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Introduction 
Interrupts constitute a feature that has not yet been taken into account in process algebra. For the 

development of process algebra it is essential to incorporate an interrupt mechanism in order to enhance 
its expressive power as a specification and verification formalism for concurrent systems. 

In this document a new piece of syntax together with semantics defining equations is introduced. 
Based on a partial ordering on processes, >, an operator 0 is defined. 

Now O(x) is a contex of x inside which action a has priority over b whenever a >b. Interrupts will 
have higher priority than other actions. 

To the best of our knowledge the present formalisation of interrupts is new, at least within the theory 
stream around CCS and CSP. 

Our discussion is based on the axiom systems ACP (see Bergstra & Klop [4]) and ACP,. (see Bergstra 
& Klop [2]), and leads to a system ACP8• 

Together ACP and ACP,. constitute a remodularisation of the basic concepts of CCS (see Milner [9]). 

In this paper we need not be more specific about the semantics of (infinite) processes than observing 
that the axioms of ACP, ACP,. are satisfied. Actual semantics can be obtained in various ways, for 
instance: 

* projective limits as in Bergstra & Klop [4]; 
* topological completion as in De Bakker & Zucker [1]; 
* bisimulations as defined in Park [ 10] and Milner [9]. 

We must leave as an open issue whether or not ACP8 and ACP,. can be combined into ACP..o. From an 
intuitive point of view this is not clear as there is no reason why "abstraction" and "interrupts" should 
commute. 

Table of contents: 
1. Definitions and motivation 

2. Theoretical matters 

3. Simple examples 

4. Example: a toy distributed system. 
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1. Definitions and motivation 
1.1. Let a,b,c be (atomic) actions, and suppose we want a to take precedence over b and c, we want a 
to have priority over b and c, which we will express by 

a>b and a>c 

(here > is some partial order on atomic actions). Relative to this partial order, we want to define an 
operator () that models this priority, so we want 

i) 8(a +b )=a; 8(a +c )=a; 

ii) 8(b +c )=b +c. 

So () chooses a over b or c, but () does not choose between b and c, since they are not >-comparable. 
We will define () in an axiomatic way, in the framework of process algebras. Therefore, we will first 
review the axiom system ACP, the algebra of communicating processes (see Bergstra & Klop [4]}. 

1.2. The signature of ACP is as follows: A is a given finite set of atoms, A <;;,P, the set of processes. On 
P we have the following operations: 

+ alternative composition (sum) 
sequential composition (product) 

II parallel composition (merge) 
IL left-merge 
I communication merge 

i) H encapsulation 
l) deadlock 

The first five operations are binary; a H is a unary operation for each H <;;,A and l) EA is a constant. 

1.3. The set of axioms of ACP is as follows (see Bergstra & Klop [4]): 
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x+y = y+x Al a lb = bla Cl 
x +(Y +z) = (x +y)+z A2 (a I b) I c = a I (b le) C2 
x+x = x A3 ola = 0 C3 
(x +y)z = xz +yz A4 
(xy)z = x(Yz) A5 dn(a) =a if afl.H DI 
x+o = x A6 dn(a) = o if a EH D2 
ox= 0 A7 dn(x +y) = dn(x)+dn(Y) D3 

dn(xy) = dn(x ).dn(Y) D4 
x lly = x ll_y + y ll_x + x IY CMI 
all_x = ax CM2 
(ax)ll_y = a(x lly) CM3 
(x+y)ll_z = xll_z+yll_z CM4 
(ax)lb =(a lb)x CM5 
a l(bx) =(a lb)x CM6 
(ax)l(by) =(a lb)(xlly) CM7 
(x +y)lz = x lz +y lz CM8 

x I (Y + z) = x IY + x I z CM9 

Table 1. 

Here a,b EA, XJ!,Z EP, HCA. 

If we view these equations as rewrite rules, going from left to right, and add a rule A2': 
(x +y)+z =x +(Y +z), we get a term rewrite system RACP. We quote three theorems from Bergstra & 
Klop [4]: 

Theorem. (i) RACP is confluent (has the Church-Rosser property); 
(ii) RACP is strongly terminating (working modulo Al and A2); 
(iii) (elimination) for each ACP-term s there is an ACP-term t not containing II, ll_, I, dn, such that 
ACP 1- s = t. 

1.4 Now we return to the problem in 1.1: we want to extend ACP with an operator () and give some 
defining equations for it, so that (i) and (ii) of I.I are satisfied. So suppose we have a partial order< on 
A so that o is minimal, i.e. we have 

1. not (a <a) 
2. a <b ~ not (b <a) 
3. a <b & b <c ~ a <c 
4. o<a (if a=t=o) 

for all a ,b ,c EA . 
In order to define (), we first need to define an auxiliary operator <I : P X P ~p. 

x<1y 
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is pronounced x unless y. In the following we will explain <1. First, on A we have 

PI a<1b =a 
P2 a<1b = 8 

if not (a <b) 
if a<b 

So a <I b is equal to a, unless b has priority over a, in which case a <I b becomes 8. In general, we get 
x <ly in the following way: 
Suppose x is a sum }',f=_ 1a;x;, a; EA, X; EP. Then, in x we throw away (i.e. set equal to 8) those 
branches a; X; such that there is a branch bjyj in y with a; <bj; other branches we leave untouched. 

1.5 Example Suppose A = { 8,a ,b ,c ,d} and we have the following p.o. on A: 

c 

a b 

(In this picture, we have e.g. b <c because c is located above b and there is a line connecting them; so 
not (a <d).) We do some calculations: (x V' ,z EP). 

a) (ax +by +c)<ldz = (ax +by +c)<:ld = ax +8+c = ax +c 

b) (ax +by +c)<lc = 8+8+c = c 

c) x <:18 = x 

1.6 We now present the axiom system ACP8 (see table 2). 



x+y =y+x Al a <lb =a if not (a <b) PI 
x +(y +z) = (x +y)+z A2 a<lb = 6ifa<b P2 
x+x = x A3 x<lyz = x<ly P3 
(x +y)z = xz +yz A4 x<l(y +z) = (x<ly)<lz P4 
(xy)z = x(yz) AS xy <lz = (x <lz )y PS 
x +6 = x A6 (x +y)<lz = x <lz +y <lz P6 
6x = 6 A7 

alb=bla Cl 
(a I b) I e = a I (b I e) C2 
6la = 6 C3 

x l!Y = x lly + y llx + x IY CMI fJ(a) = a THI 
allx = ax CM2 fJ(xy) = fJ(x ').fJ(y) TH2 

ax lly = a(x l!Y) CM3 fJ(x +y) = fJ(x)<ly +fJ(y)<lx TH3 
(x +y)llz = x llz +y llz CM4 
(ax)lb =(a lb)x CMS 
a l(bx) =(a lb)x CM6 
(ax)l(by) =(a lb)(xl!Y) CM7 
(x +y)lz = x lz +y lz CMS 
x I (y + z) = x IY + x I z CM9 

oH(a) = a if a ~H DI 
oH(a) = 6 if a EH D2 
OH(X +y) = OH(X )+oH(y) D3 
oH(xy) = oH(X ').oH(y) D4 

1. 7 Let us verify (i) and (ii) of 1.1 and some other formulas: (b <a and e <a) 

i) fJ(a +b) = fJ(a)<lb +fJ(b )<la = a <lb +b <la = a +6 = a. 

ii) fJ(b+e) = fJ(b)<le+fJ(e)<lb = b<le+e<lb = b+e. 

iii) fJ(b(a +e)) = fJ(b)"fJ(a +e) = b(fJ(a)<le + fJ(e)<la) = b(a<le +e<:Ja) = b(a +6) = ba. 

iv) fJ(a +b +e) = fJ(a)<l(b +e)+fJ(b +e)<la = (fJ(a)<lb)<le + (fJ(b)<le + fJ(e)<lb)<la 

(a<lb) <le+ (b<le+e <lb)<la = a<le+(b+e)<la = a+6 =a. 

s 

v) fJ(a +b +e) = fJ(a +b)<le +fJ(e)<l(a +b) = (fJ(a)<:lb + fJ(b)<la)<le + (fJ(e)<la)<lb = 

(a <lb +b <la)<le + (e <la)<lb = (a +6)<le + 6<lb = a <le +6<le +6 = a +6+6 = a. 

1.8 In section 2, we will prove that this axiom system is well-behaved. Among other things, we prove a 

theorem analogous to 1.3 for ACP8• 

1.9 Note: about leaving out parentheses: we take • to be more binding then other operations and + to be 

less binding than other operations, so we write xy <lz for (xy )<lz and x +y <lz for x +(y <:Jz ). 



6 

2. Theoretical matters 

We will write ACP8 as a term rewrite system, and prove confluency and termination. We find that 
ACP8 is a conservative extension of ACP, and prove an elimination theorem. 

2.1 Lemma The following identities hold in ACP8: 

n (x<ly)<lz = (x<1z)<1y 
P8 (x <ly )<ly = x <ly 
TH4 O(x )<Ix = O(x) 

Proof.Above the equality signs, we indicate which rule is being used. Let x JI ,z EP. 

P4 A I P4 

¥7: (x<1y)<1z = x<1(y +z) = x<1(z +y) = (x<1z)<1y 

P4 A3 

P8: (x<ly)<ly = x<1(y+y) = x<1y 

A3 TH3 A3 
TH4: O(x )<Ix = O(x )<Ix +O(x )<Ix = O(x + x) = O(x ). 

2.2 Definition: We define the term rewrite system RACP8 as follows: take the term rewrite system RACP 

· {Pl-8 
(see 1.3, rules Al,2,2',3-7,Cl-3,CMl-9,Dl-4), and add rules THl-4. 

