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1. INTRODUCTION 

This paper is the second in a series to be published in Operations Re­

search Letters, the purpose of which is to assess new developments in areas 

that fall under the general heading of Operations Research. Rather than pro­

viding an exhaustive survey of such areas, each paper in the series will try 

to identify new ideas and techniques and important recent results. The series 

may be compared to D.S. Johnson's quarterly column in the Journal of Algo­

rithms, which keeps track of new developments in the theory of NP-completeness. 

To the extent that the NP-completeness column is a continuing update of 

Garey & Johnson's standard text on complexity theory [15], our report on new 

directions in scheduling theory follows in the wake of several books and sur­

veys, in which more complete and detailed information on many of the topics 

to be dealt with (and on the many topics not dealt with) can be found. In 

particular, we mention the books by Baker [1], Coffman [5] and French [11], 

our survey with Graham and Lawler [18], its update [27], Lawler's tutorial 

[26], and a recent annotated bibliography [28]. 

Although the scope of each of these predecessors is somewhat different, 

they all concern themselves with what is commonly accepted as the principal 

domain of scheduling theory: the optimal allocation over time of scarce re­

sources in the form of machines to activities known as jobs, subject to the 

basic constraints that, at any point in time, no machine processes more than 

one job and no job is processed by more than one machine. 

We start, in Section 2, by reviewing the status of a few problems in 

this class that have been the object of recent research efforts. Next, in 

Section 3, we focus on the probabilistic analysis of the behavior and perfor­

mance of scheduling algorithms, an approach that is receiving an increasing 

amount of attention. Finally, in Section 4, we discuss some extensions of the 

traditional problem class that seem to represent interesting new directions 

in scheduling research. 

2. THE TRADITIONAL CLASS OF SCHEDULING PROBLEMS 

The traditional class of scheduling problems was first systematically 

investigated by Conway, Maxwell and Miller [7] and is best summarized by re-
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ferring to the problem classification introduced in [18]. Here, scheduling 

problems are defined by specifying three components, namely machine environ­

ment (single machine, parallel machines of various types, open shop, flow 

shop, job shop), job characteristics (preemption allowed or not, precedence 

constraints of various types, arbitrary or equal release dates, arbitrary or 

unit processing times, etc.), and optimality criterion as a function of the 

completion times C. of the jobs j (maximum completion time C = max.{c.}, 
J max J J 

total completion time C = l• c., etc.). 
sum J J 

The class so constructed contains thousands of problem types. Indeed, a 

computer program is being used to record the known results on their computa­

tional complexity and to deduce the consequences of new complexity results 

[21,22]. NP-completeness theory has been strikingly successful in identifying 

the borderline between well-solvable scheduling problems (that can be solved 

in time bounded by a polynomial function of problem size) and NP-hard ones. 

Of the 4,536 problems in the class administered by our program, 416 problems 

(9%) are well solvable, 3730 (82%) are NP-hard, and the remaining 390 (9%) 

are still open. In reviewing the most important recent results and the most 

prominent open questions, it is appropriate to consider the current status 

of the four open problems mentioned in [30]. 

The first one is the single machine total tardiness problem, in which 

n jobs j with processing times p. and due dates d. (j = 1, ••• ,n) have to be 
J J 

scheduled so as to minimize l· max{C.-d.,O}. Lawler [24] has developed a 
J J J 

pseudopolynomial dynamic programming recursion to solve the problem in 

O(n4Ip.) time, but this has neither been complemented by an NP-hardness proof 
J 

nor been improved by a strictly polynomial algorithm. In other words, the 

problem is well solvable if a unary encoding of the problem data is allowed 

and open with respect to a binary encoding. It is one of the few open single 

machine problems, and the fact that it is so simple to state makes this all 

the more annoying. 

