Centrum voor Wiskunde en Informatica Centre for Mathematics and Computer Science

J.A. Bergstra, J.W. Klop

Algebra of communicating processes with abstraction

The Centre for Mathematics and Computer Science is a research institute of the Stichting Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, computer science, and their applications. It is sponsored by the Dutch Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

# ALGEBRA OF COMMUNICATING PROCESSES WITH ABSTRACTION 

J.A. BERGSTRA, J.W. KLOP

Centre for Mathematics and Computer Science, Amsterdam


#### Abstract

We present an axiom system $A C P_{\tau}$ for communicating processes with silent actions ('t-steps'). The system is an extension of ACP, Algebra of Communicating Processes, with Milner's $\tau$-laws and an explicit abstraction operator. By means of a model of finite acyclic process graphs for $A C P_{\tau}$ syntactic properties such as consistency and conservativity over ACP are proved. Furthermore the Expansion Theorem for ACP is shown to carry over to $A C P_{\tau}$. Finally, termination of rewriting terms according to the $A C P_{\tau}$ axioms is proved using the method of recursive path orderings.

1980 MATHEMATICS SUBJECT CLASSIFICATION: 68B10, 68C01, 68D25, 68F20. 1982 CR. CATEGORIES: F.1.1, F.1.2, F.3.2, F.4.3. KEY WORDS \& PHRASES: concurrency, communicating processes, internal actions, process algebra, bisimulation, process graphs, handshaking, terminating rewrite rules, recursive path ordering.

NOTE: This report will be submitted for publication e1sewhere.


Report CS-R8403
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

## INTRODUCTION

The equational theory $A C P_{\tau}$ is an integration of $A C P$ (Algebra of Communicating Processes) and Milner's $\tau$-laws. This paper studies the finite processes according to $A C P_{\tau}$, i.e. the initial model of $A C P_{\tau}$. In particular the following aspects are considered:
(i) Construction of a model of finite acyclic process graphs (modulo bisimulation) for $\mathrm{ACP}_{\tau}$.
(ii) A proof that the model of (i) is in fact the initial model of $\mathrm{ACP}_{工}$; stated in different terms this amounts to the soundness and completeness of $\mathrm{ACP}_{\tau}$ for finite processes.
(iii) Analysis of a reduction system related to $A C P_{\tau}$ : using recursive path orderings termination of the reduction system is shown.
(iv) A proof of the Expansion Theorem.
(v) A proof of the associativity of parallel composition.

The paper is virtually self-contained, though some proofs make use of propositions shown in [3].

Related literature. $A \mathcal{A C P}_{\tau}$ was defined in [4]; the subsystem ACP was defined in [ 2 ]. Abstraction was studied in [3]. The formulation of the Expansion Theorem is taken from [5].

Both ACP and $\mathrm{ACP}_{\tau}$ have been derived from Milner's CCS ([12]). In particular CCS contains the operators,$+ \|$, . for each atom a and derives as laws: A1, A2,A3 and T1,T2,T3. The axioms C1,C2 are from HENNESSY [10]; WINSKEL [13] surveys communication formats of atomic actions. The operator is present in Hoare's CSP [11] as ';' and in DE BAKKER \& ZUCKER [ 1 ] as 'o'. We refer to GRAF \& SIFAKIS [ 9]for a proof-theoretic discussion of the $\tau$-laws. BROOKES \& ROUNDS [ 6] contains an explicit description of bisimulation modulo $\tau$ on finite graphs.

The structure of this paper is as follows:

1. THE AXIOM SYSTEM $A_{\tau}$
2. THE MODEL OF FINITE ACYCLIC PROCESS GRAPHS FOR $A C P_{\tau}$
3. THE EXPANSION THEOREM FOR ACP $T_{T}$

APPENDIX I. TERMINATION OF ACP REDUCTIONS PROVED BY RECURSIVE PATH ORDERINGS APPENDIX II. AN INDUCTIVE PROOF OF ASSOCIATIVITY OF MERGE IN ACP $\mathcal{\tau}_{\tau}$ REFERENCES.

## 1. THE AXIOM SYSTEM $\mathrm{ACP}_{\tau}$

Let $A$ be a finite set of atomic actions, containing a constant $\delta$, and let . |. $: A \times A \rightarrow A$ be a communication function which is commutative and associative and for which $\delta \mid a=\delta$. A communication $a \mid b=c$ is said to be proper if $c \neq \delta$. Further we consider the constant $\tau$, for the silent action; we write $A_{\tau}=A u\{\tau\}$. Silent actions are obtained from applications of the abstraction operator $\tau_{I}$ which renames atoms $\in I \subseteq A$ into $\tau$.

The signature of the equational theory $A C P_{\tau}$ is as follows:

Table 1.

| + | alternative composition (sum) |
| :--- | :--- |
| - | sequential composition (product) |
| $\\|$ | parallel composition (merge) |
| $\\|$ | left-merge |
| I | communication merge |
| $\partial_{H}$ | encapsulation |
| $\tau_{I}$ | abstraction |
| $\delta$ | deadlock/failure |
| $\tau$ | silent action |

Here the first five operators are binary, $\partial_{H}$ and $\tau_{I}$ are unary. The operation $\partial_{H}$ renames the atoms in $H$ into $\delta$ and $\tau_{I}$ renames the atoms in $I$ into $\tau$. Here $H$ and $I$ are subsets of $A_{\tau}$; in fact $H \subseteq A$ and $I \subseteq A-\{\delta\}$ (since we do not want to rename $\tau$ into $\delta$ or conversely).

The communication function $\mid$ is extended to the communication merge, having the same notation, between processes (i.e. elements of a model of $A C P_{C}$ ).

The left column in Table 2 (next page) is the axiom system ACP (without $\tau)$. In Table 2 , 'a' varies over A.

The axioms Tl,2,3 are the ' $\tau$-laws' from MILNER [12].
Notation: often we will write $x y$ instead of $x \cdot y$.
The initial algebra of the equational theory $A C P_{\tau}$ in Table 2 is called $A_{\tau}^{\omega}$.

| $x+y=y+x$ | A1 | $x \tau=x$ | T1 |
| :---: | :---: | :---: | :---: |
| $x+(y+z)=(x+y)+z$ | A2 ${ }^{\prime}$ | $\tau x+x=\tau x$ | T2 |
| $x+x=$ | A3 | $a(\tau x+y)=a(\tau x+y)+a x$ | ז3 |
| $(x+y) z=x z+y z$ | A4 |  |  |
| $(x y) z=x(y z)$ | A5 |  |  |
| $x+\delta=x$ | A6 |  |  |
| $\delta x=\delta$ | A7 |  |  |
| $\mathrm{a} \mid \mathrm{b}=\mathrm{b} / \mathrm{a}$ | Cl |  |  |
| $(\mathrm{a} \mid \mathrm{b})\|\mathrm{c}=\mathrm{a}\|(\mathrm{b} \mid \mathrm{c})$ | C2 |  |  |
| $\delta \mid a=\delta$ | C3 |  |  |
| $x \\| y=x \mathbb{L} y+y \mathbb{x}+x \mid y$ | CM1 |  |  |
| $a \\| x=a x$ | CM2 | $\tau \mathbb{L}^{x} \times=\tau x$ | TM1 |
| $(a x) \mathbb{L} y=a(x \\| y)$ | CM3 | $(\tau x) \\| y=\tau(x \\| y)$ | TM2 |
| $(x+y) \mathbb{L}=x \mathbb{L} z+y \mathbb{z}$ | CM4 | $\tau \mid x=\delta$ | TC1 |
| $(a x) \mid b=(a \mid b) x$ | CM5 | $x \mid \tau=\delta$ | TC2 |
| $a \mid(b x)=(a \mid b) x$ | cM6 | $(\tau x)\|y=x\| y$ | TC3 |
| $(a x) \mid(b y)=(a \mid b)(x \\| y)$ | CM7 | $x\|(\tau y)=x\| y$ | TC4 |
| $(x+y)\|z=x\| z+y \mid z$ | cM8 |  |  |
| $x\|(y+z)=x\| y+x \mid z$ | cm9 |  |  |
|  |  | $\partial_{H}(\tau)=\tau$ | DT |
|  |  | $\tau_{\mathrm{I}}(\tau)=\tau$ | TI1 |
| $\partial_{H}(\mathrm{a})=\mathrm{a}$ if a ¢ H | 01 | $\tau_{I}(\mathrm{a})=\mathrm{a}$ if $\mathrm{a} \notin \mathrm{I}$ | II2 |
| $\partial_{H}(a)=\delta$ if $a \in H$ | 02 | $\tau_{I}(\mathrm{a})=\tau$ if $\mathrm{a} \in \mathrm{I}$ | II3 |
| $\partial_{H}(x+y)=\partial_{H}(x)+\partial_{H}(y)$ | D3 | $\tau_{I}(x+y)=\tau_{I}(x)+\tau_{I}(y)$ | TI4 |
| $\partial_{H}(x y)=\partial_{H}(x) \cdot \partial_{H}(y)$ | D4 | $\tau_{I}(x y)=\tau_{I}(x) \cdot \tau_{I}(y)$ | TI5 |

Table 2.
2. THE MODEL OF FINITE ACYCLIC PROCESS GRAPHS FOR ACP ${ }_{\tau}$

Let $G$ be the collection of finite acyclic process graphs over $A_{\tau}$. In order to define the notion of bisimulation on $G$, we will first introduce the notion of $\delta$-normal process graph. A process graph $g \in G$ is $\delta$-normal if whenever an edge

occurs in $g$, then the node $s$ has outdegree $l$ and the node $t$ has outdegree 0 . In anthropomorphic terminology, let us say that an edge $(\mathrm{s} \rightarrow$ is an ancestor of (5) if it is possible to move along edges from to $t$; likewise the latter edge will be called a descendant of the former. Edges having the same begin node are brothers. So, a process graph $g$ is $\delta$-normal if all its $\delta$-edges have no brothers and no descendants.

Note that for $g \in G$ the ancestor relation is a partial order on the set of edges of $g$.

We will now associate to a process graph $g \in G$ a unique $g '$ in $\delta$-normal form, by the following procedure:
(1) nondeterministic $\delta$-removal is the elimination of a $\delta$-edge having at least one brother,
(2) $\delta$-shift of a $\delta$-edge (s) $\delta \rightarrow(t)$ in $g$ consists of deleting this edge, creating a fresh node $t$ ' and adding the edge $s \rightarrow$ (t).

Now it is not hard to see that the procedure of repeatedly applying (in arbitray order) (1), (2) in $g$ will lead to a unique graph $g^{\prime}$ which is $\delta$-normal; this $g^{\prime}$ is the $\delta$-normal form of $g$. It is understood that pieces of the graph which have become disconnected from the root, are discarded.


We can now define bisimulation between process graphs $g_{1}, g_{2} \in G$. First some preliminary notions: a trace $\sigma$.is a possibly empty finite string over $A_{\tau}$; thus $\sigma \in A_{\tau}^{*}$. With $e(\sigma)$ we denote the trace $\sigma$ where all $\tau$-steps are erased, egg. epa $\mathrm{e} \tau \mathrm{b} \tau c \tau)=a b c$.

If $g \in G$, a path $\pi: s_{0} \longrightarrow s_{k}$ in $g$ is a sequence of edges of the form

$(k \geqslant 0)$ where the $s_{i}$ are nodes of $g$, the $h_{i}$ are edges between $s_{i}$ and $s_{i+1}$ ' and each $l_{i} \in A_{\tau}$ is the label of edge $h_{i}$. (The $h_{i}$ are needed because we work with multigraphs.) The trace trace ( $\pi$ ) associated to this path $\pi$ is just $\ell_{0} \ell_{1} \ldots \ell_{\mathrm{k}-1}$.
2.1. DEFINITION. A bisimulation modulo $\tau$ (or $\tau$-bisimulation) between finite acyclic process graphs $g_{1}$ and $g_{2}$ is a relation $R$ on $\operatorname{NODES}\left(g_{1}\right) \times \operatorname{NODES}\left(g_{2}\right)$ satisfying the following conditions:
(i) $\left(\operatorname{ROOT}\left(g_{1}\right), \operatorname{ROOT}\left(g_{2}\right)\right) \in \operatorname{R}$,
(ii) For each pair $\left(s_{1}, s_{2}\right) \in R$ and for each path $\pi_{1}: s_{1} \longrightarrow t_{1}$ in $g_{1}$ there is a path $\pi_{2}: s_{2} \longrightarrow t_{2}$ in $g_{2}$ such that $\left(t_{1}, t_{2}\right) \in R$ and $e\left(\underline{\text { trace }}\left(\pi_{1}\right)\right)=e\left(\underline{\text { trace }}\left(\pi_{2}\right)\right) .($ See Figure la)
(iii) Likewise for each pair $\left(s_{1}, s_{2}\right) \in R$ and for each path $\pi_{2}: s_{2} \longrightarrow t_{2}$ in $g_{2}$ there is a path $\pi_{1}: s_{1} \longrightarrow t_{1}$ in $g_{1}$ such that $\left(t_{1}, t_{2}\right) \in R$ and $e\left(\underline{\text { trace }}\left(\pi_{1}\right)\right)=e\left(\operatorname{trace}\left(\pi_{2}\right)\right)$. (See Figure lb.)


