
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.A. Bergstra, J.W. Klop, J.V. Tucker

Process algebra with asynchronous communication mechanisms

Department of Computer Science Report CS-R8410 June

11111111111111111~~
1

lll~'1mll~~[~1i11111111111111111
3 0054 00091 1751

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam ,,

PROCESS ALGEBRA WITH ASYNCHRONOUS COMMUNICATION MECHANISMS

J.A. BERGSTRA, J.W. KLOP

Centre for Mathematics and Computer Science, Amsterdam

J. V. TUCKER

University of Leeds

Algebraic specifications are given for a stimulus-response mechanism, for

asynchronous non-order-preserving send and receive actions and for asynchro­

nous order-preserving send and receive statements.

(,,1 i= //, b q t=:p ..
1

bC(f J2., bq ':>

1980 MATHEMATICS SUBJECT CLASSIFICATION: 68Bl0, 68COI, 68D25, 68F20.

1982 CR CATEGORIES: F.1.1, F.1.2, F.3.2, F.4.3.

KEY WORDS & PHRASES: concurrency, connnunicating processes, asynchronous

connnunication, stimulus-response mechanis·m.

NOTE: This report will be submitted for publication elsewhere.

Report CS-R8410

Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam., The Netherlands

1

INTRODUCTION

The present paper is part of a series of reports on process algebra which in­

cludes [6,7]. In [7], the starting point of this series, axiom systems PA and

ACP are defined, the first describing process algebra for 'free merge', that

is process co-operation consisting of mere interleaving of atomic actions

without communication, the second (ACP} for Algebra of Communicating Proces­

ses describing process co-operation with communication.

This paper can be read independently though knowledge of the part of [7]

concerning PA and ACP may be helpful. We also refer to [7] for a discussion

of related approaches to the algebraic theory of concurrency, such as Milner's

CCS [23] and SCCS [24].

The communication in ACP is, like in ccs, synchronous since it is based

on action sharing, i.e. the simultaneous execution of so-called communication

actions. In the present paper we take up the issue of asynchronous communica­

tion which is a mechanism of interest in programming languages such as CHILL

[9] •

Although we will be more explicit below, a word of clarification as re­

gards terminology may be in order here: while the commum:cation in CCS or ACP

is synchronous, the co-operation between processes in these systems is asyn­

chronous, as no global clock is present like in SCCS.

It is possible to define the asynchronous communication mechanisms as

introduced below in terms of synchronous communication as in CCS or ACP.

However, such an implementation of asynchronous communication by synchronous

communication would be more involved than the syntax and corresponding axio­

matisations which are presented below. These axiomatisations concern

(i} mail via a queue-Uke channel

(ii) mail via a bag-like channel

(iii) a causality or stimulus-response mechanism.

The contents of this paper are as follows:

Section 1 introduces the axiom system PA
0

describing the free merge of pro­

cesses; o is a constant for deadlock or failure. This is the axiom system

underlying the three axiom systems for (i}-(iii} above. The system PA
0

was

introduced first in [7].

Section 2 (Co-operation and communication} fixes our terminology, and attempts

2

a classification according to this terminology of various communication for­

mats as in CCS, CSP, MEIJE, SCCS, CHILL, etc.

Section 3 presents the syntax and axioms for (i) and (ii) above.

Section 4 (Causality) introduces an axiomatisation for the mechanism of (iii).

1. PRELIMINARIES: PA
0

As a point of departure of this exposition let us consider the following

axiom system PA
0

(see Table 1 below). A is a finite set of atomic actions,

o EA represents deadlock or failure. There are four operators on processes:

+ alternative composition (sum)

sequential composition (product)

11 paraLLeL composition (merge)

lL Left-merge

The functionality of each of these binary operators is P x P + P, where P is

the class of processes. All atomic actions are processes themselves.

The axiom system PA
0

(see [7] for PA; the axioms for o are also in [7])

is this:

PA
0 Al x+y = y+x

(x+y)+z x+(y+z) A2

x + x = x A3

x(y + z) xy + xz A4

(xy)z = x(yz) A5

x + 0 = x A6

OX = 0 A7

x 11 y = x u_ y + y u_ x Ml

all x = ax M2

(ax)ll_y = a(x!lyJ M3

(x+y)ll_z = xllz + yll_z M4

,,
Table 1.

Here x,y,z range over P and 'a' ranges over A. Products x•y are frequently

written as xy. Let E be the signature of PA
0

:
PA

0

$: p

JF: +:PxP+P

<!::

":PxP+P

!l:PxP+P

li_:PxP+P

a e: P (for all a e: A)

(sorts)

(functions)

(constants)

There are at least two ways to consider PA
0

:

(i) As an initial algebra specification in the sense of ADJ [l] for the

structure

of finite processes.

