
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.A. Bergstra, J. Heering, J.W. Klop

Object-oriented algebraic specification:
proposal for a notation and 12 examples

Department of Computer Science Report CS-R8411 June

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam ,,

OBJECT-ORIENTED ALGEBRAIC SPECIFICATION: PROPOSAL FOR A NOTATION AND 12

EXAMPLES

J.A. BERGSTRA, J. HEERING, J.W. KLOP

Centre for Mathematics and Computer Science, Amsterdam

A notation is introduced for expressing the dynamic behaviour of conf igura­

tions of objects. At each instant of time a configuration is just a multi­

set of objects which themselves are points (values) from some algebraically

specified abstract data type. Several examples should convince the reader of

the attractive expressive power of our notation.

1 r 1, I r:1rz., bt:;J f' •. I J Pi ~ :>

.1980 MATHEMATICS SUBJECT CLASSIFICATION: 68C01, 68F20.

1982 CR CATEGORIES: F.1.1, F.3.2.

KEY WORDS & PHRASES: object-oriented specification, algebraic specification,

configuration transition system, transformation rule.

NOTE: This report will be submitted for publication elsewhere.

Report CS-R8411

Centre for Matnematics and Computer Science

P.O. ffox 4fJ7g, 1009 AB Amsterdam, The Netherlands

1. INTRODUCTION

This note has the following aim: to propose a notation compatible with the

well-known notations for algebraic data type specification which captures

the concept of an object.

The reasons for doing so are many; we list some reasons in arbitrary

order:

(a) There is an increasing interest in object-oriented approaches to soft­

ware design. See Cox [4], Jamsa [6], Jonkers [7] for some discussions of

object-oriented programming.

(b) The discussion on what constitutes an object and what constitutes a

1

value is not yet settled. See Cohen [3] and MacLennan [9] for two very inter­

esting expositions about the nature of objects.

(c) From the point of view of abstract data types (and their algebraic spe­

cification) it is hard to understand what an object is. The history of the

subject is confusing indeed. The Simula class is meant as a class of objects.

·Abstract data types in the ADJ tradition are modules of structured values.

In the survey by Goguen & Meseguer [5] an option to augment data types with

states is discussed, thus regaining some of the dynamic aspects that were

somehow lost in the "initial algebra = abstract data type" stage.

(d) We feel that a workable distinction between objects and values can be

made, taking algebraic abstract data type specifications as a point of de-

parture.

2. AN ORGANISATION OF NOTIONS

Let E be a (many-) sorted algebraic signature, let A e: Alg (E) be an algebra

of type (signature) E. A is called an abstract data type. For (algebraic)

specification of abstract data types, we refer to the literature collected

in Kutzler & Lichtenberger [8].

The signature Eis a triple $(E), lF(E), C(E) (sorts, functions and

constants) of E. Fors e:$(E), A is the interpretation of sorts in A.
s

An element of A will be called a point. A itself will also be called a s - s
data space. (See Figure 1.) A point p e: A may play two roles:

s

)

2

(i) p may represent a value,

(ii) p may represent an object (with a particular state).

I
Q

Figure 1.

A abstract data type

data spaces corresponding

to sorts s
1

,s
2

, ... ,si, ..

points of sort s . (in space A J
1 s.

1

A multi-set of objects (i.e. a multi-set of points seen as objects) is called

a configuration. Configurations exhibit dynamic behaviour. In particular,

configurations may perform (or allow) transformation steps

c ----<>C'.
R

Transformation steps are generated from transformation rules. In Section 3

we will present syntax and semantics of a notation for transformation rules.

Suppose that we know what a rule is for a given signature E. Let T be

a collection of transformation rules, A a E-algebra. Then the pair <A,T> de­

termines a configuration transition system.

If A= TI(E,E), i.e. (E,E) is an initial algebra specification of A,

and T is a collection of transformation rules for E, then

< (E, E) , T>

is an object-oriented algebraic specification which specifies a configuration

transition system.

3. TRANSFORMATION RULES

Informally, a transformation rule is a notation of the following kind:

ruLe name (parameter
[

configuration
List)

configuration

before transformation J
after transformation

3

Often it is convenient to divide the parameter list in three parts: one

part associated with the rule name, the other two parts consisting of input

values and output values respectively. This suggests the following notation:

ruLe name (par. List)

configuration before
transformation

configuration after
transformation

input values

output values

The input values constitute a multi-set of points which are consumed during

the transformation and the output values constitute a multi-set of points

·which are produced during the transformation. It is understood that a con­

figuration may be transformed inside a context (a larger configuration) .

