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Initial Algebra Specifications
for Parametrized Data Types

By Jan A. Bergstra and Jan W. Klop

Abstract: We consider parametrized data types @: Alg(Z) — Alg(4) where @ is a partial
functor from the class of all Z-algebras (the parameter algebras) to the class of 4-algebras
(the target algebras), for given signatures X, A4 with 4 extending X. Here it is required
that the target algebra is generated by a homomorphic image of the parameter algebra.

For such parametrized data types a general theorem about the existence of initial
algebra specifications with conditional equations is proved. The theorem involves the
concept of an effectively given parametrized data type.

Introduction

We will discuss the specification theory for persistent parametrized data types
according to the definitions in [9].

Our aim is to propose a general necessary and sufficient condition for the existence
of an algebraic specification for a given parametrized data type.

We call a persistent parametrized data type @: Alg(X) — Alg(4) effective if there
exists a uniform algorithm which transforms finite specifications for parameter al-
gebras into finite specifications for target algebras. Especially interesting is the case
that Dom(®) contains all and only semi-computable algebras in a quasi-variety
Alg(X, E) with E finite.

For such @ we show that @ is effective if and only if @ possesses an algebraic
specification (4, F) with F an r.e. set of conditional equations.

The following comments are in order.

()80f course the definitions of a parametrized data type and its specification as
employed here, are by no means the only ones. For further information we refer
to the papers [5, 6,7, 8, 10].

(ii) We preferred not to use the full formalism of category theory; instead we intro-
duce a parametrized data type @: Alg(X) — Alg(4) as a ternary relation con-
taining triples (A4, &, &) where 4 € Alg(2), B € Alg(4) and &« : A — B|x is a homo-
morphism such that
(1) the relation is closed under taking isomorphic copies of parameter and target

algebras, and
(2) if (A, oy, By) and (A, &y, By) € D then B = B,.

(iii) If one allows auxiliary sorts and functions it is possible to prove that a specifi-
cation (4, F) with F an r.e. set can be transformed into an equivalent but finite
specification (I, H) with I' 2 4 and H finite. A similar result is obtained in [1].
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(iv) This paper uses a result derived in [1] about the specification of effective para-
metrized data types with a domain consisting of minimal input algebras only.

(v) An informal description of what a parametrized data type is supposed to be can
be found in Section 1.4.

1. Preliminaries

1.1, Signatures and algebras

A signature is a triple consisting of three listings, one of sorts, one of functions and
one of constants. These three listings of X' are:

(i) sorts(X), a set of sort names; we will use s, ... , &, s as metavariables ranging
over sorts(X),

(ii) funections(X), a set of function names with arity indication, with typical form
fi8; X .. X 8 — s for a function name f of arity (sy, ... , 8, $),

(iii) constants(X) is a set of constant names with sort: ¢ € s. With constants,(X) we
denote 2’s constants for sort s.

Given two signatures Z, 4 one obtains X n4,X ud by taking componentwise
intersection resp. union; X' S A4 is meant component-wise as well.

A Z-algebra A consists of afamily {4, | s€ sorts(Z)} of (possibly empty) sets serving
as domains for each sort, equipped with an interpretation for all function and constant
names.. For f ¢ funetions(X), f:s X ... X s —s, an interpretation is a funection
Fid, X .. X 4y —> A4 c¢ constantss(Z' ) is interpreted by an element C € 4,.

The set of X-terms is Ter(X); the set of closed X-terms is Ter®(X). (A term is closed
if it contains no variables.) The class of all Z-algebras is Alg(X), and the class of all
minimal X-algebras is ALG(ZX). Here an algebra 4 is a minimal if it contains no proper
subalgebras, equivalently, if 4 is isomorphic (=) to a quotient of a term algebra,
equivalently if every element @ in 4 ¢ ALG(ZX) is the denotation of a Z-term.

The concept of a homomorphism x between algebras A,, 4, of the same signature is
standard. It goes without explicit mention that every map in this paper a: A4, —n/lz
where Ay, A, € Alg(X), is a homomorphism.

