
Comparing Negation in Logic Programming

and in Prolog

Krzysztof R. Apt
CW/

and
Faculty of Mathematics and Computer Science

University of Amsterdam, Plantage Muidergracht 24

1018 TV Amsterdam, The Netherlands

Frank Teusink
CW/

Many aspects of Artificial Intelligence can be clarified and made rigorous by
using tools and concepts originating in mathematical logic. Cor Baayen has
stimulated this research programme at CWI. This paper provides an example
of this form of work and is offered to him at the occasion of his retirement
from CWI. The second author is a PhD student employed by SION. His
coauthorship is a tribute to (or Baayen's successful efforts of ensuring a
smooth cooperation between CWI and SION.

Mathematical logic has played a useful role in clarifying concepts and ideas
advanced in Artificial Intelligence. However, for specific applications it is
often needed to modify and extend well-known logic formalisms, sometimes
in an unusual way.

A case in point is the treatment of negation in Prolog. To properly render
its meaning and compare formally its use to that in logic programming we
had to extend the customary logic programming formalism by allowing vari
ables standing in atom positions (so called meta-variables) and adopting
ambivalent syntax.

To define the computational process of Prolog one needs to define formally
backtracking, which is an algorithmic concept. We found a simple account
of it by means of a single operation on finite ordered trees. To deal with the
cut operator one more operation is needed.

After taking care of these matters we establish a formal result showing an
equivalence in appropriate sense between these two uses of negation - in
Prolog and in logic programming. This result allows us to argue about cor
rectness of various known Prolog programs which use negation by reasoning
about the corresponding logic programs.

65

This paper is a shorter version of a chapter from Meta-programming in
Logic Programming, K.R. Apt and F. Turini {editors), The MIT Press, {in
preparation).

1 INTRODUCTION

During the last 15 years, a lot of attention was devoted to the study of negation
in logic programming. No less than seven survey articles on this subject were
published. Just to mention two most recent ones: Dix [Dix93] and Apt and
Bol [AB94].

The main reason for this interest is that in the logic programming setting neg
ative literals can be used to model non-monotonic reasoning. The computation
process of logic programming provides then a readily available computational
interpretation. This is not the case with other approaches to non-monotonic
reasoning. This computation process is called SLDNF-resolution and was pro
posed by Clark [Cla78]. Negation is interpreted in it using the "negation as
finite failure" rule. Intuitively, this rule works as follows: for a ground atom A,

--.A succeeds iff A finitely fails,
--.A finitely fails iff A succeeds,

where "finitely fails" means that the corresponding evaluation tree is finite and
all its leaves are marked as failed.

However, SLDNF-resolution is not a practical way of computing and usually
one resorts to Prolog when seeking for a computational interpretation. But
in Prolog negation is implemented in a different way, namely by the predicate
(or synonymously relation symbol) neg defined internally by the following two
clauses:

neg(X) f- X, !,fail.

neg(X) f-.

(1)

(2)

where "!" is the cut operator and fail is a Prolog built-in with the empty
definition.

The intuition behind this definition is perhaps best revealed by first intro
ducing the iLthen_else predicate defined as follows:

iLthen_else(P, Q, R) f- P, ! ,Q.
iLthen_else (P, Q, R) f- R.

iLthen_else is intended to model within Prolog the customary

if P then Q else R

construct of imperative programming languages. Then neg can be equivalently
defined by

neg(X) f- iLthen_else(X, fail, O).

66

where Dis the empty query which immediately succeeds. So intuitively, neg(X)
can be interpreted as "if X succeeds then fail else succeed".

It is usually tacitly assumed that logic programming and Prolog ways of
dealing with negation are "equivalent", in the sense that SLDNF-resolution
combined with the leftmost selection rule (henceforth called LDNF-resolution)
properly reflects Prolog's way of handling negation. Upon closer scrutiny this
assumption is far from being obvious. The above definition of the neg predicate
and its use in programs calls upon a number of features which are present in
Prolog, but absent in logic programming, and for which a formal treatment is
lacking. These are:

• the use of meta-variables, that is variables which occur in an atom posi
tion, like X in the first clause,

• the use of meta-programming facilities that arise when applying this def
inition of neg, so in constructs of the form neg(A) where A is an atom,
or a query in general.

Additionally, two better understood, though not necessarily simpler to handle,
features of Prolog need to be taken care of, namely:

• the ordering of the program clauses,

• the use of the cut operator "!".

The aim of this paper is to relate precisely these two uses of negation: in logic
programming and in Prolog. To do this we appropriately tune the definition
of the SLDNF-resolution given in Apt and Doets [AD94] to our present needs
and formally define "Prolog trees" in the presence of the cut operator. Then
we prove a result that shows an appropriate equivalence between these two
definitions of negation.

The outcome of this study is that we can now interpret various results
about correctness of general logic programs executed by means of the LDNF
resolution (see e.g. Apt [Apt94]) as correctness results about the corresponding
Prolog programs that use negation.