Figure 1.
(a)

(b)

Let $g_{1}, g_{2}$ be in $\delta$-normal form. Then $g_{1}, g_{2}$ are bisimilar modulo $\tau$ (or $\tau$-bisimilar) if there is a $\tau$-bisimulation between $g_{1}, g_{2}$. Notation: $g_{1} \leftrightarrows g_{2}$.

Note that for a $\tau$-bisimulation $R$ between $g_{1}, g_{2}$ we have: Domain $(R)=$ $\operatorname{NODES}\left(\mathrm{g}_{1}\right)$ and Codomain $(\mathrm{R})=\operatorname{NODES}\left(\mathrm{g}_{2}\right)$. Also note that an equivalent definition is obtained by letting $\pi_{1}$ in 2.1 (ii) consist of one edge, likewise $\pi_{2}$ in 2.1 (iii).
2.2. DEFINITION. Let $g_{1}, g_{2} \in G$ be in $\delta$-normal form. A rooted bisimulation
modulo $\tau$ between $g_{1}, g_{2}$ is a bisimulation modulo $\tau$ between $g_{1}, g_{2}$ such that the root of $g_{1}$ is not related to a non-root node of $g_{2}$, and vice versa.

Notation: $g_{1} \leftrightarrows_{r, \tau} g_{2}$.
2.3. DEFINITION. Let $g_{1}, g_{2} \in G$ with $\delta$-normal forms $g_{1}^{\prime}$ resp. $g_{2}^{\prime}$. Then $g_{1} \leftrightarrows_{r, \tau} g_{2}$ if $g_{1}^{\prime} \leftrightarrows_{r, \tau} g_{2}^{\prime}$.
2.4. EXAMPLES. $a \tau \mathrm{~b} \delta \leftrightarrows_{r, \tau}$ ab $\delta$ (Figure 2a):

$$
\begin{aligned}
& \mathrm{ab} \leftrightarrows r, \tau \\
& \mathrm{a}(\tau \mathrm{~b}+\mathrm{b}) \longleftrightarrow_{r, \tau} \mathrm{ab} \text { (Figure 2c) } \\
& \mathrm{c}(\mathrm{a}+\mathrm{b}) \longleftrightarrow_{r, \tau} \mathrm{c}(\tau(\mathrm{a}+\mathrm{b})+\mathrm{a}) \text { (Figure 2d) }
\end{aligned}
$$

A negative example: see Figure 2 e . The heavy line denotes where it is not possible to continue a construction of the bisimulation.


## Figure 2.

Since we intend to construct from $G$ a model for $A C P_{\tau}$, we will now define operations $+, ., \|, \mathbb{L}, \mid, \partial_{H}, \tau_{I}$ on $G$. (Cf. [3] where $+, \ldots, \|, \mathbb{L}$ were defined in the context of the axiom system PA.)
(1) The sum $g_{1}+g_{2}$ is the result of identifying the roots of $g_{1}, g_{2}$.
(2) The product $g_{1} \cdot g_{2}$ is the result of appending $g_{2}$ at all end nodes of $g_{1}$.
(3) The merge $g_{1} \| g_{2}$ is the 'cartesian product graph' of $g_{1}, g_{2}$, enriched by 'diagonal' edges for nontrivial communication steps, as follows:
if $\quad \stackrel{a}{\square}$ is a subgraph of the cartesian product graph, then the arrow $0 \xrightarrow{c} 0$ (where $c=a \mid b$ ) is inserted; result:

(Here $\tau$ has only trivial communications: $\tau|a=\tau| \tau=\delta_{\text {. }}$ )
Example. Let $A_{\tau}=\{a, b, c, \tau, \delta\}$, where the only nontrivial communication is: $a \mid b=c$. Then, writing $a b$ for the graph $\rightarrow 0 \rightarrow 0 \xrightarrow{a} 0$, we have:
$a b \| b a b \tau$ is the process graph as in Figure 3a.


Figure 3. (a)

(b)

(c)
(4) The left merge $g_{1} \mathbb{L} g_{2}$ is like $g_{1} \| g_{2}$ but omitting all steps which are not a first step from $g_{1}$ or the descendant of such a first step.

Example: in the situation of the previous example we have ab $\|$ babe as the graph in Figure $3 b$ and babr $\mathbb{a b}$ as in Figure $3 c$.
(Note that we have omitted the diagonal edges labeled with $\delta$, resulting from trivial communications. This is allowed in view of our preference of $\delta$-normal graphs. Indeed, a 'diagonal' $\delta$-edge can always be omitted by (1) of the $\delta$ normalization procedure.)
(5) The communication merge $g_{1} \mid g_{2}$ is harder to define since it is in general not, as $g_{1} \Perp g_{2}$ is, a subgraph of $g_{1} \| g_{2}$. The reason behind the definition can be understood by considering e.g. $\tau \tau a x \mid \tau \tau \tau b y$ and evaluating this term according to the axioms of ACP :
$\tau \tau a x|\tau \tau \tau b y=a x| b y=(a \mid b) \cdot(x| | y)$.
We define:
$g_{1} \mid g_{2}=\sum\left\{(t \longrightarrow s) \cdot\left(g_{1} \| g_{2}\right)_{s} \mid t \longrightarrow s\right.$ is a maximal communication step in $g_{1} \| g_{2}$ such that $t$ can be reached from the root via a sequence of $\tau$-steps $\}$.

Here 'maximal' refers to the p.o. given by the ancestor relation. The sequence of $\tau$-steps may be empty. Further, $(\mathrm{g})_{\mathrm{s}}$ denotes the subgraph of $g$ with root $s$.

Example. (i) Let $g_{1}=\tau a \tau d, g_{2}=\tau \tau b d$. Let $a \mid b=c$ be the only nontrivial communication. Then $g_{1} \| g_{2}$ is as in Figure $4(a)$ and $g_{1} \mid g_{2}$ as in Figure 4 (b) :


Figure 4.
(a)

(b)

Here the heavily drawn edge $0 \xrightarrow{c} 0$ is an edge $t \longrightarrow s$ as in the definition of $g_{1} \mid g_{2}$.
(ii) Let $g_{1}$ be $+\frac{b}{c}, a$ and $g_{2}$ : $\xrightarrow[r]{a} 0$, where the only nontrivial communications are $a \mid a=a^{\circ}$ and $b \mid b=b^{\circ}$. Then $g_{1} \| g_{2}$ and $g_{1} \mid g_{2}$ are as in Figures 5 (a) resp. (b):

(b)


Figure 5.

Using $A C P_{\tau}$ we calculate with terms corresponding to $g_{1}, g_{2}$ :

$$
\begin{aligned}
& (b a+\tau a)|(a b+\tau b)=b a| a b+b a|\tau b+\tau a| a b+\tau a \mid \tau b= \\
& (b \mid a) \cdot\left(a|\mid b)+b a|b+a| a b+a \mid b=\delta+b^{\circ} a+a^{\circ} b+\delta=b^{\circ} a+a^{\circ} b\right.
\end{aligned}
$$

(6) The definition of the operators $\partial_{H}, \tau_{I}$ on process graphs $g \in G$ is easy; they merely rename some atoms (labels at the edges) into $\delta$ resp. $\tau$. This ends the definition of the structure $G=G\left(+, \ldots,\left\|, \mathbb{L}^{G},\right\|, \partial_{H}, \tau_{I}\right)$. The domain of process graphs $\mathcal{G}$ is itself not yet a model of ACP (e.g. $G \neq \mathrm{x}+\mathrm{x}=\mathrm{x})$. However:
2.5. THEOREM. (i) Rooted $\tau$-bisimulation $\left(\leftrightarrows_{x, \tau}\right)$ is a congruence on $\mathcal{G}$. (ii) $G / \leftrightarrows_{r, \tau}$ is a model of $A C P_{\tau}$.

PROOF. (i) Let $g, g^{\prime}, h, h^{\prime} \in G$. We want to show that

$$
g \leftrightarrows_{r, \tau} g^{\prime} \& h \not{ }_{r, \tau} h^{\prime} \Longrightarrow g\left\|h \leftrightarrows h_{r, \tau} g^{\prime}\right\| h^{\prime}
$$

and likewise for the other operators. Only the cases $\|\|,, \|$ are interesting and we start with $\|$.

Suppose, then, that $S$ is a $r, \tau$-bisimulation between $g, g^{\prime}$ and $T$ is a $r, \tau$-bisimulation between $h, h^{\prime}$. Let $s$ be a typical node of $g, s^{\prime}$ of $g^{\prime}, t$ of $h$ and $t^{\prime}$ of $h^{\prime}$. Then we define the following relation $S \times T$ between the node sets of $g \| h$ and $g^{\prime} \| h^{\prime}$ :

$$
\left((s, t),\left(s^{\prime}, t^{\prime}\right)\right) \in S \times T \Longleftrightarrow\left(s, s^{\prime}\right) \in S \&\left(t, t^{\prime}\right) \in T .
$$

We claim that $S \times T$ is a $r, \tau$-bisimulation between $g \| h$ and $g^{\prime} \| h^{\prime}$.

Proof of the claim.
(1) Let $\left(s_{1}, t_{1}\right) \xrightarrow{u}\left(s_{1}, t_{2}\right)$ be a "horizontal step" in $g \| h$, where $u \in A_{c}$. Let $\left(\left(s_{1}, t_{1}\right),\left(s_{1}^{\prime}, t_{1}^{\prime}\right)\right) \in s \times T$. Then $t_{1} \xrightarrow{u} t_{2}$ in $h$ and $\left(t_{1}, t_{1}^{\prime}\right) \in T$. Hence a path as in the definition of bisimulation can be found whose trace is externally equivalent to $u$ and whose end point bisimulates with $t_{2}$. This path can be 'lifted' to $g \| h$.
(2) Likewise for a "vertical step" in $g \| h$.
(3) $\left(s_{1}, t_{1}\right) \xrightarrow{c}\left(s_{2}, t_{2}\right)$ is a "diagonal step" (a communication step) in $g \| h$, and $\left(\left(s_{1}, t_{1}\right),\left(s_{1}^{\prime}, t_{1}^{\prime}\right)\right) \in S \times T$. Now a path as required can be found from the data $\left(s_{1}, s_{1}^{\prime}\right) \in S$ and $\left(t_{1}, t_{1}^{\prime}\right) \in T$ and an inspection of Figure 6:


The case of $\amalg$ is easy since $g \Perp h$ is a subgraph of $g \| h$. The case of $\mid$ : we use the same notation as above. To prove:

$$
g\left|h \leftrightarrows_{r, \tau} g^{\prime}\right| h^{\prime}
$$

gllh

$q^{\prime} \mid \mathrm{lh} \cdot$
g'


## Figure 7.

An $r, \tau$-bisimulation between $g / h$ and $g^{\prime} / h^{\prime}$ can now be constructed as follows from $S \times T$. The graph $g \mid h$ is now the sum of the $c_{i} \cdot(g \| h)_{\left(s_{i}, t_{i}\right)}(i=1,2)$ as in the definition of $\mid$ and as indicated in Figure 7 (a).

For the sake of clarity, we will formally distinguish the "diagonal" edges from the other ones; this can be done by a suitable renaming of the alphabet and adapting the communication function. Thus, if $a \mid b=c$, we adopt a fresh symbol $c$ and postulate $a \mid b=c$. Now the underlined symbols do not occur in $g, h$ which makes it possible to speak in a formal way about "diagonal" steps. Note that the bisimulation $S \times T$ is also a bisimulation when diagonal steps are marked as such.

Now given a summand $p=c_{i} \cdot(g \| h)\left(s_{i}, t_{i}\right)$ of $g \mid h$, we can find via $S \times T$ a corresponding summand $p^{\prime}=c_{i} \cdot\left(g^{\prime} \| h^{\prime}\right)\left(s_{i}^{\prime}, t_{i}^{\prime}\right)$. It is easy to see that the step $c_{i}$ in $g^{\prime} \| h^{\prime}$ is also maximal in the $i^{\prime}$ sense of the definition of $\mid$. Clearly $p$ bisimulates with $p^{\prime}$, via the restriction of $S ~ T$ to the appropriate area. In this way we find that $g \mid h$ bisimulates with $g^{\prime} / h^{\prime}$.
(ii) The proof that $G / \leftrightarrows{ }_{r, \tau}$ is a model of $A C P$ is tedious, routine, and omitted.

We will now analyse $\leftrightarrows_{r, \tau}$ into an equivalence generated by certain elementary graph reductions. This is done in [ 3] for $\tau$-bisimulation (without the condition 'rooted") and in the absence of $\delta$; these results will be the basis for the sequel. We repeat from [ 3] the main definitions.
2.6. DEFINITION. Let $g \in G$.
(i) A subgraph $g^{\prime}$ of $g$ consists of an arbitrary subset of the set of edges of $g$ ( $p l u s$ their labels $\epsilon A_{\tau}$ ) together with the nodes belonging to these edges.
(ii) Let $s \in \operatorname{NODES}(\mathrm{~g})$. Then $(\mathrm{g})_{s}$ is the subgraph of $g$ consisting of all nodes and edges which are accessible from $s$ (including $s$, the root of ( $g$ ) $s$. We will call ( g$)_{\mathrm{s}}$ a full subgraph.
(iii) An arc in $g$ is a subgraph of the form as in Figure $8(a)$, where $u \in A_{\tau}$. The u-edge at the left is called the primary edge of the arc. If in Figure 8 (a) $n=m=0$ the arc has the form as in Figure 8 (b) and is called of type I. If $n+m=1$ the arc has the form as in Figure $8(c)$ or (d) and is called of type II resp. III. Arcs of type I,II,III are called elementary arcs.