XS X and A € Alg(2'), then o = o&'|5 is the restriction of A’ to the signature Z.
In this case o4 is also called an expansion of A. The following “Joint Expansion
Property” is easily verified:

if A, ¢ A]g(): i) 1 =0, 1, 2, such that 2} n X, = X, and moreover 4; ; n 4y ;= @
for all selX) — %, s ¢, — %, then there is a unique expansion & L} A,
€ Alg(X, u 22) of A; and A, (cp. Fig. 1).
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Instead of y: 4 — By for A € Alg(X), B € Alg(4), 2 S 4, we will often use the
triple notation (A, 7y, B). Triples (Ay, yi, Bi,t = 1,2, A; € Alg(X), B, € Alg(4),
2 < 4, are called congruent if there are isomorphisms «, § making the diagram in
Fig. 2 commute. (In this diagram and in similar ones it is understood that y: 4 —> B

Ay B By

Y
042?32 Fig.2

(where A € Alg(X), & € Alg(4), £ & 4) determines in a natural way an extension
y*: A —B; we will for simplicity write y: 4 — B, or A4 %> B in diagrams.)
An important construction is the following one: Let I'C A and & € Alg(4).

Furthermore, let A & (J B;, where B, is the domain in B corresponding to sort s.
s € sorts(I")
Then (B, I', 4) is the subalgebra generated by A in B by means of I" (i.e. by the I'-

operations and I-constants).

In particular, if £ € Alg(2) with XS I"and A = |J A, then we write also
(B, I', A instead of (B, I', 4. s € sorts(X)

1.2. Specitications of algebras

In this paper we will be interested in subclasses of Alg(X) of the form Alg(X, E)
= {A € Alg(2), |4 = E}, where E is a set of conditional equations. A conditional
equation has the form

S =LA A =1—>s=1

for some k=0 and s,¢, ;¢ € Ter(X) ¢ = 1, ... , k). The conditional equation is
closed if all terms in it are closed.

We assume the meaning of a conditional equation in an algebra 4 to be clear;
but note that when a conditional equation contains a free variable ranging over a sort
which is empty in A, it is true in 4 by definition.

The unique initial term algebra of signature X satisfying the set E of conditional
equations, is denoted by I(Alg(X, E)). It is a representant of the isomorphism class
of initial algebras in Alg(Z, E). Isomorphism is denoted by =.

If E is a set of conditional equations, £° denotes the set of closed equations (so
without conditions) derivable from E. An example of such a set of closed Z-equations
is the congruence =, corresponding to a minimal algebra 4 € ALG(ZX); that is, the
set of all closed X-equations true in A.

If 4 ¢ Alg(X) and for some (X', E’) with 2” 2 XY it is the case that 4 =~ «'|5
where o4’ = I(Alg(2’, E')), then we say that £ can be specified (using auxiliary sorts
and functions) by (27, E').

Notation. (X', B') 3 .

To give an actual specification of £ by (2", B’) we will insist that also the iso-
morphism «: A4 — A’|5 is mentioned.

Notation. (X', E) —~f—> A. So (&, B') % & is in fact short for (X7, E) —j; A.
PAJ
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1.3. Semi-computahle algebras

Notation. If w=s8 X ... X 8y, where s; € sorts(2), v =1, ..., %k then X, ab-
breviates X, X ... X Xg.

The following definition is standard: o € Alg(X) is effectively presented if corre-
sponding to the domains 4, (s € sorts(X)) there are mutually disjoint recursive sets £,
and surjective maps os: 25 — 4, (s € sorts(X)), such that for each function F in 4
of type w — s, there is a recursive f: £, — Q; which commutes the diagram of Fig. 3
where &, (@1, v » Tr) = (X, ()5 wov 5 Bea(s))-

4, 4,
o‘wT Ta;
2, L 0, Fig. 3

Now A is semi-computable (A € Sca(X)) if in addition for each s € sorts(X) the
relation =,, defined on 2, by

U =4, 0 S ga) = o@)

is r.e. :
We will need the following fact, proved in [2]:

1.3.1. Lemma. A vs semi-computable iff A has a finite specification.

1.4. We are now able to present a precise definition of a parametrized data type.
However, it is worth-while to present an intuition first.

