
I
El.SEVIER Discrete Applied Mathematics 51 (1994) 291-305

DISCRETE
APPLIED
MATHEMATICS

Periodic assignment and graph colouring

Jan Korst*·a, Emile Aartsa,b, Jan Karel Lenstrab,c, Jaap Wesselsb

•Philips Research Laboratories, P.O. Box 80.000, 5600 JA Eindhoven, The Nelher/ands
~ Eindhoven University of Technology, P.O. Box 513. 5600 MB Eindhoven, The Netherlands

'CW!, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

(Received 20 May 1991; revised 29 July 1992)

Abstract

We analyse the problem of executing periodic operations on a minimum number of identical
processors under different constraints. The analysis is based on a reformulation of the problem
in terms of graph colouring. It is shown that different constraints result in colouring problems
defined on different classes of graphs, viz. interval graphs, circular-arc graphs and periodic
interval graphs. We discuss the complexity of these colouring problems in detail.

Key words: Periodic assignment; Graph colouring; Interval graphs; Circular-arc graphs;
Periodic-interval graphs

1. Introduction

In this paper we consider periodic assignment, i.e. the problem of assigning periodic
operations to processors. Operations are called periodic if they have to be repeatedly
executed at a constant rate over an infinite-time horizon. Here, we assume that the
executions of periodic operations have fixed start times. The executions have to be
assigned to a minimum number of processors. The more general problem of finding
start times that minimize the number of processors is discussed in [15]. The periodic
assignment problem naturally arises in such diverse areas as real-time processing,
vehicle scheduling and compiler design [21, 23, 25].

We analyse the periodic assignment problem under different constraints, resulting
in a graph colouring formulation of the problem for three different classes of graphs.
The problem of colouring the vertices of a graph with a minimum number of colours
such that adjacent vertices are given different colours is NP-hard for arbitrary graphs.
Furthermore, no efficient approximation algorithm is known that colours arbitrary

*Corresponding author.

0166-218X/94/$07.00 © 1994-Elsevier Science B.V. All rights reserved
SSDI 0 J 66-218X(92)00036-N

292 J. Korst et al./ Discrete Applied Mathematics 51 (1994) 291-305

graphs with a number or colours that lies within a constant factor of the optimum. We
show that the graphs in some of the classes related to periodic assignment are less
difficult to colour.

The organization of the paper is as follows. In Section 2 we introduce some basic
concepts and notation, discuss periodic assignment and show its relation to the
problem of colouring interval graphs, circular-arc graphs, and periodic-interval
graphs. In Section 3 we consider the computational complexity of colouring these
graphs and discuss appropriate graph colouring algorithms.

2. Periodic assignment

A periodic operation is an operation that is repeatedly executed at a constant rate
over an infinite-time horizon. Its executions are considered to be nonpreemptive.
Hence, a periodic operation can be viewed as an infinite sequence of executions of
identical length that are equally spaced in time. A periodic operation o has an
execution time e(o) e f\I, denoting the length of each execution, and a period p(o) e N,
denoting the time between the start times of two successive executions. We assume
that e(o) ::;;;; p(o).

The executions of a periodic operation o are all uniquely determined in time1 by
a reference time r(o) e { 1, ... ,p(o)} that specifies the start time of the execution ofo that
starts in the interval [1, p(o)]. Note that r(o) is well defined, since exactly one
execution is started in [l, p(o)]. The executions of operation o are started at times
r(o) + kp(o), keZ. For a given set of periodic operations 0 = {oi. ... ,on}, a schedule
S = (r(oi), ... ,r(on)) determines the start times of all executions. A schedule S is
periodic with period P = lcm{p(o), ... ,p(on)), which means that P is the smallest
positive number such that for each time t e Z and each operation o e 0, we have that
operation o is executed at t if and only if it is executed at t + P. The periodic
assignment problem is now defined as follows.

Definition 2.1. Given a set of periodic operations 0 and a corresponding schedule S,
the periodic assignment problem is the problem of assigning the executions of the
operations in 0 to a minimum number of identical processors, where a processor can
execute only one operation at a time.

Given a periodic schedule S with period P, we define the thickness function
T: [l, P]-+ N as the function that assigns to each time t E [1, P] the number of
operations that are executed simultaneously at that time. Since a processor can
execute only one operation at a time, the maximum thickness, defined by
rnax = max, T(t), gives a lower bound on the number of processors that is required to
execute a given schedule S.

1 In this paper time is given in time units. If an operation o with execution time e(o) starts at time t, then it
is started at the beginning of time unit t and is completed at the end of time unit t + e(o) - 1. Similarly,
a time interval [r1, t 2] denotes a set of consecutive time units, given by {th t1 + 1, ... ,tz}.

J. Korsl et al./ Discrete Applied Mathematics 51 (1994) 291-305 293

With respect to the assignment of executions to processors we consider two
different cases, namely

- unconstrained periodic assignment, where different executions of an operation may
be assigned to different processors, and

- constrained periodic assignment, where all executions of an operation have to be
assigned to the same processor.

An assignment is called periodic with period P' if P' is the smallest positive integer such
that for each time unit t E Z, each o e 0, and each processor m we have

processor m executes operation o at t if and only if m executes o at t + P'.