(c)

(d) Figure 8.
2.7. DEFINITION. On $G$ we define the following reduction procedures:
[i] Sharing. Let $g \in G$ contain nodes $s_{1}, s_{2}$ such that $(g){ }_{s_{1}}$ is isomorphic to $(g)_{s_{2}}$. Then $g$ reduces to $g^{\prime}$ where $s_{1}, s_{2}$ are identified.
[ii] Removal of a non-initial deterministic $\tau$-step.
If $s_{1} \xrightarrow{\tau} s_{2}$ occurs in $g$ and the outdegree of $s_{1}$ is one (so the displayed $\tau$-step has no brothers), and if moreover $s_{i}$ is not the root of $g$, then the nodes $s_{1}, s_{2}$ may be identified after removal of the $\tau$-step.
[iii] Arc reduction. In an arc the primary edge may be deleted. The arc reduction is called of type I,II,III if the arc is of that type. Such arc reductions are also called elementary.

So the subgraph as in Figure $9(a)$ may be replaced by that in Figure $9(b)$ :
Figure 9

(a)
(b)

[iv] Nondeterministic $\delta$-removal, as explained in the beginning of this section.
[v] $\delta$-shift; also defined above.
If none of the reduction possibilities in [i]-[v] applies to $g$, then we call g a normal process graph.

Notation. If $g$ reduces to $g^{\prime}$ by one application of [i]-[v], we write $g \Longrightarrow g^{\prime}$. The transitive reflexive closure of $\Rightarrow$ is denoted by $\Rightarrow$.

### 2.8. EXAMPLE.



Figure 10.

The following fact is trivial:
2.9. PROPOSITION. Every process graph reduction $g_{1} \Rightarrow g_{2} \Rightarrow \ldots$ must terminate eventually.

Without the routine proof we state the 'soundness' of the reduction procedure $\Rightarrow$ w.r.t. $\leftrightarrows_{r, \tau}$ :
2.10. LEMMA. Let $g_{1}, g_{2} \in G$. Then $g_{1} \rightrightarrows g_{2}$ implies $g_{1} \leftrightarrows r, \tau g_{2}$
2.11. DEFINITION. (i) Let $g \in G$ be in $\delta$-normal form. Let $R$ be an $r, \tau$-bisimulation between $g$ and itself. Then $R$ is called an autobisimulation of $g$.
(ii) $g$ is rigid if it can only be in autobisimulation with itself via the identity relation.
2.11.1. EXAMPLE. The following process graph is not rigid since it admits the displayed nontrivial autobisimulation:

Figure 11.

2.12. THEOREM. (i) Normal process graphs are rigid.
(ii) If $g_{1}, g_{2}$ are normal process graphs and $g_{1} \leftrightarrows r_{r, \tau} g_{2}$, then $g_{1}$ and $g_{2}$ must be identical.

PROOF. The theorem is a simple corollary of the analogous Theorem 8.1.9 in [3], where 'normal', 'rigid' are defined w.r.t $\leftrightarrows_{\tau}$ (without the condition
'rooted') and in the absence of $\delta$. The present graph reductions [i]-[v] differ from those in [3] since there [iv],[v] are absent and in [ii] the $\tau$-step may be an initial one.
Proof of (ii): suppose $g_{1}, g_{2}$ are normal and $g_{1} \longleftrightarrow_{r, \tau} g_{2}$.
Case (I). $g_{1}, g_{2}$ are also 'normal' in the sense of [3]. Then since $g_{1} \leftrightarrows{ }_{r, \tau} g_{2}$ implies $g_{1} \leftrightarrows{ }_{\tau} g_{2}$, an application of Theorem 8.1 .9 in [3] yields the identity of $g_{1}, g_{2}$.
Case (2). If $g_{1}, g_{2}$ are normal but not 'normal' as in [3], one of them, say $g_{1}$, must start with a deterministic $\tau$-step: i.e. $g_{1}=\tau g_{1}^{\prime}$. Then since
$g_{1} \leftrightarrows{ }_{r, \tau} g_{2}$, also $g_{2}=\tau g_{2}^{\prime}$. Moreover, $g_{1}^{\prime}, g_{2}^{\prime}$ must be 'normal' as in [3]. Also $g_{1}^{\prime} \leftrightarrows{ }_{r, \tau} g_{2}^{\prime}$, hence $g_{1}^{\prime} \longleftrightarrow{ }_{\tau} g_{2}^{\prime}$. By Theorem 8.1 .9 in [3], we have $g_{1}^{\prime}=g_{2}^{\prime}$. Therefore $g_{1}=g_{2}$.
Proof of (i): similar.
2.13. COROLLARY. Let $g_{1}, g_{2} \in G$. Then the following are equivalent:
(i) $\quad g_{1} \leftrightarrows r, \tau g_{2}$
(ii) $g_{1}, g_{2}$ reduce (by [i]-[v]) to the same normal graph
(iii) $g_{1}, g_{2}$ are convertible via applications of [i]-[v].

PROOF. Suppose (i). Reduce $g_{1}, g_{2}$ to normal $g_{1}^{\prime}, g_{2}^{\prime}$; this is possible by Proposition 2.9. Since reduction $\Longrightarrow$ is sound w.r.t $\leftrightarrows_{r, \tau}$, also $g_{1}^{\prime} \leftrightarrows_{r, \tau} g_{2}^{\prime}$. By Theorem $2.12(i i)$ it follows that $g_{1}^{\prime}$ and $g_{2}^{\prime}$ are identical. Hence (ii). From (ii) we have (iii) trivially. From (iii), since reduction is sound, we have again (i).
2.14. REMARK. As a further corollary (which we do not need here) one obtains the confluency of the graph reductions [i]-[v]. This follows immediately from the termination property of the graph reductions (Proposition 2.9), together with Lemma 2.10 and Theorem 2.12 (ii).
2.15. COROLLARY. Let $g_{1}, g_{2} \in G$. Then $g_{1} \leftrightarrows_{r, \tau} g_{2}$ iff $g_{1}, g_{2}$ are convertible by means of the graph reductions [i],[ii],[iv],[v] and elementary arc reductions [iii]I,[iii]II,[iii]III.

PROOF. Every arc can be filled up with elementary arcs.

In the sequel when closed terms in the signature ( $+, \ldots, a \in A_{\tau}$ ) are mentioned, we will always mean terms modulo the basic congruence given by the axioms A1,2,5 in Table 2 (associativity of + ,. and commutativity of + ). To such terms we will refer as '+,.-terms' or as 'basic terms'.
2.16. DEFINITION. Let $t$ be a basic term.
(i) Then [t] denotes the interpretation of $t$ in $G_{i}$ so [ $t$ ] is a process graph.
(ii) [t] denotes the interpretation of $t$ in $G / \leftrightarrows_{r, \tau}$; so [ $t$ ] is a process graph modulo r, $\tau$-bisimulation.
(iii) Let $g \in G$. Let $g$ ' be the process tree obtained from $g$ by 'unraveling' the shared subgraphs. Then $\{g\}$ is the basic term corresponding to the tree $g^{\prime}$ 。
Example. If g.is

and $\{g\}=d c+a(b c+e)$.
2.17. PROPOSITION Let $g_{1}, g_{2} \in G$ and suppose $g_{1} \Rightarrow g_{2}$ via an elementary graph reduction [i],[ii],[iiiI,II,III],[iv],[v]. Then the basic terms $\left\{g_{1}\right\}$ and $\left\{g_{2}\right\}$ can be proved equal using the A-axioms (about $+, \ldots, \delta$ ) in Table 2, Al-7, and the $\tau$-laws T1-3. (See Figure 12)

Figure 12.


PROOF. In case [i], $t_{1} \equiv t_{2}$. Case [ii] translates into an application of Tl (or several such). Case [iiil]: removal of a double edge. This translates into applications of $x+x=x$ (A3).
Case [iiiII] translates to terms as an application of $\tau(x+y)+x=\tau(x+y)$, where $x=u z$ (see Figure 13a), or, if $y$ is empty, $\tau x+x=\tau x$ (T2). The former
equation follows from $T 2$ and $A 3$ :

$$
\tau(x+y)+x=\tau(x+y)+x+y+x=\tau(x+y)+x+y=\tau(x+y)
$$

Case [iiilII] translates to terms as an application of

$$
u(\tau z+y)=u(\tau z+y)+u z \quad\left(u \in A_{\tau}\right) .
$$

(See Figure 13b) The case that $u=\tau$ follows from $T 2$; the case that $u \neq \tau$ is just the third $\tau$-law $T 3$; for $z$ or $y$ empty an application of $T 1$ is needed. $\square$


Figure 13.
Now we can prove an important fact:
2.18. LEMMA. Suppose $t$,s are basic terms. Then:

$$
g / \leftrightarrows{ }_{r, \tau} \vDash t=s \Rightarrow A 1-7, T 1-3 \vdash t=s
$$

PROOF. Suppose $\mathcal{G} \underset{r, \tau}{\leftrightarrows} \neq t=s$. Then $[t] \leftrightarrows_{r, \tau}$ [s]. By Corollary 2.15, the graphs [t], [s] are convertible via elementary graph reductions:

$$
[t] \equiv g_{0} g_{1} \ldots \ldots g_{n} \equiv[s]
$$

Now Proposition 2.17 states that

$$
A 1-7, \mathrm{Il}-3 \vdash\{[t]\}=\left\{g_{1}\right\}=\ldots=\left\{g_{n}\right\}=\{[s]\} .
$$

Since Al-7 $\vdash\{[t]\}=t$ and likewise for $s$, we have Al-7,Tl-3 $\vdash t=s$.
By a similar method (essentially by leaving out all reference to $\tau$ ) one proves
2.19. LEMMA. Suppose $t, s$ are basic terms not containing $\tau$. Then:

$$
G / \leftrightarrows_{r, \tau} \neq \mathrm{t}=\mathrm{s} \Rightarrow \mathrm{Al}-7 \vdash \mathrm{t}=\mathrm{s}
$$

2.20. ELIMINATION THEOREM. Let $t$ be a closed term in the signature of $A C P_{\tau}$. Then, using the axioms of $A C P$ except $A 1-7$ and the $\tau-1$ aws T1-3 as rewrite rules from left to right, $t$ can be rewritten to a basic term t'.

PROOF. See Appendix I. $\square$

Combining the previous results we now have, writing AT for the set of axioms Al-7,T1-3:
2.21. LEMMA. (i)

Figure 14.

I.e. if $A C P_{\tau} f t_{1}=t_{2}$, then $t_{1}$ and $t_{2}$ can be reduced by means of the rewrite rules (from left to right) associated to the axioms in $A C P_{\tau}$-AT to basic terms $t_{3}, t_{4}$ which are convertible via the AT-axioms.
(ii) Every term $t$ can be proved equal in $A C P_{\tau}$ to a basic term $t^{\prime}$; moreover, $t^{\prime}$ is unique modulo AT.

PROOF. (i) Suppose $A C P_{\tau} \mid t_{1}=t_{2}$. By the Elimination Theorem 2.20 we can rewrite $t_{1}, t_{2}$ to resp. basic terms $t_{3}, t_{4}$ using the axioms in $A C P_{T}-A T$ as rewrite rules. By the fact that $\mathcal{G} / \leftrightarrows_{r, \tau}$ is a model of $A C P_{\tau}$ we have $g / \leftrightarrows_{r, \tau}=t_{3}=t_{4}$. Hence (Lemma 2.18) ATト $t_{3}=t_{4}$.
(ii) Immediate from (i).
2.22. EXAMPLES. The following examples illustrate Lemma $2.21(i):$
(i)

(ii)


$$
\begin{aligned}
& \text { Here (*) is an instance of the (from AT) derivable rule } \\
& \tau(x+y)+x=\tau(x+y) .
\end{aligned}
$$

As a further corollary we have:
2.23. THEOREM. (i) $G / \leftrightarrows_{r, \tau}$ is isomorphic to $A_{\tau}^{\omega}$, the initial algebra of $A C P_{\tau}$.
(ii) $A^{A C P}$ is conservative over ACP (the latter over the alphabet A).
I.e., for $\tau$-less terms $t_{1}, t_{2}$ :

$$
A C P_{\tau} \vdash t_{1}=t_{2} \Rightarrow A C P \vdash t_{1}=t_{2}
$$

PROOF. (i) We have to prove:

$$
G / \leftrightarrows_{r, \tau} \neq s=t \Leftrightarrow A C P_{\tau} \vdash s=t .
$$

$(\Leftarrow)$ is Theorem $2.5\left(\right.$ ii). For $(\Rightarrow)$, suppose $G / \leftrightarrows_{r, \tau}=s=t$. Then also $G / \coprod_{r, \tau} \neq s^{\prime}=t^{\prime}$ for some basic terms $s^{\prime}, t^{\prime}$ such that $A C_{\tau} \vdash s=s^{\prime}, t=t^{\prime}$. The result now follows by Lemma 2.18.
(ii) : Suppose $t_{1}, t_{2}$ are closed terms in the signature of ACP (so $\tau$-less and $\tau_{I}$-less), and suppose $A C P_{\tau} \vdash t_{1}=t_{2}$. Let $t_{3}, t_{4}$ be basic terms such that $A C P_{\tau} \vdash t_{1}=t_{3}, t_{2}=t_{4}$. Since $t_{3}, t_{4}$ can be obtained by rewrite rules $A C P_{\tau}-A T$, we have ACP $\vdash t_{1}=t_{3}, t_{2}=t_{4}$. Now by Lemma 2.19, A1-7 $+t_{3}=t_{4}$. Hence $A C P \mid-t_{1}=t_{2}$.