So if c
1
c: c

1
UC

2
is a sub-configuration of c

1
UC

2
(where£;:;; denotes inclusion

between multi-sets and U their union), and

is an instance of the rule with name~' then c
1

uc
2

R ciuc
2

is a

transformation step. (For a more elaborate explanation, see Section 9.)

Example: an instantiation R of the transformation rule

add [:+y I y]

used in the example below, is:~ =+add[~]- (Here 3 is short for

(l+l)+l, etc.) In this example p, bare empty, and c
1

= {3}, Ci = {8}.

Now we have the transformation step

{3} ---i> {8}
R

4

and also e .. g. for c
2

{7,1}, the step

{3,7,1} __ _..,, {8, 7 ,l}.
R

SUchsteps can be composed into transformation sequences; e.g. if R' is the

instantiation: add [~3 1 6], we have

{3,7,1}
R

{8,7,1} ~> {8,13,1}.

Here we would like to point out the relation to Plotkin [10], which

addresses similar issues, where system behaviour is systematically descri­

bed by means of transition relations.

The following two very simple examples will help to further explain

the notation. Consider the following specification of the initial algebra A:

$: N
ER

lF:+:NxN+N
•:NxN+N

<t: 0 EN
lEN
J_ £ER

E x+O=x

x + (y + 1)

x•o = o
x•(y+l)

(x + y) + 1

x•y + x

Now A= T
1

(Z,E). We will now present two different collections T
1

and T
2

of transformation rules for configurations over A.

Tl ~ [:+1 I J Tl,l

add [x I Y J -- x+y Tl,2

,.
subtract [:+y ly] Tl,3

5

[
x I x +y + 1) subtract x l..

If one starts with the initial configuration {O}, then T
1

describes the be­

haviour of a single counter with some actions (transformations) on it; part

of this behaviour is as in Figure 2.

succ~ J
{l} '('- --: {2}~

subtract[Tf] subtract L*J
{5}

subtract[W J

Figure 2.

Further comments on the rules of T
1

:

(i) If one of the compartments of the 'matrix' is left empty, this means

that the empty multi-set ~ of values (or objects) is meant.

(ii) Note the difference between rule T
1 2

and the rule ,

add [x YI J ; -- x+y

in T
1 2

we focus on the transformation of one object, while in the displayed
I

rule the .fusion of two objects is embodied.

(iii) The rules T
113

and T
114

for subtraction exhibit polymorphism of types:

in T
113

the multi-set of output values is empty, while in T
114

an error

message is delivered.

6

In the second example the same initial algebra A as above is used. The

set T2 of transformation rules for configurations over A will describe the

behaviour of a fixed number n
0

of counters. The k-th counter (kE {O, .. ,n
0
-l})

with content x can conveniently be represented (coded) by the natural number

k+n
0
x. Below, k,e,m vary over {O, .•. ,n

0
-l}.

T2 create (k{ I x
k+ nox J
[k+n0x, e +n0y

J add(k,e,m)
m +no (x + y)

[k + n0x, e + noyl

J mult(k,e,m)
m + noxy

succ(k)
[k+n x

k + n: (x + 1) J
read(k) [k+v Ix J

[k + n0 Ix+ yJ x

J compare (k)
k + n

0
(x + y) 0

(k+n x x+y+l

J compare(k) O
k + nox 1

skip(k) [k +n0x I
J

copy(k,e)
[k+n x

k + n:X I e + n0X J

7

Comments: (.i) The rules T
216

and T
21 7

for compare(k) compare the content a

of counter k with some given number b; if a;;;.. b the output is 0, otherwise 1.

(ii) Note that the copy(k,e) rule can lead to confusion (in the sense that

two indiscernible objects may arise) if it is applied while an object of

the form e + nox is present (which can be avoided by first performing skip (e)

or read(e)).

(iii) The empty configuration·is an adequate initial configuration for this

system. Clearly T
2 1

_
9

offer only limited facilities (subtraction is absent
I

etc.). Moreover explicit naming might be a preferable alternative to the

coding trick, which represents "counter k with content x" as k + n
0
x, if na­

tural number objects are to be maintained.