A data type D is modeled as a heterogeneous X-algebra fixed up to isomorphism.
Now one can imagine a situation where the properties of a data type 2 are only
partially known, in such a way that for some subsignature 2'* of X' the subalgebra D|z«
is not yet specified. As soon as 2|z« is specified all of D is known. Obtaining an in-
stance (data type) from D is then a matter of substituting a Z*-algebra 4 (perhaps
satisfying some requirements) in 2(.). 4 is the parameter algebra and D(A) is the
target algebra. This clearly leads to a mapping from Alg(ZX*) to Alg(X); such a map-
ping is called a parametrized data type.

A specification of a parametrized data type is then an (incomplete) specification
which is augmented by a specification of a parameter algebra in order to obtain the
specification of the target algebra.

2. Parametrized data types

For signatures 2 and 4 with X' & 4, a parametrized data type @: Alg(X) — Alg(4)
is a class of triples (A, y, &) where £ € Alg(Y), B € Alg(A) and y: 4 —AB|z is a sur-
jective homomorphism such that B = (B, 4, B|s) (i.e. y(A) generates B).

Furthermore, the class @ must satisfy the following global conditions:

(i) if (A, y, B) € D and (A, y', B') is congruent with (A, y, B), then (A, y, F') € D;
(i) if (A, p, B) €D, (A, 9", B')eD and a: A — A’ is an (injective) homomorphism,

then there is an (injective) homomorphism 8: # — &’ such that the diagram in
Fig. 4 commutes.
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A — B
A
*y W8
AT —> B Fig. 4

Furthermore, @ is called persistent if for all (4, y, B) € @ the homomorphism y is
injective as well as surjective.

Remark. Note that the class @ of triples (A, 7, #) determines a partial functor
@': Alg(X) — Alg(4), given by the class of pairs (A, B) such that @ contains a triple
(A, y, B) for some y. Since we will need the extra information given by @ as compared
to @', we will stick to @.

2.1. Effectively given parametrized data types

Let (0, €) be a monotonic partial recursive transformation of finite specifications,
transforming (X', B’) into (o(Z", "), &(2, E')) = (2, E"). Here the monotonicity
requirement is that 2 2 2" and £ 2D K'.

Now we say that a parametrized data type ®@: Alg(X) — Alg(4) is effectively given

by (o, €) if for each triple (A, v, B) ¢ D and for each finite specification (2", E") 3 A
the following triple (A’, 3", &’) is congruent to (A4, y, B):

— A = I(Alg(Z", E'))l5,
— F = I(Ag(Z", B))ls
— 91 A — B |z is the homomorphism induced by the unique homomorphism

v I(Alg(X, B)) — I(Alg(Z", E")) |z

The diagram of Fig. 5 illustrates this definition.

I(Alg(Z', E')) — I(Alg(Z", B"))|z

2¢| i z
A" = I(Alg(Z'E’) Y I(Alg(2”, ")) |x = #'|z Fig. 5

2.2, Algebraically specified parametrized data types

@: Alg(X) — Alg(4) has an algebraic specification if there is a specification (I', H)

such that for each (A, y, B) e d and for each specification (27, E’) = A (with
2" n(I" v 4) = X) the following triple (A’, ', &) is congruent to (A, y, B):

— A = I(Alg(2", E))

— B =IAgx vI,E ul,E u H))

— ¢’ again induced by the unique homomorphism
v I(Alg(X, E')) — I(Alg(Z”, E"'|)) =

The following lemma will play a key role in the sequel.
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2.3. Lemma. Suppose that @: Alg(Z) — Alg(A) vs persistent and effectively given
by (o, &) with Dom(®P) = ALG(Z, E) n Sca() for some fz'n?'te E. o
Then @ has an algebraic specification (A, H) where H vs a (possible infinite) set of

closed conditional equations.
Moreover H is r.e., uniformly in recursive indices for (o, €).

Proof. The proof is given in [1]: Theorem 3.1 (iii) = (i) followed by an applica,tion
of the Countable Specification Lemma 5.1. (Note that the domain of @ contains only

minimal algebras.) []

3. The specification theorem

In this section we will state our theorem and give an informal outline of the formal
proof which occupies Section 4.