## 3. THE EXPANSION THEOREM FOR $A C P_{\tau}$

The Expansion Theorem is an important algebraic tool since it helps in breaking down a merge expression $x_{1}\left\|x_{2}\right\| \ldots \| x_{k}$. For CCS, an Expansion Theorem is proved in MILNER [12]. For ACP (i.e $A C P_{\tau}$ without $\tau$ ) the analogous theorem is proved in BERGSTRA \& TUCKER [5]. As an example we mention the Expansion Theorem for $A C P$ in the case $k=3$ :

$$
\begin{aligned}
x\|y\| z= & x \Perp(y \| z)+y \amalg(z \| x)+z \Perp(x \| y)+ \\
& (y \mid z) \amalg x+(z \mid x) \Perp y+(x \mid y) \Perp z
\end{aligned}
$$

In [5], the Expansion Theorem is proved by a straightforward induction on $k$ starting from the assumptions:
(a) the handshaking axiom $x|y| z=\delta$ (i.e. communications are binary),
(b) the axioms of standard concurrency for ACP:

Table 3.

$$
\begin{aligned}
& (x \| y)\|z=x\|(y \| z) \\
& (x \mid y) \mathbb{Z}=x \mid(y \| z) \\
& x|y=y| x \\
& x\|y=y\| x \\
& x|(y \mid z)=(x \mid y)| z \\
& x\|(y \| z)=(x \| y)\| z
\end{aligned}
$$

The standard concurrency axioms are fulfilled in the main models of $A C P$, to wit the term model (initial algebra) $A_{\omega}$ of $A C P$, the projective limit model $A^{\infty}$ and the graph model $\mathbb{A}^{\infty}$ (see [4]).

For $A C P_{\tau}$ this is no longer true; all axioms of standard concurrency hold in the initial algebra $A_{\tau}^{\omega}$ of $A C P_{\tau}$ except the second one.

Example: $(a \mid \tau b) \sharp c=(a \mid b) c$ and $a|(\tau b \| c)=(a \mid b) c+(a \mid c) b+a| b \mid c$. For a proof of the validity of some of the axioms of standard concurrency in $A_{\tau}^{\omega}$, see Appendix II.

Fortunately, the Expansion Theorem carries over from $A C P$ to $\mathrm{ACP}_{\tau}$ in exactly the same form. This is what we will prove in this section. The under-
lying intuition is that $\|$ and $\mathbb{L}$ behave in $A C P_{\tau}$ just like in $A C P$, with the convention that $\tau$ cannot communicate. For ' $\mid$ ' the same is true if its arguments $x, y$ are 'saturated' in the sense that they have been maximally exposed to the rewrite rule associated to $\mathrm{T} 2: \tau \mathrm{x} \longrightarrow \tau \mathrm{x}+\mathrm{x} . \mathrm{As}$ an example, consider $\tau \mathrm{a} \|$. Evaluated according to ACP, we have

$$
\tau a \mid b=(\tau \mid b) a=\delta a=\delta
$$

However, according to $\mathrm{ACP}_{\tau}$ :

$$
\tau a|b=a| b
$$

which may be different from $\delta$. Now suppose that $\tau$ a is made 'saturated' in the above sense, i.e. replaced by $\tau a+a$. Then also by $A C P:$

$$
(\tau a+a)|b=\tau a| b+a|b=(\tau \mid b) a+a| b=\delta+a|b=a| b
$$

just as in $\mathrm{ACP}_{\tau}$.
The proof below of the Expansion Theorem will also entail the associativity of $\|$. Nevertheless, we have given in Appendix a totally different proof of the associativity of $\|$ in $A_{\tau}^{\omega}$, by means of an induction to term complexity. This is done, because the latter proof yields some useful identities (some of the axioms of standard concurrency) and for the curious fact that the proof requires an application of the third $\tau$-law (T3). (In computations with and applications of $\mathrm{ACP}_{\tau}$ the first two $\tau$-laws turn up frequently; this seems not to be the case for the third $\tau$-law.)
3.1. DEFINITION. T is the set of basic terms in normal form w.r.t. the rewrite rule associated to $A 4:(x+y) z \longrightarrow x z+y z$. (This means that if $t \in T$, then [ $t$ ], the interpretation of $t$ in the domain of process graphs $G$ in Section 2, is a process tree.)
3.2. NOTATION. Let $s, t \in T$. We write $s t, i f s$ is a summand of $s, i . e$. if $t=s$ or $t=s+r$ for some $r$.
Example: $a(\tau b+c) \sqsubseteq a(\tau b+c)+a b$.
3.3. DEFINITION. Let $x \in T$. Then $x$ is saturated if:

$$
\text { ᄃy드 } \Rightarrow y \text { ㄷ․ }
$$

Example: (i) $b+\tau a$ is not saturated but becomes so after an application of
the $\tau-1 a w T 2: b+\tau a+a$.
(ii) $b+\tau(a+\tau c)+a+\tau c+c$ is saturated.
3.4. PROPOSITION. Let $x \in T$. Then there exists a saturated $y \in T$ such that $A C P_{\tau} \vdash x=y$ (in fact, even $T 2 \vdash x=y$ ).
3.5. NOTATION. We will denote by $\bar{x}$ a saturated $y$ as in Proposition 3.4. For definiteness, we take $y$ of minimal length. So, e.g., $\overline{b+\tau a}=b+\tau a+a$.

The next proposition says that a merge in $A C P_{\bar{\tau}}$ (anyway in its initial algebra $A_{\tau}^{\omega}$ ) can be carxied out by treating the atom $\tau$ as if it were an 'ordinary', non-communicating atom. Formally, this can be expressed by extending the alphabet with a fresh symbol $t$ (acting as a stand-in for $\tau$ ) which does not communicate, replacing all $\tau ' s$ in a merge by $t$ and after evaluating the merge restoring the $\tau^{\prime} s$ by means of the operator $\tau_{\{t\}}$. The same is true for $\amalg$; for $\mid$ it is true under the condition that the arguments are saturated. Thus:
3.6. PROPOSITION. Let $x, y \in T$ be terms over the alphabet $A_{\tau}$. Let $t \notin A_{\tau}$ and extend the communication function on $A_{c}$ to $(A \cup\{t\})_{\tau}$ such that $t$ does not communicate. Further, let $\mathrm{x}^{\mathrm{t}}$ be the term resulting from replacing all occur- . rences of $\tau$ by $t$. Then:
(i) $\quad A C P_{\tau} \vdash x \| y=\tau_{\{t\}}\left(x^{t} \| y^{t}\right)$
(ii) $A C P_{\tau} \vdash x \| y=\tau_{\{t\}}\left(x^{t} \Perp y^{t}\right)$
(iii) $A C P_{\tau}|-x| y=\tau_{\{t\}}\left(x^{t} \mid y^{t}\right)$

PROOF. (i) Let $x=(\tau)+\sum a_{i}+\sum b_{j} x_{j}^{\prime}+\sum \tau x_{k}^{\prime \prime}$, and

$$
y=(\tau)+\sum c_{\ell}+\sum d_{m} y_{m}^{\prime}+\sum \tau y_{p}^{\prime \prime}
$$

where $a_{i}, b_{j}, c_{\ell}, d_{m} \in A$.
Then $x\|y=x\| y+y \sharp x+x \mid y=$
$\begin{array}{llll}(\tau y) & +\sum a_{i} y & +\sum b_{j}\left(x_{j}^{\prime} \| y\right) & +\sum \tau\left(x_{k}^{\prime \prime} \| y\right) \\ (\tau x) & +\sum c_{e} x & +\sum d_{m}\left(y_{m}^{\prime} \| x\right)+ \\ & +\sum \tau\left(y_{p}^{\prime \prime} \| x\right)\end{array}$


Here the five enclosed summands can be skipped, in view of the following Claim: $x^{\prime} \sqsubseteq x \& y^{\prime} \sqsubseteq y \Rightarrow x^{\prime}\left|y^{\prime} \sqsubseteq x\right| y \sqsubseteq \tau(x \| y)$. Proof of the claim. If $x^{\prime} \sqsubseteq x, y^{\prime} \sqsubseteq y$ then by the linearity laws CM8,9 for ${ }^{\prime} \mid$ ' at once: $x^{\prime}\left|y^{\prime} \sqsubseteq x\right| y$. Further, $x \mid y \sqsubseteq \tau(x \| y)$ follows since

$$
\begin{gathered}
\mathrm{ACP}_{\tau} \vdash \tau(x \| y)=\tau(x \| y+y \sharp x+x \mid y)= \\
\tau(x \amalg y+y \sharp x+x \mid y)+x \mid y
\end{gathered}
$$

So, e.g. the summand $\sum a_{i}\left|\tau y_{p}^{\prime \prime}=\sum a_{i}\right| y_{p}^{\prime \prime} \sqsubseteq \sum \tau\left(y_{p}^{\prime \prime} \| x\right)$ (since $\left.a_{i} \sqsubseteq x\right)$; likewise the other four enclosed summands can be shown to be summands of nonenclosed summands. On the other hand, the five corresponding summands in $\tau_{\{t\}}\left(x^{t} \| y^{t}\right)$ are equal to $\delta$, since $t$ does not communicate. The remaining summands pose no problem, e.g.:

$$
\sum b_{j}\left(x^{\prime} \| y\right)=\tau_{\{t\}} \sum b_{j}\left(x_{j}^{\prime} \|_{y^{t}}\right)
$$

follows by

$$
\tau_{\{t\}} \sum b_{j}\left(x_{j}^{\prime} \| y^{t}\right)=\sum b_{j} \tau_{\{t\}}\left(x_{j}^{\prime} \| y^{t}\right)
$$

and the induction hypothesis

$$
x_{j}^{\prime} \| y=\tau_{\{t\}}\left(x_{j}^{\prime t} \| y^{t}\right)
$$

(induction on the sum of the term complexities).
(ii) The case of $\amalg$ is similar to that of $\mathbb{L}$.
(iii) It is easy to show that a saturated term $\bar{x} \in T$ can be decomposed as follows:

$$
\bar{x}=(\tau)+\sum_{i=1}^{n} a_{i}+\sum_{j=1}^{m} b_{j} Y_{j}+\sum_{k=1}^{\ell} \tau \overline{x_{k}}
$$

where $a_{i}, b_{j} \in A, n, m, l \geqslant 0$ and the $\bar{x}_{k}$ are again saturated. Note that the length of $\bar{x}_{k}$ is less than that of $\bar{x}$. We will use this for an induction on the lengths of $\bar{x}, \bar{y}$ in the statement to prove.

