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Abstract 

We analyse the problem of executing periodic operations on a minimum number of identical 
processors under different constraints. The analysis is based on a reformulation of the problem 
in terms of graph colouring. It is shown that different constraints result in colouring problems 
defined on different classes of graphs, viz. interval graphs, circular-arc graphs and periodic
interval graphs. We discuss the complexity of these colouring problems in detail. 
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1. Introduction 

In this paper we consider periodic assignment, i.e. the problem of assigning periodic 
operations to processors. Operations are called periodic if they have to be repeatedly 
executed at a constant rate over an infinite-time horizon. Here, we assume that the 
executions of periodic operations have fixed start times. The executions have to be 
assigned to a minimum number of processors. The more general problem of finding 
start times that minimize the number of processors is discussed in [15]. The periodic 
assignment problem naturally arises in such diverse areas as real-time processing, 
vehicle scheduling and compiler design [21, 23, 25]. 

We analyse the periodic assignment problem under different constraints, resulting 
in a graph colouring formulation of the problem for three different classes of graphs. 
The problem of colouring the vertices of a graph with a minimum number of colours 
such that adjacent vertices are given different colours is NP-hard for arbitrary graphs. 
Furthermore, no efficient approximation algorithm is known that colours arbitrary 
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graphs with a number or colours that lies within a constant factor of the optimum. We 
show that the graphs in some of the classes related to periodic assignment are less 
difficult to colour. 

The organization of the paper is as follows. In Section 2 we introduce some basic 
concepts and notation, discuss periodic assignment and show its relation to the 
problem of colouring interval graphs, circular-arc graphs, and periodic-interval 
graphs. In Section 3 we consider the computational complexity of colouring these 
graphs and discuss appropriate graph colouring algorithms. 

2. Periodic assignment 

A periodic operation is an operation that is repeatedly executed at a constant rate 
over an infinite-time horizon. Its executions are considered to be nonpreemptive. 
Hence, a periodic operation can be viewed as an infinite sequence of executions of 
identical length that are equally spaced in time. A periodic operation o has an 
execution time e(o) e f\I, denoting the length of each execution, and a period p(o) e N, 
denoting the time between the start times of two successive executions. We assume 
that e(o) ::;;;; p(o). 

The executions of a periodic operation o are all uniquely determined in time1 by 
a reference time r(o) e { 1, ... ,p(o)} that specifies the start time of the execution ofo that 
starts in the interval [1, p(o)]. Note that r(o) is well defined, since exactly one 
execution is started in [l, p(o)]. The executions of operation o are started at times 
r(o) + kp(o), keZ. For a given set of periodic operations 0 = {oi. ... ,on}, a schedule 
S = (r(oi), ... ,r(on)) determines the start times of all executions. A schedule S is 
periodic with period P = lcm{p(o), ... ,p(on)), which means that P is the smallest 
positive number such that for each time t e Z and each operation o e 0, we have that 
operation o is executed at t if and only if it is executed at t + P. The periodic 
assignment problem is now defined as follows. 

Definition 2.1. Given a set of periodic operations 0 and a corresponding schedule S, 
the periodic assignment problem is the problem of assigning the executions of the 
operations in 0 to a minimum number of identical processors, where a processor can 
execute only one operation at a time. 

Given a periodic schedule S with period P, we define the thickness function 
T: [l, P]-+ N as the function that assigns to each time t E [1, P] the number of 
operations that are executed simultaneously at that time. Since a processor can 
execute only one operation at a time, the maximum thickness, defined by 
rnax = max, T(t), gives a lower bound on the number of processors that is required to 
execute a given schedule S. 

1 In this paper time is given in time units. If an operation o with execution time e(o) starts at time t, then it 
is started at the beginning of time unit t and is completed at the end of time unit t + e(o) - 1. Similarly, 
a time interval [r1, t 2] denotes a set of consecutive time units, given by {th t1 + 1, ... ,tz}. 
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With respect to the assignment of executions to processors we consider two 
different cases, namely 

- unconstrained periodic assignment, where different executions of an operation may 
be assigned to different processors, and 

- constrained periodic assignment, where all executions of an operation have to be 
assigned to the same processor. 

An assignment is called periodic with period P' if P' is the smallest positive integer such 
that for each time unit t E Z, each o e 0, and each processor m we have 

processor m executes operation o at t if and only if m executes o at t + P'. 

If for a given periodic schedule S with period P an assignment is periodic with period 
P', then necessarily PIP'. For the constrained periodic assignment problem, an 
assignment is necessarily periodic with a period equal to Icm(p(o 1), ••• ,p(on)). 