(ii) As an axiomatisation of process algebras, i.e. as a definition of the

class

Alg(E ,PA
0
).

PA
0

Let 7> I= PA
0

be any process algebra (in the sense of PA
0
). For p e: 7> and

a. e:A* U Aw, the set of finite or infinite sequences of actions from A, we

will define what it means for a. to be a trace of p:

3

Definition. (i) If a.= a
1

*a
2

* •.. *an, where ai e:A (i=l, ... ,n) and* denotes

concatenation, then a. is a trace of p if there are p
1

, ... ,pri, q
1

, ... ,gn,~+l

e: 7> such that

(ii) If a.

that

p

a +q
n n

a
1

*a
2

* ... then we call a. a trace of p if there are pi,qi such

a . p. +l + q . (i > 1) .
l l l

4

If p EP has an infinite trace, it is an infinite process; otherwise it

is finite. Clearly, the initial algebra I(PA
0

) contains finite processes on­

ly.

There are various ways to construct process algebras that contain infi­

nite processes. The synchronisation trees (modulo observational equivalence

or bisimulation) from Milner [23] (see also Winskel [31]) constitute such a

model if one considers the degenerate case of absence of synchronisation

primitives. In De Bakker & Zucker [3,4] a topological construction is given

via metric spaces, and in Bergstra & Klop [7] an algebraic construction using

projective limits. Bergstra, Klop & Tucker [8] describes a direct algebraic

construction by means of adjoining solutions of ,suitable fixed point equa­

tions.

One may imagine many more model constructions; therefore we feel that

process algebra constitutes an approach which is both algebraic and axioma­

tic.

2. CO-OPERATION AND COMMUNICATION

From an intuitive point of view processes are configurations of atomic ac­

tions. Execution of a process works as follows: choose a first action, per­

form it, then choose a second action possible after the first one and per­

form it, and so on. Co-operation of processes p and q denotes their paral­

lel execution. Two regimes of co-operation can be distinguished:

synchronous co-operation,

for instance in SCCS [14,24], ASP [7], MEIJE [2,28]: the regime

of synchronous co-operation allows p and q to be executed in par­

allel with the same speed and timed on the same clock.

asynchronous co-operation,

for instance in CSP [15-17], CCS [23], ACP [7] and PA0 above.

Asynchronous co-operation allows p and q to proceed with their

own speed and timed by independent clocks only restricted by pos­

sible mutual interactions (for CSP, CCS, ACP; in PA
0

there are no

interactions) .

With cpmmunication we denote interaction between atomic actions of processes.

Again two regimes can be distinguished:

5

synchronous communication,

for instance in CSP, ccs, Ada: communication between actions a and

b can take place only if both are performed simultaneously. This

type of communication is often called hand shaking.

asynchronous communication,

for instance in CHILL [9]: send and receive statements. Communica­

tion between axtions·a and bis consistent with b being performed

after a.

Combining the above regimes one arrives at four possible combinations which

can be used to roughly classify theoretical models of concurrency:

(AS) asynchronous co-operation + synchronous communication:

CCS, CSP, Ada, Petri nets, ACP, uniform processes of [3,4].

(SS) synchronous co-operation + ~synchronous communication:

sees, MEIJE, ASP, ASCCS.

(SA) synchronous co-operation + asynchronous communication:

no example known to us.

(AA) asynchronous co-operation + asynchronous communication:

CHILL, data flow networks, restoring circuit logic.

Remark. (i) It might be puzzling why ASCCS, which gives according to Milner

[24] a framework for 'asynchronous processes', is classified under (SS).

The reason is that it i.s a subcalculus of SCCS, hence also employs synchro­

nous co-operation and synchronous communication - even though asynchronously

co-operating processes may be interpreted in ASCCS.

(ii) Restoring circuit logic (see [13, 27, 29]) is intended to describe the

behaviour of circuits regardless of delays in the connecting wires. This

delay insensitivity causes the classification under (AA) •

The combinations (AS) and (SS) have been extensively studied in process

theory; we refer to Austry & Boudol [2] and De Simone [28] for a comparison

between MEIJE and sees, to Milner [23,24] and Hennessy [14] for ccs and

SCCS, to Bergstra & Klop [7] for ACP and ASP, to De Bakker & Zucker [3,4] for

uniform processes, and to Brookes [11,12], Winskel [30] for discussions

about and comparisons between CSP and CCS. For CSP see Hoare [15,16] and
•

Hoare e.a. [17].