We consider a typical example; the general proof involves only greater notational complexity. Let

$$
\begin{aligned}
& \bar{x}=a+b x_{1}+\tau \bar{x}_{2}+\bar{x}_{2} \\
& \bar{y}=\tau+c+d y_{1}+\tau \bar{y}_{2}+\bar{y}_{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \bar{x} \mid \bar{y}= \\
& \left.\begin{array}{ll}
a \mid \tau & +a \mid c \\
b x_{1}|\tau+a| d y_{1}+ \\
+b x_{1} \mid c \bar{y}_{2} \\
& +b x_{1}\left|d y_{1}+a\right| \bar{y}_{2}+ \\
b x_{1} \mid \tau \bar{y}_{2}
\end{array}+b x_{1} \right\rvert\, \bar{y}_{2}+ \\
& \tau \bar{x}_{2}\left|\tau+\tau \bar{x}_{2}\right| c+\tau \bar{x}_{2}\left|d y_{1}+\tau \bar{x}_{2}\right| \tau \bar{y}_{2}+\tau \bar{x}_{2} \mid \bar{y}_{2}+ \\
& \bar{x}_{2}\left|\tau+\bar{x}_{2}\right| c+\bar{x}_{2}\left|d y_{1}+\bar{x}_{2}\right| \tau \bar{y}_{2}+\bar{x}_{2} \mid \bar{y}_{2} .
\end{aligned}
$$

Note that the enclosed summand can be skipped, since (by virtue of the saduration requirement) they are equal to other summand: egg. $a\left|\tau \bar{y}_{2}=a\right| \bar{y}_{2}$ (by axiom IC4), $b x_{1}\left|\tau \bar{y}_{2}=b x_{1}\right| \bar{y}_{2}$. Now these are just the terms which are 'lost' when evaluating $\tau_{\{\mathrm{t}\}}\left(\overline{\mathrm{x}}^{\mathrm{t}} \mid \overline{\mathrm{y}}^{\mathrm{E}}\right.$ ) (since t does not communicate). Namely:

$$
\begin{aligned}
& \bar{x}^{t} \mid \bar{y}^{t}= \\
& a|t+a| c+a\left|d y_{1}^{t}+\delta+a\right| \bar{y}_{2}^{t}+ \\
& b x_{1}^{t}\left|t+b x_{1}^{t}\right| c+b x_{1}^{t}\left|d y_{1}^{t}+\delta+b x_{1}^{t}\right| \bar{y}_{2}^{t}+ \\
& \delta+\delta+\delta+\delta+ \\
& \bar{x}_{2}^{t}\left|t+\bar{x}_{2}^{t}\right| c+\bar{x}_{2}^{t}\left|d y_{1}^{t}+\quad+\bar{x}_{2}^{t}\right| \bar{y}_{2}^{t} .
\end{aligned}
$$

To see that $\tau_{\{t\}}\left(\bar{x}^{t} \mid \bar{y}^{t}\right)=\bar{x} \mid \bar{y}$ we can inspect the summand separately (since $\tau_{\{t\}}$ distributes over + ). Indeed, $a \mid \tau=\tau_{\{t\}}(a \mid t)=\delta$; and eng. $\bar{x}_{2} \mid d y_{1}=$ $\tau_{\{t\}}\left(\bar{x}_{2}^{t} \mid d y_{l}^{t}\right)$ follows by the induction hypothesis, using the fact that
$d y_{1}^{t}=\overline{d y}_{1}^{t}$.
In the same way one can prove the following proposition which generalises Proposition $3.6(i)$ and is of independent interest:
3.7. PROPOSITION. Let $I \subseteq A$ be such that $I \mid A=\{\delta\}$. (Here $I \mid A=\{c \mid \exists i \in I, a \in A$ $i \mid a=c\}$.) Then in $A_{\tau}^{\omega}$ :

$$
\tau_{I}(x \| y)=\tau_{I}\left(\tau_{I}(x) \| \tau_{I}(y)\right)
$$

(ii) Moreover, let $(A \mid A) \cap I=\varnothing$. Then in $A_{\tau}^{\omega}$ :

$$
\tau_{I}(x \| y)=\tau_{I}(x) \| \tau_{I}(y)
$$

3.8. COROLLARY. $A_{\tau}^{\omega} \vDash x\|(y \| z)=(x \| y)\| z$.

PROOF. Let $t$ be as in Proposition 3.6. Note that Proposition 3.6 (i) entails $(x \| y)^{t}=x^{t} \| y^{t}$. Now:

$$
\begin{aligned}
& \left.x \|(y \| z)=\tau_{\{t\}}\left(x^{t} \|(y \| z)^{t}\right)=\tau_{\{t\}}\left(x^{t} \|\left(y^{t} \| z^{t}\right)\right) \overline{\overline{( }}^{*}\right) \\
& \tau_{\{t\}}\left(\left(x^{t} \| y^{t}\right) \| z^{t}\right)=(x \| y) \| z .
\end{aligned}
$$

Here (*) follows from the associativity of || in ACP (see [ 2 1). $\square$
3.9. EXPANSION THEOREM FOR ACP $\tau$. Let communication be binary. Then in $A_{\tau}^{\omega}$ :

$$
x_{1}\|\ldots\| x_{k}=\sum_{1 \leqslant i \leqslant k} x_{i} \Perp x_{k}^{i}+\sum_{1 \leqslant i<j \leqslant k}\left(x_{i} \mid x_{j}\right) \Perp x_{k}^{i, j}
$$

where $x_{k}^{i}$ is the merge of $x_{1}, \ldots, x_{k}$ except $x_{i}$ and $x_{k}^{i, j}$ is the merge of $x_{1}, \ldots, x_{k}$ except $x_{i}, x_{j} \quad(k \geqslant 3)$.

PROOF. $\left.x_{1}\|\ldots\| x_{k}=\bar{x}_{1}\|\ldots\| \bar{x}_{k}=\tau_{\{t\}}\left(\bar{x}_{1}^{\mathrm{t}}\|\ldots\| \bar{x}_{k}^{\mathrm{t}}\right) \overline{( }\right)_{(*)}$

$$
\begin{aligned}
& \tau_{\{t\}}\left(\sum \bar{x}_{i}^{t} \mathbb{U}\left(\bar{x}_{k}^{i}\right)^{t}+\sum\left(\bar{x}_{i}^{t} \mid \bar{x}_{j}^{t}\right) \mathbb{L}\left(\bar{x}_{k}^{i, j}\right) t\right)= \\
& \sum \tau_{\{t\}}\left(\bar{x}_{i}^{t} \mathbb{L}\left(\bar{x}_{k}^{i}\right)^{t}\right)+\sum \tau_{\{t\}}\left(\left(\bar{x}_{i}^{t} \mid \bar{x}_{j}^{t}\right) \mathbb{L}\left(\bar{x}_{k}^{i, j}\right){ }^{t}\right) \overline{( }_{(* *)} \\
& \sum\left(\tau_{\{t\}}\left(\bar{x}_{i}^{t}\right) \mathbb{L} \tau_{\{t\}}\left(\bar{x}_{k}^{i}\right){ }^{t}\right)+\sum\left(\tau_{\{t\}} \bar{x}_{i}^{t} \mid \tau_{\{t\}} \bar{x}_{j}^{t}\right) \mathbb{L} \tau_{\{t\}}\left(\bar{x}_{k}^{i}, j\right) t
\end{aligned}
$$

$$
\begin{aligned}
& \sum \bar{x}_{i} \Perp \bar{x}_{k}^{i}+\sum\left(\bar{x}_{i} \mid \bar{x}_{j}\right) \Perp \bar{x}_{k}^{i, j}= \\
& \sum x_{i} \Perp x_{k}^{i}+\sum\left(x_{i} \mid x_{j}\right) \Perp x_{k}^{i, j} .
\end{aligned}
$$

Here (*) is the Expansion Theorem for ACP (see [5]) and (**) is by Proposition 3.6.

APPENDIX I. TERMINATION OF ACP $T_{\tau}$ REDUCTIONS PROVED BY RECURSIVE PATH ORDERINGS

In this Appendix we will prove the termination result in the Elimination Theorem 2.20 by the method of recursive path orderings as in DERSHOWITZ. [7]. Since we will give a slightly different presentation of recursive path orderings, a short account of this method will be given. Our presentation replaces Dershowitz's inductive definition of the recursive path ordering by a reduction procedure (which may be seen as an 'operationalisation' of that inductive definition). This reduction procedure provides a somewhat easier notation in applications.

We start with the basis of the recursive path ordering method, the Kruskal Tree Theorem. First we need a definition:

1. DEFINITION. (i) Let $D$ be the domain of finite commutative rooted trees whose nodes are labeled with natural numbers; alternatively one may consider an element $t$ of $D$ as a partially ordered multiset of natural numbers such that $t$ has a least element.

Example: $\quad t=$


We will use the self-explaining notation $t=3(5,7(9), 8(0(1,5))$ ). This notation is ambiguous since the 'arguments' of the 'operators' may be permuted, e.g. also $t=3(8(0(5,1)), 5,7(9))$.
(i.i) Let $t, s \in D$. We say that $s$ is covered by $t$, notation $s ㄷ, t$, if there is an injection $\varphi: \operatorname{NODES}(s) \rightarrow$ NODES $(t)$ which is an order-preserving isomorphism and such that for all nodes $\alpha \in \operatorname{NODES}(s)$ we have: label $(\alpha) \geqslant \operatorname{label}(\varphi(\alpha))$ where $\geqslant$ is the ordering on $\mathbb{N}$.

Example: $s=2(9,7(4,0)) \sqsubseteq t$ as in (i):

Figure 15

(Note that the embedding $\varphi$ is unique in this case.)

Clearly, 5 is a p.o. on D. Now there is the following beautiful theorem:
2. KRUSKAL TREE THEOREM. Let $t_{1}, t_{2}, t_{3}, \ldots$ be a sequence in $D$. Then for some $i<j: t_{i} \subseteq t_{j}$.

In fact, this is not the most general formulation of the theorem; see DERSHOWITZ [7]. The formulation there is stronger in two respects: the linear ordering of the labels (in our case $\mathbb{N}$ ) can be taken to be a partial order which is well-founded; and secondly, Kruskal's original formulation concerns noncommutative trees and an embedding $\varphi$ as above must also respect the 'left-to-right' ordering. Clearly, that version implies immediately the above statement of the Tree Theorem. For a short proof see DERSHOWITZ [8].

The next definition is from [7]:
3. DEFINITION. The p.o. $\square$ on $D$ is defined inductively as follows:
$t=n\left(t_{1}, \ldots, t_{k}\right) \triangleright m\left(s_{1}, \ldots s_{\ell}\right)=s(k, \ell \geqslant 0)$ iff
(j)) $n>m$ and $t \triangleright s_{i}$ for all $i=1, \ldots, \ell$
or
(ii) $n=m$ and $\left\{t_{1}, \ldots, t_{k}\right\} \triangleright \triangleright\left\{s_{1}, \ldots, s_{e}\right\}$ where $\triangleright$ is the p.o. on multisets of elements of $D$ induced by $D$,
or
(iii) $n<m$ and $t_{i} \geqslant s$ for some $i \in\{1, \ldots, k\}$.

It is implicit in [7] that an equivalent definition of $D$ is:
4. DFFINITION. The p.o. $\triangleright$ on $D$ is defined inductively as follows:
(a) $t=n\left(t_{1}, \ldots, t_{k}\right) \triangleright m\left(s_{1}, \ldots, s_{e}\right)=s(k, l \geqslant 0)$ iff
(i) as above
or
(ii) as above
or
(iii)' $s=t_{i}$ for some $i \in\{1, \ldots, k\}$.
(b) $\triangleright$ is transitive.
(Here the cases (i), (ii), (iii)' may overlap. The transitivity has to be required explicitly now.)
5. EXAMPLE. $t=$



Proof: By (i) from Definition 3, $t \triangleright s$ if: (a) $t \triangleright 6$ and (b) $t \triangleright \frac{5}{6}$ and (c) t $\square$ 4
(a) follows by (iii) of Definition 3; (b) follows by (ii) and $7 \stackrel{7}{7} 8$ (by (iii)).
(c) follows from (d) $t \triangleright 6$ and (e) $t \triangleright 6$
(d) is by (iii) and (e) is so by (iii) since $7 \triangleright{ }_{8}^{6}$ (by (i), (iii)).

So, establishing that $t \triangleright s$ requires a miniature proof. Another presentation may be more convenient: instead of by the inductive definition above we can also define $\triangleright$ by an auxiliary reduction procedure as follows.

Let $D^{*}$ be $D$ where some nodes of $t \in D$ may be marked with *. E.g.
$3^{*}\left(1,2^{*}(4)\right)=/_{1}^{3 *} \in \mathrm{D}^{*}$.
Notation: if $t=n\left(t_{1}, \ldots, t_{k}\right)$ or $t=n^{*}\left(t_{1}, \ldots, t_{k}\right)$, then $t^{*}=n^{*}\left(t_{1}, \ldots, t_{k}\right)$. (The marker * can be understood as a command to replace the marked term by a lesser term.)
6. DEFINITION. On $D^{*}$ a reduction relation $\Rightarrow$ is defined as follows.
(0) $n\left(t_{1}, \ldots, t_{k}\right) \Rightarrow n^{*}\left(t_{1}, \ldots, t_{k}\right) \quad(k \geqslant 0)$
(i) if $n>m$ then $n^{*}\left(t_{1}, \ldots, t_{k}\right) \Rightarrow m\left(n^{*}(\vec{t}), \ldots, n^{*}(\vec{t})\right)$
$\left(k \geqslant 0, s \geqslant 0\right.$ copies of $\left.n^{*}(\vec{t})\right)$
(2) $n^{*}\left(t_{1}, \ldots, t_{k}\right) \Longrightarrow n\left(t_{1}^{*}, \ldots, t_{1}^{*}, t_{2}, \ldots, t_{k}\right)\left(k \geqslant 1, s \geqslant 0\right.$ copies of $\left.t_{1}^{*}\right)$
(3) $n^{*}\left(t_{1}, \ldots, t_{k}\right) \Rightarrow t_{i}(i \in\{1, \ldots, k\}, k \geqslant 1)$
(4) if $t \Rightarrow s$ then $n(--, t,--) \Longrightarrow n(--, s,--)$.

Furthermore, $\Rightarrow$ is the transitive reflexive closure of $\Rightarrow$.
(In fact, (4) is superfluous for the definition of $\Rightarrow$; without it one easily derives: if $t \Rightarrow s$ then $n(--, t,--) \Longrightarrow n(--, s,--)$.