If for a given periodic schedule S with period P an assignment is periodic with period
P', then necessarily PIP'. For the constrained periodic assignment problem, an
assignment is necessarily periodic with a period equal to Icm(p(o 1), ••• ,p(on)).

In the following sections we consider in more detail unconstrained and constrained
periodic assignment.

2.1. Unconstrained periodic assignment

Before discussing unconstrained periodic assignment, let us first consider as
a simple example the assignment problem for a finite set of executions. The problem
then amounts to assigning the finite set of executions, with given start and execution
times, to a minimum number of processors. This problem can directly be formulated
as the problem of colouring the vertices of an interval graph with a minimum number
of colours, by associating with each execution a vertex in the corresponding interval
graph such that two vertices are adjacent if and only if the corresponding executions
overlap in time.

Definition 2.2. A graph C§ = ("Y, if) is an interval graph if we can associate with each
vertex v1 e "Y an interval [l;, r;], with li, r, e Z and 11 ~ r;, such that { Vj, vJ et! if and
only if the corresponding intervals [I;, rJ, and [lj, rJ, overlap.

An example of a set of executions and the associated interval graph is given in
Fig. 1. The set of all interval graphs is denoted by !'/m.

The problem of colouring interval graphs is discussed in Section 3.1. Here, we
restrict ourselves to showing that the finite set of executions can be assigned to rmax 6-2-----4-----5 __ _

5

(a) (b)

Fig. 1. (a) A set of execution intervals and (b) the associated interval graph. The vertices are adjacent if and
only if the associated intervals overlap.

J. Korst et al. Di.~crt'tt .4.pplwd Matlttmatics 51 f 1994) 291-305

processors, where the maximum thickness r-• is defined in a similar way as for
periodic schedules. To that end, we use the left edge algorithm [12] and show that this
algorithm uses ma• processors to assign the executions. The left edge algorithm first
sorts the executions in order of nondecreasing start times and then assigns the
executions in this order to the first available processor, i.e. the processor with the
smallest index that is idle at the start time of the execution. Now, it is easy to show, by
contradiction, that the left edge algorithm uses exactly T"' .. processors. Suppose that
the left edge algorithm uses T""01 + 1 processors. Then at some point in time an
execution is assigned to the (rm·· + 1)th processor. But this implies that 'f""&X other
executions are carried out at that time, which contradicts the assumption that rm••
gives the maximum thickness. Consequently, the left edge algorithm assigns a finite set
of executions to exactly r-• processors.

Using this result for a finite set of executions, we formulate the following theorem
for unconstrained periodic assignment.

Theorem 2.3. For a given sec of periodic o,m-ations 0 = {oi. ... ,o,,} and a co"esponding
schedule S, an unconstrained assignment of the executions of 0 exists that uses rm-•
processors.

Proof. Let the left edge algorithm be used to assign the executions, starting at time 0.
Clearly, from the above result for a finite set of executions, we deduce that the left edge
algorithm uses rma• processors. It remains to be shown that the assignment obtained
by the left edge algorithm becomes periodic. The schedule S is periodic with period
P = lcm(p(o 1}, ••• ,p(o.)). Now consider the time intervals [l + lP, (l + l)P],
l = 0, l, In each of these intervals the left edge algorithm assigns a finite number of
executions to a finite number of processors. Hence, only a finite number of different
assignments exist for such intervals. Consequently, the assignment obtained by the left
edge algorithm necessarily becomes periodic with a period IP, with l eZ, after some
time t 0• More precisely, for some time t 0 > 0 we have that, for each time t >to. each
o e 0 and each processor m, processor m executes operation o at time t if and only
if m executes o at t +IP. The part of this assignment between r0 and t 0 + IP can
clearly be used to construct a periodic assignment with period IP, using only rmax
processors. D

Note that the number of executions for which the left edge algorithm has to specify
a processor need not be a polynomial in the number of operations. In fact, we can
prove the following result.

Theorem 2.4. The problem of determining the minimum number of processors for an
unconstrained periodic assignment is NP-hard in the strong sense.

Proof. This is shown by a reduction from the simultaneous congruences problem,
which has been shown NP-hard by Leung and Whitehead [19] and NP-hard in the
strong sense by Baruah et al. [l]. The simultaneous congruences problem is defined as
follows. Given a set T of n ordered pairs of positive integers (ai. b1), ••• ,(a., b,,),

J. Korst et al. (Discrete Applied Mathematic.i 51 (1994) 291-305 295

determine the cardinality of largest subset T' £ T for which there is a positive integer
x with the property that x = a, (mod b;) for all (a;, b1) E T'.

Now, with each instance of the simultaneous congruences problem, as defined
above, we can associate an instance of our problem, such that the cardinality of the
largest subset T' equals k if and only if the minimum number of processors equals k.
With each pair (a,, b;) e T we associate a periodic operation o1 with period p(o1) = b,
and execution time e(o1) = 1, The corresponding schedule Sis given by S = (a'i. ... ,a~),
where a; E { l, .. .,b1} and a;= a;(mod b1). It is now easy to see that an integer x with the
property that x = a1(mod b;) for all (a;, b,) e T corresponds to a time t where the
corresponding operations are executed simultaneously. 0

Using the left edge algorithm we can determine the minimum number of processors
in a time that is polynomial in P' and n.