(Reading them as reductions, from left to right) 
Note: when proving termination, we will have to work modulo rules Al A2, A2', ¥7, since applying Al or 
P7 twice gives back the original term, and A2' undoes the effect of A2. 
We can now state our main theorem: 

2.3 Theorem 
i) RACP8 is confluent (has the Church-Rosser property); 
ii) RACP8 is strongly terminating (working modulo Al, A2, P7); 
iii) (elimination) for each ACP8-term s there is a term t not contaiJ;ring <1,0,ll,ll,l,an such that 
ACPo 1-s = t. 
iv) ACP8 is a conservative extension of ACP, i.e. for all ACP-terms s ,t we have: 

ACP 1- s = t ~ ACPo 1- s = t. 
Strategy of proof: we first prove (ii) in 2.4-2.12 and then (i) in 2.13-2.15. The elimination (iii) then fol
lows immediately from (ii) and (iv) follows if we combine (i) and (iii). 

2.4 To prove (ii), we use the method of recursive path orderings of Dershowitz (see Dershowitz [6] and 
Bergstra & Klop [2]). The idea of this method is, that we assign a certain kind of tree to each term in 
ACP8• We have a partial ordering=> on these trees, and it follows from the Kruskal Tree Theorem (see 
Dershowitz [6]) that this ordering is well-founded. Then, if we show that for each reduction in ACP8, the 
trees of the terms before and after the reduction are ordered by =>, we have shown that each reduction in 
ACP8 must terminate. 



7 

2.5 Definition: Let D be the set of all finite commutative rooted trees whose nodes are labeled with 
natural numbers. 

Example: 

t = 
3 

5 

g 0 

Notation: t = 3(5,7(9),8(0,(1,5))) = 3(8(0(1,5)),5,7(9)). 

Definition: We define a partial order~ on D as follows: t = n(tb ... ,td ~ m(s 1, ••• ,s1) = s 
(k ;;;;i:.o, 1 ;;;;i::o) iff 

(i) n >m and t~s; for all i = 1, ... , I; or 

(ii) n = m and for each i ,,;;;;,. I there is a different j ,,;;;;,. k such that tj ===t, s; : also, for at least one i ,,;;;;,. I we 

have tj~s;. (so tj=l=s;); or 
(iii) n <m and t; ===t, s for some j ,,;;;,.k. 

2.6 Theorem (Dershowitz [6]) ~is a well-founded partial order on D. 

2.7 Lets ,t be ACP0-terms, and lets 4 t symbolize that s reduces tot in a one-step, outermost reduc
tion by rule r. Now we want to define a mapping q, from terms of ACP0 to elements of D such that the 

following hold: 

i) ifs 4 t and r = Al, A2, A2', P7, then q,(s) =q,(t); 

ii) if s 4 t and r is any other rule, then q,(s )~q,(t ). By Dershowitz' theorem, this suffices to show 2.3.ii, 

the termination of RACP0• 

2.8 Before we can define q,, we need two more definitions. 

Definition: Let u be an ACP0-term. We define st(u), the standard part of u or ACP-part of u, induc

tively. 
i) st(u) = u if u is an ACP-term; 
ii) if u ==X Dy, (0 = + ,.,ll,lL, I), then st(u) = st(x )Dst(y ); 

iii) if u=()H(x), then st(u) = ()H(st(x)); 

iv) if U==X<ly, then st(u) = st(x); 

v) if u 8(x), then st(u) = st(x). 

So we obtain st(u) by leaving out all right hand sidesy of subterms x<ly, and then leaving out all <I 

and 8. It is obvious that st(u) is an ACP-term. 

Definition: Let u be an ACP0-term. We define I u I, the norm of u, by 
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I iu I = #§(st(u)), j 

so I u I is the number of symbols in the reduction graph § of st(u ). Note that an immediate consequence 

of this definition is that for all ACPirterms x iY: 

a) Ix I + IY I < Ix + Y I 
b) Ix I + IY I < Ix ;i I · 

2.9 Definition: We define 4> inductively. Lett be anACP8-term 
i) t=a EA. 4>(a) = .1 (a single node labeled by 1) 

ii) t=au(x). Then 4>(t) = 

iii) t==XDy, with D = +,.,11,ll_ or I 
Then 4>(t) = 

It I 

fig.3 

ltl 

~ 
fig.4 

iv) t ==X <ly. Here we have an intermediate step. First we rewrite x as ( · · · ((z <ly 1)<ly2) <I · · · <lyk) 

(k ;;;;.O), so that the main connective in z is not <l (in case k = 0, we have z ==X ). We use the notation 

x = z<l{y1> ... ,yk}, sot = z<l{yi)lb ... ,yk}, where on the right-hand side of the <l we have a 
multiset. Axiom P7 gives us the justification for doing this. Then we define 4>(t) = 

If o = {yb ... ,yk }, we use the abbreviation 

4>(t) = " 

fig.5 



v)t 8(x).Put</>(t)= 

2.10 Examples: Let a,b,c EA, then 

<1>(a<1b) =~2 
1 . 0 

1 

I zl + .1 

fig.6 

Ix I + 1 

fig.7 

<j>(a + a) = ,/\.4 

1/ \1 

fig.8a,b,c 

2.11 Now we will prove claims (i) and (ii) of 2.6. 
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<1>(e((a<1b}<1c)) = 2 

1 

So suppose we have t ~ t', redex t reduces tot' (outermost) by an application of ruler. We shall 
consider 3 cases. 

2.11.1 case 1: r = Al, A2, A2', n. Since our trees are commutative, this follows from the definition of 

cf>. So for J?7, t (x <ly )<lz and 

</>(t) = 
+ 1 = <l>(t') 

fig.9 

2.11.2 case 2: r = A3-7, Cl-3, CMI-9 or Dl-4. Then t==XDy, for D = +,.,11,ll_ or I, or t=on(x).We 

also have '!Jt(t)~st(t'), since non-standard parts cannot be instrumental in the reduction. But then, by 
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theorem 1.3, we have It I> It' I (also see note 2.8). Therefore, the top of tree cp(_t) has a higher number 

as label than the top of tree cp(_t'). It is shown in Bergstra & Klop [2] that we must also have cp(_t)'*f>(.t'). 

2.11.3 case 3: otherwise. Because of definition 2.9.iii, we will have to look at redices x <10, with a finite 

multiset of terms on the righthandside, and x not of the form (y <1z ). Note that x <I 0 ==X and this 
identification is correct because 

(by 2.5.iii) 

We will look at each rule in tum. 

Pl. not (a <b ). cp(_a <I {b} Uo) = 

2 

1 

= cp(_a <10). 

P2. (a <b ). cp(_a <I {b} Uo) = 

= cp(_8) 

(we combine this with P8 to get 8<10 = 8) 

P3. cp(_x <I {yz} Uo) = 

<1>( x} 

fig.10 

0 

fig.11 

• 

fig.12 



= <P(x <I {y} Ua) 
P4. <P(x <l{y +z }Ua) = 

= <P(x <I {y ,z} Ua) 
PS. <P(xy <la) = 

= <P((x<la).y) 
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fig.13 

fig.14 

I xy I 

fig.15 

(for the proof, use 2.5.i: we have I xy I + 1 > I xy j , so we only need that the entire tree on the left major

izes both subtrees on the right) 

P6. <P((x +y)<la) = 
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fig.16 
= q,(_x <10 + y <10). (again use 2.5.i) 
P8.q,(_(x<l{y} Uo1) <l{y} Uo2) = #_x<l{yi)l}Uo) = (writeo = 01Uo2) 

= q,(_x <I {y} Uo) (by 2.5.ii) 

THI. q,(_O(a)) = I 2~ .1 = #_a). 

1 
TH2. #_O(xy )) = 

= q,(_O(x ').O(y )) (use 2.5.i) 
TH3. q,(_O(x +y)) = 

= q,(_O(x )<ly + O(y )<Ix) 

lxyl + I 

xyl 

fig.17 

fig.18 

fig.19 

4> (a) 

(again by' 2.5.i). Note that in this last case we should write x <ly = z <I {y } U o and 
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y <l x = w <l {x} U T, for some z and w not having <l as the main connective. But then Ix I ;;;.: I z I, 
IY I ;;;.: I w I , and the proof of ~ is not harder. 

TH4. ""'O(x )<l { x} U o) = 

Ix I + 1 

I xl + i 

fig.20 

= ""'O(x )<lo) (by 2.5.ii). 

2.12 This completes the proof of 2.3.ii: RACP8 is strongly terminating, working modulo Al, A2, A2', P7. 

2.13 Now we tum our attention to proving 2.3.i. Since we know that RACP8 is strongly terminating, it is 

enough to show that it is weakly confluent (this follows from Newman's lemma, see Klop [8] or Huet [7]). 
Showing the weak confluency amounts to looking at all critical pairs (a critical pair is a redex to which 

two different rules can be applied) and showing that after these reductions a common reduct can be 
r1 r2 

found. In other words: if t ~ t 1 and t ~ t 2, then there is a term t' such that both t 1 and t 2 reduce to 

t' (possibly in more than one step). See figure 21. 

/'~ 
'i~ /' 

t' 

fig.21 

We will actually prove more, namely that the open theory of RACP8 is confiuent, after adding the extra 

rules below (by open theory we mean the theory of finite terms, possibly containing variables). The extra 

rules are: 

P9 x<16 = x 
PIO 6<1x = 6 
C4 61x = 6 
C5 x 16 = 6 

These rules can be proved very easily for closed finite terms x by induction. 