We are only interested in *-free $t \in D \subseteq D^{*}$. Now we have by a tedious but routine proof which is omitted:
7. PROPOSITION. Let $t, s \in D$ (i.e. not containing *) Then:

$$
t \Longrightarrow s \text { iff } t \geqslant s .
$$

8. EXAMPLE. (i) $4 \Longrightarrow 4^{*} \Longrightarrow 3\left(4^{*}, 4^{*}\right) \Longrightarrow 3\left(2\left(4^{*}\right), 4^{*}\right) \Longrightarrow 3\left(2(1), 4^{*}\right) \Longrightarrow 3(2(1), 0)$.
(ii) Cf. Fxample 5:






In DERSHOWITZ [7] the following facts about $D$ are proved:
9. PROPOSITION. $\Delta$ is a partial order.

The proof requires a simple induction to show the irreflexivity.
10. PROPOSITION. (i) $n\left(t_{1}, \ldots, t_{k}\right) D n\left(t_{2}, \ldots, t_{k}\right)$
(ii) $n\left(t_{1}, \ldots, t_{k}\right) \triangleright t_{i} \quad(1 \leqslant i \leqslant k)$
(iii) $t>s \Rightarrow n(\ldots, t, \ldots) \triangleright n(\ldots, s, \ldots)$
(iv) if $n>m$ then $n\left(t_{1}, \ldots, t_{k}\right) \triangleright m\left(t_{1}, \ldots, t_{k}\right)$.

PROOF. Using Proposition 7, (i)-(iii) are immediate; e.g. (ii):
$n(\vec{t}) \Rightarrow n^{*}(\vec{t}) \Rightarrow t_{i}$ and (i): $n\left(t_{1}, \ldots, t_{k}\right) \Rightarrow n^{*}\left(t_{1}, \ldots, t_{k}\right) \Rightarrow n\left(t_{2}, \ldots, t_{k}\right)$. As to (iv) : $n(\vec{t}) \Longrightarrow n^{*}(\vec{t}) \Longrightarrow m\left(n^{*}(\vec{t}), \ldots, n^{*}(\vec{t})\right) \Longrightarrow m\left(t_{1}, \ldots, t_{k}\right)$.

Using Proposition 10 one shows easily:
11. PROPOSITION. $s$ ㄷ $\Rightarrow t \geqslant s$.

From this we have
12. THEOREM (Dershowitz) (The termination property for the recursive path ordering $(>) D$ is a well-founded partial order.

PROOF. Suppose $t_{0} \triangleright t_{1} \triangleright t_{2} \triangleright \ldots$ is an infinite descending chain w.r.t. $\triangleright$. Then, by the Kruskal Tree Theorem 2, $t_{i} \sqsubseteq t_{j}$ for some $i<j$. So by Proposition 11, $t_{j} \geqslant \dot{t}_{i}$. However since $D$ is a p.o., this contradicts $t_{i}>t_{j}$.
13. Application to $A C P_{r}$. We want to prove that the rewrite rules (from left to right) associated to the axioms of $\mathrm{ACP}_{\Gamma}$ except $\mathrm{Al}, 2,5, \mathrm{Cl}, 2$ and $\mathrm{Il}, 2,3$ are terminating.. These rewrite rules have, in tree notation, the following form: (see Table 4, next page).

Note that the occurrence of $\|$ in the RHS of the rules CM3; CM7 prevents us to order the operators directly in a way suitable for an application of the termination property of recursive path orderings. Instead, we have to rank the operators $\|\|,, \mid$ simply by (e.g.) the natural number that is the sum $|x|+|y|$ of the lengths of the arguments $x, y$. Here $|x|$ is inductively defined by:

$$
\begin{aligned}
& |a|=|\tau|=1 \\
& \left|x_{\square} y\right|=|x|+|y| \text { for } \square=+, \ldots,||, \mathbb{U}| \\
& \left|\partial_{H}(x)\right|=\left|\tau_{I}(x)\right|=|x|
\end{aligned}
$$

The ranked operators $\|_{n},\left.\mathbb{L}_{n^{\prime}}\right|_{n},+, \ldots \partial_{H}, \tau_{I}$ are partially ordered as follows:

$$
\begin{aligned}
& \left\|_{n}>\right\|_{n} \cdot \|_{n} \\
& \left\|_{n} \cdot\right\|_{n}>\|_{n-1} \\
& \left\|_{n} \cdot\right\|_{n^{\prime}} \cdot \|_{n}>\cdot>+ \\
& \partial_{H}, \tau_{I}>
\end{aligned}
$$

(See Figure 16.)

| A3. ${ }_{x}^{+} \longrightarrow x$ | CM5,6. |
| :---: | :---: |
| A4. | CM7. |
| A6. ${ }_{x}^{+}{ }_{\delta}^{+} \longrightarrow x$ | CM8,9. |
| A7. | D1,2. <br> Likewise DT. |
| C3. | D3. |
| CM1. | D4. |
| CM2. <br> Likewise TM1. | TI1-5: <br> analogous to DT, D1-4. |
|  | $\text { TC1, } 2 .$ |
|  | TC3,4. |

Table 4: Rewrite rules associated to the axioms of $A C P=-\{A 1,2,5 ; C 1,2 ; T 1,2,3\}$.


Now consider a closed $A C P_{\tau}$-term T. Rank all $\|\|,, \|$-operators in $T$ by the sum of the norms $1 . \mid$ of their arguments.
Example: $T=(a b \| c d) ~ \Perp(\tau q \mid(r+u v))$ will be ranked as

$$
T_{r}=\left(a b \|_{4}^{c d)} \mathbb{U}_{9}\left(\left.\tau q\right|_{5}(r+u v)\right)\right.
$$

To $T_{r}$ we associate an element $t \in D$ by writing down the formation tree of $T_{r}$ :

(In fact, we must assign to the $a,\left.\tau_{,}\left\|_{n^{\prime}}\right\|_{n^{\prime}}\right|_{n^{\prime}}+, \ldots, \partial_{H}, \tau_{I}$ natural numbers corresponding to the p.o. in Figure 16 above. To all atoms we assign, say,0.) Now we have:
13.1. THEOREM. The rewrite rules in Table 4 have the termination property.

PROOF. Let $\triangleright$ be the recursive path ordering induced by the p.o. on the ranked operators as defined above. We will show that for each closed instance $t \rightarrow s$ of the rewrite rules, we have $t \triangleright s$. In order to do so, we use the alternative definition of $D$ as $\stackrel{+}{\Rightarrow}$ (the transitive closure of $\Rightarrow$ ). We will treat some typical cases.


Table 5.
CM3.

CM7.


Table 6.

APPENDIX II. AN INDUCTIVE PROOF OF ASSOCIATIVITY OF MERGE IN ACP $\mathcal{C}_{\tau}$

We will prove that in $A C P_{\tau}$ the following identities between closed terms are derivable:
(1) $\quad(x \| y) \Perp z=x \sharp(y \| z)$
(2) $\quad(x \mid a y) ~ \Perp z=x \mid(a y \| z)$
(3) $x|y=y| x$
(4) $\quad x\|y=y\| x$
(5) $\quad x|(y \mid z)=(x \mid y)| z$
(6) $x\|(y \| z)=(x \| y)\| z$

Table 7.

These are the axioms of standard concurrency as in Table 3 (Section 3), except for (2) which is a special case of the second axiom of standard concurrency. (Alternatively, (2) may be replaced by:

$$
(x \mid y) \| z=x \mid(y \| z) \text { if } y \text { is stable. }
$$

Here $y$ is 'stable', in the terminology of MILNER [12], if it does not start with a $\tau$-step.)

In Corollary 3.8 a different proof of (6) is given. The present proof uses an essentially straightforward induction to the lengths of the terms involved; the induction has to be simultaneously applied to several of (1)-(6). These identities, however; are interesting in their own right.

The proof has two main parts; in the first and easiest part, identities $(3),(4),(5)$ are proved. The second part takes care of the main identity, (6); the proof is complicated by the fact that we have in $A C P_{\tau}$ only the weak version (2) of the second axiom of standard concurrency.

All identities (1)-(6) are proved for basic terms $\in T$ (see Definition 3.1). In view of the Elimination Theorem 2.20 this entails the identities for all closed $A C P_{\tau}$-terms $x, y, z$.

1. PROPOSITION. Let $x, y, z \in T$. Then: .
(i) $\quad A C P_{\tau}|-x| y=y \mid x$
(ii) ${ }^{A C P}{ }_{\tau} \vdash \mathrm{F}\|\mathrm{y}=\mathrm{y}\| \mathrm{x}$.

PROOF. Let $|x|$ be the length in symbols of $x$ (see Definition in Appendix 1,13 ). The proof uses an induction to $|x|+|y|$. We prove (i), (ii) simultaneously.

The induction hypothesis is: (i), (ii) are proved for all $\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$ such that $\left|x^{\prime}\right|+\left|y^{\prime}\right|<|x|+|y|$. First we will prove the induction step of (i), $x|y=y| x$.
Case 1. $x=x_{1}+x_{2}$. So $\left|x_{i}\right|<|x|, i=1,2$. Then $x\left|y=\left(x_{1}+x_{2}\right)\right| y=x_{1}\left|y+x_{2}\right| y$ $=$ (ind. hyp.) $y\left|x_{1}+y\right| x_{2}=y\left|\left(x_{1}+x_{2}\right)=y\right| x$.

Case 2. $\mathrm{Y}=\mathrm{Y}_{1}+\mathrm{Y}_{2}$ : similar.
Case 3. $x=\tau: x|y=\tau| y=\delta=y|\tau=y| x$.
Case 4. $y=\tau$ : similar.
Case 5. $x=\tau x^{\prime}: x\left|y=\tau x^{\prime}\right| y=x^{\prime}|y=y| x^{\prime}=y\left|\tau x^{\prime}=y\right| x$.
Case 6. $x=a, y=b: x|y=a| b=b|a=y| x$.
Case 7. $x=a x^{\prime}, y=b y^{\prime}: x\left|y=a x^{\prime}\right| b y^{\prime}=(a \mid b)\left(x^{\prime} \| y^{\prime}\right)=(b \mid a)\left(y^{\prime} \| x^{\prime}\right)=y \mid x$.
Case 8. $x=a, y=b y^{\prime}: x\left|y=(a \mid b) y^{\prime}=(b \mid a) y^{\prime}=y\right| x$.
Case 9. $\mathrm{x}=\mathrm{ax}, \mathrm{y}=\mathrm{b}$ : similar.
(Note that in case 7 the induction hypothesis for (ii) is used.)
Next to show (ii) $x\|y=y\| x:$
$x\|y=x \sharp y+y \sharp x+x|y=y \sharp x+x \sharp y+y| x=y\| x . \square$
2. PROPOSITION. Let $x, y, z \in T$. Then $A C P \quad|\mathcal{x}|(y \mid z)=(x \mid y) \mid z$.

PROOF. Induction on $|x|+|y|+|z|$.
Case 1. $x=x_{1}+x_{2}$. Then $x\left|(y \mid z)=x_{1}\right|(y \mid z)+x_{2}\left|(y \mid z)=\left(x_{1} \mid y\right)\right| z+\left(x_{2} \mid y\right) \mid z=$ $\left(\left(x_{1} \mid y\right)+\left(x_{2} \mid y\right)\right)\left|z=\left(\left(x_{1}+x_{2}\right) \mid y\right)\right| z=(x \mid y) \mid z$.
Case 2. Similar with $y$ and $z$ sums of smaller terms.
Case 3. $x, y, z$ have one of the forms $a, \tau, a u, \tau u$. We mention one of the $4^{3}$ cases: $\left(\tau x^{\prime} \mid a y^{\prime}\right)\left|b=\left(x^{\prime} \mid a y^{\prime}\right)\right| b=x^{\prime}\left|\left(a y^{\prime} \mid b\right)=\tau x^{\prime}\right|\left(a y^{\prime} \mid b\right)$. Note that one of the cases is just axiom $C 2$ from $A C P_{\tau}$ (Table 2). $\square$

For the second half of the proof we need two preparatory propositions.
3. DEFINITION. Let $x, y$ be closed $A C P_{\tau}$-terms. Then we define: $A C P_{\tau} \vdash x[y$ if for some closed term $z, A C P_{\tau} \vdash y=x+z$.
3.1. REMARK. Note the difference with $\subseteq$ as defined for $T$, in Definition 3.2. The present 'summand inclusion', $A C P_{\tau}$ ト..ㄷ... is just $\sqsubseteq$ modulo $A C P_{\tau}$-equality. In the sequel we will sometimes write $x \subseteq y$ where $A C P_{\tau} \vdash x \subseteq y$ is meant,
if it is clear that we are working modulo $\mathrm{ACP}_{\tau}$-equality.
4. EXAMPLE. (i) $A C P_{\tau} \vdash a \subseteq \tau a$ (since $a=a+\tau a$ )
(ii) $A C P_{\tau} \vdash a \sqsubseteq a \| \tau$ (since $\left.a \| \tau=\tau a+a \tau+a \mid \tau=\tau a+a\right)$
(iii) $A C P_{\tau} \vdash \delta \sqsubseteq x$, for all $x$
(iv) $A C P_{\tau} \vdash \mathrm{a}+\tau \mathrm{a}+\tau \mathrm{b}$ 厔 $\mathrm{b}+\tau \mathrm{a}+\tau \mathrm{b}$.
5. PROPOSITION. Let $x, y$ be closed terms. Then:

$$
A C P_{\tau} \vdash x \subseteq y \quad A C A C P_{\tau} \vdash y \subseteq x \Rightarrow A C P_{\tau} \vdash x=y
$$