2 SYNTACTIC MATTERS

2.1 General Logic Programs

To relate general logic programs to Prolog programs we have to be precise about
the syntax. Fix a first-order language£. To make this comparison possible we
assume that

• a general program is a sequence and not a set of general clauses,

• the predicates !, neg and fail are not present in the language ,C.

67

A general clause is defined in the usual way (see e.g. Lloyd [Llo87]), so as a
construct of the form A+--- Li, ... , Ln, where A is an atom and £ 1 , ... , Ln are
literals, i.e. atoms or their negations, all in the language £. And a query is
a finite sequence of literals. In the context of logic programming the negation
connective is written as "...,".

2.2 Prolog Programs

Prolog programs here considered are intended to be the programs that allow
us to model the negation by means of the predicate neg defined by the clauses
(1) and (2). However, the syntax of clause (1) creates a number of problems,
even if we ignore the cut operator "!".

First of all, the use of the meta-variable X in clause (1) violates the syntax
of the first-order logic. This use of X in the resolution process leads to further
complications. Take an n-ary function symbol p in the language .C and let
s1 , ••• ,sn be some terms. Consider now the query neg(p(s1, ... ,sn)). Dur
ing Prolog computation process it resolves using the clause (1) to the query
p(s1, ... , sn), ! , fail. Now in the first query p occurs in a position of a function
symbol, whereas in the second one p occurs in a position of a relation symbol.
So every function symbol needs also to be accepted as a relation symbol.

Also conversely: take an n-ary relation symbol p with some terms s1 , ... , sn,
and consider the general clause p(s1, ... , sn) +--- -ip(s1, ... , sn)· Its desired trans-
lation into a Prolog clause is p(s1, ... , Sn) +- neg(p(s1, ... , sn)). In the head
of the latter clause p occurs in a position of a relation symbol, whereas in its
body in the position of a function symbol.

As in both cases p was arbitrarily chosen, we conclude that to render the
resolution process meaningful we need to accept that the classes of function
symbols and of relation symbols in the underlying language coincide.

This is clearly in violation with the (usually tacit) assumption that in the
firnt-order language, say .C, fixed above, the classes F,,, and Rn of, respectively,
its function symbols of arity m and its relation symbols of arity n are pairwise
disjoint for m, n 2: 0. In short, the use of the clause (1) c11,nnot be properly
accounted for by just referring to the first-order logic.

A simple solution to the above mentioned two problems is to modify the
syntax of the language .C by allowing

• meta-11ariablf:s, so variables that can occur in atoms positions, both in
the• queries and in the clause bodies,

• ambivalent syntax, so - in this ca8c by as8umiug that the classes of
fuuc:tion and relation Hyrnbols coincide.

Tlw latter can be <tchieved by extending £, to a language in which for each
m 2': 0 F~,, U R,,, are the classes of both it.H function symbols and relation
symbols. Thus in this language terms awl atoms coincide~.

Additionally, we a8Kurne that

(JK

• the predicates !, neg and fail are present in the underlying language,

• ! is a built-in 0-ary predicate (with a meaning to be explained later), and
no clause uses it in its head,

• neg is a built-in predicate defined by the clauses (1) and (2), so no other
clause uses it in its head,

• fail is a built-in 0-ary predicate with the empty definition, so no clause
uses it in its head.

The last two assumptions ensure that neg and fail are indeed defined in
ternally in the desired way. For the purposes of syntax the cut operator "!" is
viewed here as a 0-ary predicate with the empty definition. This might suggest
that its meaning coincides with that of fail. However, this is not the case. Its
real, operational, "meaning" will be defined in Section 4 by means external to
the resolution process.

So in the resulting language, apart of the customary atoms, also !, fail and
meta-variables are admitted as atoms (henceforth called special atoms).

Now, a Prolog program is defined as a sequence of Prolog clauses preceded
by the clauses (1) and (2). In turn a Prolog clause is a construct of the form A
f- B1, ... , Bn, where A, B1, ... , B.,, are atoms in the language£, and A is not
a special atom. And a Prolog query is a finite sequence of atoms. For brevity,
in the examples of Prolog programs, we drop the listing of the clauses (1) and
(2). Finally, we denote sequences of atoms or literals by bold capital letters.

Note that at this stage we use two notions of an atom - one within the
language ,C and another in its ambivalent extension just defined. From the
context it will be always clear to which of these two languages we refer.

2. 3 Restricted Pro log Programs

The translation of a general program to a Prolog program is now straightfor
ward and as expected: we just replace everywhere a logic programming literal
•A by Prolog's atom neg(A) and prefix the resulting program with the clauses
(1) and (2). In short, the logic programming negation connective "-,'' is traded
for the built-in predicate neg. Similarly, a general query is translated to a
Prolog query by replacing everywhere •A by neg(A).