2.2. Constrained periodic assignment

If all executions of a periodic operation have to be assigned to the same processor,
then an assignment is fully determined if for each periodic operation the processor on
which it is repeatedly executed is specified. A periodic operation o1 with period
p(o1), execution time e(o;) and reference time r(o1), requires an infinite set of
time intervals during which it has to be executed. This set is given by
{ [r(o,) + lp(o1), r(o1) + lp(o,) + e(o,) - 1] 11 E Z}. Such an infinite set of intervals is
called a periodic interval and is denoted by the 3-tuple (p(o;), e(o;), r(o1)), with
0 < e(o;), r(o,) ~ p(o1).

Let us first consider the special case where p(o;) = p for all o; e 0. Clearly, in this
case an assignment is periodic with period p. The periodic assignment problem can
then be formulated as the problem of colouring a circular-arc graph with a minimum
number of colours.

Definition 2.5. A graph t:§ =("I', I) is a circular-arc graph if it can be associated with
a circle that is divided into a number of segments, numbered clockwise as 1, .. .,n, in
such a way that each vertex v1 e"Y can be associated with a circular arc A;= [l;, r1],

with l;, r; e [1, ... , n], i.e. an arc on the circle that stretches clockwise from segment I; to
segment r1, containing both l, and r., and such that { V;, vi} Er! if and only if the
corresponding arcs [I;, r;] and [IJ, r1] overlap.

Fig. 2 gives an example ofa set of periodic operations and an associated circular-arc
graph. The set of all circular-arc graphs is denoted by .? CAO· In Section 3.2 we
examine the problem of colouring circular-arc graphs in more detail.

If the operations in 0 can have arbitrary integral periods, then we can reformulate
the periodic assignment problem as the problem of colouring a periodic-interval
graph with a minimum number of colours.

Definition 2.6. A graph C§ = ("I', 8) is a periodic-interval graph if one can associate
with each vertex v1 e 't'; a periodic interval (p;, e1, r,), with p;, e;, r, e N and
0 < e1, r; ~ p;, such that { v., v i} E tl if and only if the corresponding periodic intervals

296 J. Korst et al. j Discrete Applied Mathematics 51 (1994) 291-305

(a)

I
I
I
I
I
I

I c:::::J

~
c:=.i I

I
I

(b) (c)

Fig. 2. (a) The executions of a set of operations with identical periods, (b) the associated set of circular arcs
and (c) the associated circular-arc graph. Note that the graph is not an interval graph.

01 lll!I ml ~ • ID
04 11 ml ii II lll!ll

vs

(a) (b)

Fig. 3. (a) The executions of a set of periodic operations and (b) the associated periodic-interval graph. One
can verify that this graph is not a circular-arc graph.

(pi, e;, r;) and (pi, ej, rj) overlap, i.e. if and only if there exist integers I, m for which

[r; + lpj, r; + lp; + e; - 1] n [rj + mpi, ri + mpi + ei - 1] -:f:. 0.

Fig. 3 gives an example of a periodic-interval graph. The set of all periodic-interval
graphs is denoted by 9" PIG· The following theorem gives a necessary and sufficient
condition for the overlap of two periodic intervals.

Theorem 2.7. Two periodic intervals (p;, e;, r;) and (pi, ej, rj), with ri ~ ri, do not overlap
if and only if

(1)

where g;1 = gcd (p., P1).

Proof. Without loss of generality, we may assume that r; = 0. The sufficiency of (1) is
shown as follows. Let us consider time intervals [kg;i, (k + l)g;i - l], with k E '11.. The
first e; time units of each of these intervals can be allocated to (pi, e;, r;), and the
remaining g;1 - e, time units to (p1, e,;, r1). Now, if (1) holds, then the allocated time
units surely suffice to avoid overlap. The first ei time units of the intervals are only

J. Korst et al./ Discrete Applied Mathematics 51 (1994) 291-305 297

used by (pi, e;, r;) once every pJ gii intervals. The remaining gii - e; time units are only
(partly) used by (p1, e1, r1) once every p1/g;1 intervals.

The necessity of (1) is shown as follows. Let us again consider the time intervals
[kg;1, (k + l)g;1 - 1], with k e Z. If (1) does not hold then (p1, e1, r1) overlaps the first e;
time units once every p1/ g11 time intervals. We have already seen that the first e; time
units of the intervals are used by (p;, e;, ri) once every p;/ gii time units. Now, by
definition, gcd(pdgiJ, p1/g1) = L Hence, if (1) does not hold, then (p;, e;, r;) and
(pi, e1, r1) necessarily overlap. This completes the proof of the theorem. D

From Theorem 2.7 we immediately derive the following result.

Corollary 2.8. Two periodic intervals (p;, ei, r;) and (p1, e1, r1), with ei = e1 = 1, overlap if
and only if

r1 = r; (mod giJ).