In the following sections we consider in more detail unconstrained and constrained 
periodic assignment. 

2.1. Unconstrained periodic assignment 

Before discussing unconstrained periodic assignment, let us first consider as 
a simple example the assignment problem for a finite set of executions. The problem 
then amounts to assigning the finite set of executions, with given start and execution 
times, to a minimum number of processors. This problem can directly be formulated 
as the problem of colouring the vertices of an interval graph with a minimum number 
of colours, by associating with each execution a vertex in the corresponding interval 
graph such that two vertices are adjacent if and only if the corresponding executions 
overlap in time. 

Definition 2.2. A graph C§ = ("Y, if) is an interval graph if we can associate with each 
vertex v1 e "Y an interval [l;, r;], with li, r, e Z and 11 ~ r;, such that { Vj, vJ et! if and 
only if the corresponding intervals [I;, rJ, and [lj, rJ, overlap. 

An example of a set of executions and the associated interval graph is given in 
Fig. 1. The set of all interval graphs is denoted by !'/m. 

The problem of colouring interval graphs is discussed in Section 3.1. Here, we 
restrict ourselves to showing that the finite set of executions can be assigned to rmax 6-2-----4-----5 __ _ 

5 

(a) (b) 

Fig. 1. (a) A set of execution intervals and (b) the associated interval graph. The vertices are adjacent if and 
only if the associated intervals overlap. 
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processors, where the maximum thickness r-• is defined in a similar way as for 
periodic schedules. To that end, we use the left edge algorithm [12] and show that this 
algorithm uses ma• processors to assign the executions. The left edge algorithm first 
sorts the executions in order of nondecreasing start times and then assigns the 
executions in this order to the first available processor, i.e. the processor with the 
smallest index that is idle at the start time of the execution. Now, it is easy to show, by 
contradiction, that the left edge algorithm uses exactly T"' .. processors. Suppose that 
the left edge algorithm uses T""01 + 1 processors. Then at some point in time an 
execution is assigned to the ( rm·· + 1 )th processor. But this implies that 'f""&X other 
executions are carried out at that time, which contradicts the assumption that rm•• 
gives the maximum thickness. Consequently, the left edge algorithm assigns a finite set 
of executions to exactly r-• processors. 

Using this result for a finite set of executions, we formulate the following theorem 
for unconstrained periodic assignment. 

Theorem 2.3. For a given sec of periodic o,m-ations 0 = {oi. ... ,o,,} and a co"esponding 
schedule S, an unconstrained assignment of the executions of 0 exists that uses rm-• 
processors. 

Proof. Let the left edge algorithm be used to assign the executions, starting at time 0. 
Clearly, from the above result for a finite set of executions, we deduce that the left edge 
algorithm uses rma• processors. It remains to be shown that the assignment obtained 
by the left edge algorithm becomes periodic. The schedule S is periodic with period 
P = lcm(p(o 1}, ••• ,p(o.)). Now consider the time intervals [l + lP, (l + l)P], 
l = 0, l, .... In each of these intervals the left edge algorithm assigns a finite number of 
executions to a finite number of processors. Hence, only a finite number of different 
assignments exist for such intervals. Consequently, the assignment obtained by the left 
edge algorithm necessarily becomes periodic with a period IP, with l eZ, after some 
time t 0• More precisely, for some time t 0 > 0 we have that, for each time t >to. each 
o e 0 and each processor m, processor m executes operation o at time t if and only 
if m executes o at t +IP. The part of this assignment between r0 and t 0 + IP can 
clearly be used to construct a periodic assignment with period IP, using only rmax 
processors. D 

Note that the number of executions for which the left edge algorithm has to specify 
a processor need not be a polynomial in the number of operations. In fact, we can 
prove the following result. 

Theorem 2.4. The problem of determining the minimum number of processors for an 
unconstrained periodic assignment is NP-hard in the strong sense. 

Proof. This is shown by a reduction from the simultaneous congruences problem, 
which has been shown NP-hard by Leung and Whitehead [19] and NP-hard in the 
strong sense by Baruah et al. [l]. The simultaneous congruences problem is defined as 
follows. Given a set T of n ordered pairs of positive integers (ai. b1), ••• ,(a., b,,), 
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determine the cardinality of largest subset T' £ T for which there is a positive integer 
x with the property that x = a, (mod b;) for all (a;, b1) E T'. 