3.1. Theorem. Let @: Alg(X) — Alg(A) be a persistent parametrized data type with
Dom(@P) = Alg(Z, E) n Sca(Z) for some finite E. Then the following are equivalent:
(i) @ is effectively given,
(ii) @ has an algebraic specification (4, H) where H 1s r.e.

First we will deal with the easy half (ii) = (i) of the theorem.

Proof of (ii) = (i). Let (X", E") . A be a finite specification of a parameter algebra

\with 2" n4 = 2). Then (X" v 4, E' v H) 4 % with (A, v, B) € D. Because B has
an r.e. specification, it is semi-computable. Using results from [2] one uniformly
computes from a specification (2’ u 4, E') and an r.e.-index of H a finite specification

(E*, %) 5 & (which extends (X', E')). —

3.1.1. As to the proof of (i) = (ii), we start with the following observation whose
routine proof is omitted. First the .

Notation. If A € Alg(X), then (A) denotes (A, X, @), the subalgebra generated
by the Z-operations and constants. Note that (£) is a minimal algebra.

3.1.1.1. Proposition. Let A4 € Alg(X) and let e be a closed conditional equation.
Then At=e& (A =e.

Hence we can reduce satisfaction of an arbitrary conditional equation e(%) in a 2-
algebra A, to satisfaction of closed conditional equations in some minimal sub-
algebras of 4, as follows:

A= e(@) & Va € A: Ay = e(C)
&V e AAzy =e(C) . :

Here A4 is an expansion of A with constants @ corresponding to 7, and € are constant
symbols for @.

3.1.2. Secondly, we observe (in Lemma 4.1) that a parametrized data type ®:
Alg(2) — Alg(4) with Dom(®) = Alg(Z, E) n Sca(X) for some finite E, behaves
well w.r.t. substructures of a parameter algebra 4, as suggested by Fig. 6.
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if
’ ra
S =
fhen
3,4,y (R)>
wam T | o
B rma) Fig. 6

Here it should be remarked that we must restrict attention to those 4’ < 4 which
are still in Dom(@®). To ensure that, we need only require 4’ € Sca(X); for, A’ ¢ Alg(X, E)
is trivially satisfied: conditional equations stay valid in a subalgebra. Note that if
moreover A 1s finitely generated, i.e. A" = (A, X,4) for a finite string @ of elements
in A, then:

A € 8ca(l) = A € Sca(X).

Indeed, this will be the case we will encounter.

3.1.3. Thirdly, from a parametrized data type @: Alg(X) — Alg(4) and a given
string € of new constant symbols for the signature X, we define in the obvious way
(see Fig. 7) a parametrized data type @p: Alg(Xs) — Alg(4dz), where X, A is X, 4
plus the new constant symbols €. (Here the @ are the interpretations of € in 4, and
b in B. Furthermore & (@) = b.)

Not surprisingly, if @ is effectively given by (g, ¢), then the same holds for ®p.
(This is proved in 4.3.)
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l'f I' '
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#) = <@, Fig. 8

Now Dom(®;-) = Alg(Xz, E) n Sca(Z;). However, we will be only interested in the
restriction of @ to the class of minimal algebras of Alg(X%, E), i.e., the algebras (4>
from 3.1.1. Let @% be this restriction. We already noted in 3.1.2:

A € Dom(D) = Az € Dom(P;)
= (A7) € Dom(PF) = ALG(Zx, E) n Sca(Zy) .
So @7 is as in Fig. 8.

3.1.4. In order to deal with all conditional equations e(Z) (where Z might be ar-
bitrarily long), we will use a countable set C of fresh constant symbols for X from
which the € are taken.

It may be clear at this stage that the family of all @2 (¢S C) determines the

¢
original @. (Section 4 proves this rigorously.) Moreover, @3+ satisfies precisely the

assumptions of Lemma 2.3; it is also effectively given by (o, ¢) and the domain has the
required form. The persistency is obvious.

Hence OF has an algebraic specification (Ay, Hy) where Hy is an r.e. set of closed
conditional equations.