We end this section with a few remarks. From the definitions of interval, circular
arc and periodic-interval graphs it is obvious that

f/ IG c f/ CAG C: f/ PIG ·

Furthermore, the examples given in Figs. 2 and 3 show that the inclusions are strict.
Finally, we observe that these classes of graphs can all be considered as intersection

graphs, i.e. for each of these graphs we can associate objects with the vertices such that
vertices are adjacent if and only if the associated objects intersect or overlap. Intersec
tion graphs can thus be represented in two different ways, either as a graph (i.e. as sets
of vertices and edges) or as a collection of associated objects (intervals, circular arcs,
periodic intervals). The latter representation is called the intersection model. In the
following sections we will use both representations interchangeably, since both repres
entations apply to periodic assignment. Furthermore, for the intersection graphs
considered in this paper, a graph representation can be constructed from an intersec
tion model in polynomial time. Using Theorem 2.7, it is easily seen that this holds for
periodic-interval graphs and hence also for interval and circular-arc graphs. With
respect to the inverse transformation, often called the recognition problem, we make
the following remarks. Early results on characterizing interval graphs are given by
Lekkerkerker and Boland [18], Gilmore and Hoffman [10] and Fulkerson and Gross
[8]. Based on these characterizations, O(n3) recognition alogrithms can be construc
ted, with n the number of vertices. An O(n + m) recognition algorithm is given by
Booth and Lueker [4], with n the number of vertices and m the number of edges.
A simpler O(n + m) algorithm is given by Korte and Mohring [16]. Tucker [30]
proved that also circular-arc graphs can be recognized in polynomial time. Periodic
interval graphs can also be recognized in polynomical time, as is shown in Section 3.3.

3. Graph colouring

In this section we discuss colouring interval graphs, circular-arc graphs and
periodic-interval graphs. Let us first summarize some results known for colouring

298 J. Korst et af. I Discrete Applied Mathematics 51 (1994) 291-305

arbitrary graphs. Graph colouring is defined as the problem of colouring the vertices
of a graph with a minimum number of colours, such that adjacent vertices receive
different colours [3]. The minimum number of colours necessary for colouring
a graph G is called the chromatic number of G, which is denoted by x(G). Graph
colouring has been shown to be NP-hard [14], which implies that it is unlikely that
there exists a polynomial-time algorithm that colours every graph with x(G) colours.
Furthermore, Garey and Johnson [7] showed that if a polynomial-time algorithm
exists that colours any graph G with at most ax(G) + b colours, with a< 2, then there
also exists a polynomial-time algorithm that colours each graph G with x(G) colours.
Consequently, unless f?J = ..Al&', no polynomial-time approximation algorithm exists
that is guaranteed to use ax(G) + b or less colours, with a< 2. Furthermore, no
polynomial-time approximation algorithm is known that guarantees to colour each
graph G with at most ax(G) + b colours, for any fixed a and b, and there is evidence
that such an algorithm does not exist [20]. The best-known performance ratio for
a polynomial-time approximation algorithm is O(n(log log n)3 /(log n) 3), where n de
notes the number of vertices [2]. Hence, graph colouring is not only difficult to solve
to optimality, but also seems equally hard to solve to proximity within a constant
factor of the optimum.

3.1. Colouring interval graphs

As we have already showed in Section 2.1, interval graphs can be optimally
coloured in O(n logn) time by the left edge algorithm of Hashimoto and Stevens [12].
We showed that this algorithm uses rmax colours to colour the vertices of an interval
graph.

Given a set of intervals { [/;, r;]ll; ~ r;, i = 1, ... ,n} and a set of colours {ci. ... ,en},
the algorithm can be restated as follows.

Left edge
(1) Sort the intervals in order of nondecreasing left end-point.
(2) Colour the intervals in this order by assigning to each interval [/;, r;] the colour

with the smallest index that has not been assigned to an interval overlapping
[li. r;].

Gupta et al. [11] show that obtaining a minimum number of colours for interval
graphs requires O(n log n) time, by relating it to the problem of determining whether
n intervals are pairwise disjoint, for which an Q(n log n) lower bound is shown by
Shamos and Hoey [26] and Fredman and Weide [5]. Hence, the time complexity of
the left edge algorithm is optimal to within a constant factor.

3.2. Colouring circular-arc graphs

Garey et al. [8] showed that colouring circular-arc graphs is NP-hard. Further
more, they showed that k-colourability, i.e. the problem of determining whether
a circular-arc graph can be coloured with k or less colours, can be solved in
O(nk!k log k) time. Thus, for fixed k this problem can be solved in polynomial time.

J. Korst et al./ Discrete Applied Mathematics 51 (1994) 291-305 299

A circular-arc graph is said to be proper if none of the corresponding arcs is
completely contained in another arc. Proper circular-arc graphs can be coloured with
a minimum number of colours in polynomial time. Orlin et al. [24] gave an
O(n2 log n) algorithm which is based on the following observation. For proper
circular-arc graphs, k-colourability can be transformed into a shortest path problem
which can be solved in O(n2) time. Combining this with a binary search procedure
results in an O(n2 log n) algorithm. Successive improvements of this result are pre
sented by Teng and Tucker [28] and Shih and Hsu [27], having O(n312 log n) and
O(n3 ' 2) time complexities, respectively.

To the best of our knowledge, Tucker [29] is the only author that considered
approximation algorithms for colouring circular-arc graphs. Here, we consider two
approximation algorithms, viz.