Now, with each instance of the simultaneous congruences problem, as defined 
above, we can associate an instance of our problem, such that the cardinality of the 
largest subset T' equals k if and only if the minimum number of processors equals k. 
With each pair (a,, b;) e T we associate a periodic operation o1 with period p(o1) = b, 
and execution time e(o1) = 1, The corresponding schedule Sis given by S = (a'i. ... ,a~), 
where a; E { l, .. .,b1} and a;= a;(mod b1). It is now easy to see that an integer x with the 
property that x = a1(mod b;) for all (a;, b,) e T corresponds to a time t where the 
corresponding operations are executed simultaneously. 0 

Using the left edge algorithm we can determine the minimum number of processors 
in a time that is polynomial in P' and n. 

2.2. Constrained periodic assignment 

If all executions of a periodic operation have to be assigned to the same processor, 
then an assignment is fully determined if for each periodic operation the processor on 
which it is repeatedly executed is specified. A periodic operation o1 with period 
p(o1), execution time e(o;) and reference time r(o1), requires an infinite set of 
time intervals during which it has to be executed. This set is given by 
{ [r(o,) + lp(o1), r(o1) + lp(o,) + e(o,) - 1] 11 E Z}. Such an infinite set of intervals is 
called a periodic interval and is denoted by the 3-tuple (p(o;), e(o;), r(o1)), with 
0 < e(o;), r(o,) ~ p(o1). 

Let us first consider the special case where p(o;) = p for all o; e 0. Clearly, in this 
case an assignment is periodic with period p. The periodic assignment problem can 
then be formulated as the problem of colouring a circular-arc graph with a minimum 
number of colours. 

Definition 2.5. A graph t:§ =("I', I) is a circular-arc graph if it can be associated with 
a circle that is divided into a number of segments, numbered clockwise as 1, .. .,n, in 
such a way that each vertex v1 e"Y can be associated with a circular arc A;= [l;, r1], 

with l;, r; e [ 1, ... , n], i.e. an arc on the circle that stretches clockwise from segment I; to 
segment r1, containing both l, and r., and such that { V;, vi} Er! if and only if the 
corresponding arcs [I;, r;] and [IJ, r1] overlap. 

Fig. 2 gives an example ofa set of periodic operations and an associated circular-arc 
graph. The set of all circular-arc graphs is denoted by .? CAO· In Section 3.2 we 
examine the problem of colouring circular-arc graphs in more detail. 

If the operations in 0 can have arbitrary integral periods, then we can reformulate 
the periodic assignment problem as the problem of colouring a periodic-interval 
graph with a minimum number of colours. 

Definition 2.6. A graph C§ = ("I', 8) is a periodic-interval graph if one can associate 
with each vertex v1 e 't'; a periodic interval (p;, e1, r,), with p;, e;, r, e N and 
0 < e1, r; ~ p;, such that { v., v i} E tl if and only if the corresponding periodic intervals 
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Fig. 2. (a) The executions of a set of operations with identical periods, (b) the associated set of circular arcs 
and (c) the associated circular-arc graph. Note that the graph is not an interval graph. 
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Fig. 3. (a) The executions of a set of periodic operations and (b) the associated periodic-interval graph. One 
can verify that this graph is not a circular-arc graph. 

(pi, e;, r;) and (pi, ej, rj) overlap, i.e. if and only if there exist integers I, m for which 

[r; + lpj, r; + lp; + e; - 1] n [rj + mpi, ri + mpi + ei - 1] -:f:. 0. 

Fig. 3 gives an example of a periodic-interval graph. The set of all periodic-interval 
graphs is denoted by 9" PIG· The following theorem gives a necessary and sufficient 
condition for the overlap of two periodic intervals. 

Theorem 2.7. Two periodic intervals (p;, e;, r;) and (pi, ej, rj), with ri ~ ri, do not overlap 
if and only if 

(1) 

where g;1 = gcd (p., P1). 

Proof. Without loss of generality, we may assume that r; = 0. The sufficiency of (1) is 
shown as follows. Let us consider time intervals [kg;i, (k + l)g;i - l], with k E '11.. The 
first e; time units of each of these intervals can be allocated to (pi, e;, r;), and the 
remaining g;1 - e, time units to (p1, e,;, r1). Now, if (1) holds, then the allocated time 
units surely suffice to avoid overlap. The first ei time units of the intervals are only 
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used by (pi, e;, r;) once every pJ gii intervals. The remaining gii - e; time units are only 
(partly) used by (p1, e1, r1) once every p1/g;1 intervals. 