4. THE STACK

In this section we consider object-oriented specifications of the stack.

We formulate four different specifications of the dynamic behaviour of a

single stack. This raises the following

Question: is it possible to express this rich variety of operational possi­

bilities without the object-oriented approach (i.e. in terms of the original

algebraic framework)?

We will leave this question unanswered.

$: A
s
ER
B

IF: push: Ax S + s

~: a
1

, .•. , an EA

1 E ER

$1 Es

TEB

FEB

E = $1

As data 'space we use TI o: ,pj) •

8

[
x I push

-- push(a,x)

[

push (a,x)
pop

x I a]

The initial configuration is{~}. At each time the configuration will be a

singleton.

[
x I push

-- push(a,x)

pop [~sh(a,x) I J

[

push (a,x)
top

push(a,x) a J

I~]
As in the previous case {~} should be taken as the initial configuration.

create[~
I]

push
[

x I a J
-- push(a,x)

. [push(a,x) pop
x

In the case of T
5

, pop is destructive on~- Hence after l has been observed

an empty stack must be created again. Care must be taken not to create two

9

or more stacks at the same time, because this would lead to non-deterministic

effects of pop.

In the next example T
6

we replace the create facility by a test on emp­

tiness of the stack.

[
x I a J push

--. push(a,x)

t
[

push (a,x)
emp y

push(a,x)

empty[:

[push (a,x)
pop

a

F J

IT]

la J

T6, 3

T6,4

In the case of T
6

, {~} is again an appropriate initial configuration. In or­

der to prevent loss of the stack it is useful to do pop only after a test on

' emptiness. If the stack is not empty, pop may be safely applied; otherwise

it should not be applied because in that case the object would be irreversi­

bly destroyed.

10

5. PROCESS ALGEBRA WITHOUT COMMUNICATION

Let (EPA' PA) be the following specification.

E
PA

PA

$: PR

lF: + : PR x PR + PR

• : PR x PR + PR

l I : PR x PR + PR

il. : PR x PR + PR

x+y=y+x

(x + y) + z x + (y + z)

x +x = x

(x + y) • z = x•z + y•z

(x•y) • z = x• (y• z)

xjjy = xl[_y + yli_ z

all.x = a•x

(a•x) ll. y = a ·cxllY>

(x +y) ll. z = xll_z + yll_z

Al

A2

A3

A4

AS

Ml

M2

M3

M4

Here 'a' varies over A= {a
1

, ... ,a }. We will write the initial algebra . n
T (E , PA) of this specification as A (+,•,II ,ll_). With A(+,•) we denote

I PA w w + •
the reduct of Aw(+,•, 11 , IL) after forgetting 11 and lL . Let EP~ be EPA minus

II ,ll_ and let BPA be Al-5. It can be shown (see Bergstra & Klop [2]) that
+ •

Aw(+,•) = TI(EP~ , BPA). The axiom system PA was introduced in [2] as the

core axiomatisation of process algebra.

When we take A (+, •) as a data space, and use the a e: A as rule names,
w

the following transformation rules (without inputs and outputs) reflect the

operational semantics of+ (choice, alternative composition) and •(product,

sequential composition) :

T7 1-4 ,

11

Now consider the configuration

The behaviour of this configuration corresponds to that of the process

Thus the formation of configurations is represented by the operation 11 of

PA. It can be concluded that process algebra is more denotational than object­

oriented system specification by means of transformation rules.

6. SETS OF INTEGERS

Let E be as follows:

$: N
SN
B
ER

lF: eq: N x N + B

ins: N x SN+ SN

del: N x SN+ SN

s: N + N

~: TEB

FEB

OEN

Ji' E SN

l E ER

As (conditional) equational specification of the data space we take:

E eq(0,0) = T

eq (0 , s (x)) F

eq (s (x) ,0) F

eq(s(x) ,s(y)) = eq(x,y)

ins(x,ins(x,X)) ins(x,X)

ins(x,ins(y,X)) ins (y, ins (x ,X))

del (x,Jl') = 0

12

del(x,ins(x,Y)) = del(x,Y)

eq(x,y) = F + del(x,ins(y,X)) ins(y,del(x,X))

We will now describe a configuration transformation system starting from {9.J}

as an initial configuration.