(i) Sequential Colouring, a generally applicable graph colouring algorithm that was
first proposed by Welsh and Powell [31], and

(ii) Sort&Match, an extension of an algorithm that was proposed by Tucker.
In the following sections we formulate both algorithms and examine their worst

case behaviour. To discuss the worst-case behaviour of an approximation algorithm
A, we introduce the following notation. For a colouring algorithm A, let A(~ be the
maximum number of colours A might use when applied to graph ~. Then, the
performance ratio RA(~) = A(~)/x;(~) gives an upper bound on the relative deviation
from the optimum for ~-

Sequential colouring
Let a graph ~ = ("//", 4) and a set of colours {ci. ... ,en} be given. Then sequential

colouring can be described as follows.

Sequential colouring (SC)
(1) Sort the vertices in "//" in order of nonincreasing degree. The degree d(v1) of

a vertex v1 e "//" gives the number of vertices to which vi is adjacent.
(2) Colour the vertices in this order by assigning to each vertex v1 the colour with the

smallest index that has not yet been assigned to a vertex that is adjacent to vi.

For arbitrary graphs, SC can give results that are arbitrarily far from optimal, i.e.,
R5c(~) has no finite upper bound. Moreover, graphs exist for which the performance
ratio Rsc(~) increases linearly with I "f" j. This can be seen from the following subset of
instances. Let ~m = ("//",,., c8'm) with"//",,.= {ai, bd 1 ~ i ~ m} and 8,,. = { {ai. b1}Ji # j}.
Since all vertices have equal degree, they can be ordered arbitrarily in the first step. If
the order of the vertices is ai. bi. a2 , b2 , .. .,am, b,,., then SC(~rn) = m, while x;(~ ...) = 2.
Fortunately, ~ ... is not a circular-arc graph, if m > 3.

Colouring circular-arc graphs with SC requires less than twice the minimum
number of colours, as is shown by the following theorem.

Theorem 3.1. For any circular-arc graph~. Rsd~) < 2.

Proof. The proof is by contradiction. For reasons of convenience, we use 'vertices' and
'circular arcs' interchangeably in this proof. Suppose that for some circular-arc graph

300 J. Korst et al./ Discrete Applied Mathematics 51 (1994) 291-305

<§sequential colouring requires m colours, with m ~ 2x(<'fi). Clearly, in that case some
arc ai receives colour Cm and must consequently be adjacent to at least m - 1 other
arcs, which receive a colour from {ci. ... ,Cm-d prior to arc a,. Let this subset of
neighbours of a; be denoted by N(a1). Clearly, d(ai) ~ d(a1) for each ai e N(a;). Now we
consider the following two cases.

- None of the arcs in N(a1) are completely contained in a,. Then each of the arcs in
N(a1) covers at least one of the end-points of a;. Hence, one of the end-points is covered
by at least f(m - 1)/21 arcs. Since f (m - 1)/21;;::: x(~), this results in a thickness ofat
least x(~ + 1. However, this contradicts the fact that x(<'fi) at least equals the
maximum thickness.

- One or more arcs in N(ai) are completely contained in a,. Then there is at least one
of these arcs, say arc ai, such that none of the other arcs in N(ai) are completely
contained in a1. Since a1 is completely contained in a1 and d(a1);;::: d(a;), we conclude
that d(a1) = d(a;). Consequently, this implies that all arcs that overlap with a1 also
overlap with a_p and vice versa. Hence, one of the end-points of ai is covered by at least
f (m - 1)/21 arcs. Again, this leads to a contradiction with the fact that x(<§) at least
equals the maximum thickness.

Hence, for both cases we have derived a contradiction, which completes the proof of
the theorem. 0

We next show that the worst-case performance bound given by Theorem 3.1 is
tight. To that end, we first give the following lemma.

Lemma 3.2. For all me N, gcd(m2, 2m - 1) = 1.

Proof. Let a= gcd(m2 , 2m - 1). Suppose a> l. Now, if alm2 and al(2m - 1), then
also for any prime factor n of a, nlm2 and nl(2m - 1). However, for any prime number
n, if nlm2 then nlm and if nlm then n,('(2m - 1). Consequently, a cannot be greater
than 1. 0

Using Lemma 3.2 we can now prove the following theorem.

Theorem 3.3. For any e > 0, a circular-arc graph '1 exists such that Rsc(<§) > 2 - e.

Proof. This follows directly from the set of instances defined below. Let .9 m be a set of
m2 arcs on a circle with 2m2 segments numbered 0, ... ,2m2 - 1, with m odd and m ~ 3.
The arcs are defined by

[(4lm - 2l)mod 2m2,(4lm - 21 + 2m - l)mod 2m2], l = 0, 1, ... , m2 - 1.

All of these arcs have different left end-points, since gcd(m2 , 2m - 1) = 1, as stated in
Lemma 3.2. All arcs overlap with 2m - 2 other arcs. Consequently, all vertices in the
corresponding circular-arc graph have the same degree and the arcs are thus coloured
in an arbitrary order by SC. If the arcs are coloured in the order as given above, then
SC requires 2m - 1 colours. With each new colour SC colours at most ~(m + 1) arcs.
However, an optimal colouring requires oniy m colours. Hence, choosing m > 1/e

J. Korst et al./ Discrete Applied Mathematics 51 (1994) 291-305 301

results in a graph that has the required property. This completes the proof of the
theorem. D

Sort&Match
Elaborating on the work of Tucker [29], we present a two-step approximation

algorithm for colouring circular-arc graphs, called Sort&Match. For reasons of
simplicity, the algorithm is formulated in terms of colouring circular arcs instead of
vertices.