The necessity of (1) is shown as follows. Let us again consider the time intervals 
[kg;1, (k + l)g;1 - 1], with k e Z. If (1) does not hold then (p1, e1, r1) overlaps the first e; 
time units once every p1/ g11 time intervals. We have already seen that the first e; time 
units of the intervals are used by (p;, e;, ri) once every p;/ gii time units. Now, by 
definition, gcd(pdgiJ, p1/g1) = L Hence, if (1) does not hold, then (p;, e;, r;) and 
(pi, e1, r1) necessarily overlap. This completes the proof of the theorem. D 

From Theorem 2.7 we immediately derive the following result. 

Corollary 2.8. Two periodic intervals (p;, ei, r;) and (p1, e1, r1), with ei = e1 = 1, overlap if 
and only if 

r1 = r; (mod giJ). 

We end this section with a few remarks. From the definitions of interval, circular
arc and periodic-interval graphs it is obvious that 

f/ IG c f/ CAG C: f/ PIG · 

Furthermore, the examples given in Figs. 2 and 3 show that the inclusions are strict. 
Finally, we observe that these classes of graphs can all be considered as intersection 

graphs, i.e. for each of these graphs we can associate objects with the vertices such that 
vertices are adjacent if and only if the associated objects intersect or overlap. Intersec
tion graphs can thus be represented in two different ways, either as a graph (i.e. as sets 
of vertices and edges) or as a collection of associated objects (intervals, circular arcs, 
periodic intervals). The latter representation is called the intersection model. In the 
following sections we will use both representations interchangeably, since both repres
entations apply to periodic assignment. Furthermore, for the intersection graphs 
considered in this paper, a graph representation can be constructed from an intersec
tion model in polynomial time. Using Theorem 2.7, it is easily seen that this holds for 
periodic-interval graphs and hence also for interval and circular-arc graphs. With 
respect to the inverse transformation, often called the recognition problem, we make 
the following remarks. Early results on characterizing interval graphs are given by 
Lekkerkerker and Boland [18], Gilmore and Hoffman [10] and Fulkerson and Gross 
[8]. Based on these characterizations, O(n3) recognition alogrithms can be construc
ted, with n the number of vertices. An O(n + m) recognition algorithm is given by 
Booth and Lueker [4], with n the number of vertices and m the number of edges. 
A simpler O(n + m) algorithm is given by Korte and Mohring [16]. Tucker [30] 
proved that also circular-arc graphs can be recognized in polynomial time. Periodic 
interval graphs can also be recognized in polynomical time, as is shown in Section 3.3. 

3. Graph colouring 

In this section we discuss colouring interval graphs, circular-arc graphs and 
periodic-interval graphs. Let us first summarize some results known for colouring 
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arbitrary graphs. Graph colouring is defined as the problem of colouring the vertices 
of a graph with a minimum number of colours, such that adjacent vertices receive 
different colours [3]. The minimum number of colours necessary for colouring 
a graph G is called the chromatic number of G, which is denoted by x(G). Graph 
colouring has been shown to be NP-hard [14], which implies that it is unlikely that 
there exists a polynomial-time algorithm that colours every graph with x(G) colours. 
Furthermore, Garey and Johnson [7] showed that if a polynomial-time algorithm 
exists that colours any graph G with at most ax(G) + b colours, with a< 2, then there 
also exists a polynomial-time algorithm that colours each graph G with x(G) colours. 
Consequently, unless f?J = ..Al&', no polynomial-time approximation algorithm exists 
that is guaranteed to use ax(G) + b or less colours, with a< 2. Furthermore, no 
polynomial-time approximation algorithm is known that guarantees to colour each 
graph G with at most ax(G) + b colours, for any fixed a and b, and there is evidence 
that such an algorithm does not exist [20]. The best-known performance ratio for 
a polynomial-time approximation algorithm is O(n(log log n)3 /(log n) 3 ), where n de
notes the number of vertices [2]. Hence, graph colouring is not only difficult to solve 
to optimality, but also seems equally hard to solve to proximity within a constant 
factor of the optimum. 

3.1. Colouring interval graphs 

As we have already showed in Section 2.1, interval graphs can be optimally 
coloured in O(n logn) time by the left edge algorithm of Hashimoto and Stevens [12]. 
We showed that this algorithm uses rmax colours to colour the vertices of an interval 
graph. 

Given a set of intervals { [/;, r;]ll; ~ r;, i = 1, ... ,n} and a set of colours {ci. ... ,en}, 
the algorithm can be restated as follows. 

Left edge 
(1) Sort the intervals in order of nondecreasing left end-point. 
(2) Colour the intervals in this order by assigning to each interval [/;, r;] the colour 

with the smallest index that has not been assigned to an interval overlapping 
[li. r;]. 