PROOF. We may suppose, by the Elimination Theorem 2.20, that $x, y \in T$. Suppose $A C P_{\tau} \vdash y=x+z$ for some $z \in T$ and $A C P_{\tau} \vdash x=y+u$ for some $u \in T$. Then $A C P_{\tau} \mid-x=x+z+u$. Therefore the process trees corresponding to $x$ and $x+z+u$ bisimulate: $[x] \leftrightarrows_{r, \tau}[x+z+u]$. (Here [x] is the interpretation of $x$ in the graph domain $g$ as in Section 2 ; since $x \in T$ this is a process tree.) Say $R$ is a $r, \tau$-bisimulation between $[x]$ and $[x+z+u]=[x]+[z]+[u]$. Let $R^{\prime}$ be the restriction of $R$ to (the node sets of) $[x]$ and $[x]+[z]$. Now $R^{\prime}$ need not be a bisimulation between these trees; however if $I$ is the trivial (identity) bisimulation between [x] with itself, then it is not hard to see that $R^{\prime} \cup I$ is a $r, \tau$-bisimulation between $[x]$ and $[x]+[z]=[x+z]$. (Alternatively: let $R$ be a bisimulation as indicated which is maximal w.r.t. inclusion. Then the restriction $R^{\prime}$ is a bisimulation as desired.)

$$
\text { Hence } A C P_{\tau} \vdash x=x+z=y
$$

6. PROPOSITION. Let x be a closed term. Then $A C P_{\tau} \vdash \mathrm{x} \| \tau=\mathrm{x}$.

PROOF. We may suppose $x \in T$, and use induction on $|x|$.
If $x=x_{1}+x_{2}$ then $x\left\|\tau=x_{1}\right\| \tau+x_{2} \| \tau=x_{1}+x_{2}=x$.
If $x=a$ then $a \| \tau=a \tau=a$.
If $x=a x^{\prime}$ then $a x^{\prime} \|^{\tau}=a\left(x^{\prime} \| \tau\right)=a\left(x^{\prime} \| \tau+\tau \mathbb{x ^ { \prime }}+x^{\prime} \mid \tau\right)=$ $a\left(x^{\prime} 山 \tau+\tau x^{\prime}+\delta\right)=a\left(x^{\prime}+\tau x^{\prime}\right)=a \tau x^{\prime}=a x^{\prime}$.
The cases $x=\tau, x=\tau x^{\prime}$ are similar.

We will now start the simultaneous proof of (1),(2),(6) in Table 7.
7. THEOREM. Let $x, y, z$ be closed $A C P_{\tau}$-terms and $a \in A$. Then:
(i) $\quad A C P_{\tau} \vdash(x \| y) \| z=x \Perp(y \| z)$
(ii) $A C P_{\tau} \vdash(x \mid a y) \| z=x \mid(a y \| z)$
(iii) $\mathrm{ACP}_{\tau} \vdash \mathrm{F}\|(\mathrm{y} \| \mathrm{z})=(\mathrm{x} \| \mathrm{y})\| \mathrm{z}$.

PROOF. We may assume $x, y, z \in T$; this makes an induction to $|x|+|y|+|z|$ possible. We will prove (i)-(iii) by a simultaneous induction. Let the induction hypothesis be that (i)-(iii) are proved for all $x^{\prime}, y^{\prime}, z^{\prime} \in T$ such that $\left|x^{\prime}\right|+\left|y^{\prime}\right|+\left|z^{\prime}\right|<|x|+|y|+|z|$.

First we prove the induction step (i): $(x \| y)\|z=x\|(y \| z)$.
Case (i) $1 . x=x_{1}+x_{2}$. Then $(x \| y)\left\|z=\left(x_{1} \| y\right)\right\| z+\left(x_{2} \| y\right) \| z=$ (ind. hyp.) $x_{1} \Perp(y \| z)+x_{2}\left\|(y \| z)=\left(x_{1}+x_{2}\right)\right\|(y \| z)$.
Case (i)2. $x=\tau$. Then: $(x \| y) \mathbb{L}=\tau y \mathbb{Z}=\tau(y \| z)=\tau \mathbb{L}(y \| z)=x \|(y \| z)$.
Case (i)3. $x=\tau x^{\prime}$. Then: $(x \| y)\left\|z=\tau\left(x^{\prime} \| y\right)\right\| z=\tau\left(\left(x^{\prime} \| y\right) \| z\right)=\tau\left(x^{\prime} \|(y \| z)\right)=$ $\tau x^{\prime}\|(y \| z)=x\|(y \| z)$.
The cases $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{ax}$ ' are similar. This ends the proof of the induction step (i).

Next consider the induction step (ii): ( $x \mid a y$ ) $\mathbb{z}=x \mid(a y \| z)$.
This will again be proved by a case distinction according to the formation of $x \in T: x=x_{1}+x_{2}, x=\tau, \tau x^{\prime}, b, o r b x^{\prime}$.
Case (ii)1. $x=x_{1}+x_{2}$. Then $x\left|(a y \| z)=\left(x_{1}+x_{2}\right)\right|(a y \| z)=x_{1} \mid(a y \| z)+$ $x_{2} \mid(a y \| z)=\left(x_{1} \mid a y\right) \Perp z+\left(x_{2} \mid a y\right) \Perp z=\left(x_{1}\left|a y+x_{2}\right| a y\right) \Perp z=$ $\left(\left(x_{1}+x_{2}\right) \mid a y\right) \Perp z=(x \mid a y) \| z$.
Case (ii)2. $x=\tau$. Then ( $x \mid$ ay $) ~ H z=x \mid(a y \| z)=\delta$.
 $=\tau x^{\prime}|(a y \sharp z)=x|(a y \not Z z)$.
Case (ii) $4 . x=b$. Then ( $x \mid a y$ ) $\mathbb{L} z=(b \mid a y) ~ L z=(b \mid a) y \mathbb{z}=(b \mid a)(y| | z)$, and also $x|(a y \| z)=b|(a y \mathbb{Z})=b \mid(a(y \| z))=(b \mid a)(y \| z)$.
Case (ii)5. $x=b x^{\prime}$. Then $(x \mid a y) ~ H z=\left(b x^{\prime} \mid a y\right) ~ \Perp z=(b \mid a)\left(x^{\prime} \| y\right) \| z=$ $(b \mid a)\left(\left(x^{\prime} \| y\right) \| z\right)$, and $x\left|(a y \| z)=b x^{\prime}\right|(a y \| z)=b x^{\prime} \mid a(y \| z)=$ (b|a) ( $\left.x^{\prime} \|(y \| z)\right)$. By the induction hypothesis for statement (iii) therefore $(x \mid a y) \| z=x \mid(a y \| z)$.
This ends the proof of the induction step (ii).

Now consider the induction step (iii): $L=x\|(y \| z)=(x \| y)\| z=R$. By the axioms in $A C P_{\bar{\tau}}$, we have:

$$
\begin{aligned}
& L=x\|(y \| z)=x\|(y \| z)+(y \| z) \sharp x+x \mid(y \| z)= \\
& x \amalg(y \| z)+(y \amalg z+y \mid z+z \| y)\lfloor x+x \mid(y \sharp z+z \| y+y \mid z)= \\
& x\|(y \| z)+(y \| z) \amalg x+(y \mid z)\| x+(z \| y) \| x+x \mid(y \| z)+ \\
& x|(z \mid L y)+x|(y \mid z) .
\end{aligned}
$$

Likewise $R$ can be expanded. We will use the following abbreviations: $L=e_{1}+\ldots+e_{7}$ and $R=r_{1}+\ldots+r_{7}$ where

$$
\begin{aligned}
& e_{1}=x \Perp(y \| z) \quad r_{1}=(x \| y) \mathbb{z} \\
& e_{2}=(y \amalg z) \Perp x \quad r_{2}=(x \mid y) \Perp z \\
& e_{3}=(y \mid z) \Perp x \quad r_{3}=(y \Perp x) \Perp z \\
& e_{4}=(z \| y) \Perp x \quad r_{4}=z \|(x \| y) \\
& e_{5}=x\left|(y \nmid z) \quad r_{5}=(x \not y y)\right| z \\
& e_{6}=x \mid\left(z\lfloor y) \quad r_{6}=(y \amalg x) \mid z\right. \\
& e_{7}=x\left|(y \mid z) \quad r_{7}=(x \mid y)\right| z
\end{aligned}
$$

Claim. $\quad \ell_{i} \sqsubseteq R$, for $i=1, \ldots, 7$.
From the claim the induction step (iii) follows at once. Namely, we then have: $x\|(y \| z) \sqsubseteq(x \| y)\| z$, hence by Proposition 1 (ii) : $x\|(y \| z) \subseteq z\|(x \| y)(*)$. Now $z\|(x \| y)=z\|(y \| x) \sqsubseteq x\|(z \| y)=x\|(y \| z)$, where ' $\subseteq$ ' follows from (*). So we have $x \|(y \| z)$ 들 $(x \| y) \| z$, and by Proposition $5: x\|(y \| z)=(x \| y)\| z$. The remainder of the proof is devoted to:

## Proof of the claim.

(a) $\ell_{7}=r_{7}$ 「 R by Proposition 2.
(b) $l_{1}=r_{1}$ ᄃR is statement (i) of this theorem; this induction step has already been proved. Likewise for $\ell_{2}=r_{3} \sqsubseteq R$ and $\ell_{4}=r_{4} \sqsubseteq R$.
(c) $\quad e_{3} \sqsubseteq r_{6} \sqsubseteq$ R. Here $e_{3}=(z \mid y) \| x$ and $r_{6}=z \mid(y \| x)$. Induction on $z$ :

Case (iii) (c) $1 . ~ z=z_{1}+z_{2}$. Then $e_{3}=\left(\left(z_{1}+z_{2}\right) \mid y\right) \mathbb{L}_{x} x=\left(z_{1} \mid y\right) \mathbb{X}+$ $\left(z_{2} \mid y\right) \amalg x \sqsubseteq$ (ind. hyp.) $z_{1}\left|(y \mathbb{x})+z_{2}\right|(y \amalg x)=$ $\left(z_{1}+z_{2}\right)|(y \| x)=z|(y \Perp x)$.
Case (iii) (c)2. $z=\tau$. Then $e_{3}=r_{6}=\delta$.
Case (iii) (c)3. $z=\tau z^{\prime}$. Then $e_{3}=\left(\tau z^{\prime} \mid y\right) \mathbb{x}=\left(z^{\prime} \mid y\right) \mathbb{x} \subseteq z^{\prime} \mid(y \Perp x)=$ $\tau z^{\prime}|(y \amalg x)=z|(y \Perp x)$.

Case (iii) (c)4. $\mathrm{z}=\mathrm{a}$. Similar to the next case.
case (iii) (c)5. $z=a z^{\prime}$. To prove ( $\left.a z^{\prime} \mid y\right) \mathbb{x} \sqsubseteq a z^{\prime} \mid(y \mathbb{x})$. We use an induction on $y$ :

Case (iii)(c)5.1. $y=y_{1}+y_{2}$. Then (az' $\left.\mid\left(y_{1}+y_{2}\right)\right) \mathbb{X}=\left(a z^{\prime} \mid y_{1}\right) \mathbb{L}+$ $\left(a z^{\prime} \mid y_{2}\right) \Perp x \sqsubseteq a z^{\prime}\left|\left(y_{1} \Perp x\right)+a z^{\prime}\right|\left(y_{2} \Perp x\right)=a z^{\prime} \mid\left(\left(y_{1}+y_{2}\right) \Perp x\right)=$ ( $\mathrm{az}{ }^{\prime}$ ) $\mid(\mathrm{y} \| \mathrm{x})$.

Case (iii)(c)5.2. $\quad y=\tau:\left(a z^{\prime} \mid \tau\right) \Perp x=\delta \mathbb{x}=\delta \sqsubseteq a z \cdot \mid(\tau \mathbb{x})$.
Case (iii)(c)5.3. $y=\tau y^{\prime}:\left(a z^{\prime} \mid \tau y^{\prime}\right) \Perp x=\left(a z^{\prime} \mid y^{\prime}\right) \Perp x \sqsubseteq\left(a z^{\prime}\right) \mid\left(y^{\prime} \mathbb{x}\right)$
$\left.\left(a z^{\prime}\right) \mid\left(y^{\prime} \| x\right) \overline{\overline{( }}^{*}\right)\left(a z^{\prime}\right)\left|\tau\left(y^{\prime} \| x\right)=\left(a z^{\prime}\right)\right|\left(\tau y^{\prime} \| x\right)$.
(Note the curious manceuvre in steps (*).)
Case (iii)(c)5.4. $y=b:\left(a z^{\prime} \mid b\right) ~ \Perp x=\left((a \mid b) z^{\prime}\right) \mathbb{x}=(a \mid b)\left(z^{\prime} \| x\right)=$ $\left(a z^{\prime}\right)\left|(b x)=\left(a z^{\prime}\right)\right|(b \| x)$.