We know already that RACP is confluent (by 1.3), so we only have to check critical pairs involving a 
new rule (Pl-10, THI-4). Furthermore, Cl-5, CMI-9 and Dl-4 cannot clash with a new rule. 

Still, a'tedious job remains. We do the work in 2.14, in cases 2.14.1 to 2.14.46. 
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2.14 Matrix of critical pairs. *means a proof is required; 0 means redices cannot overlap. 

TH TH TH TH 

Al Al A3 A4 A5 A6 A7 PI P2 P3 P4 PS P6 P7 PS P9 PIO I 2 3 4 
PI 0 0 0 0 0 0 0 0 0 0 0 0 0 * * * 0 0 0 0 
P2 0 0 0 0 0 0 0 0 0 0 0 0 * * * 0 0 0 0 
P3 0 0 0 * * 0 * 0 0 0 * * 0 * 0 0 0 * 
P4 * * * 0 0 * 0 0 0 * * 0 * 0 0 0 * 
PS 0 0 0 * * 0 * 0 * * * 0 0 0 0 0 
P6 * * * 0 0 * 0 * * 0 0 0 0 0 0 
P7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P8 0 0 0 0 0 0 0 * * 0 0 0 0 
P9 0 0 0 0 0 0 0 0 0 0 0 * 
PIO 0 0 0 0 0 0 0 0 0 0 0 
THI 0 0 0 0 0 0 0 0 0 * 
TH2 0 0 0 * * 0 * 0 * 
TH3 * * * 0 0 * 0 * 
TH4 0 0 0 0 0 0 0 

I. PI & P8. Suppose not (a <b) 

(a <lb )<lb :S~ <1b. 

2. PI & P9. For all a EA, we have not (a <8) (by 1.4. I, 2, 4). 

a<18ff>a. 

3. PI & PIO. Note that not (B<a) implies a = 8. (by 1.4. I, 2, 4) 

8<18~. 

4. P2 & P8. Suppose a <b. 

(a <1b )<lb ~<lb 

~i J' 
a<lb~ 

5. P2 & P9. We can never have a <8. 

6. P2 & PIO. Let 8<a. 8<1aga 



7. P3 &A4. 

x <l(Y +z)w~<l(Y +z)-p;t(x<ly)<lz 

A41 P3 i 
x <l(yw + zw )~x <lyw )<lzw 

8. P3 &AS .. 

x <l(yz )w ~ <lyz 

A5l 1P3 
x <ly (zw )~ <ly 

9. P3 & A7. x <18y~x <18. 

10. P3 & P7. 

(x <lyz )<l w ~x <ly )<l w 

P7 ! lP7 
(x <l w )<lyz ~ (x <l w )<ly 

11. P3 & P8. 

(x <lyz )<lyz .!1/3 
(x <ly )<ly 

P81 . JPS 
x<lyz~<ly 

12. P3 & PIO. 

8<Jxy~<lX 
I I 
PIO PIO 

~~ 
13. P3 &TH4. 

O(xy )<lxy ~(xy )<l x ~ O(x )O(Y )<lx 

itt4 P51 
~(xy )~ O(x )O(y )~ (O(x )<lx )O(Y) 

14. P4 & Al. 

x <l(y + z )~x <ly )<lz 

All l P7 
x <l(z +y )~x <lz )<ly 

15 
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15. P4&A2. 

x <l(y +(z +w))~x <ly)<l(z +w)~(x <ly)<lz)<lw 

All P4 J x<1((y +z)+w)~x<l(y +z))<lw 

16. P4&A3. 

X<l(y +y)~x<ly)<ly 

Ml _J~ 
x<ly 

17. P4&A6. 

x <l(y +6)~x <ly)<l6 

=t~~ 
18. P4 & P7. 

(x<l(y +z))<lw~(x <ly)<lz)<lw 

nl ln,n 
(x<lw)<l(y +z)~(z <lw)<ly)<lz 

19. P4& PS. 

~4 (x<l(y +z))<l(y +z) (((x<ly)<lz)<ly)<lz 

~i ln 
x <l(y + z )~x <ly )<lz ~~ (((x <ly )<ly )<lz )<lz 

20. P4 & PIO. 

6<l(x +y)~6<lx)<ly 

r· J•m 
6~6<ly 

21. P4&TH4. 

" 
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fJ(x +y )<l(x +y )~fJ(x +y )<lx )<ly ~ ((fJ(x )<ly +fJ(y )<lx )<lx )<ly 

TH41 ~.nl 
fJ(x +y)~ fJ(x)<ly +fJ(y)<lx ~TH2 ((fJ(x)<lx)<ly)<ly +((fJ(y)<ly)<lx)<lx 

22. P5 & A4. 

(x +y )z <lw ~(x +y )<lw )z ~x <lw +y <lW )z 

Ai A4l 
(xz +yz)<lw~z <lw +yz <lw~x<lw)z +(y <lw)z 

23. P5 & A5. 

(xy)z <lw~xy <lw)z 

A51 P5,A51 
x (yz )<l ~x <l w )yz 

24. P5 & A7. 

6x <ly ~6<ly )z ~ 6x 

A71 A7 I 
6<ly~6 ~ 

25. P5 & P7. 

(xy <lz )<l w ~x <lz ).y <lw ~(x <lz )<lw )y 

nl ln 
(xy <l w )<l z ~x <l w )y <l z ~(x <l w )<l z )y 

26. P5 & P8. 

(.xy <lz )<lz ~x <lz )y <lz 

pgl PS 1 
xy <1z~x <lz).y ~(x <lz)<lz)y 

27. P5 & P9. 

xy <16~x <16)y r J,, 
*Y~ 
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28. P6 & Al. 

(x +y)<lz~<lz +y<lz 

All A11 
(y +x)<lz~<lz +x<lz 

' 29. P6&A2. 

(x +(y +z))<lw~<lw +(y +z)<lw~<lw +y<lw +z<lw 

~1 l~ 
((x +y)+z)<lw~x +y)<lw +z<lw~<lw +y<lw +z<lw 

30. P6 &A3. 

(x +x)<ly~<ly +x<ly 

A3l _JA3 
x<ly 

31. P6 &A6. 

(x +6)<ly ~ <ly +6<ly 

A61 PIO l 
x <ly #-x <ly +6 

32. P6 & P7. 

((x +y)<lz)<lw~x <lz +y<lz)<lw~x<lz)<lw +(y <lz)<lw 

P7l 1P7 
((x +y)<lw)<lz ~x<lw +y <lw)<lz~x<lw)<lz +(y<lw)<lz 

33. P6 & P8. 

((x +y)<lz)<lz~x<lz +y<lz)<lz 

P81 P6 l 
(x +y )<lz ~ <lz +y <lz ~8 

(x <lz )<lz +(y <lz )<lz 

34. P8 & P9. 

(x <16)<16~ <16 

35. P8 & PIO. 



(8<lx)<lx~<lx 

36. P9 & TH4. 

8(8)<l&iiit 8(8) 

37. THI & TH4. 

O(a)<la~ a<la 

l. Pl,-~All 
it THI 
O(a)~ a 

38. TH2&A4 

O((x +y )z )~ O(x +y )O(z )~ (O(x )<ly +O(y )<lx )O(z )~O(z )<ly )O{z )+(O(y )<lx )O(z) 

A4l PS i 
O(xz + yz )~ O(xz )<lyz + O(yz )<l xz ~TH2 

O(x )O(z )<ly + O(y )O(z )<l x 

39. TH2 &A5. 

O((xy )z )~ O(xy )O(z )~ O(x )O(y )O(z) 

A51 AS! 
() (x (yz ))~ O(x )O(yz )~2 

O(x )O(y )O(z) 

40. TH2&A7. 

41. TH2 & TH4. 

O(xy )<l xy ~ O(x )O(y )<l xy ~(x )O(y )<l x 

TH{ P5 l 
O(xy )~ O(x )O(y )~ (O(x )<lx )O(y) 

42. TH3 &Al. 

O(x +y)~ O(x)<ly +O(y)<lx 

AJ !Al 
O(y +x)~ O(y)<lx +O(x)<ly 

19 
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43. TH3 &A2. 

fJ(x +(y +z))..!!:V fJ(x)<l(y +z)+fJ(y +z)<lx -i,TH3,P4 

A2LfJ((x +y)+z) (fJ(x)<ly)<lz +(fJ(y)<lz +fJ(z)<1y)<1x 

TH3 ~(x +y)<lz +fJ(z)<l(x +y) lP6 

TH3,P{ (fJ(x)<ly)<lz +(fJ(y)<lz)<lx +(fJ(z)<ly)<lx 

(fJ(x)<ly +fJ(y)<1x)<1z +(fJ(z)<1x)<1y lP7 

P6 4 (fJ(x)<1y)<1z +(fJ(y)<1x)<1z +(fJ(z)<1y)<1x 

44. TH3 &A3. 

fJ(x + x )..!!:V fJ(x )<Ix +fJ(x )<Ix 

A3! JA3 
fJ(x )~4 

fJ(x )<Ix 

45. TH3 &A6. 

fJ(x +6)..!!:V fJ(x)<16+fJ(6)<1x 

A61 P9,TH!l 

fJ(x )#.-fJ(x )+6~ fJ(x )+6<1x 

46. TH3 & TH4. 

fJ(x +y)<l(x +y)..!!:V(fJ(x)<ly +fJ(y)<1x)<1(x +yJ) P4,P6 

TH4 ! ((fJ(x )<ly )<Ix )<ly +((fJ(y )<Ix )<Ix )<ly 

fJ(x + y) l P7,P7 

TH3 ! ((fJ(x )<Ix )<ly )<ly +((fJ(y )<ly )<Ix )<Ix 

fJ(x)ty +fJ(y)<lx !TH4,TH4 

P8,P8-(fJ(x )<ly )<ly +(fJ(y )<Ix )<Ix 

2.15 This completes the proof of 2.3.i, and thereby the proof of 2.3. 

2.16 Theorem The following identities hold in the initial term model A"': 

i) 
ii) 

iii) 
iv) 

v) 

either a <Ix = a or a <Ix = 6 

a<1(x<1b) = a<1x ifnot(a<b) 
(x <lb )<la = x <lb if a <b 

(x <ly )<I (z <ly) = (x <ly )<I z 

fJ(x <ly) = fJ(x )<ly 

(Pll) 
(Pl2) 
(P13) 