6

The combination (AA) is studied for instance using temporal logic in

Pnueli [26], Lamport [21] and Koymans, Vytopil & de Roever [19], Kuiper &

de Roever [20]. Moreover, trace theories are used to describe the semantics

of data flow networks (see Kahn [18], Brock & Ackerman [10]) and the seman­

tics of restoring circuit logic (see Ebergen [13], Rem [27] and van de Snep­

scheut [29]).

A discussion of the case (AA) in an algebraic setting is absent to our

knowledge. In Milne [22] and Bergstra & Klop [6] the (AA) case is reduced

to the (AS) case for switching resp. data flow. We are not aware of any "di­

rect" algebraic descriptions of the (AA) case.

We will now proceed with the description of three mechanisms for asyn­

chronous communication (consistent with asynchronous co-operation).

One may im~gine a wild variety of different mechanisms for asynchronous com­

munication. Three typical mechanisms which are strongly related to one another

are

(i) Mail via an order preserving channel (queue)

(ii) Mail through a non-order-preserving channel (bag)

(iii) Causality ("action a causes action b"J.

For these cases we will present syntax in the form of a special purpose alpha­

bet of atomic actions as well as an appropriate encapsulation operator which

detrmines the semantics of the mechanism. In all three cases the semantics

is given by an axiom system which extends the axiom system PA of Section 1.

The first two cases will be the subject of Section 3, the third case is treated

in Section 4.

3 . MAIL VIA A CHANNEL

We will treat the cases of mail via an order-preserving channel and mail via

a non-order-preserving channel together since the syntax and axioms proposed

for these mechanisms coincide to a large extent.

3.1. The alphabet. Let B be a finite set of actions, D a finite set of data,

c a special symbol (for 'channel') . For all d E D there are actions

7

ctd (send d via channel c: potential action)

c'lt d (send d via c: past action)

c + d (receive d via c: potential action)

c .a. d (receive d via c: past action)

The distinction between c t d and c 1t d may be slightly unusual; c t d indicates

an intended (potential, future) action while c ta denotes a realised (actual,

past) .action. Likewise for c + d and c .ii.a.

(Note that this distinction is implicitly also present in ACP: there a

communication has the form alb = c. Now the communication actions can be seen

as potential actions, while the communication result c is an actual action.)

Notation: c't D = {c t d I d ED}. Likewise for c'it'D, etc.

The actions b E B are not related to channel c. (Although we specify syntax

and axioms for one channel c only, the presence of several channels c,c', ...

is entirely unproblematic; in that case, B may also contain actions c't d etc.

since also these are not related to channel c.)

Now we define the alphabet to be

A = B u {o} u (ctD) U (cftD) U (c+D) U (c~D) .

(Note that the cardinality # (A) = # (B) + 4. # (D) + 1.)

3.2. Encapsulation. Here the situation diverges into the cases 'mail via an

order-preserving channel' (3.2.1) and 'mail via an non-order-preserving chan-

nel' (3.2.2).

3. 2 .1. Let D* be the set of sequences a of data d E D. The empty sequence is

denoted by E. Concatenation of sequences o,T is denoted as a *T; especially

if a = <a
1

, ... ,dn> (n ;;;-. 0) then d *a

Further, if n ;;i-1, last(o) = d .
n

<a,a
1

, ... ,dn>' and a *d = <a
1

, .. ,dn 1 d>.

Now for each a eD* there is an encapsulation operator µ
0

: r + r where
c

r is the domain of processes (i.e. the elements of a process algebra satis-
0

fying the axioms below). If x is a process, then µ {x) denotes the process
c

obtained by requiring that the channel c is initially containing a data se-

quence a and that no communications with c are performed outside x.
a

Phrased otherwise: µ (x) is the result of partial execution of x w.r.t. c
c

8

with initial contents a. (Here 'execution' refers to the transformation of a

potential action like c t d into a past action c 1l'd; moreover such a transfor­

mation has a side-effect on the contents of c as specified by the axioms be­

low.} Another way of viewing the difference between c t d and c "ftd, etc. and

between x and µ
0

(x) is in the distinction 'internal vs. external': the former
c

(c t d, x} is the internal view, the latter (c 1l'd, µ
0

(x)) the external view.
c

We will return to this matter.in Remark 4.7 below.