This translation process maps every general program (resp. general query)
onto a Prolog program. However, not every Prolog program (resp. Prolog
query) is the result of translating a general program (resp. general query).
Indeed, in general the cut operator "!" can be used in any Prolog clause, not
only (1).

Let us now characterize the Prolog programs (resp. Prolog queries) which are
the result of the above translation of general programs (resp. general queries).
We call them restricted Prolog programs (resp. restricted Prolog queries). To
this we translate "back" every Prolog program (resp. Prolog query) onto a
general program (resp. general query) by replacing everywhere neg(A) by •A,

69

and omitting the clauses (1) and (2) that define the neg predicate. Then a
Prolog program (resp. Prolog query) is restricted if the outcome of this reverse
translation is a syntactically legal general program (resp. general query). For
example the Prolog query neg(q) ,q is restricted because its reverse translation
is -.q, q, whereas neither neg(q (neg (a))) nor p(q) , q is restricted because their
respective reverse translations violate the syntactic assumptions concerning
general programs.

Of course, it is possible to define the class of restricted Prolog programs and
queries directly, though the resulting definition is rather tedious.

We now define a resolvent of a Prolog query as follows.

DEFINITION 2.1 Consider a non-empty Prolog query A, Mand a Prolog clause
c. Let H +- L be a variant of c variable disjoint with A, M and let B be an mgu
of A and H. Then (L,M)B is called a resolvent of A,M and c with an mgu e.
0

The only unusual feature in the present setting is, that now the mgu's also
bind the meta-variables. Also, note that the selected literal is always the left
most literal.

It is worthwhile to mention that a resolvent of a restricted Prolog query
w.r.t. a restricted Prolog program is not necessarily a restricted Prolog query.
This is due to the use of clause (1), which introduces a cut atom. Thus, the
Prolog queries generated in a computation of a restricted Prolog query are not
necessarily restricted Prolog queries. However, the Prolog queries so generated
do have one important property: they do not contain meta-variables. To prove
this fact we need a stronger property.

DEFINITION 2.2

• An atom A is called 'Unsafe if one of the following holds:

A is a meta-variable,

A is neg(X) where X is a variable,

A is neg(neg(s)) where s is a term.

• A Prolog query is called meta-.safe if none of its atoms is unsafe. o

For example, X, p (X) is not meta-safe because its leftmost atom is a meta
variable, neg(X) is not meta-safe because the argument of neg is a meta
variable, and neg(neg(p (X))) is not meta-safe becaus<~ tlw aq~ument of the
outermost neg predicate is itHelf a neg predicate.

Note that restricted Pro log queries and bodies of tlw restrict.Pd Pro log clauses
are meta-safe.

LEMMA 2.3 Let Q be a meta-safe Prolog q·uer;y and P a restricted Prolog pro

gram. Then all resolvents of Q are meta-safe.

Proof: Let Q be of the form A, L, and let (M, L)fJ be a rmmlve11t of Q, with

70

an input clause c and mgu 0. As Q is meta-safe, we know that LO is meta-safe.
We prove that MO is meta-safe as well. Three cases arise.

Case 1 : c is clause (1).

Then MO is of the form B, ! , fail, where A is of the form neg(B). But
Q is meta-safe, so Bis neither a meta-variable nor of the form neg(B').
So MO is meta-safe.

Case 2 : c is clause (2).

Then MO is the empty query, so obviously meta-safe.

Case 3 : c is different from clauses (1) and (2).

The1, the body of c is meta-safe, and consequently so is MO.

This proves that (M, L)(} is meta-safe. 0

COROLLARY 2.4 All Prolog queries generated in a computation of a restricted
Prolog query and a restricted Prolog program are meta-safe. D

In Prolog, if the selected atom is a meta-variable, an error arises. The above
result thus shows that no errors arise in Prolog computations for queries and
programs that are obtained by a translation of a general query and a general
program.

3 COMPUTING WITH GENERAL LOGIC PROGRAMS: LDNF-RESOLUTION
As the next step we define the LDNF-resolution that allows us to compute with
general logic programs. The definition of LDNF-resolution given here is derived
in a straightforward way from that of the SLDNF-resolution given in Apt and
Doets [AD94). Apart of the fact that we view in this paper a general program
as a finite sequence and not as a finite set of general clauses, the differences are
that:

• the leftmost selection rule is used,

• floundering, so -in this context- an abnormal termination due to selection
of a non-ground literal is ignored.

In this way we bring the procedural interpretation of general programs closer
to that of the corresponding Prolog programs and make the subsequent com
parison possible. Recall from Clark [Cla78] and Lloyd [Llo87] that floundering
is a problem that arises only when dealing with the semantic aspects of the
SLDNF-resolution, which are irrelevant here.

Before giving the definition of LDNF-resolution, we recall the definitions of
resolvent and pseudo-derivation.

DEFINITION 3.1 Consider a non-empty general query L, Mand a general clause
c.

71

• Suppose L is a positive literal.