(TH5) 

Proof All'proofs are by induction on terms. An induction on x needs to consider only three cases: 



1) x=a, an atom; (2) x=ay; (3) x :Y +z (this uses 2.3.iii, we can eliminate <1,ll,ll,IL, 1,aH ). 

i) Induction on x 

case 1: suppose x =b 
case 1.1 not (a <b ). Then a <Ix = a <lb = a 

case 1.2 a <b. Then a <Ix = a <lb = 8 
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' case 2: x :rz and suppose (i) holds for y. We have a <IX = a <1yz = a <ly. Now apply the induction 
hypothesis. 
case 3: x :Y + z and suppose (i) holds for y and z. 
case 3.1 a<ly = a. Then a<1x = a <l(y +z) = (a <ly)<lz = a<1z. Now apply induction hypothesis. 
case 3.2 a <ly = 8. Then a <Ix = (a <ly )<lz = 8<1z = 8. 

ii) induction on x. Suppose not (a <b ). 

case 1: x=c 
case 1.1 not (c <b ). Then a <l(c <lb) = a <le. 
case 1.2 c<b. Note that then we must have not (a<c). So a<l(c<lb) = a<18 =a = a<Jc. 

case 2: x-cy. a <l(cy <lb) = a <l(c <1b )y = a <l(c <lb) = a <Jc = a <Icy. 

case 3: x :r+z, and suppose (ii) holds for y and z. a<1((y+z)<1b) = a<1(y<1b+z<1b) = 

(a <l(y <1b ))<l(z <lb) = (a <ly )<l(z <lb) = (a <l(z <lb ))<ly = (a <1z )<ly = a <l(y + z ). 

iii) induction on x. Suppose a <b . 

. case 1: x=c. 
casel.lNot(c<b).Notethatthenwemusthavenot(c<a).So(c<lb)<la = c<Ja = c = c<Jb. 

case 1.2 c<b. (c<lb)<la = 8<1a = 8 = c<Jb. 

case 2: x=cy. (cy<lb)<la = (c<lb)y<la = ((c<1b)<1a)y = (c<lb)y = cy<lb 
case 3: x :r+z, and suppose (iii) holds for y and z. ((y+z)<lb)<la = (y<1b+z<1b)<1a 

(y<1b)<1a+(z<1b)<1a = y<1b+z<1b = (y+z)<lb. 

iv) Induction on z. 
case 1: z=a. 

case :U a<ly =a. Then (x<ly)<l(a<ly) = (x<ly)<la. 

case 1.2 a <ly = 8. In this case, we will prove the following variant of (iii) by induction on y : 

(*) if a <ly = 8, then (x <ly )<la = x <ly. 

case 1.2.1 y =b . This is (iii). 
case 1.2.2 y=bw. By 1.2.1 we have (x<1bw)<1a = (x<lb)<la = x<Jb = x<1bw, for 
8 = a<ly = a<Jb. 
case 1.2.3 y w +v. We have 8 = a <ly = (a <1v)<1w. We know by (i) that either a <Iv = a or a <Iv 

= 8. If a <l v = a, we have a <I w = 8. Thus we have either a <l v = 8 or a <l w = 8. Say a <l v = 8 

(the proof is very similar in the other case). 
Then (x<ly)<la = (x<l(v+w))<la = ((x<1v)<1w)<1a = ((x<lv)<la)<lw = (x<lv)<lw 
x<l(v+w). 
Thus we have proved(*), and now (x<ly)<l(a<ly) = (x<ly)<18 = x<ly = (x<ly)<la follows. 
case 2: z==OW. By case 1, (x<ly)<l(aw<ly) = (x<ly)<l(a<ly)w = (x<ly)<l(a<ly) = (x<ly)<la 

(x <ly )<I aw. 
case 3: 1-w+v, and suppose (iv) holds for wand v. Then (x<ly)<l((v+w)<ly) 
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(x<1y)<1(v<1y+w<1y) = ((x<1y)<1(v<1y))<1(w<1y) = ((x<1y)<1v)<1(w<1y) = ((x<Jy) <J(w<Jy)) 
<Jv = ((x <ly)<Jw)<Jv = (x<Jy)<J(w +v). 

v) Induction on x. 
case 1: x=a. 
case 1.1 a<Jy =a. ThenlJ(a<Jy) = IJ(a) =a= a<Jy = IJ(a)<Jy. 

case 1.2 a <Jy = 8. Then O(a <Jy) = 8(8) = 8 = a <Jy = IJ(a )<ly 
' case 2: x az. By case 1, 8(az·<1y) = IJ((a<Jy)z) = IJ(a<Jy)IJ(z) = (O(a)<Jy)O(z) = IJ(a)IJ(z)<Jy = 

IJ(az)<Jy. 

case 3: x==Z+w and suppose {v) holds for z and w. ·Then O((z+w)<Jy) = 8(z<1y+w<1y) 

O(z<Jy)<J(w<Jy) + O(w<Jy)<J(z<Jy) = (O(z)<Jy)<J(w<Jy) + (O(w)<Jy)<J(z<Jy) =(apply (iv)!) = 
(O(z)<ly)<Jw + (O(w)<Jy)<Jz = (O(z)<Jw)<Jy + (O(w)<Jz)<Jy = (O(z)<Jw + O(w)<Jz)<Jy = 
IJ(z +w)<Jy. 

2.17 Note: Adding equations Pll-13 and TH5 to RACP8 as rewrite rules (reading from left to right) also 
gives a terminating and confluent rewrite system. The many and tedious details of the proof of this 
claim we happily leave to the reader. 
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3. Simple examples 
We will now give some simple examples that use priorities, as defined in ACP6, and give some motivation 

of the choice of priorities. 

We distinguish three cases: 

1. give priority to interrupts; 

2. give lower. priority to time outs, error messages; 

3. give priority to internal actions, real time behaviour. 

3.1 Example 1: 

Let D be a finite set of data, and suppose we have an infinite sequence of data from D, 

fig.22 

The printer will print these data, but can be interrupted by the keyboard. We have the following atomic 
actions A: (a) actions of K: 

1. k(BR) =key in BREAK 

2. k(SP) = key in START PRINTING 

3. s(BR) = send BR to the printer 

4. s(SP) = send SP to the printer 

recursive equation for K: 

I K = [k(BR)s(BR) + k(SP)s(SP)]K 

(b) actions of P: 

1. p(d) = print symbol d; 

2. r(BR) = receive BR from the key-board; 

3. r(SP) = receive SP from the key-board. 

The printer has two states, Printing and Waiting. We let P; stand for printing state after having printed 

d0,d 1, ••• , d; - I; and W; stand for waiting state after having printed d0,d 1, ••• , d; - I (i ;;a.O). 

Equations for P: 

p = Wo 

W; = r(SP)P; + r(BR)W; 
P; = p(d;)P;+ 1 + r(BR)W; +r(SP)P; 

3.2 Now we define the communication function by: 

s(BR)lr(BR) = br 
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s(SP)lr(SP) = sp 

and all other communications give B. We are interested in 

KllP 

but want to hide unsuccessful communications. Therefore, we define 

H = {s(BR),r(BR),s(SP),r(SP)} 

and look at 

on(KllP) 

Now we want to define a partial order an atomic actions giving priority. Note that both br and sp 
should have priority over printing actions (br must interrupt printing and s(SP) must be received by the 
printer, otherwise the key-board will be blocked and a break cannot be given). All other priorities are 
given by 1.4.4. We have the following picture of the partial order (figure 23). 

H {:p ( d) I d e: D} k (BR) k ( SP) 

~I~ 
0 

fig.23 
Here if two actions a and b are connected by a line, and b is above a, then a <b. If two actions are not 
connected, they are incomparable. If we put a set at a certain position, it means each element of the set 
has that position. If fJ is defined using this partial order, we can describe the system by: 

I fJo()H (KllP) I 
3.3 Theorem. Put <?I'; = fJ0 a H (K llP;) and 611f; = (Jo() H (K II Wj) (i ;;;.o), then we have the following equa
tions: 

1. 611f; = k(BR}.br.G/Jf; +k(SP).sp.<?f';. 

2. <?I'; = p(d;)<?f';+ 1 + k(BR}.br.611f; + k(SP).sp.<?f';. (i;;.rO). 

Proof: as we go along, we will skip some steps. To calculate the merge, we need the expansion theorem 
(see Bergstra & Tucker (SD which goes as follows: 
if X b ••• , Xk are given, put X; = the merge of all Xn except X; and x! J = the merge of all Xn except 
X; and ~. Then 

(ET) X;ll · · · llXk = ~ X;ILX; + ~ (X; l~)lLXiJ, 
l<i<k l<i<j<k 
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i.e. we can start with an action of one of the processes, or with a communication between two of them. 

Let i;;;;.O. 