3.2.2. For the bag-like channel the situation is very much the same except

that a data sequence a is now a multiset of data. We denote a finite multi­

set of de: D by 'M'. Now for all finite multisets M over D we introduce again

an encapsulation or partial execution operator

3.3. The signature. Although the various ingredients of the signature, both

for the case of mail via a queue-like channel and via a bag-like channel,

have now all been introduced, we will display these signatures once more in

Table 2:

+ alternative composition (sum)

. sequential composition (product)

II parallel composition (merge)

lL left-merge

0 dead-lock or failure

b atomic action e: B, independent from c

c t d send d via channel c; internal view

c 1td send d via channel c; external view

c+d receive d via c; internal view

c .JJ.d receive d via c; external view

a encapsulation w.r.t. queue-like channel c µc

M
encapsulation µc w.r.t. bag-like channel c

Table 2.

3.4. Semantics. Suppose a set B of actions, a set D of data and a channel

name c are given. Then we have the following axiom systems:

(J

PA
0

(µc' B, D) in Table 3 (next page)

M
PA

0
(µc' B, D) in Table 4

9

for 'mail via a queue-like channel' and 'mail via a bag-like channel', res­

pectively. Here 'a' varies over the alphabet A = B U { o} U ctD U c1tD U c+D U c.U.D,

and 'e' varies over E = B U {o} U c11D U cJj.D.
cr M

The axiom systems PA
0

(µc 1 B,D) and PA
0

(µc 1 B,D) determine initial algebras

A (+,•,ll,[J_,o,µ 0 ,B,D)
w c

M
A (+,•,ll,ll_,o,µ ,B,D)

w c

respectively. These are just enrichments of the initial algebra

A (+,•,ll,ll_,o)
w

of PA
0

. Using a projective limit construction as in [7], or a topological

completion as in [3,4], one finds larger models

co (J

A (+,•,jl,ll_,o,µ ,B,D)
c

co M
A (+,•,ll,ll_-,o,µ ,B,D)

c

with infinite processes, in which all guarded systems of equations can be

solved.

10

Table 3.

x+y = y+x

(x+y)+z = x+(y+z)

x + x = x

(x+y)z=xz+yz

(xy)z = x(yz)

x + 0 = x

ox = 0

xlly = xlly + yll_x

all x = ax

ax IL y = a (x II y)

(x+y)!Lz = x!Lz + y!Lz

µ
0

(e) = e
·c

µ
0

(ex) = e.µ
0

(x)
c c

µ
0

(ctd) = c1td
c
cr d*cr

µ (ctd. x) = c1l'd. µ (x)
c c
cr*d

µ (c+d) = c.Ud
c
cr*d · cr

µ (c+d.x)=c~d.µ(x)
c c

µ
0

(c+d) = o if d ~ last(cr)
c

or cr = e:

µ
0

(c+d. x) = o if d ~ last(cr)
c

µcr(x + y) = µcr(x) + µcr(y)
c c c

(ae:A, ee:E, cre:D*)

or cr = e:

Al

A2

A3

A4

A5

A6

A7

Ml

M2

M3

M4

MOl

M02

M03

M04

M05

M06

M07

M08

M09

x+y = y+x

(x+y)+z = x+(y+z)

x + x = x

(x+y)z=xz+yz

(xy)z = x(yz)

x + 0 = x

ox = 0

xlly = xlly + Yllx

all x = ax

ax lL y = a (x II y)

(x+y)[Lz = xllz + y[l_z

M
µ (e) = e

c
M M

µ (ex) = e.µ (x)
c c
M

µ (ctd) = c1td
c
M

µ (ctd • x) = c1td •
c

µMU{d}(c+d) = c~d
c

µMU {d} (x)
c

MU{d-} M
µ (c+d • x) = c.ij.d • µ (x)

c c

µM(c+d) = o if d t M
c

µ M (et d • x) = o if d i M
c
M M M

µ(x+y)=µ(x)+µ(y)
c c c

Table 4. (a e: A, e e: E, M a multiset over 0)

Al

A2

A3

A4

A5

A6

A7

Ml

M2

M3

M4

MNOl

MN02

MN03

MN04

MN05

MN06

MN07

MN08

MN09

11

12

3.5. Examples. We will now give some examples both for the case of an order­

preserving channel and the case of a non-order-preserving channel.

Example (1), for a q~eue-like channel. Consider the following very simple

data flow network:

c2

Figure 1.

cl q

with actions

rp(d) (processor f reads value d at p)

wq(d) (processor g writes d at port q)

There are two order-preserving channels cl and c2. Node f satisfies

f l (rp(d) + c2+d) • cltd •f.
d ED

So, node f merges the inputs from p and c2 and emits these through cl.

Node g is defined by

g I cl+d • (i • c2+a. (d) + i • wq (d)) • g
dED

(The effect of the internal step i is to make the choice nondeterministic.)