ins [X I a
ins(a,x)

del [x I a
del(a,x)

get (~ns (a,x) I a

get (-; ---1-l-1 -
elt [ins (a,x) I :

ins(a,X)

elt [del (a,.X)
del(a,X)

a

F

empty (-; --+-1-T -

[

ins (a,X)
empty

ins (a,x) F

]

]

J

J

)

]

J

J
Remark: note the implicit non-determinism present in T

813
• Namely, by the

instance

[

ins (a, ins (b,,0))
R = get

ins (b,,0)

we have the step {ins(a,ins(b,,0))}

a]

--..,;> {ins (b ,,0) } . Further, by E we have
R

13

ins(a,ins(b,~)) = ins(b,ins(a,~)), hence the configuration in the LHS of the

displayed step can also be transformed to {ins(a,~)} by the instance of T
8 3

: ,

R'
[
ins (b, ins (a,~))

get ins(a,~)

7. A SIMPLE EDITOR

This example has 'been taken f:ran Bergstra & Klop [1] . Let A = { a
1

, ••• , aJ be an

alphabet of symbols. Consider the following signature:

EF $: F
Edf
E

lF: *: FxF + F

edobj: FxF + Edf

4:: e: e: F

a e: F (all a e: A)

l e: E

OK e:E

with equations

x* e: x

e:*x x

(x*y) *z x* (y*z)

We use the initial algebra TI(EF,EF) as data space. With edobj(x,y) we de­

note a text x*y which is,being edited with the cursor between x and y.

The following set of rules T
9

presents an object-oriented specification

of an editor. Here it is assumed that there are some means to inspect the

object being edited; i.e. the fact that the user is watching the string

being edited, is not explicitly modeled by these transformation rules. A

possibility for modeling this would be to output x*_*y whenever edobj(x,y)

is formed, where ' ' is some new symbol denoting the cursor (by putting

x*_*y in.the lower-righthand corner of the appropriate rule).

14

T9
editor [I

x] T9,l
edobj(e:,x) OK

quit [edobj(x,y)

J T9 2
x*y

,

left [edobj(o,y)

J T9,3
edobj(e:,y) 1.

left [edobj(x*a,y)

J
(a e: A) T

edobj (x, a*y)
9,4,a

right [edobj (x ")] T9,5
edobj(x,e:) l

right [edobj (x,a*y)

J
(a e: A) T

edobj (x*a,y)
9 ,6, a

delete [edobj (x,a*y)

J
(a e: A) T

edobj(x,y)
9,7,a

delete [edobj (x ")

J T9,8
edobj(x,e:) ..L

. t [edobj (x,y) a] (a e: A) ins er T
edobj (x*a,y)

9,9,a

Taking care that at most one edobj is active at any time this will work.

Note that T
9 3

_
9

constitute the heart of the matter. These rules describe ,
the editing activities proper.

The next step is to describe a storage and retrieval mechanism for files.

Consider the following signature:

"

$: FD

F

FN

p

B

lF: present: FN x FD + FD

absent: FN x FD + FD

contents: FN x F x FD + FD

pair: FN x FD + P

*:FxF+F

*:FNxFN+FN

eq: FN x FN + B

~: Te: B

Fe: B

Jij e: FD

al, ••• , an e: F

bl I ••• I brn e: FN

e: e: F

"Ee: FN

variables: x,y,z e: F

u,v,w e: FN

X e: FD

(Conditional) equations:

EFSR
(x * y) *z x * (y * z)

x * e: = x

e: * x = x

u* (v * w) (u * v) *w

u*e u

£*u u

eq(£,£) = T

,, eq(bi * x, bi* y) eq(x,y)

(file directory)

(texts/files)

(file names)

(pairs)

(booleans)

(introduction of name)

(deletion of name)

15

(constructor of the file directories)

(concatenation on files)

(concatenation on names)

{equality test on names)

(true)

(false)

(empty structure)

(alphabet for file)

(alphabet for names)

(i E: { 1 I • • • I ffi})

16

eq(bi * X I bj * y)

eq(E:, bi* x)

eq (bi* x, £)

F

F

F (i~ j, i,je: {l, ... ,m})

(ie: {l, ... ,m})