61lli = 8°0H(KllW;) = 

= 8°0H(k(BR)(s(BR)KllW;) + 

+ k(SP)(s(SP)KllW;) + 

+ r(BR)(KllW;) + 

+ r(SP)(KllP;)) = 

= O(k(BR).oH(s(BR)KllW;) + 

+ k(SP).oH(s(SP)KllW;)) = 

= k(BR).8°oH(s(BR)(KllW;)+r(SP)(s(BR)KllP;) + 

+ r(BR)(s(BR)KllW;) + 

+ (s(BR)lr(BR))(KllW;)) + 

+ k(SP).8°oH(s(SP)(KllW;) + r(SP)(s(SP)KllP;) + 

+ r(BR)(s(SP)KllW;) + 

+ (s(SP) I r(SP))(KllP; )) = 

= k(BR)O(br.oH(KllW;)) + k(SP)O(sp.aH(KllP;)) = 
= k(BR).br.61Jli + k(SP).sp.6J;. 

"Y; = IJooH(KllP;) = 
= O(k(BR).oH(s(BR)KllP;) + 

+ k(SP).oH(s(SP)KllP;) + 

+ p(d;).0H(KllP;+1)) = 

= k(BR).8(p(d;).0H(s(BR)KllP;+1) + 

+ (s(BR)lr(BR)).oH(KllW;)) + 

+ k(SP).8(p(d;).0H(s(SP)KllP;+1) + 

+ (s(SP)lr(SP)).oH(KllP;)) + 

+ p(d;)"Y;+1 = 

= (this is where we use the priority) 

k(BR).br.61Jli + k(SP).sp.6J; + p(d;).6Ji+I· 

We can make the following state transition diagram: 

(1) 

(2). 
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fig.24 

3.4 Example 2: Suppose we have a file F containing an infinite sequence of data from a finite set D, so F 
contains 

These data can be sent to the printer and subsequently printed, or a file crash might occur, in which case 
an error statement will be generated. 

We have the following atomic actions A : 
(a) actions of F: 

(i?\__fiil 
~ p~r 

fig.25 

1. g(d) = get the next symbol, d ED, from the file 

2. s (d) = send d ED to the printer 

3. er = file crash. 

Let F; stand for the state of F after do. ... , d; _ 1 have been sent (i ;;;;a.O). Then F is described by the fol
lowing equations: 

F = F0 

F; = g(d; ').s (d; ).F; + 1 + er (i ;;;;a.O). 

(b) actions of P : 

1. r(d) = received ED from the file 

2. p (d) = print d ED 

3. o (CR) = observe file crash 

4. p (CR) = print 'FILE HAS CRASHED'. 
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Recursive equation for P : 

IP = d~r(d).p(d).P +o(CR).p(CR). I 
(c) communication actions: 
if dED, then r(d)ls(d) = c(d) (communicated). All other communications give 8. Since we want to 
hide all unsuccessful communications, we define H = {r(d),s(d) Id ED}, and look at 

aH(FllP). 

3.5 Priority. Here the rationale of defining priorities is different. The file-crash er might occur at any 
moment, but o(CR), the observation of a file-crash, can only occur if the file has actually crashed. We 
ensure this by giving o (CR) a lower priority than every 'regular' action of F, so we must have 
o(CR)<g(d) and o(CR)<c(d). This gives the following picture (figure 26). 

{g(d) I de: D} {c(d) I de: D} 

fig.26 
If () is defined using this partial order, we can describe the system by: 

3.6 Theorem: Put ~ = 8°aH(F; llP), and ~; = 8°aH(F;+dlp(d;)P) (i ;;a.O), then we have the following 
equations: 

I) ~ = g(d;).c(d;').~; + cr.o(CR).p(CR) 

2) ~; = g(d;+1').p(d;).c(d;+1)P;+1 + 
+ cr.p(d;').o(CR').p(CR) + p(d;)~+I (i;;a.O) 

Proof let i ;;;:.o. 

= 8(g(d;).aH(s(d;)F;+ 111P) + cr.aH(P) + 

+ o(CR).aH(F; llp(CR))) = 

= (use g(d; )>o (CR)) 

g(d; ).8((s(d;) I r(d; )).aH(F;+ 1llp(d; )P) 

+ o(CR').aH(s(d;)F;+illp(CR))) + 

+ cr.8(o(CR').p(CR)) = 

(1) 



28 

= (use c(d;)>o(CR)) 

g(d;).c(d;}.~; +cr.o(CR}.p(CR). 

~; = 0°aH(Fi+dlp(d;)P) = 
= IJ(g(d;+1}.aH(s(d;+1)F;+2llp(d;)P) + 

+ cr.aH(p(d;)P) + 

+ p(d;}.aH(l'f+dlP)) = 

= g(d;+1}.IJ(p(d;}.aH(s(d;+1)1'f +2llP)) + 

+ cr.p(d;}.o(CR}.p(CR) + 

+ p(d;}.~+I = 

= g(d;+1}.p(d;}.O(c(d;+1}.aH(l'f+2llp(d;+1)P) + 

+ o(CR}.aH(s(d;+1/';+2llp(CR))) + 

+ cr.p(d;}.o(CR}.p(CR) + p(d;}.~+1 = 

= (use c(d;+ 1)>o(CR)) 

g(d; + 1}.p (d; }.c(d; + 1)~; +I + 

+ cr.p(d;}.o(CR}.p(CR) + p(d;}.~u 

State transition diagram: 

(2) 
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p(CR) 

o(CR) 

er 

er 

fig.27 
3.7 Now we want to focus on the printing actions, in the system just described, and abstract from the 

other actions. This will give an easy equation for the system. The tool to carry out abstractions is ACP,., 

which is ACP with an abstraction operator T1 and silent steps T (see (Bergstra & Klop [2]). 

Since we do not want to mix ACP8 and ACP,., we will assume that all() and <l are eliminated from 

terms like Cffi and ~; (possible by 2.3.iii), so that they become ACP-terms. The axiom system ACPT is 

presented on the next page. (table 4) 
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ACP,. 

x+y =y+x Al XT = X 
x +(y +z) = (x +y)+z A2 TX+X = TX 
x+x = x A3 a(Tx +y) = a(Tx +y)+ax 
(x +y)z = xz +yz A4 
(xy)z = x(yz) AS 
x+8 = x A6 
8x = 8 A7 

alb = bla Cl 
(alb)lc = al(blc) C2 
8la = 8 C3 

x l!Y = x lly +y llx +xjy CMI 
allx = ax CM2 T[LX = TX 
(ax)lly = a(x l!Y) CM3 (Tx)lly = T(x l!Y) 
(x +y )llz = x llz +y llz CM4 TIX= 8 
(ax )lb = (a lb )x CMS XIT = 8 
al(bx) = (alb)x CM6 (Tx)jy = xjy 
(ax )l(by) = (a lb )(x l!Y) CM7 xl(ry) = xjy 
(x +y)lz = xlz +ylz CM8 
x l(y + z) = x 1Y + x lz CM9 

dn(T) = T 
TJ(T) = T 

dn(a) = a if a f£.H DI T1(a) = a if a€£./ 
dn(a) = 8 if a EH D2 T1(a) = T if a El 
dn(x +y) = dn(x)+an(y) D3 TJ(X +y) = T1(x)+T1(y) 
dn(xy) = dn(x).dn(y) D4 T1(xy) = T1(X).T1(y) 

3.8 Abstraction Define I = {c(d),g(d) Id ED} U {er ,o(CR)} and look at 

I T101Joi)H(FllP) I 
From theorem 3.6, we obtain the following equations: 

l)T1(<?f;) = T(rT1('5';) + rp(CR)) 

2)T1('5';) = T (rp(d;}T1 ('5';+1) + rp(d;)"p(CR) + p(d;)T1(<?Ii+1)). 

TI 
T2 
T3 

TMl 
TM2 
TCI 
TC2 
TC3 
TC4 

DT 
TII 
TI2 
TI3 
TI4 
TIS 

3.9 Example 3 Let us now modify the previous example by changing the priority ordering in the follow
ing way: 
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{g(d) I di::D} {c(d) I di::D} 

L--~ 
lo(d) I de~J~' 

fig.28 
This expresses that in real time the 'internal' actions g(d) and c(d) will always precede the external ac
tion p(d). This is a simplifying assumption about the real time behaviour of the system and its environ
ment. 
Now theorem 3.6 turns into: 

3.10 Theorem (abbreviations as in 3.6): 

1)1¥; = g(d;).c(d;)~; + cr.o(CR).p(CR) 

2)~; = g(d;+ 1).p(d;).c(d;+1) ~i+I + cr.p(d;).o(CR).p(CR). (i;;;;.O). 

Now 1f; has disappeared from the second equation, so this simplifies to: 
I'): '% = g(d0).c(d0). % + cr.o(CR).p(CR) 
2 as above, and the following state transition diagram (compare with the complicated diagram in 3.6) 

er 

fig.29 
When we do abstraction as in 3.8, we get 

l'): 'l"[(CffQ) = 'T ('T·'T1(%) + T.p(CR)) 

2) 'TJ(~;) = 'T (T.p(d;).'T[ (~;+J) + 'Top(d;).p(CR)) 
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4. Example: a toy distributed system 
4.1 Set-up 

file 

D 1----2 ---1 

display 
1 

printer 

fig.30 
Description: At a command from the key-board, a word (string of data) will be released from a file hold
ing infinitely many words, and sent to the printer. Then the word can be printed symbol by symbol. At a 
signal from the timer, the status of the printer will be requested and the answer displayed. Printing can 
be interrupted by a BREAK from the key-board. 

4.2 Aim We want to give a description of this system, using process algebra. First we will give recursive 
equations defining each component of the system. Then we will look at the free merge of these processes, 
will encapsulate unsuccesful communications and give priority to interrupts. Next, we will give recursive 
equations for the whole system, and then, in order to focus on certain aspects of the system, we will 
abstract from other elements. We present three ways of doing that. 

