Lecture Notes in. Computer Science

No. 140. Springer-Verlag. New York/Berlin.
WINSKEL, G. (! 983b). Synchronisation trees. in ""Proc. l Oth lnt. Colloq. Automat. Lang. &

Programming, Barcelona"" (J. Diaz, Ed.). 695-711, Lecture Notes in Computer Sciem:e

No. 154, Springer-Verlag. New York/Berlin.