Let H +- L be a variant of c variable disjoint with L, M and let B be an
rngu of Land H. Then (L, M)B is called a resolvent of L, Mand c w.r.t.
L, with an mgu B.

We write then L, M ~ (L, M)B, and call it a positive deri·uation step.
We call H +- L the input clause of the derivation step.

• Suppose L is a negative literal. Then M is called a resolvent of L, M
with the identity substitution t w. r. t. L.

We write then L, M ~ M, and call it a negative derivation step.

• A general clause c is called applicable to an atom if it has a variant the
head of which unifies with the atom. D

Fix, until the end of this section, a general program P.

DEFINITION 3.2 A (finite or infinite) sequence Qo ~ Q1 · · · Qn ~ Qn+I · · ·
c1 cn+l

of derivation steps is called a pseudo derivation of PU { Q0 } if

• Qo, ... ,Qn, ... are general queries,

• fh, ... ,en, ... are substitutions,

• c1 , ... , Cn, ... are general clauses of P, or 0,

and for every step involving selection of a positive literal the following condition
holds:
Standardization apart: the input clause employed is variable disjoint from
the initial general query Q0 and from the substitutions and input clauses used
at earlier steps. D

Intuitively, an LDNF-derivation is a pseudo derivation in which the deletion
of every negative literal is justified by means of a subsicli<,ry (finitely failed
LDNF-) tree. This brings us to consider special types of trees, called forest.s.

DEFINITION 3.3 A forest is a system F = (:F, T, subs) where

• F is a set of trees,

• T is an element of F called the main tree, and

• subs is a function assigning to some nodes of trees in :F a ("subsidiary")
tree from F.

By a path in F we mean a sequence of nodes No, ... , N;, ... such that for all
i, Ni+ l is either an immediate descendant of Ni in some treP in :F, or the root
of the tree subs(Ni)· The depth of :F is the length of the longest. path in :F. D

72

Thus a forest is a special directed graph with two types of edges - the "usual"
ones stemming from the tree structures, and the ones connecting a node with
the root of a subsidiary tree. An LDNF-tree is a special type of forest, built as
a limit of certain finite forests: pre-LDNF trees.

DEFINITION 3.4 A pre-LDNF-tree (relative to P) is a forest whose nodes are
queries. Leaves can be unmarked, or can be marked as either success or failure.
The class of pre-LDNF-trees is defined inductively:

• For every general query Q, the forest consisting of the main tree which has
the single unmarked node Q is a pre-LDNF-tree (an initial pre-LDNF
tree),

• IfT is a pre-LDNF-tree, then any extension of Tisa pre-LDNF-tree.

Before defining the notion of an extension of a pre-LDNF-tree, we need to
define the notion of successful and finitely failed trees: for T E T,

• T is called successful, if one of its leaves is marked as success, and

• T is called finitely failed, if it is finite and all its leaves are marked as
failure.

Now, an extension of a pre-LDNF-tree T is defined by performing the following
actions for every non-empty general query Q (with leftmost literal L) which is
an unmarked leaf in some tree TE T:

• Suppose that L is a positive literal.

- If Q has no resolvents w.r.t. Land a clause from P:

Mark Q as failure.

- If Q has such resolvents:

For every clause c from P which is applicable to L, choose one
resolvent Q' of Q w.r.t. Land c, with an mgu (},and add this as an
immediate descendant of Q in T. Choose the input clauses in such
a way that all branches of T remain pseudo derivations.

• Suppose that L is a negative literal, say •A.

- If subs(Q) is undefined:

Add a new tree T', consisting of the single node A, to T, and let
subs(Q) = T'.

- If subs(Q) is defined and successful:

Mark Q as failure.

- If subs(Q) is defined and finitely failed:

Add the resolvent Q - { L} of Q as the only immediate descendant
of Qin T.

73

p p p

ext.

I
P.Xt.

I ==> ==> iuitial

--iq, r --iq, r

' ' ' ' q

p

~1
--iq,r

' ' ' ' q

I
D

success

p

=s I
--iq,r

fail'ur~'
' ' q

I
D

success

FIGURE I. Step-by-step construction of an LDNF-tree for the query p w.r.t.
the general program p <- --iq, r q *--·

Additionally, all empty queries are marked as success. D

Note that, if no tree in T has unmarked leaves, then trivially T is an extension
of itself, and the extension process becomes stationary.

Next, we define LDNF-trees as the limit of sequences of pre-LDNF-trees.
Every pre-LDNF-tree is a tree with two types of edges between possibly marked
nodes, so the concepts of inclusion between such trees and of limit of a growing
sequence of such trees have a clear meaning.

DEFINITION 3.5
• An LDNF-tree is a limit of a sequence To, ... , Tc,, ... such that Tri is an

initial pre-LDNF-tree, and for all i 'Ii+ 1 is an extension of T;.

• An LDNF-tree for Q is an LDNF-tree in which Q is the root of the main
tree.

• A (pre-)LDNF-tree is called successful (resp. finitely failed) if the main
tree is successful (resp. finitely failed).