Sort&Match (S&M)
(1) Determine on the circle a point t with minimum thickness Tmin· Partition the set

of arcs into two subsets d and !JI, where d is the set of arcs that cover point t.
Hence, Id I = min. Now, the arcs in !JI define an interval graph. Consequently,
the arcs in !JI can be coloured, using the left edge algorithm, with ymax colours.

(2) Determine a maximum subset d's d, whose arcs can be coloured with
a colour that has already been used in step 1. This problem can be formulated as
a maximum-cardinality matching problem in a bipartite graph <§ =

(1'i, 1'2 , t!). Each vertex v E 1' 1 is associated with an arc in d and each vertex
u E 1' 2 is associated with a colour that is used in step 1. An edge { v, u} is in t! if
the arc associated with v can be given the colour associated with u. This
matching problem can be solved efficiently using an augmenting path algorithm
[17, 13]. Finally, each remaining arc in d - .;;1' is given a different free colour.

The following theorem states the worst-case performance of S&M.

Theorem 3.4. For any circular-arc graph '§, Rs&M(<§) ~ 2.

Proof. Since the arcs in subset !JI are coloured with rn•x colours and the arcs in
subset .;;1 are coloured using at most rnin colours, we obtain that S&M ("9') ~ rn•• +
yrnin ~ 2rm•x. Combining this result with the fact that x('§) ~ rrnax, we obtain the
theorem. D

Tucker [29] only considers the first step of the algorithm presented above, but
essentially proves the same worst-case performance bound. We can again prove that
this bound is tight.

Theorem 3.5. For any e > 0, a circular-arc graph S9' exists such that Rs&M(<§) > 2 - e.

Proof. This is directly derived from the following subset of instances. Let Cm be a set of
3m - 3 arcs on a circle with 6m segments, m ~ 4, defined by

[2/,2m+21-1], 1=0, ... ,m-1,

[2m + 21 + 2, 4m + 21 + 1], I= 0, .. .,m - 1,

[4m + 21 + 2, 21 + 1 J, l = 0, .. ., m - 4.

302 J. Korst et al./ Discrete Applied Mathematics 51 (1994) 291-305

Applying S&M to Cm results in a colouring with 2m - 3 colours, while the minimum
number of colours is m. Hence, by choosing m > 3/c, we obtain a graph with the
required property. This completes the proof of the theorem. D

Note that applying SC to the above set of arcs may also result in a colouring with
2m - 3 colours. Hence, choosing the best result of both S&M and SC does not
improve the worst-case performance ratio of 2.

Experimental results
In this section we present some experimental results that give an indication of the

performance of S&M, SC and min(S&M, SC). The results are obtained by applying
the algorithms to randomly generated instances. Each instance contains 100 arcs on
a circle with a circumference equal to 1. The left end-point of an arc is chosen
uniformly from the interval [O, 1) and the length of an arc is chosen uniformly from the
interval [lmin• lmax), with 0 ~ lmin ~ Im••~ 1. For different choices of lmin and Im..,
Table 1 gives the average relative difference and corresponding standard deviation for
S&M, SC and min(S&M, SC). The average relative difference is defined as the
average difference between the number of colours found by the algorithms and the
lower bound given by the cardinality of a maximum clique. The differences are
expressed as a percentage of this lower bound. The results are compared with this

Table I
Results obtained by applying S&M, SC and min(S&M, SC) to randomly generated circular-arc graphs

lmin lmu

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 l.O

0.0 0.0 0.0 0.6 2.6 1.2 3.2 2.1 3.7 4.3 5.5 6.1 5.7 9.3 4.9 10.3 4.8 8.0 4.0 5.9 3.0
2.5 4.3 2.8 3.7 2.7 2.9 3.5 2.5 3.5 2.7 3.6 2.5 2.7 2.0 1.9 1.6 L3 1.4 0.7 1.0
0.0 0.0 0.3 1.4 0.6 1.7 1.0 1.9 2.0 2.0 2.8 2.6 2.5 1.9 1.8 1.6 1.2 1.3 0.6 1.0

0.1 0.8 2.5 2.5 5.3 4.2 5.6 4.9 5.6 7.3 5.9 10.1 6.0 9.6 4.3 6.4 3.5 5.1 3.2

4.9 4.0 6.3 3.7 5.6 3.4 5.6 3.3 4.2 2.5 3.0 2.1 l.4 1.6 0.8 l.l 0.6 0.8
0.6 l.8 1.7 3.3 2.9 4.0 3.4 3.9 3A 2.7 2.9 2.2 1.4 1.6 0.8 I.I 0.5 0.8

0.2 6.0 7.7 4.7 6.7 8.3 7.4 7.3 5.5 8.7 5.0 6.5 3.6 4.4 2.8 3.5 2.4
5.4 3.9 7.7 4.9 6.8 3.8 3.6 2.2 1.4 1.4 0.8 1.1 0.5 0.8 0.4 0.7
3.6 4.1 3.8 5.0 5.4 4.7 3.2 2.4 1.2 1.3 0.8 1.1 0.5 0.8 0.4 0.7

0.3 27.0 13.6 10.2 8.5 5.6 4.3 4.0 3.0 2.4 l.8 l.8 1.6 l.4 L2
16.6 7.4 5.6 3.4 1.3 1.4 0.5 0.9 0.2 0.4 0.1 0.4 0.1 0.4
16.3 7.8 4.5 4.0 1.2 1.4 0.5 0.9 0.1 0.4 O.l 0.4 0.1 0.4

0.4 l.l 2.1 1.2 1.3 0.4 0.7 0.2 0.5 0.2 0.5 0.0 0.4
1.8 1.8 0.2 0.5 0.0 02 0.0 0.2 0.0 0.1 0.0 0.0
0.6 l.l 0.1 0.4 0.0 O.l 0.0 0.1 0.0 0.0 0.0 0.0

Each entry in the table gives the average relative difference and corresponding standard deviation for S&M,
SC and min(S&M, SC), respectively. The results of each entry are obtained by applying the algorithms to
100 instances.