Now we remember that the ¢’s play in fact the role of variables (see 3.1.1); so
replacing the ¢ again by corresponding variables z, we get (4, Hz/»). As one may
expect, taking together all these pieces of specifications to

(A,"LCJCH?/?) = (A’ -H)

yields the desired specification of @. The proof that (4, H) specifies @ correctly,
requires some more work however:

3.1.5. Consider the diagram in Fig. 9 where (A, y, B) ¢ . We have to prove that
&'|4 = AB. Now without loss of generality, we may take 4 and & such that we can

IAlg(Z, B) = & — &' = I(Alg(Z u 4, B v H))
lz , 714
A 5B Fig. 9
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appeal to the “Joint Expansion Property” in Section 1.1 and the joint expansion
A" U B can be formed. So, trivially, (4’ LI B)|, = &, and we must only prove that

AUB=B =I1Alg> v, B u H)).

In other words, we must prove the correctness of the specification
TUAE v g,

This amounts to prove

(i) soundness: & UA=E uH,;

(ii) completeness: A/ U Bt=s=t=>E uHis=¢t foralls, t¢ Ter¢(X" u A).

We prove (i) in Section 4.3; it follows straightforwardly from the definition of H.
To prove (ii), consider Flg 10.

/4 ‘e
Alg(Z')

z

———-—~.
W

Since A’ is minimal, and & is generated from B|s = x(A) = A, also A’ LI & is
minimal. Le. every element in 4’ L] & is the denotation of a (X" u 4)-term. Something
more can be said: since the @ are denotated by X'-terms §, the element d (generated
from & by A-operations and constants) is denotated by a “A(X")-term” ¢(3), that is
a A-term ¢(Z) in which the 2"-terms s are substituted for Z.

Now if we can prove
(1) the completeness for the restricted class of 4(2")-terms and moreover,

(2) that each (X7 u A)-term is provably (from E’ u H) equal to a A(X")-term,
we are through. The proof of (1) is in Section 4.5, and of (2) in 4.7.

4  Fig.10

4. Proof of the specification theorem

In this section we will give the formal details of the proof of Theorem 3.1 (ii) = (i)
which we have already outlined in Section 3.

Let @ be an effective parametrized data type with Dom(®) = Alg(ZX, E) n Sca(X)
for some finite B, effectively given by (o, ¢).
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We start with a lemma that explains the effect of @ on structures embedded in one
another.

41. Lemma. Let (4, y, B) € @, A €Sca(Z) and A S A. Then (A, B) € D
with y' =y L A and B = (B, 4, y'(A).

Proof. Because A4 & A and A = E, together with £’ € Sca(X) one finds A’
€ Dom(®). So there exist y*, B* with (A, y*, B*) € D.

By (ii) of the definition of parametrized data type (Section 2) and the existence of
an injective ¢ embedding 4’ in 4 one derives the existence of A such that the diagram
in Fig. 11 commutes with 9" = y o ¢ and 4 injective.

A B
li\ b}
! .
el B Fig. 11

Observe that B* = (B%*, 4, y*(A’)y by definition of parametrized data type, and
that AB*) = (B, 4, ly*(A')y =< B, 4,y 0 i(A')y = B It follows that the diagram
of Fig. 12 displays a congruence, whence (4’, y', &) € @. []

& 2 p*
—

A

A B Fig. 12

4.2. Let C be a set of new constants for sorts of X, not occurring in 4, in such a way
that for each sort countably many new constants are introduced.

Furthermore, let 2%», 4z denote the result of augmenting X, 4 with a finite subset ¢
of C. For finite ¢ & C we define a parametrized data type @ with domain Alg(Zs, E)
n Sca(Z>) and range in Alg(4>) as follows:

(A, 7, B) € Dy iff (i) A € Alg(Z5, B) n Sca(Z), B € Alg(dz)
(i) (Alz> p» Bla) €D .

4.3. Restricting @ to ALG(Z3, E) n Sca(Z;») we obtain a parametrized data
type @F with range in ALG(4y). (Here the target algebras are indeed minimal,
because they are generated from minimal parameter algebras.) Now @2 turns out
to be effectively given by (o, €), just as @ itself is. This is evident from the diagram in
Fig. 13. (Here it is essential that (o, &) is monotonic, from which it follows that
2" 2 2% vud = Az because X' 2 X.)