Case (iii)(c)5.5. $y=b y^{\prime}:\left(a z^{\prime} \mid b y^{\prime}\right) \mathbb{x}=\left((a \mid b)\left(z^{\prime} \| y^{\prime}\right)\right) \mathbb{x}=$ (a|b) $\left.\left(z^{\prime} \| y^{\prime}\right) \| x\right)=(a \mid b)\left(z^{\prime} \|\left(y^{\prime} \| x\right)\right)=\left(a z^{\prime}\right) \mid b\left(y^{\prime} \| x\right)=$ $a z^{\prime} \mid\left(\left(b y^{\prime}\right) \Perp x\right)$.
(d) Finally we prove $e_{5} \subseteq r_{2}+r_{5}+r_{7} \subseteq R$ (and by permuting $x, y$ we have then also $\ell_{6} \subseteq r_{2}+r_{6}+r_{7} \sqsubseteq$ R) i.e.:

$$
x|(y \mathbb{z}) \subseteq(x \mid y) \mathbb{L} z+(x \mathbb{L})| z+x \mid(y \mid z)
$$

The proof is again by induction on $|\dot{x}|+|y|+|z|$. We start with an induction on $x$ :

Case (iii) (d)1. $x=x_{1}+x_{2}$. Then $x\left|(y \| z)=x_{1}\right|(y \| z)+x_{2} \mid(y \| z) \equiv$
$\left(x_{1} \mid y\right) \Perp z+\left(x_{1} \| y\right)\left|z+x_{1}\right|(y \mid z)+\left(x_{2} \mid y\right) \Perp z+$
$\left(x_{2} \Perp y\right)\left|z+x_{2}\right|(y \mid z)=(x \mid y) \Perp z+(x \| y)|z+x|(y \mid z)$.
Case (iii) (d) 2. $x=\tau$. Then $x|(y \Perp z)=\delta \sqsubseteq(x \mid y) \Perp z+(x \| y)| z+x \mid(y \mid z)$.
Case (iii) (d) 3. $x=\tau x^{\prime}$. Then $\tau x^{\prime}\left|\left(y \bigsqcup_{Z}\right)=x^{\prime}\right|(y \| z) \square$
$\left(x^{\prime} \mid y\right) \nVdash z+\left(x^{\prime} \| y\right)\left|z+x^{\prime}\right|(y \mid z)=$
$\left(\tau x^{\prime} \mid y\right) \Perp z+\left(x^{\prime} \notin y\right)\left|z+\tau x^{\prime}\right|(y \mid z) \Xi$
$\left(\tau x^{\prime} \mid y\right) \| z+\left(x^{\prime} \| y\right)\left|z+\tau x^{\prime}\right|(y \mid z)=$
$\left(\tau x^{\prime} \mid y\right) \| z+\tau\left(x^{\prime} \| y\right)\left|z+\tau x^{\prime}\right|(y \mid z)=$
$\left(\tau x^{\prime} \mid y\right) \| z+\left(\tau x^{\prime} \| y\right)\left|z+\tau x^{\prime}\right|(y \mid z)=$
$(x \mid y) \Perp z+(x \Perp y)|z+x|(y \mid z)$.
Case (iii) (d) 4. $x=a$ : similar to the next case.
Case (iii) (d)5. $x=a x^{\prime}$. To prove:
(*) $\quad a x^{\prime}\left|(y \amalg z) \equiv\left(a x^{\prime} \mid y\right) \sharp z+\left(a x^{\prime} \sharp y\right)\right| z+a x^{\prime} \mid(y \mid z)$.

Subinduction to $y:$ write $y=(\tau)+\sum c_{i}+\sum b_{j} y_{j}^{\prime}+\sum \tau y_{e}^{\prime \prime}$.
Clearly ax' $\mid(y \| z)$ can be decomposed as a sum analogous to the sum expression for $y$. Each of these summands of $a x^{\prime} \mid(y \| z)$ will now be proved to be ㄷ the RHS of (*).

Case (iii) (d)5.1. Summands $b_{j} Y_{j}^{\prime}:\left(a x^{\prime}\right) \mid\left(b_{j} Y_{j}^{\prime} \| z\right)=$ (by statement (ii) of this theorem) $\left(a x^{\prime} \mid b_{j} Y_{j}^{\prime}\right) \mathbb{z} \sqsubseteq\left(a x^{\prime} \mid y\right) \mathbb{z} \sqsubseteq \operatorname{RHS}(*)$.

Case (iii) (d)5.2. Summands $c_{i}$ : as the previous case.
Case (iii) (d)5.3. Summand $\tau: \operatorname{ax}\left|(\tau \| z)=a x^{\prime}\right| \tau z=a x^{\prime}\left|z=\left(a x^{\prime} \mathbb{L}\right)\right| z$ since $a x^{\prime}=a x^{\prime} \Perp \tau$ by Proposition 6.

Case (iii) (d)5.4. Summands $\tau y_{\ell}^{\prime \prime}$ (for convenience we drop the subscript $\ell$ and write $\left.y=\tau y^{\prime \prime}+y^{*}\right)$ :

```
Now \(a x^{\prime}\left|\left(\tau y^{\prime \prime} \| z\right)=a x^{\prime}\right| \tau\left(y^{\prime \prime}| | z\right)=a x^{\prime} \mid\left(y^{\prime \prime}| | z\right)=\)
\(a x^{\prime} \mid\left(y^{\prime \prime}\|z+z\| y^{\prime \prime}+y^{\prime} \mid z\right)=\)
\(a x^{\prime}\left|\left(y^{\prime \prime} \amalg z\right)+a x^{\prime}\right|\left(z \| y^{\prime \prime}\right)+a x^{\prime} \mid\left(y^{\prime \prime} \mid z\right) \sqsubseteq\) (ind. hyp.)
\(\left(a x^{\prime} \mid y^{\prime \prime}\right) \amalg z+\left(a x^{\prime} \| y^{\prime \prime}\right)\left|z+a x^{\prime}\right|\left(y^{\prime \prime} \mid z\right)+\)
\(\left(a x^{\prime} \mid z\right) \Perp y^{\prime \prime}+\left(a x^{\prime} \sharp z\right)\left|y^{\prime \prime}+a x^{\prime}\right|\left(y^{\prime \prime} \mid z\right)+a x^{\prime} \mid\left(y^{\prime \prime} \mid z\right)=\)
(Here the first summand equals the fifth by (ii) of this
    theorem, and likewise the second equals the fourth.)
    \(=\left(a x^{\prime} \mid y^{\prime \prime}\right) \Perp z+\left(a x^{\prime} \Perp y^{\prime \prime}\right)\left|z+a x^{\prime}\right|\left(y^{\prime \prime} \mid z\right)=\)
    \(\left(a x^{\prime} \mid y^{\prime \prime}\right) \amalg z+\left(a x^{\prime} \| y^{\prime \prime}\right)\left|z+a x^{\prime}\right|\left(\tau y^{\prime \prime} \mid z\right) \equiv\)
    \(\left(a x^{\prime} \mid y\right) \| z+\left(a x^{\prime} \| y^{\prime}\right)\left|z+a x^{\prime}\right|(y \mid z)\).
    This matches the RHS of (*) except for the second sum-
    mand. So it remains to prove:
```

If $\mathrm{y}=\tau \mathrm{y}^{\prime \prime}+\mathrm{y}^{*}$, then $\left(\mathrm{ax}{ }^{*} \sharp \mathrm{y}^{\prime \prime}\right)\left|\mathrm{z} \sqsubseteq\left(\mathrm{ax}{ }^{\prime} \amalg \mathrm{y}\right)\right| \mathrm{z}$ (**)

Proof of (**): induction on $z$.
Case (iii) (d)5.4.1. $z=z_{1}+z_{2}$. Then (ax' $\left\lfloor y^{\prime \prime}\right)\left|\left(z_{1}+z_{2}\right)=\left(a x^{\prime} \| y^{\prime \prime}\right)\right| z_{1}+$ $\left(a x^{\prime} \| y^{\prime \prime}\right)\left|z_{2} \sqsubseteq\left(a x^{\prime} \| y\right)\right| z_{1}+\left(a x^{\prime} \| y\right) \mid z_{2}=\left(a x^{\prime} \| y\right) z$.
Case (iii)(d)5.4.2. $z=\tau:\left(a x^{\prime}\left\lfloor y^{\prime \prime}\right) \mid \tau=\delta \sqsubseteq \operatorname{RHS}(* *)\right.$.
Case (iii)(d)5.4.3. $z=\tau z^{\prime}:\left(a x^{\prime} \amalg y^{\prime \prime}\right)\left|\left(\tau z^{\prime}\right)=\left(a x^{\prime} \| y^{\prime \prime}\right)\right| z^{\prime} \sqsubseteq\left(a x^{\prime} \amalg y\right) \mid z^{\prime}=$ $\left(a x^{\prime} \| y\right) \mid\left(\tau z^{\prime}\right)$.

Case (iii) (d)5.4.4. $z=b:\left(a x^{\prime} \| y^{\prime \prime}\right)\left|b=a\left(x^{\prime} \| y^{\prime \prime}\right)\right| b=(a \mid b)\left(x^{\prime} \| y^{\prime \prime}\right)$.
Now $x^{\prime}\left\|y=x^{\prime}\right\|\left(\tau y^{\prime \prime}+y^{*}\right)=x^{\prime} \amalg\left(\tau y^{\prime \prime}+y^{*}\right)+\left(\tau y^{\prime \prime}+y^{*}\right) \amalg x^{\prime}+$ $x^{\prime} \mid\left(\tau y^{\prime \prime}+y^{*}\right)=\tau\left(y^{\prime \prime} \mid x^{\prime}\right)+T$.

So: $\left(a x^{\prime} \| y\right) \left\lvert\, b=(a \mid b)\left(x^{\prime} \| y\right)=(a \mid b)\left(\tau\left(y^{\prime \prime} \| x^{\prime}\right)+T\right)=\frac{\bar{\uparrow}}{=}\right.$ (a|b) $\left(\tau\left(y^{\prime \prime} \| x^{\prime}\right)+T\right)+(a \mid b)\left(y^{\prime \prime} \| x^{\prime}\right)$. Here " $\hat{\uparrow}$ " is an application of the third $\tau$-law, T3. Therefore (ax' $\left.\| y^{\prime \prime}\right) \mid b=$ (a|b) ( $\left.x^{\prime} \| y^{\prime \prime}\right) \equiv\left(a x^{\prime} \| y\right) \mid b$.
Case (iii) (d)5.4.5. $z=b z$ : similar.
This ends the proof of induction step (iii), and thereby of the theorem.

## REFERENCES

[1] DE BAKKER, J.W. \& J.I. ZUCKER, Processes and the denotational semantics of concurrency, Information and Control, Vol.54, No.1/2, 70-120, 1982.
[2] BERGSTRA, J.A. \& J.W. KLOP, Process algebra for communication and mutual exclusion, Report IW 218/83, Mathematisch Centrum, Amsterdam 1983.
[3] BERGSTRA, J.A. \& J.W. KLOP, An abstraction mechanism for process algebras, Report IW 231/83, Mathematisch Centrum, Amsterdam 1983.
[4] BERGSTRA, J.A. \& J.W. KLOP, Algebra of Communicating Processes, Report IW 2../84, Centrum voor Wiskunde en Informatica, Amsterdam 1984.
[5] BERGSTRA, J.A. \& J.V.TUCKER, Top-down design and the Algebra of Communicating Processes, Report CS-R8401 , Centrum voor Wiskunde en Informatica, Amsterdam 1984.
[6] BROOKES, S.D. \& W.C. ROUNDS, Behavioural equivalence relations induced by programming logics, Proceedings loth ICALP, Barcelona 1983, Springer LNCS 154 (ed. J. Díaz), 97-108.
[7] DERSHOWITZ, N., Orderings for term-rewriting systems, Theoretical Computer Science 17 (1982), 279-301.
[8] DERSHOWITZ, N., A note on simplification orderings, Information Processing Lett. $\mathbf{g}^{(5)(1979) 212-215 .}$
[9] GRAF, S. \& J. SIFAKIS, A modal characterization of observational congruence on finite terms of CCS, to appear in Proceedings llth ICALP, Antwerpen 1984.
[10] HENNESSY, M., A term model for synchronous processes, Information and Control, Vol.51, No.1 (1981), 58-75.
[11] HOARE, C.A.R., A model for communicating sequential processes, in: "On the construction of programs" (eds. R.M. McKeag and A.M. McNaghton), Cambridge University Press (1980), 229-243.
[12] MILNER, R., A Calculus for Communicating Systems, Springer LNCS 92, 1980.
[13] WINSKEL, G., Synchronisation trees, Proceedings loth ICALP (ed. J. Díaz) Barcelona 1983, Springer LNCS 154, 695-711.

ONTVANGEN / 5 MRAR 1984