Gupta et al. [11] show that obtaining a minimum number of colours for interval 
graphs requires O(n log n) time, by relating it to the problem of determining whether 
n intervals are pairwise disjoint, for which an Q(n log n) lower bound is shown by 
Shamos and Hoey [26] and Fredman and Weide [5]. Hence, the time complexity of 
the left edge algorithm is optimal to within a constant factor. 

3.2. Colouring circular-arc graphs 

Garey et al. [8] showed that colouring circular-arc graphs is NP-hard. Further
more, they showed that k-colourability, i.e. the problem of determining whether 
a circular-arc graph can be coloured with k or less colours, can be solved in 
O(nk!k log k) time. Thus, for fixed k this problem can be solved in polynomial time. 
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A circular-arc graph is said to be proper if none of the corresponding arcs is 
completely contained in another arc. Proper circular-arc graphs can be coloured with 
a minimum number of colours in polynomial time. Orlin et al. [24] gave an 
O(n2 log n) algorithm which is based on the following observation. For proper 
circular-arc graphs, k-colourability can be transformed into a shortest path problem 
which can be solved in O(n2) time. Combining this with a binary search procedure 
results in an O(n2 log n) algorithm. Successive improvements of this result are pre
sented by Teng and Tucker [28] and Shih and Hsu [27], having O(n312 log n) and 
O(n3 ' 2 ) time complexities, respectively. 

To the best of our knowledge, Tucker [29] is the only author that considered 
approximation algorithms for colouring circular-arc graphs. Here, we consider two 
approximation algorithms, viz. 

(i) Sequential Colouring, a generally applicable graph colouring algorithm that was 
first proposed by Welsh and Powell [31], and 

(ii) Sort&Match, an extension of an algorithm that was proposed by Tucker. 
In the following sections we formulate both algorithms and examine their worst

case behaviour. To discuss the worst-case behaviour of an approximation algorithm 
A, we introduce the following notation. For a colouring algorithm A, let A(~ be the 
maximum number of colours A might use when applied to graph ~. Then, the 
performance ratio RA(~) = A(~)/x;(~) gives an upper bound on the relative deviation 
from the optimum for ~-

Sequential colouring 
Let a graph ~ = ("//", 4) and a set of colours {ci. ... ,en} be given. Then sequential 

colouring can be described as follows. 

Sequential colouring (SC) 
(1) Sort the vertices in "//" in order of nonincreasing degree. The degree d(v1) of 

a vertex v1 e "//" gives the number of vertices to which vi is adjacent. 
(2) Colour the vertices in this order by assigning to each vertex v1 the colour with the 

smallest index that has not yet been assigned to a vertex that is adjacent to vi. 

For arbitrary graphs, SC can give results that are arbitrarily far from optimal, i.e., 
R5c(~) has no finite upper bound. Moreover, graphs exist for which the performance 
ratio Rsc(~) increases linearly with I "f" j. This can be seen from the following subset of 
instances. Let ~m = ("//",,., c8'm) with"//",,.= {ai, bd 1 ~ i ~ m} and 8,,. = { {ai. b1}Ji # j}. 
Since all vertices have equal degree, they can be ordered arbitrarily in the first step. If 
the order of the vertices is ai. bi. a2 , b2 , .. .,am, b,,., then SC(~rn) = m, while x;(~ ... ) = 2. 
Fortunately, ~ ... is not a circular-arc graph, if m > 3. 

Colouring circular-arc graphs with SC requires less than twice the minimum 
number of colours, as is shown by the following theorem. 

Theorem 3.1. For any circular-arc graph~. Rsd~) < 2. 

Proof. The proof is by contradiction. For reasons of convenience, we use 'vertices' and 
'circular arcs' interchangeably in this proof. Suppose that for some circular-arc graph 
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<§sequential colouring requires m colours, with m ~ 2x(<'fi). Clearly, in that case some 
arc ai receives colour Cm and must consequently be adjacent to at least m - 1 other 
arcs, which receive a colour from {ci. ... ,Cm-d prior to arc a,. Let this subset of 
neighbours of a; be denoted by N(a1). Clearly, d(ai) ~ d(a1) for each ai e N(a;). Now we 
consider the following two cases. 

- None of the arcs in N(a1) are completely contained in a,. Then each of the arcs in 
N(a1) covers at least one of the end-points of a;. Hence, one of the end-points is covered 
by at least f(m - 1)/21 arcs. Since f (m - 1)/21;;::: x(~), this results in a thickness ofat 
least x(~ + 1. However, this contradicts the fact that x(<'fi) at least equals the 
maximum thickness. 