(2’, E,) (0,8) (2//, E//)

= e

A —= B
l): 14

A — B’ Fig. 13
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4.4. Applying Lemma 2.3 we obtain a specification (4, Hp) for @% with Hp
consisting of an r.e. set of closed conditional equations. Hy is uniformly r.e. in (¢, o, &).

Let x; be a new variable for each ¢ ¢ €' of the same sort. Write H;- = (] 1 € w),
and let ¢z be the result of substituting x, for each occurrence of a constant symbol ¢
(from () in ¢ ) .

Obtain Hg- = {¢&= |1 € o) = {eb),+ | ¢ € H=+}. Note that Hyz> is a set of con-
ditional equations over the signature 4. Taking the union of all specifications thus
obtained one finds (A1, H) with

From the uniformity of finding Hz from € it follows that H isr.e. Thus (4, H) is a speci-
fication of the required format.

4.5. Claim. (4, H) specifies .

To show this, let (X", &) be a finite specification for 4 € Dom(®), with 2" n 4 = 2.
Choose (A, y, B) € ¢. We must establish that the triples (A, v, B) and (I(Alg(Z",
E'Nlg o, I(Alg(X" u d, £ u H))|,) are congruent.

We may assume that 4 is identical to 4’|y with A" = I(Alg(Z", E')) and that
ABly = A (whence p = id) and further that the domains corresponding to sorts of A’
and . not named in X' are pairwise disjoint.

Let ' U A be the joint expansion of A’ and A. Note that 4 LI # is a minimal
(X" u A)-algebra. To prove

(oA B uH) TN g B
it suffices to derive soundness and completeness of K" u H.

(i) Soundness. Let e ¢ " uI[. M ¢ ¢ B then A" = candso A’ | B=e. e c H,
choose ¢ & € such that e = ep~ € Hyz . Take a set of values @ in A" L B of suitable
sorts corresponding to €. If this is impossible because one of the constants ¢, is of a sort
that is empty in A’ LJ 4, then ¢ is trivially satisfied in .4 L . Note that @ must be
from sorts(X); hence d & A4 S 4 L) B. We will show that 4" LI B satisfies ¢ in @, i.e.

(A By b= e .
Now consider ¢ 4,5 and (B, ,. From Lemma 4.1 and the definition of @7 we find that
(("/I;‘;, id, <“'§9éx'/) oQn,

B
Because H, specifies @2, we have (B, &= Hy. Especially (B, = ¢(@); and since
(rf&;{) (A1 zﬂ);{, also (A LJ "”)5' = (‘(;)—). O

(iiy Completeness for A(X)-terms. Let A" L B =t = r where l = r is a closed
equation, If ¢, 7 ¢ Ter®(X"), there is no problem: since £’ specifies A4’, we have £ (-t
== r. Otherwise, we restrict our attention to closed equations ¢ == r of the form
= UTyy en s Th)y T 5 P\, e, Tg) Where 2z, e, 2y), 72y, oo xp) ¢ Ter(d) and 7,
€ Ter(2’), 4 = 1, ..., k. Here it is not required that all z, (@ = 1, .., k) do occur in
{(Z) and r(¥). N

(Such t, r are called A4(X")-terms; see Section 4.7.) Moreover, we require the = to be
variables for L-sorts.

So suppose A’ L) B k=t r; we will prove that £ v H g=t = r. Let @ (a4, ,,, , @)
be the values of (7, .., 7i) in A; they are also the values of (7, ..., 7,) in 4 and in
A’ L1 A, As before, Ay and B are the expansions of A, 4 by adding @ as constants.
The corresponding signatures are X resp. Az Further, ¢ 4z, and (%) are again the
minimal substructures. From A4 | 8 k=t = r we have 4 k=t == r, hence By = (E)
== r(€) and (B, = L(E) = r(c) (Proposition 3.1.1.1).
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Let = abbreviate = 42>, Clearly (X, =5) specifies (4 ; and because (47, Hz)

¢

specifies @7 we have the diagram of Fig. 14.

lzz’ i"r
> — (B Fig. 14

From (B3> =t(C) = r(€) it follows that = U Hx— t(c) = r(c). A fgrtiori: =5 UHz
I £(¢) = r(¢). Now let == be the result of substituting 7; for ¢; (t =1, ..., k) in the
equations in =;. Then also

=rz U Hzp b 1(T) = (7).