• An LDNF-tree is called finite if no infinite path exists in it (cf. Definition
3.3). D

In Figure 1, we show how the notions of initial pre-LDNF-trees and extensions
of pre-LDNF-trees are used to construct a P-tree.

Finally, we recall the notion of a computed answer substitution.

DEFINITION :3.6 Consider a branch in the main tree of a (pre-)LDNF-tree for
Q which ends with the empty query. Let a 1 , ... , a 11 be the consecutive substi
tutions along this branch.

Then the restriction (a 1 • • ·a,,) IQ of the composition n 1 · · · n,,, to the vari
ables of Q is called a comP'uted answer subst'itution (c.a.s. for short) of Q.
D

74

4 COMPUTING WITH PROLOG PROGRAMS: P-RESOLUTION
In this section, we define the computation process used in Prolog to find answers
to queries, which we call P-resolution. To this end we proceed in two steps.

First, we restrict the LDNF-resolution to logic programs, so general logic
programs without negation, by simply disregarding the selection of a negative
literal. We call the resulting computation process LD-resolution.

Then, we extend the LD-resolution to Prolog programs by allowing the choice
of a meta-variable or of a cut atom as a selected atom. In the first case an
error is reported, and in the second case the computation tree constructed so
far is appropriately pruned.

In Prolog, answers are computed using a left to right depth-first strategy.
In particu:ar, Prolog processes the cut atoms in the tree from left to right.
On the other hand, LD-resolution is defined in a breadth-first manner: the
process of extending a pre-tree consists of extending all unmarked leaves of that
tree simultaneously. To solve this problem, we have to refine LD-resolution so
that the depth-first strategy is used instead of the breadth-first strategy. At
first sight it seems that to this end we have to implement the backtracking
mechanism used by Prolog. Fortunately, it is not so. A simpler alternative
is to generate at each stage all direct successors of the leftmost unmarked leaf
only. In this way the backtracking process is taken care of automatically.

Having discussed the modifications of the LD-resolution we now model the
computation process of Prolog, by providing a formal definition of P-resolution.
The central notion in this definition is that of a P-tree. We define them as the
limit of a sequence of pre-P-trees, which in turn are a subclass of a class of
ordered trees called semi-P-trees.

DEFINITION 4.1 A semi-P-tree (relative to P) is an ordered tree whose nodes
contain queries, possibly marked with success, failure, or error. D

The first step in defining pre-P-trees is to define the effect of the cut operator.

DEFINITION 4.2 Let !3 be a branch in a semi-P-tree, and let Q be a node in
this branch with a cut atom as the leftmost atom. Then, the origin of this cut
atom is the first predecessor of Q in B that contains less cut atoms than Q. D

To see that this definition properly captures the informal meaning of the
origin note that, when following a branch from top to bottom, the cut atoms
are introduced and removed in a First-In Last-Out manner.

DEFINITION 4.3 Let T be a semi-P-tree, Q a query in T which has a cut atom
as the leftmost atom, and Q' be the origin of this cut atom. Then, the operator
cut(T, Q) removes from T all the nodes that are descendants of Q' and lie to
the right of Q. D

In Figure 2, we illustrate the effect of cut(T, Q).

DEFINITION 4.4 The class of pre-P-trees is defined as follows:

75

~
Q' ~ Q

cut

~

failure failure failure failure

FIGURE 2. The effect of the operator cut(T, Q)

• For every query Q, the tree consisting of the single unmarked node Q is
a pre-P-tree (an initial pre-P-tree).

• If T is a pre-P-tree, then any extension of T is a pre-P-tree.

An extension of a pre-P-tree T is defined as follows:
Let Q be the leftmost unmarked leaf in T. If Q is the empty query, mark Q

as successful. Otherwise, let Q be of the form A, M.

• Suppose A is an ordinary atom (i.e. not a special atom).

If Q has no resolvents w.r.t. a clause from P:

Mark Q as failure.

If Q has such resolvents:

For every clause c from P which are applicable to A, choose one
resolvent Q' of Q w.r.t. c and add this as a child of Q in T. Choose
the input clauses in such a way that all branches of T remain pseudo
derivations. Order these children according to the the order in which
their input-clauses appear in P.

• Suppose A is a cut atom.

Apply the operation cut(T, Q).

Provide Q with a single child M.

• Suppose A is a meta-variable.

Mark Q as error. 0

WP 11ow define P-trees as the limit of sequences of pre-P-trees. In Figure 3, we
show how the notions of initial pre-P-trees and extensions of prP-P-trees can be
used to construct a P-tree (the program used in the figuw is the translation of

7G

p

initial

p p p

~I~ I I
ext.

==>
neg(q),r neg(q),r neg(q),r

~ ~
q, ! ,fail,r r q, ! ,fail,r

I
! ,fail ,r

p p p

~ I I
ext.

==> I
ext.