(ie: {l, .•. ,m})

contents(u,x,contents(u,y,X)) = contents(u,x,X)

eq(u,v) = F + contents(u,x,contents(v,y,X))

contents(v,y,contents(u,x,X))

present(u,~) = contents(u,e:,~)
present(u,contents(u,x,X)) = contents(u,x,X)

eq(u,v) = F + present(u,contents(v,x,X))

contents(v,x,present(u,X))

absent(u,~) = ~

absent(u,contents(u,x,X)) = absent(u,X)

eq(u,v) = F + absent(u,contents(v,x,X))

contents(v,x,absent(u,X))

The initial algebra T1 (EFSR' EFSR) is an appropriate data space for the per­

manent environment of the editor. Working in

we can specify the system as follows (with {~} as an initial configuration) :

TlO . t d l absent(u,XJ u] in ro uce
contents(u,e:,X) OK

. t d [present (u,XJ u] in ro uce
present(u,X) J_

skip [present(u,X] u

J absent(u,X) OK

skip [absent (u,X] u] absent(u,X) J_

edit [contents (u ,x ,XJ u] ,,
edobj(e:,x),pair(u,X) OK

17

I

J
I [absent(u,X) u

edit Tl0,6
absent(u,X) 1

save [edobj(x,y), pair(u,X)] Tl0,7
contents (u, x * y, X)

(plus:) T9,3-9

8. A MULTI-USER ENVIRONMENT FOR THE SIMPLE EDITOR

We now consider the following organisation:

monitor 2
Figure 3.

At monitor k edit sessions act on an object edobj(k,x,y). A user must log in

at a terminal with a user name which should be known to the system (by having

been introduced at the central node) . Each user name is also the index of a

file in the permanent central file directory. This file is updated after

each edit session.

As before we start with a signature and a specification for the data

space. Like in example 7 we proceed in two phases. The central file directory

is introduced in the second phase.

First phase.

$: F

Edf
MN
AMO

PMO
B

UN
E

(files)
(files being edited)
(monitor names)
(active monitor objects)
(passive monitor objects)
(booleans)
(user names)
(signals)

18

EKME

.lF: *: FxF + F

*:UNxUN+UN

edobj : MN x F x F + Edf

amo: MN x UN + AMO

pmo: MN + PMO

eq: UN x UN + B

<f:: Te:B

Fe:B

e:e:F

al, .•• ,an e: F

£ e: UN

bl, ..• ,bm e: UN

l, ... ,ke:MN

l. e: E

OKe: E

Variables: x,y,z e: F

u,v,we: UN

k e: MN

(x * y) * z x * (y * z)

e;*X= X

u * (v * w) (u * v) * w

u * E' u

£ * u u

eq(£,€) = T

eq(bi *x, bi *y) = eq(x,y)

eq(bi * x, bj * y) = F

eq(E', bi* x)

eq(bi*x,€)

F

F

(ie:{l, ••• ,m})

(ir!j, i,je:{l, ..• ,m})

(i e: {l, ... ,m})

(ie: {l, ... ,m})

As before we work in TI(EKME' EKME). As initial configuration we assume

{pmo (1), •.• ,pmo (k)}.

The first system description is T
11

. The transition rules T1114_10 describe

19

the actual working of the editor. The other rules will be replaced in the

second phase.

Tll
login (k) [pmo(kl u, x

J
Tll,l

amo(k,u), edobj(k,e:,x) OK

login(kl [amo(k,ul.

amo (k, u) 11 J
Tll,2

logout(kl[amo(k,ul, edobj(k,x,y)

J
Tll,3

pmo(k) x*y

logout(kl(""°'kl
pmo(k) I~ l Tll,4

left.(k) [edobj (k,x *a, yl l T
edobj (k,x,a * y) 11,5,a

left(k) [edobj (k,o,xl l Tll,6
edobj(k,e:,x) .L

right (k) [edobj (k,x ,a* yl

J
T

edobj (k,x * a,y)
11,7,a

right(k) [edobj (k,x,o I l Tll,8
edobj(k,x,e:) J_

delete (kl [edobj (k,x,a * yl] T
edobj(k,x,y)

11,9,a

delete(kl [edobj(k,x,<I

edobj(k,x,e:) J_ l Tll,10

,, . (kl [edobj (k,x, yl · a

J
T insert

edobj (k,x * a,y)
11,11,a

20

Notice that the monitor objects prevent two or more users from being logged

in at the same monitor simultaneously.

Second phase.

In the second phase we add a central file directory for maintaining user na­

mes and for the storage and retrieval of each user's own file.