Now the equations in =z are closed 2’-equations, true in £’ ; hence they are derivable

=1 /c

from E’, the specification of 4’. So we have

E UVHzpp - i(T) =1rT). O

4.6. Intermezzo: X (Z,)-terms

Let X, 2, be extension signatures of X, such that X, n X, = X, We will define
Ter(X)(Z,)), a subset of Ter(X; uZ,); and for ¢ € Ter(X) uX,) we will define the
21| Zy-degree of t. In a (X u Z,)-term ¢ the symbols (i.e. the names of functions and
constants) from 2y, X}, X, can occur in a complex “mixed” fashion, see Example 4.6.4;
the X | 2,-degree is a measure of this complexity.

Let t € Ter(XZ; u 2y) and let Tree(t) be its formation tree, written such that the head
operator of ¢ is the top label of the tree. We will refer to the symbols from X, as O-
symbols, from X} — X as I-symbols and from X, — X, as II-symbols. Here 0, I, IT
are called labels of symbols. Now to each branch o in Tree(t) we associate the tuple
of labels of the symbols occurring in «, “reading” o starting at the top of Tree(t) (see
Example 4.6.4). From each such tuple, e.g. (I, 0,0, 11,1, 0, I, II, 0), we compute the
number of alternations from a I- to a II-label and vice versa, disregarding the O-labels.
In the example just given, this alternation number is 3.

4.6.1. Definition. The X, | X,-degree of ¢ is the multiset of alternation numbers
of all branches in Tree(t). The degrees are ordered by the usual multiset ordering.

4.6.2. Definition. Ter(X;(X,)), the set of Xj(Z,)-terms, is the union of Ter(22)
and the set of results #(3) of substitution of Zy-terms  into X,-terms #(%).

4.6.3. Remark. (i) Ter(Z; u Xy) 2 Ter(X,Z,)) 2 Ter(X,) u Ter(Z,).

(i) tisa X)(X,)-term iff in Tree(t) no I-symbol occurs below a II-symbol. (So along
each branch there is at most one alternation allowed, viz. from a I- to a II-symbol,
disregarding 0-symbols.)

4.6.4. Example. X, has sorts s), functions Fy: s, — s, constants Cy € 543

X} — %, has sorts s, functions Fy: s, X s, —>5,;
2, — X, has sorts s,, functions Fyp: s, X sy X 85— Fir: g — 80 Fiy: 8y X 8y > 8o,
constants Oy € s,.
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Fig. 15

Let ¢ ¢ Ter(X) u 2,) have the tree of Fig. 15 (where next to each function and con-
stant symbol also its target sort is indicated).

Here the tuple corresponding to e.g. the rightmost branch is (I, 11, T, 11, 0, 0), with
alternation number 3. Now the X | Xy-degree of 1 is {1, 1,3, 3, 3, 3.

L6401 Remark. Note that if a subterm having the tree 7, (as indicated in Ex-
ample 4.6.4), denoting an sp-clement, is replaced by a Y-term denoting the same
element (if such a term exists), then this elimination of the “foreign™ Il-symbols Fiy,
C'poresults inoa decreased X1 Y-degree, viz. {1, 1,2, 2,3, 3}, Furthermore, if the
twice occurring subtree 7' is replaced by a J-term, the result would be a X\(3,)-
term.

It is important to note the following obvious fact:
46.5. Proposition. [f in a branch x of Tree(t), t < Ter(X, u X,), a H-symbol F\; is
ollowed {immedialely by a V-symbol () (disregarding O-symbals), i.e. the tuple of x is
Y0 ] 1 i ( Y 1

(e T 0,0, 0 00, - ) (k= 0 times ()

where the displayed 11, 1 are the labels of Fyp, Gy, then the target sort of G must be @ Xy
sort. {]

4.7. It remains to be shown that each (327 U 1)-term is provably (from £ u I
equal to some JA(L")-term.

Let £¢ Ter(X” u Ay, Consider Trec(t). 1f (4 Ter(1(X"), then there is a (1 - X)-
function or constant symbol, say 1), occurring helow a (27 - Y)-function or constant
symbol, sy S.