Here a.: D + D is a transformation of the data; g obtains d from cl and then

chooses whether to 'recycle' a.(d) via c2 or to output d via port q.

The network N is now described by

E E
N µcl µ c2 (f II g) ·

Note that the actions cl+d, cl+d, cl~d and cltd are unrelated to c2 and
(J

thereby work as b's in the definition for µc
2

. Conversely, the send and re-

ceive actions for c2 are unrelated to cl.

Example (2), for a queue-like channel. Consider the very simple communication

protoc61 as in Figure 2:

13

T:

cG
,, : 6 :;.. >

Figure 2. p cl q

s r rp(d)•cltd•c2+ack•s l
de:D

R = r cl+d•wq(d)•c2tack•R l
de:D

£ £
(S II R) • T µcl µc2

In fact the entire protocol T satisfies the following recursion equation (as
cr

one easily computes from the axioms in PA
0

(µc,B,D)):

T l rp(d)• cl1ta•cl.jj.d•wq(d) •c21l'ack•c2Jj.ack•T.
de:D

Example (3) , for a bag-like channel:

(i)

(ii)

(iii)

(iv)

(v)

µ,0 (ctd • c+d)
.c

= c1td • c.]!d

µ,0 (ctd • r chi) = c1td • cJJ.d
c l

ue:D

µ,0 (ctd II c+d) c1td . c.U.d
c

µ,0 (ctdl . ctd2 . r c+u • l c+u)
c l

ue:D ue:D

c1l'dl . c1td2 . (cJJ.dl . cJld2 + cJJ.d2 . c.J!dl)

Let D Dl LJ D2, Dl n D2 = ,0 ,

and H (l cl+d • c2td + l cl+d • c3td] • H
de: Dl de: D2

Then H separates the Dl messages from

th~ D2 messages.

c2

cl

Figure 3. c3

14

(vi) Let dl f d2. Then:

µ~(ctdl • ctd2) = ctdl • o
c

µ~(ctdl II ctd2) = ctdl • S
c

l (c+d2 lL ctdl) o.
c

3.6. Remark. Notice that there is no guarantee that after a send action ctd

the ~orresponding receive action ctd will ever be performed. Thus the send

action enables the receive action but does not force its execution. This

holds for both mechanisms: queue-like channel and bag-like channel.

3.7. Remark. In the tele-communications area the design language SDL, used

by CCITT, is quite popular. SDL mainly consists of a format for graphical

notations for concurrent system descriptions with a send and receive mecha­

nism. SDL leaves open the nature of the transmission protocol that supports

the send and receive instructions. In SDL, example 3.5(2) can be depicted as

follows:

~ ~ denotes an independent action

~~~~> denotes a send action 

> denotes a receive action 

Figure 4. 

Here it is assumed that in each cycle d receives a value at rp(d) and cl+d 

respectively. µ-Encapsulation of the protocol leads to the following SDL des­

cription: 

rp(d) c21l'ack 

Figure 5.'' 



15 

3.8. Remark on synchronous communication. 

A syntax for synchronous communication along a channel c, inspired by CSP and 

CCS, would be: 

c!d 

c?d 

c#d 

send d 

receive d 

communicate d 

In ACP [7] one introduces a communication function I on actions. In this par­

ticular example, I would work as follows: 

c!d l c?d = cffd. 

Note: (i) We do not use variables; i.e. c?x•P is modeled by 

(ii) ,This differs from CCS where one would have 

C (d} l ;; (d} = lo 

4. CAUSALITY 

c?d"P[d/x]. 

In the previous section, the action c~d is the 'actualised form' of ctd and 

likewise c~d is c+d after execution or actualisation. Moreover, a causal effect 

is involved: ctd causes c+d. These concepts will be made explicit in the pre-

sent section. 

4.1. Actualisation. On the alphabet A we postulate an operator ~: A + A, such 

that ~ = o and ~ = a f~r all a e: A. The action a is called the actualisation 

of a. Writing B = A -A, where A= {a l a e: A}, A is partitioned as follows: 

A BUA. 

4.2. Causal relations. On the set B of not yet completed actions we have a bi­

nary relation R encoding the causal relations between such actions. Instead of 

(a,b) e: R we write: 

a 11- b, 

in words: "a causes b". Further notations are: 

Dom(R) for the domain of R, i.e. Dom(R) = {b I 3 b' b' lrb}, and 

Ran(R) for the range of R, i.e. Ran(R) = {b I 3 b' b' H-b}. 
~ 

So Dom(R) contains the 'causes' or 'stimuli' and Ran(R) the 'effects' or 'res-



16 

ponses'. Note that an action can be both a cause and an effect. Finally, 

R(b) ~ {b' I blrb'}, the set of effects of b. 

4.3. Encapsulation. Let be: B. Performing b has two consequences: bis changed 

into S, and all b' e:R(b) (i.e. caused by b) are now enabled. The operator 

which takes care of the execution of b (or in another phrasing, which changes 

the view from 'internal' to 'external') and which takes into account which 

actions are enabled, is the encapsulation operator yE. Here E<;;;;;B. The intuitive 

meaning of YE is: yE(x) is the process where all causal effects take place 

within x, i.e. actions within x are neither enabled nor disabled by actions 

outside x and conversely. Moreover, initially the actions e: E are enabled. 

4.4. Semantics. We will now give axioms for the operations yE. On the initial 

algebra I(PA0 ) these equations, in Table 5 below, specify an enrichment with 

operators YE; in the general case the equations are to be seen as additional 

axioms. As with the previous 'axiomatisations for the more important model con­

structions it is clear how to enrich these with an interpretation of the ope-
E 

rators y . 

PA
0

(y,A} over atoms A with causality relation R 

Table 5. 

x+y = y+x 
(x+y)+z x+(y+z} 
x + x = x 
(x+y)z=xz+yz 
(xy)z = x(yz) 
x + 0 = x 
ox = 0 
xlly = x[Ly + y[Lx 
all_y = ay 
ax lL y = a ( x II y) 
(x + y} ll_z = xll_z + yll_z 

6 = 0 

A a = a 
E y (a) a if ae:E or at Ran(R) 

E y (a) o if a i E and ae: Ran(R) 

E( ) E() (E-{a})UR(a)() y ax = y a • y x 

E E E 
y (x+y) = y (x) + y (y) 

Al 
A2 
A3 
A4 
A5 
A6 
A7 
Ml 
M2 
M3 
M4 

Gl 

G2 

G3 

G4 

G5 

G6 



4.5. Example .. (i) suppose alrd, clrb (see Figure 6 (a)). Then 

·/'cabllcdl = /lcaCbllcd)) + y,0(c(dllab)) = ay{d} Cbllcd) + 

A {d} II A A {d,b} 
ay (bed+ c (d b)) + •.• = a (o + cy (db+ bd)) + ... = 

(ii) suppose <lira, blrc (see F~gure 6(b)). Then lcabllcd) o. 

a c a c 

b d b d 

Figure 6. (a) (b) 

17 

Note that circular causal relations (such as in this example (ii)) yield 

deadlock. Here an action a must be considered to cause also the actions ac­

.cessible from a ('later' than a). (Indeed, we have a•b =y,0Callbl for alj-b.) 

(iii) Let X and Y be the two infinite processes recursively defined by 

w w 
x = abX and Y cdY; so x = (ab) and Y = (cd) . Suppose alrc and dlf-b. 

Then 

lcxljY) =y,0(a(bXllYl + c(dYllXl) = ay{c} (bXllYl + o 

ay{c} (b(XljY) + c(dYllbX)) = a(o + cy,0(dYllbX)) = 

accay{b} <YllbxJ + ol = acay{b} Cb<xllYl + Y[J_ bxJ = 

a.caoy.0ex11 Yl . 

4.6. Remark. (i) It should be noted that however often an action b has been 