We need a new signature:

EFD $: F
UN
FD
B

]F: known: UN xFD + FD

unknown: UN x FD + FD

active: UNxFD+FD

silent: UNxFxFD + FD

eq: UN xUN + B

<t: Te: B

Fe: B

f!J e: FD

Variables: x,y,z e:F

u,v,we:UN

X,Y,Ze:FD

active (u, active (u,X)) active(u,X)

active (u, active (v ,X)) active(v, active(u,X))

active(u, silent(u,x,X)) = active(u,X)

eq(u,v) = F + active(u, silent(v,x,X)) silent(v,x, active(v,X))

silent(u,x, active(u,X)) = silent(u,x,X)

silent(u,x, silent(u,y,X)) = silent(u,x,X)

eq(u,v) = F + silent(u,x, silent(v,y,X)) silent(v,y,silent(u,x,X))

known(v,f!J) = silent(v,e:,f!J)

known(u,active(u,X)) = active(u,X)

21

known(u, silent(u,x,X)) = silent(u,x,X)

eq(u,v) F + known(u, active(v,X)) = active(v, known(u,X))

eq(u,v) = F + known(u,silent(v,x,X)) = silent(v,x,known(u,x,X))

unknown(u,~) = ~

unknown (v, active (u,X)) unknown(u,X)

unknown(u, silent(u,x,X)) = unknown(u,X)

eq(u,v) F + unknown(u, active(v,X)) = active(v, unknown(u,X))

eq(u,v) F + unknown (u, silent (v ,x ,X)) silent(v,x,unknown(u,X))

Now let

and

EFD = E U E •
KME KME FD

FD FD
.We will work in the data space TI O:KME' EKME) •

Conunent. Some remarks about EFD may be in order. Let z be the "current file

directory". If z = active(u,X), then this expresses that a user with name u

is active on some monitor. If Z = known(u,X) this expresses that user name u

is known to z. Similarly if z unknown(u,X) this expresses that u is not

known to z. Finally, z = silent(u,x,X) expresses the fact that the user with

name u is not active and that his (her) file is presently containing the

text x.

We can now present example T
12

: a multi-user environment for the simple

editor. The system T
12

contains T
1114

_
10

(the standard editing operations)

and in addition the following transformation rules:

Tl2
introduce [unknown{u,X) u l silent(u,E,X)

introduce [known{u,X) l known(u,X) l.

"

22

omit

omit

[

known (u,X)

unknown(u,X)

unknown(u,X)

unknown(u,X)

u

J_

pmo(k), ~ilent(u,x,X)

l
l

amo(k,u), edobj(k,£,x), active(u,X)

login(k) [
active(u,X) u

active(u,X) .L l
login(k) [

unknown(u,X) u

unknown(u,X) .L

login(k)[amo(k,vl u

· amo(k,v) .L l
logout(k)[amo(k,u), edobj(k,x,y), X

pmo(k), silent(u, x * y, X)

logout(k)[-(kl
pmo(k) I~ l

display(k)[edobj(k,x,y)
edobj(k,x,y) x*y l

l

Remarks. (a) Notice that a user can only be omitted when not active. An ac­

tive user could logout as if nothing has happened and thereafter his or her

name would be known to the system again.

(b) It is entirely feasible to augment this specification with a mechanism

for passwords or other protection mechanisms.

23

9. SEMANTICAL CONSIDERATIONS

In Section 3 we have given an informal explanation of the semantics of trans­

formation rules. In this section we will elaborate that explanation, in parti­

cular, concerning the mechanism by which the transformation rules generate

the transformation steps

C __ _..,, C'
R

where C,C' are configu:rrations, i.e. multisets of obje0ts.

Let A e: Alg (E) be a given data space; then we may write a transformation

rule, written above as

in simplified notation as follows:

+
. Here v

+
r(v,V,W): X Y.

vl, ... ,vn are E-terms and V,W,X,Y are finite multisets of E-terms .

These terms may contain free variables and matching works as usual in term

rewrite rules. X,Y themselves are not yet configurations of objects in A;

they become so after dividing out therm equality in A. Further, V,W denote

multisets of input and output values - properly speaking this is again true

after dividing out term equality. The vl, ... ,vn are parameters of the rule

names.