Now we can find in Tree(t) a pair S, D such that (cp. Fig. 16)

(iy I is below S,
(ii) S is immediately followed by D (disregarding 2-symbols),
(iii) the pair S, 1) is a lowest pair with these properties.
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Tree (t) Tree(t).

m
c
X
-
]

Tree(z) Tree(o)

Fig. 16

Then, as we observed in Proposition 4.6.5 the target sort of D must be a Z-sort.
Let T be the subtree headed by D and let T be the corresponding term. Since 7 denotes
an element of a Z-sort, A’ Ll Bt=1 = o for some ¢ € Ter(X"). Noting that o,7
€ Ter(4(2")), we have by the completeness of E’ u H for 4(X")-terms, as proved
in 4.5:

EuvHlFT=0.

Now let ¢’ be ¢ where 7 is replaced by ¢. Then also
EuvHRt=1V, .
and the 4 | 2’-degree of ¢’ is less than that of ¢. Continuing this procedure we find
' EUHt=t =t =..=3s
for some A(2")-term s. []
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Kurzfassung

Es werden parametrisierte Datentypen untersucht, die mathematisch als partielle
Funktoren @: Alg(X) — Alg(4) verstanden werden, wobei X & 4 vorausgesetzt ist.
Dariiber hinaus wird gefordert, daBi fiir jede Z-Algebra A € Dom(®) ein surjektiver
Homomorphismus

Vai o — D(A)|z

gegeben ist, so daBl die 4-Algebra P(A) erzeugt wird vom homomorphen Bild y(A).

Fiir derartige parametrisierte Datentypen werden die Begriffe der initialen algebra-
ischen Spezifizierbarkeit und der effektiven Darstellbarkeit eingefiibrt. Das Haupt-
ergebnis der Arbeit ist der Nachweis der Aquivalenz der effektiven Darstellbarkeit und der
initialen algebraischen Spezifizierbarkeit mit rekursiv aufzéhlbarer Menge definierender
bedingter Gleichungen, falls Dom(®) die Klasse aller semi-berechenbaren X-Algebren ist.
Eine ZX-Algebra heiBt dabei semi-berechenbar, wenn sie Faktoralgebra einer berechen-
baren X-Algebra nach einer rekursiv aufzihlbaren Kongruenzrelation ist.

Pestome

PaccmarpuBaloTca napaMeTpusUpoBaHHBIe TUIBL JaHHHIX P: Alg(ZX) — Alg(4), npuuem
@ —yacTUYHBIE QYHKTOP OT Kiacca Bcex Z-anre6p (aareGpbl IapaMeTpoOB) K KIiIaccy
Bcex 4-anre6p (LeneBble anreSpH) AdA OAaHHBIX curHatyp X, 4, rme 2 & 4. Ilpm sToMm
penmoJyiaraercsi, 4ro neJjesas anrefpa IIOPO:KIaeTCsa ¢ IOMOIIbI0 roMoMopdHoro obpasa
ajreGps IapaMeTpOB.

Jna »>THX napaMeTPU3MPOBAHHBIX THIOB MJAaHHBIX HOKA3HBaeTcA o0l[ag TeopeMa
0 CYIIeCTBOBAHMM WMHUIMAIBHBIX ajrefpandeckmx crerquduranuii ¢ ycJoBHBIMEU ypa-
BHeHuAMU. TeopeMa BKI0YaeT B ce6A KOHLENT 3P{EeKTUBHO TAHHOIO IIapaMeTPU3UpO-
BAHHOTO THIIA TAHHBIX.

(Received: first version May 5, 1982,
revised version August 17, 1982)

Authors’ addresses: L
J. A. Bergstra J. W. Klop

Department of Computer Science Department of Computer Science
University of Leiden Mathematical Centre ¢
Wassenaarseweg 80 Kruislaan 413

2300 RA Leiden 1098 SJ Amsterdam

The Netherlands The Netherlands