==>
neg(q),r neg(q),r neg(q),r

;//X I I
R_, ! ,fail ,r r q, ! ,fail,r q, ! ,fail,r
\

\
\
1\

! ,fail,r
I

! ,fail,r

I
fail,r

I
! ,fail,r

I
fail,r

failure

r

FIGURE 3. Step-by-step construction of a P-tree for the Prolog query p w.r.t.
the Prolog program p +-- neg(q), r. q +-- ..

77

the program used in Figure 1). Note that in this Figure, the result of the 'cut
step' (that is, the fifth tree) is not itself part of the sequence of extensions; it
was added to clarify the use of the cut operator in the construction of P-trees.

To be able to define the limit of a sequence of pre-P-trees, we have to define
a notion of an incl'Usion between pre-P-trees, and of the limit of a growing
sequence of pre-P-trees. For pre-LD-trees and pre-LDNF-trees, these notions
were obvious. In the case of pre-P-trees, the pruning that takes place when
extending a pre-P-tree, complicates the matters a bit.

DEFINITION 4.5 Let T and T' be pre-P-trees. T is said to be included in T' if
T' can be constructed from T by means of one of the following two operations:

1. adding some children to a leaf of T.

2. removing a single subtree from T, provided its root is not a single child
in T.

We say that T is prnperly included in T', if T is included in T' and T' is not
included in T. We use C to denote the transitive closure of the relation "T is
properly included in T'" and define T ~ T' as (TC T') V (T = T'). D

Note that operation (2) never turns an internal node into a leaf.

LEMMA 4.6 The relation C is a strict partial order on pre-P-trees.

Proof: We have to prove that the conditions for a strict partial order hold.

1. T</..T

Suppose by contradiction that T C T. Then, there exists a T' such that
T is properly included in T', and T' ~ T. There are two cases:

• T' is constructed by adding children to a leaf of T.
But then, some node Q that is a leaf in T, is an internal node in T'.
By definition of inclusion, and the fact that T' ~ T, Q is an internal
node in T. This is in contradiction with the fact that Q is a leaf T.

• T' is constructed by pruning a single subtree from T.
By definition of inclusion, the parent of the pruned subtree has at
least two children in T, and therefore, it has at least one child in T'.
Moreover, new nodes can only "grow" from leaves. Thus subtrees
pruned from T can never be "regenerated", to reconstruct T out of
T'. Therefore, T' If'. T, which leads to a contradiction.

2. Tc T' and T' c T" imply Tc T".

Straightforward by the definition of C. D

COROLLARY 4. 7 The relation ~ is a partial order on pre-P-trees. D

78

neg(p)

A
p, ! ,fail o

I

FIGURE 4. A P-tree for the query neg(p) w.r.t. p +- p.

Clearly, with this notion of inclusion, we have that if T extends T' in the
sense of Definition 4.4, then T' s;;; T, so we can use this notion of extension to
construct monotonously growing chains of pre-P-trees.

DEFINITION 4.8

• A P-tree is a limit of a sequence To, ... , T;, ... such that To is an initial
pre-P-tree, and for all i, 'Ii+ 1 is an extension of T;.

• A P-tree for Q is a P-tree whose root is the query Q.

• An P-tree is called finite if no infinite branch exists in it. 0

Formally, this definition is justified by the fact that every countable partial
order with the least element (here the relation s;;; on pre-P-trees with the initial
pre-P-tree as least element) can be canonically extended to a countable cpo
(see e.g. Gierz [GHK+so]).

Next, we define the concepts of successful and finitely failed P-trees.

DEFINITION 4.9

• A P-tree is called successful if one of its leaves is marked as success.

• A (pre-)P-tree is called finitely failed, if it is finite, and all its leaves are
marked as failure. D

Note that in P-trees, in contrast to LDNF-trees, some leaves can be un
marked. Whenever this is the case, the P-tree will contain exactly one infinite
branch to the left of all these unmarked leaves. Such unmarked leaves repre
sent the resolvents the Prolog computation process did not reach, because it
got "trapped" in an infinite derivation (the infinite branch). For example, take
the program p +- p., and the query neg(p). Its P-tree is shown in Figure 4.
This tree contains a branch ending with a leaf containing the empty query.
However, this leaf is never reached by the Prolog computation process (and
therefore never marked) because there is an infinite branch to the left of it.

Finally, it is clear how to define the notion of a computed answer substitution.

79

DEFINITION 4.10 Consider a successful derivation in a pre-P-tree for Q. Let
a 1 , ... , an be the consecutive substitutions along this branch.

Then the restriction (a 1 · · · au)IQ of the composition a 1 ···an to the vari
ables of Q is called a computed answer substitution (c. a.s. for short) of Q.
0

5 CORRESPONDENCE BETWP::RN LDNF-TREES AND P-TREES

In this section, we prove that there is a close correspondence between (com
puted answers of) LDNF-trees and P-trees. More precisely, we prove that ter
mination results on general programs w.r.t. LDNF-resolution translate directly
into termination of their translated Prolog programs w.r.t. Prolog computa
tion. For this purpose, we start by examining finite LDNF-trees, and their
corresponding P-trees.