J. Korst et al. /Discrete Applied Mathematics 51 (1994) 291-305 303

lower bound, since the minimum number of colours is unknown and determining it is
considered too time consuming. The cardinality of a maximum clique clearly gives
a lower bound on the minimum number of colours. Although determining the
cardinality of a maximum clique is NP-hard for arbitrary graphs, it can be obtained in
polynomial time for circular-arc graphs, by iteratively constructing a maximum
matching in bipartite graphs [9].

Comparing both algorithms, we see that, on average, S&M outperforms SC if the
arc lengths are small. However, for larger arc lengths SC produces better average
results than S&M. This motivates the interest in the best result of both algorithms.
From Table 1 we observe that the average relative difference of min(S&M, SC)
remains almost always within 5% of the optimum.

An important exception is given by instances with arc lengths chosen from
[0.3, 0.4). Both S&M and SC seem to perform less well for these instances-they give
average relative differences of 27.0% and 16.6%, respectively. One might assume that
these large differences are caused by the fact that for these instances the cardinality of
a maximum clique is a bad approximation of the chromatic number. However,
experimental results contradict this assumption. We have optimally coloured 50
instances from this class each containing 30 arcs. For these instances the chromatic
number deviated, on average, only 1 % from the cardinality of the maximum clique.

In addition to the information in Table 1, we mention that, except if arc lengths are
chosen from [0.3, 0.4), the observed maximum relative difference for S&M, SC and
min(S&M, SC) is 33.3%, 21.2% and 18.4%, respectively. If the arc lengths are chosen
from [0.3, 0.4), then the observed maximum relative difference for S&M, SC and
min(S&M, SC) is 56.4%, 32.5% and 32.5%, respectively.

From the experimental results presented in this section, we conclude that the
average-case performance of S&M and SC is usually much better than the worst-case
bounds given in the previous sections. Furthermore, we conclude that the both
algorithms perform less well if the lengths of the circular arcs are approximately
one-third of the circumference of the circle.

3.3 Colouring periodic-interval graphs

Colouring periodic-interval graphs is NP-hard. This follows immediately from the
fact that colouring circular-arc graphs is NP-hard and the observation that each
circular-arc graph is a periodic-interval graph. The next theorem gives a somewhat
surprising result.

Theorem 3.6. Each graph is a periodic-interval graph.

Proof. Let '§ = ("Y", S) be an arbitrary graph, with loops. We show that we can
associate with each vi E "I' a periodic interval (pi> ei, ri). such that, for each pair of
distinct vertices v;, vi E"f/', {vi, vj} Elf if and only if the associated periodic intervals
(pi, ei, r;) and (pj, ej, rj) overlap.

Let us first select the smallest tn(n - 1) distinct prime numbers larger than n, and
let these prime numbers be denoted by nij for 1 ~ i < j ~ n. Furthermore, let ni, = nii
for i < j. By the prime number theorem, the magnitude of the largest of these numbers

304 J. Korst et al./ Discrete Applied Mathematics 51 (1994) 291-305

is O(n2 log n). We can now associate a periodic interval (p;, eh ri) with each v; e "f/"
according to ei = 1 and p; = II;,. ;7tiJ• The reference timer; is chosen such that for each
j # i, ri = 1(mod7t;i) if {v;, v;} EG, and r; = i (mod nij) if {v;, v1} r!S. Reference times
that satisfy these constraints always exist and they can be determined in polynomial
time by using the Chinese remainder theorem (see, e.g. [22]).

Now,if {vi, vJ} f 8 for two distinct vertices v;, v1 e"f/", then(p., e;, r;) and(p1. e;, r;)do
not overlap. This can be seen as follows. Since r; = i(mod nil), r1 =j(mod nu), and
0 < Ji - jJ < n < 7t;;, we derive that r; and ri are not congruent modulo 1tiJ· Further
more, g;i = gcd (pi, p1) = nii· Hence, using Corollary 2.8, we obtain that (p1, ei. r1) and
(Pi• ei> r1) do not overlap.

Furthermore, if { V;, vi} e 8, then (p;, e;, r;) and (pi. e1, r1) can be shown to overlap.
Since ri = 1 (mod 7t;1) and r1 = 1 (mod nu), we derive that r; and r1 are congruent
modulo 7t;1. Hence, again using Corollary 2.8, we obtain that (p;, e;, r;) and (p1. e1, r)
overlap. This completes the proof of the theorem. 0

Note that the above construction is polynomial. In Section 1 we stated that no
polynomial-time approximation algorithm is known that colours arbitrary graphs
within a constant factor of the optimum and that there is evidence that no such
algorithm exists. Theorem 3.6 implies that the same holds for periodic-interval graphs.