4.3 Description of components, using state transition diagrams (or process graphs). 
4.3.1 Keyboard K. The key-board can generate a message, and send it along channel 1. After that, it is 
back in its original state. 

K 

sl(LO) k(LO) 

fig.31 
actions of K: 1. k(BR) = key in BREAK (will stop printing); 2. k(LO) = key in LOAD (will get a 
word from the file and load it into the memory of the printer); 3. k(SP) = key in START PRINTING 
(will cause the printer to start); 4, 5, 6: s l(BR), s I(LO), s l(SP) = send BR, LO, SP along channel 1. 

Recursive equation for K: 
K = (k(BR).s I(BR) + k(LO').s l(LO) + k(SP).s l(SP))K. 

4.3.2 Display D. The display can receive a message along channel 2 and display it. After that, it is back 
in its original state. 



r2(X) d(X) 

X = PE,PW,PP,PL,PD,PR,FE,ND,NR 
(the diagram actually consists 

of 9 loops as shown) 

fig.32 

actions of D: 1. d(PE) = display: PRINTER ERROR 
2. d(PW) =display: PRINTER WAITING 
3. d(PP) = display: PRINTER PRINTING 
4. d(PR) =display: PRINTER READY. 
5. d(PL) =display: PRINTER LOADED, PLEASE KEY IN SP. 
6. d(PD) =display: PRINTER DONE, PLEASE KEY IN LOAD. 
7. d(FE) = display: FILE ERROR 
8. d(ND) =display: PRINTER NOT DONE, PLEASE WAIT 
9. d(NR) =display: PRINTER NOT READY, PLEASE WAIT 
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10-18. r2(X) = receive message X along channel 2 (X = PE,PW,PP,PR,PL,PD,FE,ND,NR) Here 
· PW,PP ,PR(2-4) are status reports from the printer; PL,PD(5,6) are messages from the printer that it 

has completed a certain phase; PE ,FE (I, 7) are error messages, generated when file or printer do not 
respond; ND ,NR (8,9), are messages, generated, when LO or SP is keyed in too early. 

Recursive equation for D : 

D = ( ~ r2(X).d(X))D. 
X = PE,PW ,PP ,PR, 

PL,PD,FE,ND,NR 

4.3.3 Timer T. The timer can tick, and then it sends a message along channel 3. After that, it is back in 
its original state. 

T. 

t s3(SR) 

0 

fig.33 
actions of T: 1. t = TICK; 
2. s3(SR) = send message STATUS REPORT? along channel 3 (will ask for a status report of the 
printer). 

Recursive equation for T: 

T = t.s3(SR).T 
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4.3.4 File F. The file holds infinitely many words of length N. Say II) is a finite set of data (maybe con
taining a blank), then we let ll)N stand for the set of all words of length N. At the request LOAD, F 
will release the next word and send it to the printer. 

If F = <xi.x2, ••• > (the original state), we put F; = <x;+I.Xi+2•···> (i EN, the state after releasing 
i words (the x; are in ll)N). 

s4(x ) 

fig.34 
In this diagram, we use the following convention: if, inside a node we put a symbol S, then by S we 
mean the subgraph with S as root. 

actions of F: 

1. r4(LO) = receive message LOAD along channel 4; 
2. g(x) = get the next word x ell)N from the file 

3. s4(x) = send x ell)N along channel 4. 

Equations for F: 

F = F 0 

F; = r4(LO).g(x;+1).s4(x;+1)F;+1 (i EN). 

4.3.5 Printer P 
The printer has three basic states: 

1. waiting, with printing queue empty (Pl); 

2. ready, with printing queue a word x eDN (printing has not started yet) (Rx); 

3. printing, with printing queue a word x ED.;;N = U ll)n (Px). 
n = l,. .. ,N 

The following is a state transition diagram, using a word x = d1 •••• dN ell)N. 

. 
actions of P : 

r5(SR) 

sS(PR) 



1. r5(x) = receive x e[JIN along channel 5; 

2. r5(BR) = receive BREAK along 5; 

3. r5(SR) =receive STATUS REPORT? along 5; 

4. s5(PW) =send PRINTER WAITING along 5; 

5.s5(PR) =send PRINTER READY along 5; 

6.s5(PP) =send PRINTER PRINTING along 5; 

1.s5(PL) =send PRINTER LOADED along 5; 

8. s5(PD) = send PRINTER DONE along 5; 

9.p(d) = printde[JI. 

Recursive equations for P : 

} 

(answers 

to SR) 

} (state changes) 

i) P = P, = ~xEDN r5(x) s5(PL) Rx + (r5(SR)s5(PW) + r5(BR)) P, 

ii) for all X E [JIN 

Rx = r5(SR)s5(PR)Rx + r5(SP)Px + r5(BR)P, 

iii)for all x E [Jin ' n = 2, . . . ' N' x = d I . . . dn : 

Px = r5(SR)s5(PP)Px + p(d1)Pd,···d. + r5(BR)P, 

iv)for all d e[JI: 

Pd = r5(SR)s5(PP)Pd + (p(d)s5(PD) + r5(BR))P,. 

4.3.6 Micro-processor M: 

In M we need three states, according to the state of the printer, so: 
Mw = state when printer is waiting; 
Mr = state when printer is ready; 
MP = state when printer is printing. 

s4(LO) 

fig.36 
actions of M are all communication actions; description of letter codes are given elsewhere. 

l,2,3:rl(BR), rl(LO), rl(SP); 

4-12:s2(Pb'), s2(PW), s2(PP), s2(PR), s2(PL), s2(PD), s2(FE), s2(ND), s2(NR); 
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13:r3(SR); 

l4:s4(LO); 

15:r4(x) (x EDN); 

16-18:s5(x) (x en:»N); s5(BR), s5(SR); 

I9-23:r5(PW), r5(PR), r5(PP), r5(PL), r5(PD). 

Recursive equations for M: 

i)M = Mw = [r3(SR)s5(SR)(s2(PE) + r5(PW)s2(PW)) + 
+ rl(SP)s2(NR) + rl(BR)s5(BR)]Mw + 

+ r I(LO)s4(LO)[s2(FE)Mw + 
+ ~ r4(x)s5(x)(s2(PE)Mw + r5(PL)s2(PL)Mr)J 

XEDN 

ii)Mr = (rl(LO)s2(ND) + r3(SR)s5(SR)(s2(PE) + r5(PR)s2(PR))Mr + 
+ rI(SP)s5(SP)Mp + rl(BR)s5(BR)Mw 

iii)Mp = (rl(SP) + rI(LO)s2(ND) + r3(SR)s5(SR)(s2(PE) + r5(PP)s2(PP)))Mp 

+ (rl(BR)s5(BR) + r5(PD)s2(PD))Mw. 

4.4 We have now described each component, and now we want to study the interleaving of these 
processes, i.e. 

jKllDllTllFllPllM I 
When we expand this term, we have to know the communication function on actions. Basically, only 
ri(X)lsi(X) (i = 1,2,3,4,5 and X a two-letter code or a word in DN) give non-8 communications. 
Specifically: 

i) r l(BR) Is l(BR) = r 5(BR) Is 5(BR) = br (break) 

ii)r3(SR)ls3(SR) = r5(SR)ls5(SR) = 
= r5(PW)ls5(PW) = r2(PW)ls2(PW) = 
= r5(PR)ls5(PR) = r2(PR)ls2(PR) = 
= r5(PP)ls5(PP) = r2(PP)ls2(PP) = sr (status report) 

iii)rl(LO)lsl(LO) = r4(LO)ls4(LO) =lo (load) 

iv)r l(SP) Is I(SP) = r5(SP) Is 5(SP) = sp (start printing) 

v)r5(PD)ls5(PD) = r2(PD)ls2(PD) = r5(PL)ls5(PL) = 

= r2(PL)ls2(PL) = r2(ND)ls2(ND) = r2(NR)ls2(NR) 

=pm (printer message) 

vi)r2(PE)ls2(PE) = r2(FE)ls2(FE) =em (error message) 
vii)for X Ell:»N 

r4(x)ls4(x) = r5(x)ls5(x) = sd(x) (send data) 

viii)all other communications (i.e. those not defined by i-vii above or rule Cl) are 8. 

4.5 Then, we want to throw away (encapsulate) all unsuccessful communications, so if we define H to be 
the set of qll ri(X) and all si(X) (i = l,2,3,4,5;X a two-letter code or a word in n:»N), we want to look at 
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I Cln(KllDllTllFllPllM) j 
4.6 Priorities We will define priorities in a certain way, so that strings of actions that belong together, 
will be executed together, so that the formulation of theorem 4.8 becomes readable. The principles 
behind this formulation are explained in section 3. 

Define E = {t ,k(BR), k(LO), k(SP)} U {p(d) Id ED} ('external' actions) and 

C = {pm,br,lo,sp,sr}U{sd(x),g(x)lxEDN} 

U{d(X)IX = PE,PW,PP,PR,PL,PD,FE,ND,NR} 

(communication actions and other 'internal' actions), then we have the following picture: 

fig.37 
(conventions as explained in 3.2). 