THEOREM 5.1 Let TL be a finite LDNF-tree for a general q·uery Q. Then,
there exists a finite P-tree Tp for Q .rnch that TL and Tp have the same set of
computed answers.

Proof: We prove the claim by induction on the depth of LDNF-trees (cf.
Definition 3.3). Assume that the claim holds for all LDNF-trees of depth less
than r. We have to prove the claim for LDNF-trces of depth r.

Let TL be an LDNF-tree for Q of some finite depth r. In the remainder of
this proof, we identify a general query with its translation into a Prolog query.
From the context it will always be clear whether we refer to a general query,
or a Prolog query. Two cases arise.

• Suppose that Q is of the form A, L.

Let Q1 , ... ,Qk (k 2 OJ be the children of Qin T1. Let, for i E [Lk], T[,
denote the subtree of T1 starting at Q;.

As, for i E [Lk], T[, is finite and of depth less than r, by induction
hypothesis there exists a P-tree T~ for Q; such that Tj, contains the same
computed answers as T{ Now consider the semi-P-tree 'TJo with root Q,
children Q1 , ... , Q1.: (ordered according to the order of their input clauses
in P) and, for 'i E [Lk], T} as the subtree starting at Q;., as depicted by
the following diagram:

80

To prove that 'Tp is a P-tree for Q, it is sufficient to show that all pruning
caused by selection of cut atoms is guaranteed to be local to the respective
subtrees Tt (for i E [1..k]). Neither Q, nor its children Q1, ... , Qk in 'Tp,
contain a cut atom, so no atom in Tp has Q as its origin. It follows from
the definition of the cut operator that all pruning is indeed local to the
respective subtrees Tt. Thus 'Tp is a P-tree for Q. From its construction,
it follows that it contains the same computed answers as TL. Moreover,
it is finite.

• Suppose that Q is of the form -.A, L.

Let Tl be the subtree of TL starting at the root of subs(Q). As the LDNF
tree Tl for A is finite and of depth less than r, by induction hypothesis
there exists a finite P-tree T} for A that has the same computed answers
as Tl. There are two sub-cases.

- Suppose that Q has a child in TL.
Then, Tl is finitely failed, and therefore T} is finitely failed as
well. But then, we can construct a finitely failed P-tree Tj,' for
A,! ,fail,L. In this P-tree, the cut atom introduced at the root
will never be reached.
Let Tf, be the subtree of h starting at the single child L of Q.
As the LDNF-tree Tl for L is finite and of depth less than r, by
induction hypothesis there exists a finite P-tree Tfi for L that has
the same computed answers as T£.
Using T}' and Tfi we can construct a finite P-tree Tp for Q that has
the same computed answers as Ti. This tree has the following form:

- Suppose that Q has no children in Ti.
Then, Tl is successful, and therefore T} is successful as well. But
then we can construct a finitely failed P-tree T}' for A,!, fail, L,
in which the cut atom present in its root is selected at some point.
Let Tp be the semi-P-tree such that its root is Q, and the subtree
starting at the single child A, ! , fail, L of Q is T}'. In this tree,
the origin of the cut atom that appears in the single child of Q, is Q.
This cut atom is the selected atom in some node within T}'. Thus
Tp is a P-tree for Q, because the potential second child of Q, that

81

neg(p)

//~A
/ I f · 1 1 p,. , ai D

/~
,, / ~

! ,fail p, ! ,fail

fail

f ail1t're

•p

failure '

p

A
D p

success A
D

FIGURE 5. A P-tree and an LDNF-tree for neg(p)

would contain the query L has heen pruned at some stage. Thus Tp
is finitely failed, just as TL is. 0

Thus if we have a general query Q that terminates w.r.t. a general program
P, we know that Prolog computation on that query and that program will
terminate, and give the same computed answers as LDNF-resolution.

Now what if we have a finite P-tree for a restricted Prolog query Q and a
restricted Prolog program P? Consider the following restricted Prolog program

p +-

p +- p

and the restricted Prolog query neg(p). The P-tree and LDNF-tree for this
query and this program are shown in Figure 5 (note that the pruned branches
are not really part of the P-tree for neg(p), but existed at some point during
the construction of this P-tree). In this example, the P-tree is finite, because
the potentially infinite branch caused by the clause p +- p is pruned. However,
in the LDNF-tree, this branch has been constructed in full, and therefore this
LDNF-tree is infinite.

6 APPLICATIONS

Due to the presence of cut in the definition of the predicate neg it is difficult
to reason in a declarative way about Prolog programs that use negation. In
other words, it is not clear how to prove correctness of such programs using
their declarative interpretation.

We now show how this is possible using the results of this paper. The key
observation is that Theorem 5.1 provides a crucial relationship between the
computational behaviour of Prolog programs and their translations into general
logic programs.