Acknowledgement

The authors are grateful to J.B. Orlin for his valuable comments and, in particular,
for suggesting the polynomial-time construction in the proof of Theorem 3.6.

References

[l] S.K. Baruah, R.R. Howell and L.E. Rosier, On preemptive scheduling of periodic, real-time tasks on
one processor, in: B. Rovan ed., Mathematical Foundations of Computer Science 1990 (Springer,
Berlin, 1990) 173-179.

[2] B. Berger and J. Rompel, A better performance guarantee for approximate graph colouring, Algorith
mica 5 (1990) 459-466.

(3] J.A. Bondy and U.S.R. Murthy, Graph Theory with Application (Macmillan, New York, 1976).
[4] S. Booth and S. Lueker, Testing for the consecutive ones property, interval graphs, and graph

planarity using PQ-tree algorithms, J. Comput. System Sci. 13 (1976) 335-379.
[5] M.L. Fredman and B. Weide, On the complexity of computing the measure of U[ai. bi], Comm.

ACM 21 (1978) 540-544.
[6] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15 (1965)

835-855.
[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP

Completeness (Freeman, San Francisco, 1979).
[8] M.R. Garey, D.S. Johnson, G.L. Miller and C.H. Papadimitriou, The complexity of coloring circular

arcs and chords, SIAM J. Algebraic Discrete Methods 1 (1980) 216-227.
[9] F. Gavril, Algorithms on circular-arc graphs, Networks 4 (1974) 357-369.

[10] P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and of interval graphs,
Canad. J. Math. 16 (1964) 539-548.

J. Korst et al. /Discrete Applied Mathematics 51 (1994) 291-305 305

[I I] U.I. Gupta, D.T. Lee, and J.Y.-T. Leung, An optimal solution for the channel-assignment problem,
IEEE Trans. Comput. 28 (1979) 807-810.

[12] A. Hashimoto and J. Stevens, Wire routing by optimizing channel assignment with large apertures, in:
Proceedings of the 8th Design Automation Conference (1971) 155-169.

[13] J.E. Hopcroft and R.M. Karp, An n512 algorithm for maximum matchings in bipartite graphs, SIAM J.
Comput. 2 (1973) 225-231.

[14] RM. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, eds.,
Complexity of Computer Computations (Plenum Press, New York, 1972) 85-103.

[15] J.H.M. Korst, E.H.L. Aarts, J.K. Lenstra and J. Wessels, Periodic multiprocessor scheduling, in:
Proceedings of the Conference on Parallel Architectures and Languages Europe, PARLE '91, Lecture
Notes in Computer Science, Vol. 505 (Springer, Berlin, 1991) 166-178.

[16] N. Korte and R.H. Mohring, An incremental linear-time algorithm for recognizing interval graphs,
SIAM J. Comput. 18 (1989) 68-81.

[17] E.L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart & Winston, New
York, 1976).

[18] C.G. Lekkerkerker and J.Ch. Boland, Representation of a finite graph by a set of intervals on the real
line, Fund. Math. 51 (1962) 45-64.

[19] J.Y.-T. Leung and J. Whitehead, On the complexity of fixed-priority scheduling of periodic, real-time
tasks, Performance Evaluation 2 (1982) 237-250.

[20] L. Linial and U. Vazirani, Graph products and chromatic numbers, in: Proceedings of the 30th
Annual IEEE Symposium on Foundations of Computer Science (1989) 124-128.

[21] C.L. Liu and J.W. Layland, Scheduling algorithms for multiprogramming in a hard real-time
environment, J. ACM 20 (1973) 46-61.

[22] I. Niven and H.S. Zuckerman, An Introduction to the Theory of Numbers (Wiley, New York, 1960).
[23] J.B. Orlin, Minimizing the number of vehicles to meet a fixed periodic schedule: an application of

periodic posets, Oper. Res. 30 (1982) 760-776.
[24] J.B. Orlin, M. Bonuccelli and D. Bovet, An O(n2) algorithm for coloring proper circular arc graphs,

SIAM J. Algebraic Discrete Methods 2 (1981) 88-93.
[25] K.S. Park and D.K. Yun, Optimal scheduling of periodic activities, Oper. Res. 33 (1985) 690-695.
[26] M.I. Shames and D. Hoey, Geometric intersections problems, in: Proceedings of the 17th Annual

IEEE Symposium on Foundations of Computer Science (1976) 208-215.
[27] W.-K. Shih and W.-L. Hsu, An O(n1·5) algorithm to color proper circular arcs, Discrete Appl. Math.

25 (1989) 321-323.
[28] A. Teng and A. Tucker, An O(qn) algorithm to q-color a proper family of circular arcs, Discrete Math.

55 (1985) 233-243.
[29] A. Tucker, Coloring a family of circular arcs, SIAM J. Appl. Math. 29 (1975) 493-552.
[30] A. Tucker, An efficient test for circular-arc graphs, SIAM J. Comput. 9 (1990) 1-24.
[31] D.J.A. Welsh and M.B. Powell, An upper bound on the chromatic number of a graph and its

application to timetabling problems, Comput. J. 10 (1967) 85-87.