If () is defined with respect to this partial ordering, we look at 

"llfo = 8°on(KllD llTllFllP llM) 

4.7 Now we will prove some recursive equations that hold for the whole system "llf0• First some abbrevia
tions: 

"llf; = 0°on(KllD llTllF; llP(llMw) (i EN) 

(printer is waiting and i words have been handled) 

~ = 0°on(KllD llTllF;llRx,llMr) (i ;;;.I) 

(printer is loaded, the i - th word is being handled) 

~f = 0°on(KllDllTllF;llPxllMp) (i;;;.I,n = 1, ... ,N, 

x is (the tail of) X; of length n ). 
(printer is printing the i - th word, still n characters to go) 

~? = 0°on(KllD llTllF; ll(s5(PD)P)l1Mp) (i ;;;.1) 

(printer has just printed the last character of the i -th word) 

4.8 Theorem: 

1. 61lf; =k(BR).br.br."llf; + 
+ k(LO')./o.[o.g(x;+ 1).sd(x;+ 1).sd(x;+ 1).pm.pm.d(PL).~+1 + 
+ k(SP).sp.pm.d(NR)."llf; + 
+ t.sr.sr.sr.sr.d(PW)."llf;. (i ;;;.O) 

2. ~ =k(BR).br.br."llf; + 
+k(LO°).lo.pm.d(ND).~ + 
+ k(SP).sp.sp.~f + 
+ t.sr,sr.sr.sr.d(PR)~. (i;;;. I) 
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3. qpr =k(BR).br.br.61.Jf; + 
+ k(LO).lo.pm.d(ND)qj'I' + 
+ k(SP).sp.qpF + 
+ t.sr.sr.sr.sr.d(PP)qj'F + 
+ p(d)qj'r-1 (i ;;;:.,1, n = 1, . .. , N, dis the (N + 1-n )th character of x;) 

4. qpp =pm.pm.d(PD).G/Jf;. 

Proof: We use ET as in the proof of 3.3. 
i. Let; ;;a.,o 

G/Jf; = (}o(}H(KllD llTllF; llP,llMw) = 

(}o(}H(k(BR).((s l(BR)K)llD llTllF; llP,llMw) + 
+ k(LO).((s l(LO)K)llD llTllF; llP,llMw) + 
+ k(SP).((sl(SP)K)llDllTllF;llP,llMw) + 
+ r2(PE).(Kll(d(PE)D)llTllF; llP,llMw) + 
+ r2(PW).(Kll(d(PW)D)llTllF;llP,llMw) + 
+ r2(PP).(Kll(d(PP)D)llTllF;llP,llMw) + 

- - - -(six more r2(X))- - - - -

+ r2(NR).(Kll(d(NR)D)llTllF; llP,llMw) + 
+ t .(K llD ll(s 3(SR )T)llF; llP ,llMw) + 
+ r4(LO).(KllDllTll(g(x;+1)s4(x;+1)Ff+1)llP,llMw) + 
+ ~ r S(x ).(K llD II T llF; ll(s S(P L )Rx )llMw) + 

xeDN 

+ r5(SR).(KllD llTllF; ll(s5(PW)P JllMw) + 

+ r3(SR).(KllD llTllF; llP,ll(s5(SR)(s2(PE) + r5(PW)s2(PW))Mw) + 

+ rl(SP).(KllDllTllF;llP,ll(s2(NR)Mw)) + 

+ r I(BR ).(K llD II T !IF; llP ,ll(s S(BR )Mw )) + 

+ rl(LO).(KllD llTllF; llP,ll(s4(LO)(s2(FE)Mw + · · · M7 ))) + 

+ 8) (no communications possible) = 

= O(k(BR).(}H((s l(BR)K)llD llTllF; llP,llMw) + 
+ k(LO).(}H((s l(LO)K)llD llTllF; llP,llMw) + 
+ k(SP).(}H((s l(SP)K)llD llTllF; llP,llMw) + 
+ t .a H(K llD ll(s 3(SR )T)llF; llP ,llMw) = 

= k(BR).8(1.aH((s l(BR)K)llD ll(s3(SR)T)llF; llP,llMw) + 
-¥ (s l(BR) I r l(BR )).aH (K !ID II TllF; !IP ,ll(s S(BR )Mw )) 



+ k (LO ).fJ(t .a H((s l(LO )K)llD ll(s 3(SR )T)llF; llP (llMw) + 
+ (sl(LO)lrl(LO)).aH(KllDllTllF;llP(ll(s4(LO)(· · · Mw+ ···Mr)))+ 

+k(SP).O(t.aH((s l(SP)K)llD ll(s3(SR)T)llF; llP,llMw) + 
+ (sl(SP)lrl(SP)).aH(KllDllTllF;llP,ll(s2(NR)Mw)) + 
+ t.O(k(BR) · · · + k(LO) · · · + k(SP) · · · + 
+ (s3(SR)lr3(SR)).aH(KllDllTll.F;llP(ll(s5(SR)(· · · )Mw)) = 

=(by 4.6) 

k(BR).br.O(k(BR) · · · + k(LO) · · · + k(SP) · · · + t · · · + 
+ (s5(BR)lr5(BR)).aH(KllDllTllF;llP,llMw) + 
+ k(LO).lo.O(k(BR) · · · + k(LO) · · · + k(SP) · · · + t · · · + 
+ (s4(LO) I r4(LO)).aH(KllD llTll(g(x;+ 1)s4(x;+ 1).F;+ 1)llP,ll 

ll(s2(FE)Mw + ~r4(x) ... )) + 
x 

+ k(SP).sp.O(k(BR) · · · + k(LO) · · · + k(SP) · · · + t · · · + 
+ (s2(NR)lr2(NR)).aH(Kll(d(NR)D)llTllF;llP,llMw) + 
+ t.sr.O(k(BR) · · · + k(LO)- · · + k(SP) · · · + t · · · + 
+ (s5(SR) I r5(SR)).aH(KllD llTll.F; ll(s5(PW)P Jll(s2(PE) + 

+ r5(PW)s2(PW))Mw) = 

= k(BR).br.br.61Jf;<1> + 
+ k(LO).lo./o.O(k(BR) · · · + k(LO) · · · + k(SP) · · · + t · · · + 
+ g(x;+ 1).aH(KllD llTlis4(x;+ 1)F;+iJIP(ll(s2(FE) · · · + ~r4(x) · · · )) + 

x 

+ (s2(FE)lr2(FE)).aH( ... ))<2> + 

+ k(SP).sp.pm.O(k(BR) · · · + k(LO) · · · + k(SP) · · · + t · · · + 
+ d(NR).aH(KllD llTllF; llP(llMw))(3) + 
+ t.sr.sr.O(k(BR)- · · + k(LO) · · · + k(SP) · · · + t · · · + 
+ (s5(PW)jr5(PW))aH(KllDllTllF;llP,lls2(PW)Mw) + 
+ (s2(PE) I r2(PE))aH( · · · ))<4>. 
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Now term 1 is right, and it is easy to see that term 3 is also right. Therefore, we only continue with terms 
2 and 4. 

2 = k(LO).lo./o.g(x;+ 1).8(k(BR) · · · + k(LO) · · · + k(SP) · · · + t · · · + 
+ (s4(x;+ 1)lr4(x;+ 1)).aH(KllDllTllF;+illP,lls5(x;+ 1)( • • • )) + 
+ (s2(FE) I r2(FE)).aH( · · · )) = 
= k(LO)./o./o.g(x;+ 1).sd(x;+ 1).8(k(BR) · · · + k(LO) .. + k(SP) · · · + t · · · + 
+ (s5(x;+1) I r5(x;+1)).aH(KllD llTllF;+111s5(PL)Rx,+,ll 

ll(s2(PE)Mw + r5(PL)s2(PL)Mr)) = 

= k(LO).lo./o.g(x;+1).sd(x;+ 1).sd(x;+1).8( · · · + .... + · · · + · · · + 
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+ (s5(PL)I r5(PL)).3n(KllD llTllF;+d1Rx,)ls2(PL)Mr) + 
+ (s2(PE) I r2(PE)).3n( · · · )) = 

= k(LO)./o./o.g(x;+1).sd(x;+1).pm.IJ( · · · + · · · + · · · + · · · + 
+ (s2(PL)I r2(PL)).3n(Klld(PL)D llTllJii+1llRx,)IMr) = 

= k(LO).lo./o.g(x;+ 1).sd(x;+1).sd(x;+1).pm.pm.8( · · · + · · · + · · · + · · · + 
+ d(PL).3n(KllDllTllF;+111Rx,)1Mr) = 

= k(LO)./o./o.g(x; + 1).sd(x; + 1).sd(x; + 1).pm.pm.d(PL ).~ + 1; 

4 = t.sr.sr.sr.8( · · · + · · · + · · · + · · · + 
+ (s2(PW)lr2(PW))3n(Klld(PW)DllTllFjllP,llMw)) = 

= t.sr.sr.sr.sr.8( · · · + · · · + · · · + · · · + 
+ d(PW)3n(KllD llTllFj llP,llMw)) = 
= t .sr .sr .sr .sr .d (P W)G/JS; 

This finishes the proof of 1. 