enabled, after being performed it is again disabled. For instance if blf-c, 

then 

,0 A {c} AA {c} AAA ,0 AA 

y (bbcc) = by (bee) = bby (cc) = bbcy (c) = bbco. 

Due to this interpretation of causality as introducing an obligation (which 

has no multiplicity), the mail via an unordered channel mechanism differs 

from the'present mechanism. For, in the setting of Section 3 we have 



18 

µ.0 (ctd • ctd • c+d • c+d) 
c 

c1l'd • c1td • c~d • c.tid. 

It is, however, easy to specify the variant of the causality mechanism above 

such that the obligations form a multiset rather than a set: axioms Gl-6 

from Table 5 carry over to that case unaltered, with as only stipulation 

that E is now a multiset. 

(ii) It is also simple to gene~alize the above causality relation to the 

case where an effect b may have several causes a
1

, ... ,an: 

al , .•. , an II- b, 

meaning that all the a. (i = 1, ... ,n) have to be executed in order to enable 
1. 

b. We will not do so, here. 

4.7. RemarK. There is an interesting connection between the 'spatial' notion 

of encapsulation (as effectuated by the operators a in ACP, µ
0

, µMin the 
E H c c 

mail mechanisms of Section 3 and the present y for causality) and the 

'temporal' notion of execution. In some sense, one could say: 

encapsulation = execution. 

Indeed, an encapsulated process can be thought to be already executed since 

no further interactions with an environment are possible. 

4.8. Example. We will, as a conclusion of this paper, now discuss a somewhat 

involved example. This example constitutes an abstract version of the highest 

level of a case study ·specification as reported in [5]. Henk Obbink [25] 

from Philips Research suggested us to use a stimulus-response (or causality) 

mechanism at the highest specification level. The motivation for the present 

paper is just to present a proper foundation in process algebra for the cau­

sality mechanism. In fact, mail via order-preserving or non-order-preserving 

channels turned out to be minor modifications on the same theme (with the 

advantage of having better syntax). 

Let us consider a configuration of three components: 

CM command module 

P printer 

D display 

The oniy command that CM can issue is to start the printer; the printer will 



stop by itself. If the printer runs out of paper, a message to this effect 

must be displayed whereafter new paper will be provided, and printing pro­

ceeds. When printing has finished this is reported to CM. 

The behaviour of the components is depicted in the diagrams in Figure 

7(a}, (b}, (c).From now on, we adopt the following 

Convention. We wi_,l.l LV1e. :the f_ollowinr; ;ty.pog,;z.apfu._cal. conven;l,i_on: i.n.A;tead of­

deno;tinr;, aclion--1 M b, b we wi_,l.l w/ld:.e, 1te.4peclivcly, b and b. So italici­

zed actions a/le e: B ( no;t yct complcted} and completed actions e: B a/le in 

U.-1uql_ pflin;t. 

CM: 

Figure 7(a). 

P: 

Figure 7(b). 

D: 

Figure 7(,c). 

D stop 

(print command) 

(reply from printer) - . 

(start printer) 

(printer asks data) 

(printer stops) (printer r>uns out of 
paper>) 

(printer r>eceives new paper>) 

(display "start") 

(display "stop") (display upop ") 

(display "OK") 

19 



20 

In these diagrams, fat arrows represent actions; the other lines identify 

control points and have no direction. 

The causal relations E R are listed below: 

PC 11- STP STP II- D start 

STOP II- D stop D stop II- RP 

POP II- D D II- NP 
pop pop 

NP II- DOK 

The entire system S is now described by: 

Further, let 

then it can easily be shown that S and S* satisfy the following recursion 

equations: 

S = PC• STP • [D •PAD • {STOP • D •RP • S + POP • D • s-i~} + 
start stop pop 

+ PAD • {D • (STOP • D • RP • s + POP • D • S*) + 
start stop pop 

+ STOP • D • RP • s + POP • D • S*} ] 
stop pop 

S* NP • [STOP .. D • D • RP • s + POP • D • D • S* + 
OK stop OK pop 

+ D • (STOP • D • RP • s + POP • D • S*) ] 
OK stop pop · 

REFERENCES 

[l] ADJ (GOGUEN, J.A., THATCHER, J.W., WAGNER, E.G. & J.B. WRIGHT), 
Initial algebra semantics and continuous algebras, 
JACM Vol.24, Nr.l, p.68-95 (1975). 

[2] AUSTRY, D. & G. BOUDOL, 
Algebre de processus et synchronisation, 
Theoretical Computer Science 30 (1984), p.91-131. 

[3] DE BAKKER, J.W. & J.I. ZUCKER, 