- One or more arcs in N(ai) are completely contained in a,. Then there is at least one 
of these arcs, say arc ai, such that none of the other arcs in N(ai) are completely 
contained in a1. Since a1 is completely contained in a1 and d(a1);;::: d(a;), we conclude 
that d(a1) = d(a;). Consequently, this implies that all arcs that overlap with a1 also 
overlap with a_p and vice versa. Hence, one of the end-points of ai is covered by at least 
f (m - 1)/21 arcs. Again, this leads to a contradiction with the fact that x(<§) at least 
equals the maximum thickness. 

Hence, for both cases we have derived a contradiction, which completes the proof of 
the theorem. 0 

We next show that the worst-case performance bound given by Theorem 3.1 is 
tight. To that end, we first give the following lemma. 

Lemma 3.2. For all me N, gcd(m2, 2m - 1) = 1. 

Proof. Let a= gcd(m2 , 2m - 1). Suppose a> l. Now, if alm2 and al(2m - 1), then 
also for any prime factor n of a, nlm2 and nl(2m - 1). However, for any prime number 
n, if nlm2 then nlm and if nlm then n,('(2m - 1). Consequently, a cannot be greater 
than 1. 0 

Using Lemma 3.2 we can now prove the following theorem. 

Theorem 3.3. For any e > 0, a circular-arc graph '1 exists such that Rsc(<§) > 2 - e. 

Proof. This follows directly from the set of instances defined below. Let .9 m be a set of 
m2 arcs on a circle with 2m2 segments numbered 0, ... ,2m2 - 1, with m odd and m ~ 3. 
The arcs are defined by 

[(4lm - 2l)mod 2m2,(4lm - 21 + 2m - l)mod 2m2], l = 0, 1, ... , m2 - 1. 

All of these arcs have different left end-points, since gcd(m2 , 2m - 1) = 1, as stated in 
Lemma 3.2. All arcs overlap with 2m - 2 other arcs. Consequently, all vertices in the 
corresponding circular-arc graph have the same degree and the arcs are thus coloured 
in an arbitrary order by SC. If the arcs are coloured in the order as given above, then 
SC requires 2m - 1 colours. With each new colour SC colours at most ~(m + 1) arcs. 
However, an optimal colouring requires oniy m colours. Hence, choosing m > 1/e 
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results in a graph that has the required property. This completes the proof of the 
theorem. D 

Sort&Match 
Elaborating on the work of Tucker [29], we present a two-step approximation 

algorithm for colouring circular-arc graphs, called Sort&Match. For reasons of 
simplicity, the algorithm is formulated in terms of colouring circular arcs instead of 
vertices. 

Sort&Match (S&M) 
(1) Determine on the circle a point t with minimum thickness Tmin· Partition the set 

of arcs into two subsets d and !JI, where d is the set of arcs that cover point t. 
Hence, Id I = min. Now, the arcs in !JI define an interval graph. Consequently, 
the arcs in !JI can be coloured, using the left edge algorithm, with ymax colours. 

(2) Determine a maximum subset d's d, whose arcs can be coloured with 
a colour that has already been used in step 1. This problem can be formulated as 
a maximum-cardinality matching problem in a bipartite graph <§ = 

(1'i, 1'2 , t!). Each vertex v E 1' 1 is associated with an arc in d and each vertex 
u E 1' 2 is associated with a colour that is used in step 1. An edge { v, u} is in t! if 
the arc associated with v can be given the colour associated with u. This 
matching problem can be solved efficiently using an augmenting path algorithm 
[17, 13]. Finally, each remaining arc in d - .;;1' is given a different free colour. 

The following theorem states the worst-case performance of S&M. 

Theorem 3.4. For any circular-arc graph '§, Rs&M(<§) ~ 2. 

Proof. Since the arcs in subset !JI are coloured with rn•x colours and the arcs in 
subset .;;1 are coloured using at most rnin colours, we obtain that S&M ("9') ~ rn•• + 
yrnin ~ 2rm•x. Combining this result with the fact that x('§) ~ rrnax, we obtain the 
theorem. D 

Tucker [29] only considers the first step of the algorithm presented above, but 
essentially proves the same worst-case performance bound. We can again prove that 
this bound is tight. 

Theorem 3.5. For any e > 0, a circular-arc graph S9' exists such that Rs&M(<§) > 2 - e. 