The second problem has been high on several lists of open problems for 

the past years. It is the precedence constrained three-processor scheduling 

problem, in which unit-time jobs have to be scheduled on three identical 

parallel machines subject to precedence constraints so as to minimize C • 
max 

Two immediate simplifications can be solved in linear time: the case of tree-

like constraints (even for an arbitrary number of machines) [19] and the case 
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of two machines (and arbitrary precendence constraints) [14]; the generaliza­

tion to an arbitrary number of machines is NP-hard [15]. There is a wealth of 

complexity results for other variants (see [20,29] for brief summaries), but 

the problem itself has stayed out of reach. 

The third and fourth problem are of the no wait flow shop type: each job 

has to spend given amounts of time on machines 1, •.• ,m in that order without 

waiting time between its completion time on one machine and its starting time 

on the next. While the case of two machines and the C criterion is solvable 
max 

in O (n log n) time, the cases (m = 3, C ) and (m = 2, C ) have remained 
max sum 

open for a long time. Rock [36,37] has settled these questions by providing 

two ingenious NP-hardness proofs. 

The most impressive recent algorithmic progress for scheduling problems 

has occurred in the area of parallel machine problems. Polynomial algorithms 

have been _obtained for the problems of finding nonpreemptive schedules for 

unit-time jobs on identical machines subject to (possibly nonintegral) release 

dates and deadlines [16,38], preemptive schedules subject to precedence con­

straints [25], and preemptive schedules on uniform machines (that may differ 

in speed) subject to release dates and deadlines [32]. 

We cannot resist mentioning one more open problem - not a general prob­

lem type, but a specific problem instance that no one has been able to solve 

since it was generated in 1963. It is a job shop problem with only ten jobs 

and ten machines, and all we know is that the optimal C value is at least 
max 

874 and at most 935 [10]. Simple combinatorial arguments and surrogate dua-

lity relaxations appear to be of no help here, and this may be the point 

where polyhedral combinatorics may successfully enter scheduling theory. 

Initial work in this direction is being carried out [2]. 

In concluding this section, it should be said that we have presented 

our personal choice of recent results and open questions. A quite different 

selection is given in [20]. Many more results are reviewed in [28], e.g. on 

the computational complexity of open shop problems and on the worst case 

performance of flow shop heuristics. In the next section, we turn to other 

interesting questions that can be asked about familiar problems and algo­

rithms. 
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3. PROBABILISTIC ANALYSIS OF SCHEDULING ALGORITHMS 

As in other parts of combinatorial optimization, a probabilistic approach 

has recently become fashionable in the analysis of the behavior and performance 

of scheduling algorithms. Here, the behavior (or efficiency) of an algorithm 

refers to its running time, and the performance (or effectiveness) of an algo­

rithm provides information about the value produced by it. Probabilistic ana­

lyses require the specification of a probability distribution over the class 

of problem instances. In scheduling theory, it is typically assumed that the 

job processing times p. are independent random variables following identical 
J 

distributions or distributions from the same class that differ only in some 

parameters. 

One of the great challenges in the analysis of algorithmic behavior is 

the development of powerful tools to determine whether an enumerative method, 

with superpolynomial behavior in the worst case, requires at most polynomial 

running time on the average. Such an analysis is usually very difficult due 

to the dependencies that arise when the enumeration proceeds; a typical exam­

ple is the stochastic conditioning effect of the branching rule in a branch­

and-bound method on the subproblems created. Yet, the amazing efficiency of 

certain enumerative methods in, for instance, minimizing maximum lateness 

max.{C.-d.} on a single machine subject to release dates [4,23] asks for a 
J J J 

theoretical explanation that has not been put forward so far. 

The probabilistic performance analysis of scheduling algorithms has been 

much more successful. Here, one may be interested in an asymptotic expression 

for the optimal solution value or in an estimate of the error produced by a 

heuristic. The former result frequently comes as a byproduct of the latter. 

We distinguish between the absolute error of a heuristic, which is the dif­

ference between the approximate and optimal solution values, and the relative 

error, which is the ratio of the two. 