2. Let i;;;;;.: 1. 

~ = 8°3n(KllDllTllF;llRx,11Mr) = 

8(k(BR).3n(sl(BR)KllD llTllF; llRx,llMr) + 
+ k(L0).3n(sl(LO)KllDllTllF;llRx,11Mr) + 
+ k(SP).3n(s l(SP)KllD llTllFj llRx,llMr) + 
+ t .an(KllD lls 3(SR )TllFj llRx, llMr )) = 

= k(BR).8(t · · · + (s l(BR)lrl(BR)).3n(KllD llTllFi 11Rx,lls5(BR)Mw)) + 
+ k(L0).8(t · · · + (sl(LO)lrl(L0)).3n(KllDllTllFjllRx,lls2(ND)Mr)) + 
+ k(SP).8(t · · · + (sl(SP)lrl(SP)).3n(KllDllTllF;llRx,lls5(SP)Mp)) + 
+ t.8( · · · + · · · + · · · + (s3(SR) lr3(SR)).3n(KllD llTllF; 11Rx,lls5(SR)(' ··)Mr) = 

= k(BR).br.8( .. · + .. · + · · · + · · · + 
+ (s5(BR) I r5(BR)).3n(KllD llTllFi llP,llMw)) + 
+ k(LO)./o.8( · · · + · · · + · · · + · · · + 
+ (s2(ND)I r2(ND)).3n(Klld(ND)D llTllFi llRx,llMr)) + 
+ k(SP).sp.8( · · · + · · · + · · · + · · · + 
+ (s5(SP)lr5(SP)).3n(KllDllTllFfllPx,11Mp)) + 
+ t.sr.8(' · · + · · · + · · · + · · · + (s5(SR)lr5(SR)).3n(KllDllTllFf 11 

lls5(PR)Rx,ll(s2(PE) + r5(PR)s2(PR))Mr)) = 

= k(BR).br.br.G/JS; + 
" 

+ k(LO).lo.pm.8( · · · + · · · + · · · + · · · + d(ND).3n(KllDllTllFjllRx,11Mr)) + 



+ k(SP').sp 08p.6Jf + 
+ t.sr.sr.8( · · · + · · · + · · · + · · · + 

+ (85(PR)lr5(PR)).09(KllDllTllF;llRx,ll82(PR)Mr) + 
+ (82(PE)lr2(PE)).o9 (· · · )) = 
= k(BR").br.br.6/Jf; + 
+ k(LO).lo.pm.d(ND).6.R, + 
+ k(SP').sp.sp.<?Pf + 
+ t.sr.sr.sr.O( · · · + · · · + . . . + . . . + 

+ (82(PR) I r2(PR)).09(Klld(PR)D llTllFJllRx,llMr)), 

and we can finish as in 1. 

41 

3. Let i;;a.l, n = 1, ... ,N and x = d 1 • • • dn is (the tail of) x;. Then d 1 is the (N+l-n)'h character 
of X;. 

case 1: n > 1. Then 

<?Pr = 8°o9 (KllD llTllF; llPx llMp) = 
= O(k(BR).o9 (8 I(BR)KllD llTllF; llPx llMp) + 
+ k(LO).o9 (8 l(LO)KllD llTllF; llPx llMp) + 

+ k(SP).o9 (8 I(SP)KllD llTllFJ llPx llMp) + 
+ t.o9 (KllDll83(SR)TllF;llPx11Mp) + 
+ p(d1).09(KllDllTllF;llfd2 ... a..llMp)) 

= k(BR)(8 l(BR)lrI(BR)).8°o9 (KllD llTllF; llPx ll85(BR)Mw) + 
+ k(L0)(8 l(LO) I r l(LO)).fJ0 09 (KllD llTllF; llPx ll82(ND)Mp) + 
+ k(SP)(8 l(SP) I rl(SP)).8°o9 (KllD llTllF; llPx llMp) + 
+ t(83(SR)lr3(SR)).0°o9 (KllDllTllFjllPxll85(SR) · · · Mp) 

+ p(d,)<?Pr- 1. 

Again it is easy to finish the proof. 

case 2: n = I. The first four terms are the same, so 

<?Pl = 8°09 (KllD llTllFj llPd,llMp) = 

= k(BR).br.br.6/Jf; + k(LO).lo.pm.d(ND)'?f/ + 
+ k(SP').sp.<?P/ + t.sr.sr.sr.sr.d(PP)'?f/ + 

+ p(d1)8°o9 (KllD llTllF; ll85(PD)P(11Mp) (by 4.3.5.iv) = 
=···+···+···+···+ 

+ p(d1)<?P? 

4. Leti ;;a. I. 

<?l!? = 8°09 (KllDllTllF;ll85(PD)P11Mp) = 
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= O(k(BR) · · · + k(LO) · · · + k(SP) · · · + t · · · + 
+ (s 5(PD) I r 5(PD )).o8 (K llD llTllF; llP lls2(PD )Mw )) = 

= pm.O( · · · + · · · + · · · + · · · + 
+ (s2(PD) I r2(PD)).o8 (Klld(PD)D llTllF; llP llMw)) = 

= pm.pm .0( · · · + · · · + · · · + · · · + 
+ d(PD).oH(KllDllTllF;llPllM)) = 

= pm.pm.d(PD).G/Jf;. 

This completes the proof of theorem 4.8. 

4.9 Now we want to focus on certain aspects of the systeru just described, and abstract from others. We 
will present three ways of doing this, namely: 

1. abstract from all internal steps, focus on key-board, display and printer; 

2. abstract from all internal steps, focus on file and printer (i/ o view); 

3. get easier equations for 2 by hiding interrupts. 

As in 3.8, we work in ACP.,., but now we need an extra abstraction rule, since infinite T-paths can occur. 
The rule is explained in 4.10. 

4.10 Koomen's fair abstraction rule (KFAR) (see Bergstra & Klop [3]). 
This rule allows us to compute T1 (X) for certain X, thereby expressing the fact that certain steps in I 

will be fairly scheduled in such a way that eventually a step outside I is performed. Formally, 

'tin EZk Xn = in•Xn+I + Yn On E/) 
(KFAR) T1(Xn) = T•T1(Yo + · · · + Yk-1) 

Here Zk = {O, ... , k-1} and addition in subscripts works modulo k. For the use of KFAR, also see 
[3]. 

4.11 Define I = { t ,br ,sr ,lo ,sp ,pm ,em } U 

U {g(x) Ix eDN} U {sd(x) Ix EDN} U 

U {d(PW),d(PR),d(PP)}. 

This means we abstract from the timer, the file, all communications and the status reports. Now apply
ing T1 to the equations of theorem 4.8, and using KFAR, gives: 

1. T1(611lJ = T((k(BR) + k(SP)d(NR))T1(6/Jf;) + 
+ k(LO)d(PL)T1(~+1)) (i ;;;ai:O) 

2. T1(~) = T(k(BR)T1(6/Jf;) + 
+ k(LO)d(ND)T1(~) + 
+ k(SP)T1(<?ff)) (i ;;;i. 1) 

3. T1('?Pt) = T(k(BR)T1(6/Jf;) + 
+ k(LO)d(ND)T1(<?ff) + 
+ k(SP)T1(<?ft) + 
+ p(d)<?ff- 1) (i;;;ai:O,n = I, ... ,N, . 
d is the (N + I - n) th character of X;) 



4. T1('!PP) = Td(PD)T1(6/Jf;). 

We can make the following state transition diagram of T1(6/Jf0). (Suppose x 1 = d1 • • • dN) 

k(BR) 

k(BR 

k(BR) 

k{BR) 

4.U Second version: 
Define J = { t ,br ,sr ,lo ,sp ,pm ,em } U 

U{sd(x)lx EDN} u 

d(PD) 

k(BR) 

fig.38 

I l 

-ft'' 
I I 
I I 
I I 
I I 

I 

U { d(PW),d(PR),d(PP),d(PE),d(PL )d(PD), 

d(FE),d(ND),d(NR)} U 

U {k(LO),k(SP),k(BR)}. 
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k(SP) 

This means we abstract from the timer, the display, the keyboard and all communications. Now apply 
TJ and use KFAR. We get: 

1. TJ (621Sj) = Tg(x; +1).TJ (~ + 1). (i ;;;;a.O). 

2. TJ(~) = T(T•TJ(621Sj) + T•TJ('!ff')). (i;;;;a.l). 

3. TJ('!fr> = T(T•TJ(621Si) + p(d).TJ('!ff- 1
)). (i ;;;;..o,n I, ... , N, d the (N + 1-n )thin x;) 

4. ;J('!f;°) = T•TJ(6/Jf;)(i ;;;;a.I). 
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Diagram: 

i: 

i: 

fig.39 
4.13 In order to see better, that the input is really that what is printed, we will use the following trick. 
Define B = {k(BR)} and look at 

I TJOOB('%) I 
This means that we throw away all paths that have a break, and then do the abstraction of 3.12 

Oaim: Suppose x; + 1 = d;1 · · · dk ,(i ;;;;a.O). 

TJ 0 0B(6llf;} = T•g(X;+1)p(dDp(d~) · · · p(d1).TJ 0 0B("115j+I). 

Proof: we start with the equations of theorem 3.8. 

OB("115j) = 8 + a1a2a2°g(X;+1)a3a3a4a4a50B(<31.t+1) + 
+ a6a1a4asoB(61.tf;) + a9a 10a 10a 1oa 1oO 110B(61.tf;) 

(here the a1-a 11 symbolize internal steps), so by KFAR we have 

1. TJ 0 0B("115j) = Tg(X;+1).TJ 0 0B(<31.t+1). 
Likewise 

2. TJ 0 0B(<31.i+1) = T·TJ 0 0B(<fff+1) 
and 

3. TJ 0 0B(<ffr+1) = 7]J(dk+1-n).TJ 0 0B(<ffr+11) (n 
and 

4. TJOOB(<ff;°+1) = T•TJ 0 0B("115j+l). 

Combining these gives 

1, ... , N) 



= Tg(X;+1)..'T•'TJ 00B(~f+1) = 

= Tg(x;+1).Tp(d\).TJ 00B(~f'+1 1 ) = 

= Tg(X;+1).p(d\)..Tp(d~).'TJ 00B(~f+J" 2) = 

= Tg(x;+1).p(d\)p(d~) · · · •'Tf'(djy).TJ 00B(~f+1) = 

= Tg(x;+i).p(d1)p(d~) · · · p(djy)'T.'TJ 0 0B(611f;+1) = 
= Tg(x; + i).p (d\ )p (d~) · · · p (djy )'TJ 0 0B(G/Jf;+1). 
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