Let us introduce a·constant ~for the empty configuration and an opera­

tor U for the union of configurations. The following axioms are obviously

valid:

XUY

XU~

YUX

x
(X U Y) U Z = X U (Y U Z) •

Note that U is represented in process algebra [2] by II, the merge operator.

This connection is not quite smooth: there seems to be a difference in level

of abstraction between process algebra and behavioural specification via

transformation rules.

The~~ropagation of transformations through larger configurations is as

follows:

24

+
r(v,V,W): X ---"O>Y

+
r(v,V,W): XUZ ---rYu Z

Writing [t] for the interpretation of the E -term t in the data space A, and

[XD = {[t] I t £ X} for the multiset of objects in A denoted by the multiset

of E-terms X, we can now state more precisely what a transformation step is:

+
if R r(v,V,W): XU Z ---r Y U Z is obtained from the instance

+
r(v,V,W): X --~ Y of some transformation rule, then R allows the trans

formation step of configuration C = [XU ZD to C' = [YU Z]; notation:

c __, c' . (See Figure 4.)
R

Such transformation steps can be activated sequentially. In fact, the

situation is similar to the case of term rewriting modulo some given con­

gruence (apart from the multiset feature) .

data space A

c•

Figure 4.

transformation step R

A , data space corresponding
sl to sort s1

In other words, the transformation step C R C' where C = {p
1

,p
2

, ... } is

obtained by choosing a particular representation of c, e.g. {t
1
,t

2
, ... } such

that [t. D
l

p., and applying some transformation rule on it as explained, to
l

transform this representation into another (of C').

In an intuitive sense, such a representation of a configuration C can be

considered as an aspect of c. E.g. in the last example (T
12

>, known(v,~) is

the file directory X = ~ revealing as an aspect that it knows user name v

(usually such a fact would have type boolean, here it is of type file direc­

tory). And in silent(v,£,~) the same X =~reveals another aspect. The trans­

formation rules, then, operate on such aspects.

10. CONCLUDING REMARKS

We feel' that the object-oriented notation explained above captures at least

a useful fragment of "object-oriented thinking". Clearly we have to pay a

25

price in terms of manageability of the transformation rules. One can, in

view of Section 9, add$ and U, and view the transformation rules as ordi­

nary rewrite rules. From the point of view of algebraic specifications, ad­

ding$, uand, in 9eneral,a type of configurations, leads to the problem that

configurations have no fixed type. Any object can be an element of a confi­

guration. In fact, $ and U are polymorphic operations and this explains

their flexibility which is vital for modular and incremental systems design.

REFERENCES

[l] BERGSTRA, J.A. & J.W. KLOP, Algebraisch prograI111T1eren, (in Dutch), con­
tained in the lecture notes for the PAO course on software engi­
neering, Centrum voor Wiskunde en Informatica, Amsterdam 1984.

[2] BERGSTRA, J.A. & J.W. KLOP, Pr>ocess algebra for communication and
mutual exclusion, Report IW218/83, Mathematisch Centrum, Amsterdam
1983.

[3] COHEN, A.T., Data abstraction, data encapsulation and object-oriented
prograI111T1ing, Sigplan Notices, Vol.19, No.l (1984).

[4] cox, B.J., The object-oriented precompiler, Sigplan Notices, Vol.18,
No.l (1983).

[5] GOGUEN, J.A. & J. MESEGUER, An initiality primer, to appear in:
Application of Algebra to Language Definition and Compilation
(eds.: M. Nivat and J. Reynolds), North-Holland 1983.

[6] JAMSA, K.A., Object-oriented design versus structured design, a stu­
dents perspective, Software Engineering notes, Vol.9, No.l (1984)

[7] JONKERS, H.B.M., On the design of an object-oriented design language,
paper presented at the Colloquium 'Van Specificatie tot Implemen­
tatie', Centrum voor Wiskunde en Informatica, Amsterdam 1983.

[8] KUTZLER, B. & F. LICHTENBERGER, Bibliography on abstract data types,
Springer Informatik-Fachberichte, No.68, 1983.

[9] MACLENNAN, B.J., Values and objects in prograI111T1ing languages, Sigplan
Notices, Vol.17, No.2 (1982).

[10] PLOTKIN, G.D., A structural approach to operational semantics, Report
Daimi FN-19, Computer science Dept., Aarhus University, Denmark 1981.

3 1 JULI 1984