~ Denotational semantics of concurrency, 

Proc. 14th ACM Symp. on Theory of Computing, p.153-158, 1982. 



(4] DE BAKKER, J.A. & J.I. ZUCKER, 
Processes and the denotational semantics of concurrency, 
Information and Control, Vol.54, No.1/2, p.70-120, 1982. 

(5] BERGSTRA, J.A., HEERING, J., KLINT, P. & J.W. KLOP, 
Een analyse van de case-study HµP, 

21 

mimeographed notes, Centrum voor Wiskunde en Informatica, Amster­
dam 1984. 

(6] BERGSTRA, J.A. & J.W. KLOP, 
A process algebra .for the operat1:onal semant1:cs of static data 
flow networks, 
Report IW 222/83, Mathematisch Centrum, Amsterdam 1983. 

(7] BERGSTRA, J.A. & J.W. KLOP, 
Process algebra for communication and mutual exclusion •. Revised 
version, 
Report CS-R8409, Centrum voor Wiskunde en Informatica, Amsterdam 
1984. 

(8] BERGSTRA, J.A., KLOP, J.W. & J.V. TUCKER, 
. Algebraic tools for system construction, 

in: Logics of Programs, Proceedings 1983 (eds. E. Clarke and D. Ko­
zen), Springer LNCS 164, 1984. 

(9] BRANQUART, P., LOUIS, G. & P. WODON, 
An analytical description of CHILL, the CCITT High Level Language, 
Springer LNCS 128, 1982. 

[10] BROCK, J.D. & W.B. ACKERMAN, 
Scenarios: A model of non-determinate computation, 
in: Proc. Formalization of Programming Concepts (eds. J. Diaz and 
I. Ramos), p.252-259, Springer LNCS 107, 1981. 

(11] BROOKES, S.D., 
On the relationship o.f CCS and CSP, 
Proc. lOth ICALP, Barcelona 1983 (ed. J. Diaz), Springer LNCS 154, 
p.83-96, 1983. 

[12] BROOKES, S.D. & W.C. ROUNDS, 
Behavioural equivalence relations induced by programming logics, 
Proc. lOth ICALP, Barcelona 1983, Springer LNCS 154 (ed. J. Diaz), 
p.97-108, 1983. 

(13] EBERGEN, J., 
On VLSI design, 
NGI-SION Proceedings 1984, p.144-150, Nederlands Genootschap voor 
Informatica, Amsterdam 1984. 

(14] HENNESSY, M., 
A term model for synchronous processes, 
Information and Control 51, p.58-75 (1981). 

(15] HOARE, C.A.R., 
Communicating Sequential Processes, 
C.ACM 21 (1978), p.666-677. 

(16] HOARE, C.A.R., 
' A model for Communicat1:ng Sequential Processes, 



22 

in: "On the construction of programs" (eds. R.M. McKeag and A.M. 
McNaghton}, Cambridge University Press (1980), p.229-243. 

[17] HOARE, C., BROOKES, S. & W. ROSCOE, 
A theory o.f corronunicating sequential processes, 
Programming Research Group, Oxford University (1981). To appear in 
JACM. 

[18] KAHN, G., 
The semantics of a simple Language for parallel prograrroning, 
in: Proc. IFIP 74, North-Holland, Amsterdam 1974. 

[19] KOYMANS, R., VYTOPIL, J. & W.P. DE ROEVER, 
Real-time prograrroning and asynchronous message passing, 
in: Proc. of the Second Annual ACM Symposium on Principles of Dis­
tributed Computing, Montreal, 1983. 

[20] KUIPER, R. & W.P. DE ROEVER, 
Fairness assumptions for CSP in a temporal Logic framework, 
TC2 Working Conference on the Formal Description of Programming 
Concepts, Proc., Garrnisch 1982. 

[21] LAMPORT, L. 
'Sometime' is sometimes 'NOT never', 
tutorial on the temporal logics of programs, SRI International 
CSL-86, 1979. 

[22] MILNE, G.J~, 
CIRCAL: A calculus for circuit description, 
Integration, Vol.l, No.2 & 3, 1983, p.121-160. 

[23] MILNER, R., 
A Calculus of Communicating Systems, 
Springer LNCS 92, 1980. 

[ 24] MILNER, R. I 

Calculi for synchrony and asynchrony, 
Theor. Comp. Sci. 25 (1983), p.267-310. 

[25] OBBINK, H., personal communication, April 1984. 

[26] PNUELI, A., 

The temporal Logic of programs, 
in: Proc. 19th Ann. Syrnp. on Foundations of Computer Science, IEEE, 
p.46-57 I 1977 • 

[ 27] REM, M. I 

Partially ordered computations, with applications to VLSI design, 
Proc. 4th Advanced Course on Foundations of Computer Science, Part 2 
(eds. J.W. de Bakker and J. van Leeuwen}, Mathematical Centre Tracts 
159, p.1-44, Mathematisch Centrurn, Amsterdam 1983. 

[28] DE SIMONE, R., 
On MEIJE and SCCS: infinite sum operators vs. non-guarded definitions, 
Theoretical Computer Science 30 (1984), p.133-138. 

[29] VAN DE SNEPSCHEUT, J.L.A., 

~ 
Trace Theory and VLSI Design, 
Ph.-D. Thesis, Eindhoven University of Technology, 1983. 



[30] WINSKEL, G., 
Event structure semantics for CCS and related Languages, 
Proc. ICALP 82, Springer LNCS 140, p.561-576, 1982. 

[31] WINSKEL, G., 
Synchronisation trees, 

23 

Proc. lOth ICALP (ed. J. Diaz), Barcelona 1983, Springer LNCS 154, 
p.695-711. 



3 1 JUU 1984 