82

In the subsequent discussion we assume that the variables in the input clauses
and the mgu's are chosen in a fixed way. We can then assume that for every
Prolog program P and Prolog query Q there exists exactly one P-tree, and
similarly for general logic programs, general queries and LDNF-trees.

So consider a restricted Prolog program P with a restricted query Q and
their translation PL and Q L onto a general logic program and a general logic
query, respectively. To reason about correctness of P with Q it is sufficient
to reason about PL and QL. Indeed, suppose that we proved already that
all LDNF-derivations of P and Q are finite. Then by Theorem 5.1 the P-tree
for PL and Q L is finite, and PL with Q L and P with Q have the same set of
computed answers.

As an example consider the following well-known Prolog program TRANS
about whkh one claims that it computes the transitive closure a binary re
lation e:

trans(X, Y, E, Avoids) <--- member([X, Y], E).
trans(X, Z, E, Avoids) <-

member([X, Y], E),
neg(member(Y, Avoids)),
trans(Y, Z, E, [Y I Avoids]).

member (X, [X I Xs]) <--- •

member(X, [Y I Xs]) <(--- member(X, Xs).

In Apt [Apt94] the following facts about its translation TRANSL to a general
logic program and a binary relation e were established:

• all LDNF-derivations of trans(X, Y, e, []) are finite,

• the computed answer substitutions of trans(X, Y, e, [)) determine all
pairs of elements which form the transitive closure of e.

Now, by Theorem 5.1 the same conclusions can be drawn about the original
program TRANS.

The fact that above approach to correctness is limited to restricted Prolog
programs is in our opinion not serious. In fact, we noticed that practically all
"natural" Prolog programs that use negation are restricted.

REFERENCES

[AB87]

[AB94]

[AD94]

[Apt94]

B. Arbab and D.M. Berry. Operational and denotational semantics
of Prolog. Journal of Logic Programming, 4(4):309-329, 1987.
K.R. Apt and R. Bol. Logk programming and negation: a survey.
Journal of Logic Programming, 19-20:9-71, 1994.
K.R. Apt and K. Doets. A new definition of SLDNF-resolution.
Journal of Logic Programming, 18(2):177-190, 1994.
K. R. Apt. Program verification and Prolog. In E. Borger, editor,
Specification and Validation methods for Programming languages and
systems. Oxford University Press, 1994. To appear.

83

[CKW89] W. Chen, M. Kifer, and D.S. Warren. Hilog: A first-order semantics
for higher-order logic programming constructs. In Proceedings of
the North-American Conference on Logic Programming, Cleveland,
Ohio, October 1989.

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and G. Minker,
editors, Logic and Data Bases, pages 293-322. Plenum Press, 1978.

[Dix93] J. Dix. Semantics of Logic Programs: Their Intuitions and Formal
Properties. An Overview. In Andre Fuhrmavn and Hans Rott, ed
itors, Logic, Action and Information. Proceedings of the Konstanz
Colloquium in Logic and Information (Login '92). DeGruyter, 1993.

[DM88] S.K. Debray and P. Mishra. Denotational and operational semantics
for Prolog. Journal of Logic Programming, 5(1):61-91, 1988.

[GHK+8o] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove,
and D.S. Scott. A Compendium of Continuous Lattices. Springer
Verlag, 1980.

[HLS90) P.M. Hill, J.W. Lloyd, and J.C. Shepherdson. Properties of a pruning
operator. Journal of Logic and Computation, 1(1):99-143, 1990.

[Jia94) Y. Jiang. Ambivalent logic as the semantic basis fo metalogic pro
gramming: I. In P. Van Hentenryck, editor, Proceedings of the In
ternational Conference on Logic Programming, pages 387-401. MIT
Press, June 1994.

[JM84] N.D. Jones and A. Mycroft. Stepwise development of operational
and denotational semantics for Prolog. In International Symposium
on Logic Programming, pages 281-288, 1984.

[Kal93] M. Kalsbeek. The vanilla meta-interpreter for definite logic programs
and ambivalent syntax. Technical Report CT-93-01, Department of
Mathematics and Computer Science, University of Amsterdam, The
Netherlands, 1993.

[LB92] A. Lilly and B.R. Bryant. A prescribed cut for Prolog that ensures
soundness. Journal of Logic Programming, 14(4):287-339, 1992.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Symbolic Computa
tion -Artificial Intelligence. Springer-Verlag, 1987. Second, extended
edition.

[Mos86] C. Moss. Cut & Paste - defining the impure primitives of Prolog.
In E. Shapiro, editor, Proceedings of the International Conference
on Logic Programming, number 225 in Lecture Notes in Computer
Science, pages 686-694. Springer Verlag, 1986.

[MT92) M. Martelli and C. Tricomi. A new SLDNF-tree. Information Pro
cessing Letters, 43(2):57-62, 1992.

[Ric74] B. Richards. A point of reference. Synthese, 28:431-445, 1974.

84