Proof. This is directly derived from the following subset of instances. Let Cm be a set of 
3m - 3 arcs on a circle with 6m segments, m ~ 4, defined by 

[2/,2m+21-1], 1=0, ... ,m-1, 

[2m + 21 + 2, 4m + 21 + 1], I= 0, .. .,m - 1, 

[ 4m + 21 + 2, 21 + 1 J, l = 0, .. ., m - 4. 
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Applying S&M to Cm results in a colouring with 2m - 3 colours, while the minimum 
number of colours is m. Hence, by choosing m > 3/c, we obtain a graph with the 
required property. This completes the proof of the theorem. D 

Note that applying SC to the above set of arcs may also result in a colouring with 
2m - 3 colours. Hence, choosing the best result of both S&M and SC does not 
improve the worst-case performance ratio of 2. 

Experimental results 
In this section we present some experimental results that give an indication of the 

performance of S&M, SC and min(S&M, SC). The results are obtained by applying 
the algorithms to randomly generated instances. Each instance contains 100 arcs on 
a circle with a circumference equal to 1. The left end-point of an arc is chosen 
uniformly from the interval [O, 1) and the length of an arc is chosen uniformly from the 
interval [lmin• lmax), with 0 ~ lmin ~ Im••~ 1. For different choices of lmin and Im.., 
Table 1 gives the average relative difference and corresponding standard deviation for 
S&M, SC and min(S&M, SC). The average relative difference is defined as the 
average difference between the number of colours found by the algorithms and the 
lower bound given by the cardinality of a maximum clique. The differences are 
expressed as a percentage of this lower bound. The results are compared with this 

Table I 
Results obtained by applying S&M, SC and min(S&M, SC) to randomly generated circular-arc graphs 

lmin lmu 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 l.O 

0.0 0.0 0.0 0.6 2.6 1.2 3.2 2.1 3.7 4.3 5.5 6.1 5.7 9.3 4.9 10.3 4.8 8.0 4.0 5.9 3.0 
2.5 4.3 2.8 3.7 2.7 2.9 3.5 2.5 3.5 2.7 3.6 2.5 2.7 2.0 1.9 1.6 L3 1.4 0.7 1.0 
0.0 0.0 0.3 1.4 0.6 1.7 1.0 1.9 2.0 2.0 2.8 2.6 2.5 1.9 1.8 1.6 1.2 1.3 0.6 1.0 

0.1 0.8 2.5 2.5 5.3 4.2 5.6 4.9 5.6 7.3 5.9 10.1 6.0 9.6 4.3 6.4 3.5 5.1 3.2 

4.9 4.0 6.3 3.7 5.6 3.4 5.6 3.3 4.2 2.5 3.0 2.1 l.4 1.6 0.8 l.l 0.6 0.8 
0.6 l.8 1.7 3.3 2.9 4.0 3.4 3.9 3A 2.7 2.9 2.2 1.4 1.6 0.8 I.I 0.5 0.8 

0.2 6.0 7.7 4.7 6.7 8.3 7.4 7.3 5.5 8.7 5.0 6.5 3.6 4.4 2.8 3.5 2.4 
5.4 3.9 7.7 4.9 6.8 3.8 3.6 2.2 1.4 1.4 0.8 1.1 0.5 0.8 0.4 0.7 
3.6 4.1 3.8 5.0 5.4 4.7 3.2 2.4 1.2 1.3 0.8 1.1 0.5 0.8 0.4 0.7 

0.3 27.0 13.6 10.2 8.5 5.6 4.3 4.0 3.0 2.4 l.8 l.8 1.6 l.4 L2 
16.6 7.4 5.6 3.4 1.3 1.4 0.5 0.9 0.2 0.4 0.1 0.4 0.1 0.4 
16.3 7.8 4.5 4.0 1.2 1.4 0.5 0.9 0.1 0.4 O.l 0.4 0.1 0.4 

0.4 l.l 2.1 1.2 1.3 0.4 0.7 0.2 0.5 0.2 0.5 0.0 0.4 
1.8 1.8 0.2 0.5 0.0 02 0.0 0.2 0.0 0.1 0.0 0.0 
0.6 l.l 0.1 0.4 0.0 O.l 0.0 0.1 0.0 0.0 0.0 0.0 

Each entry in the table gives the average relative difference and corresponding standard deviation for S&M, 
SC and min(S&M, SC), respectively. The results of each entry are obtained by applying the algorithms to 
100 instances. 