Results of such analyses confirm that, for certain problem types, the 

combinatorial difficulties tend to average out when the problem size becomes 

sufficiently large. A typical example is provided by the minimization of 

maximum completion time for n independent jobs on m identical parallel ma­

chines. Suppose that the p. are independent and identically distributed with 
J 

a finite expectation and a positive derivative of the density function at 0. 
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Then the optimal value for the nonpreemptive problem is asymptotic to the 
✓ 

optimal value for the preemptive problem, lPj/m; i.e., their ratio converges 

to 1 almost surely. Moreover, the absolute error of the longest processing 

time rule, which assigns jobs to the first available machine in order of 

decreasing p., converges to 0 almost surely [12], so that this heuristic is 
J 

asymptotically optimal in a very strong sense. Results of this type are quite 

rare. Asymptotic optimality in the weaker, relative, sense is often easier to 

establish. Indeed, for the model under consideration it is not hard to see 

that the relative error of the list scheduling rule, which assigns jobs to 

the first available machine in any order, converges to 0 almost surely. 

Usually, probabilistic performance results are of an asymptotic nature 

and give no indication for the speed of convergence; for an exception, see 

[12]. While nonasymptotic results would be preferable, asymptotic ones often 

represent _all that is known. They should serve not so much as a guarantee, 

as worst case performance results do, but as an explanation of why certain 

NP-hard problems appear to be so amenable to solution by simple rules, whose 

worst case performance in no way reflects the average case. 

Probabilistic analyses have also been performed for the parallel machine 

model with the total completion time criterion [13] and for a single machine 

model with release dates [17]. The results have found application in the 

design and analysis of multistage heuristics for hierarchical scheduling 

problems [8,13,31]. Altogether, this is still very much virgin territory, 

where a lot of work remains to be done. 

4. EXTENSIONS OF THE TRADITIONAL PROBLEM CLASS 

Some of the most interesting new directions in scheduling research may 

be found in the extensions of the traditional problem class that have been 

proposed over the past years. 

Those extensions sometimes take the form of a more careful analysis of 

the original class itself, as in the case of multicriteria problems or, more 

importantly, of robustness and sensitivity analysis, virtually neglected 

topics of obvious practical relevance. They may also take the form of further 

refinements, as in the case of more general resource constraints. This gener­

alization produces a host of NP-hard problems, but a more detailed problem 
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classification could help in deciding which type of heuristic would work well 

on which type of problem. We refer to [3] for some typical results in this 

problem class and to [6] for a survey of the subclass of bin packing problems; 

see also [20,28]. The most fruitful extensions, however, seem to be those that 

link scheduling theory as a whole to other areas in which similar problems 

are studied. 

This is exemplified by the increasing use of techniques from queueing 

theory in stochastic scheduling. An example of a stochastic scheduling prob­

lem is the minimization of expected maximum completion time for independent 

jobs, with independent and identically distributed processing times, on iden­

tical parallel machines. (Note that, in contrast to the model dealt with in 

the previous section, realizations of the processing times are not given prior 

to the actual scheduling and that the optimality criterion is deterministic.) 

Optimality of the longest expected processing time rule for the above problem 

has been established, but results of this type demand a great deal of tech­

nical expertise and the surface has only been scratched so far. We refer to 

[9], a collection of papers emphasizing these results, in particular [39] on 

parallel machine models and [35] on shop scheduling, and to [33,34] which 

present an impressive survey of the area. 

Equally importantly, there appear to be good opportunities for research 

on the interface between scheduling and inventory theory. Both are investi­

gating aspects of the general production planning problem but have been 

developed in complete mutual isolation. So many theoretical tools are now 

available that interaction seems to be feasible and practical. 

An integration of scheduling, queueing and inventory theory should give 

rise to more realistic models that will provide challenges for fundamental 

research in all three areas. Embedded in this way, the problems that sched­

uling theory was intended to cope with will be as important as ever. 
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