J. Korst et al. /Discrete Applied Mathematics 51 ( 1994) 291-305 303 

lower bound, since the minimum number of colours is unknown and determining it is 
considered too time consuming. The cardinality of a maximum clique clearly gives 
a lower bound on the minimum number of colours. Although determining the 
cardinality of a maximum clique is NP-hard for arbitrary graphs, it can be obtained in 
polynomial time for circular-arc graphs, by iteratively constructing a maximum 
matching in bipartite graphs [9]. 

Comparing both algorithms, we see that, on average, S&M outperforms SC if the 
arc lengths are small. However, for larger arc lengths SC produces better average 
results than S&M. This motivates the interest in the best result of both algorithms. 
From Table 1 we observe that the average relative difference of min(S&M, SC) 
remains almost always within 5% of the optimum. 

An important exception is given by instances with arc lengths chosen from 
[0.3, 0.4). Both S&M and SC seem to perform less well for these instances-they give 
average relative differences of 27.0% and 16.6%, respectively. One might assume that 
these large differences are caused by the fact that for these instances the cardinality of 
a maximum clique is a bad approximation of the chromatic number. However, 
experimental results contradict this assumption. We have optimally coloured 50 
instances from this class each containing 30 arcs. For these instances the chromatic 
number deviated, on average, only 1 % from the cardinality of the maximum clique. 

In addition to the information in Table 1, we mention that, except if arc lengths are 
chosen from [0.3, 0.4), the observed maximum relative difference for S&M, SC and 
min(S&M, SC) is 33.3%, 21.2% and 18.4%, respectively. If the arc lengths are chosen 
from [0.3, 0.4), then the observed maximum relative difference for S&M, SC and 
min(S&M, SC) is 56.4%, 32.5% and 32.5%, respectively. 

From the experimental results presented in this section, we conclude that the 
average-case performance of S&M and SC is usually much better than the worst-case 
bounds given in the previous sections. Furthermore, we conclude that the both 
algorithms perform less well if the lengths of the circular arcs are approximately 
one-third of the circumference of the circle. 

3.3 Colouring periodic-interval graphs 

Colouring periodic-interval graphs is NP-hard. This follows immediately from the 
fact that colouring circular-arc graphs is NP-hard and the observation that each 
circular-arc graph is a periodic-interval graph. The next theorem gives a somewhat 
surprising result. 

Theorem 3.6. Each graph is a periodic-interval graph. 

Proof. Let '§ = ("Y", S) be an arbitrary graph, with loops. We show that we can 
associate with each vi E "I' a periodic interval (pi> ei, ri). such that, for each pair of 
distinct vertices v;, vi E"f/', {vi, vj} Elf if and only if the associated periodic intervals 
(pi, ei, r;) and (pj, ej, rj) overlap. 

Let us first select the smallest tn(n - 1) distinct prime numbers larger than n, and 
let these prime numbers be denoted by nij for 1 ~ i < j ~ n. Furthermore, let ni, = nii 
for i < j. By the prime number theorem, the magnitude of the largest of these numbers 
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is O(n2 log n). We can now associate a periodic interval (p;, eh ri) with each v; e "f/" 
according to ei = 1 and p; = II;,. ;7tiJ• The reference timer; is chosen such that for each 
j # i, ri = 1(mod7t;i) if {v;, v;} EG, and r; = i (mod nij) if {v;, v1} r!S. Reference times 
that satisfy these constraints always exist and they can be determined in polynomial 
time by using the Chinese remainder theorem (see, e.g. [22] ). 

Now,if {vi, vJ} f 8 for two distinct vertices v;, v1 e"f/", then(p., e;, r;) and(p1. e;, r;)do 
not overlap. This can be seen as follows. Since r; = i(mod nil), r1 =j(mod nu), and 
0 < Ji - jJ < n < 7t;;, we derive that r; and ri are not congruent modulo 1tiJ· Further
more, g;i = gcd (pi, p1) = nii· Hence, using Corollary 2.8, we obtain that (p1, ei. r1) and 
(Pi• ei> r1) do not overlap. 

Furthermore, if { V;, vi} e 8, then (p;, e;, r;) and (pi. e1, r1) can be shown to overlap. 
Since ri = 1 (mod 7t;1) and r1 = 1 (mod nu), we derive that r; and r1 are congruent 
modulo 7t;1. Hence, again using Corollary 2.8, we obtain that (p;, e;, r;) and (p1. e1, r) 
overlap. This completes the proof of the theorem. 0 

Note that the above construction is polynomial. In Section 1 we stated that no 
polynomial-time approximation algorithm is known that colours arbitrary graphs 
within a constant factor of the optimum and that there is evidence that no such 
algorithm exists. Theorem 3.6 implies that the same holds for periodic-interval graphs. 
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