
Centrum voor Wiskunde en Informatica 
Centre for Mathematics and Computer Science 

J.A. Bergstra, J.W. Klop 

Algebra of communicating processes with abstraction 

Departm_ent of Computer Science 

Bibliott1eek • 
Centrumvoor Wisl<unde en Informatica 

Amsterdam 

Report CS-R8403 January 

11111111111 llll llll I II~~( lil\"~\llii~i\ 11111111111111\I Ill II 
3 0054 00044 5370 



The Centre for Mathematics and Computer Science is a research institute of the Stichting 
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by 
the Dutch Government through the Netherlands Organization for the Advancement of Pure 
Research (Z.W.O.). 

Copyright © Stichting Mathematisch Centrum, Amsterdam 
$, 



ALGEBRA OF COMMUNICATING PROCESSES WITH ABSTRACTION 

J.A. BERGSTRA, J.W. KLOP 

Centre for Mathematics and Computer Science 3 Amsterdam 

We present an axiom system ACP, for communicating processes with silent 

actions ('t-steps'). The system is an extension of ACP, Algebra of Communi

cating Processes, with Milner's ,-laws and an explicit abstraction operator. 

By means of a model of finite acyclic process graphs for ACP, syntactic pro

perties such as consistency and conservativity over ACP are proved. Further

more the _Expansion Theorem for ACP is shown to carry over to ACP,. Finally, 

termination of rewriting terms according to the ACP, axioms is proved using 

the method of recursive path orderings. 
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INTRODUCTION 

The equational theory ACPr is an integration of ACP (Algebra of Communica

ting Processes) and Milner's r-laws. This paper studies the finite proces

ses according to ACPT, i.e. the initial model of ACPr- In particular the 

following aspects are considered: 

(i) Construction of a model of finite acyclic process graphs (modulo bi

simulation) for ACPr-

(ii) A proof that the model of (i) is in fact the initial model of ACP~; 

stated in different terms this amounts to the soundness and completeness 

of ACP,:- for finite processes. 

(iii) Analysis of a reduction system related to ACPr: using recursive path 

orderings termination of the reduction system is shown. 

(iv) A proof of the Expansion Theorem. 

(v) A proof of the associativity of parallel composition. 

The paper is virtually self-contained, though some proofs make use of 

propositions shown in [ 3 ] . 

l 

Related literature. ACPL was defined in [ 4 ]; the subsystem ACP was defined 

in [ 2 ]. Abstraction was studied in [ 3 ]. The formulation of the Expansion 

Theorem is taken from [ 5 ] . 

Both ACP and ACPL have been derived from Milner's ccs ([12]). In parti

cular ccs contains the operators +,II ,a. for each atom a and derives as laws: 

Al,A2,A3 and Tl.,T2,T3. The axioms Cl,C2 are from HENNESSY [10]; WINSKEL [13] 

surveys communication formats of atomic actions. The operator• is present 

in Hoare's CSP [ll] as';' and in DE BAKKER & ZUCKER [ l] as 1
0

1
• We refer 

to GRAF & SIFAKIS [ 9J"for a proof-theoretic discussion of the -c--laws. 

BROOKES & ROUNDS [ 6] contains an explicit description of bisimulation modu

lo -c- on finite graphs. 

The structure of this paper is as follows: 

1. THE AXIOM SYSTEM ACP.z:-

2. THE MODEL OF FINITE ACYCLIC PROCESS GRAPHS FOR ACP-i; 

3. THE EXPANSION THEOREM FOR ACP-c-

APPENDIX I. TERMINATION OF ACPL REDUCTIONS PR-OVED BY RECURSIVE PATH ORDERINGS 

APPENDIX II. AN INDUCTIVE PROOF OF ASSOCIATIVITY OF MERGE IN ACP..:-

REFERENCES. 
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1. THE AXIOM SYSTEM ACPr 

Let A be a finite set of atomic actions, containing a constant~, and let 

- I. Ax A ~A be a communication function which is commutative and associa

tive and for which &la= b. A communication alb= c is said to be proper if 

c1 b. Further we consider the constant T, for the silent action; we write 

A~= Au{~}. Silent actions are obtained from applications of the abstraction 

operator "!"I which renames atoms E I k A into r. 

The signature of the equational theory ACP-r,-is as follows: 

+ alternative composition (swn) 

• sequential composition (product) 

II parallel composition (merge) 

LI_ left-merge 

I communication merge 

dH encapsulation 

rI abstraction 

6 deadlock I failur>e 

r silent action 

Table 1. 

Here the first five operators are binary, dH and TI are unary. The operation 

dH renames the atoms in H into f and TI renames the atoms in I into T.Here 

Hand I are subsets of Az::; in fact H<;:A and Ie;;,A-{6} (since we do not want 

to rename r into 6 or conversely). 

The communication function I is extended to the communication merge, 

having the same notation, between processes (i.e. elements of a model of AC~). 

The left column in Table 2 (next page) is the axiom syste~ ACP (without 

T). In Table 2, 'a' varies over A. 

The axioms Tl,2,3 are the 'Y-laws' from MILNER [12]. 

Notation: often we will write xy instead of x.y. 

The initial algebra of the equational theory ACPc::- in Table 2 is called 

Ar..J 
"C. 
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ACP, 

x+y = y+x Al XT = X Tl 

x+(y+z) = (x+y)+z A2 TX + X = TX T2 

X + X = X A3 a(-rx+y) = a(-rx+y) + ax T3 

(x+y)z=xz+yz A4 

(xy)z ~- x(yz) AS 

X + 0 = X A6 

OX = o A7 

alb= bla Cl 

(alb)lc = al(blc) C2 

ola = o C3 

X IIY = X lL y + y lL X + X I y CMl 

a lL x = ax CM2 T ll_x = TX TMl 

(ax)tly = a(xl!y) CM3 (-rxllLY = ,(xllyl TM2 

(x+y)lLz; xll_z + y[Lz CM4 ,Ix= o TCl 

( ax ) I b = ( a I b) x CMS xi,= o TC2 

al{bx) = (ajb)x CM6 (-rxllY = xly TC3 

(ax)j(by) = (alb)(xllY) CM7 XI (-ry) = XI y TC4 

(x+y)jz = xlz + yjz CM8 

xj(y+z) = xjy + xlz CM9 

clH(-r) = -r OT 

'I(-r) = T Tll 

aH(a) = a if a</;H 01 ,
1

(a) = a if ail TI2 

aH(a) = o if aeH 02 'I(a) = L if aEI TI3 

aH(x + y) = aH(x) + aH(y) 03 'I(x + y) = 'I(x) + 'I(y) TI4 

aH(xy) = aH(x).aH(y) 04 'I(xy) = 'I(x).,I(y) TIS 

Table 2. 
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2. THE MODEL OF FINITE ACYCLIC PROCESS GRAPHS FOR ACPr 

Let G be the collection of finite acyclic process graphs over Ar. In order 

to define the notion of bisimulation on G, we will first introduce the notion 

of b-normal process graph. A process graph g E G is b -normal if whenever an 

edge 

occurs in g, then the nodes has outdegree 1 and the node t has outdegree 0. 

In anthropomorphic terminology, let us say that an edge 0---,@ is an 

ancestor of~ if it is possible to move along edges from t to s'; 

likewise the latter edge will be called a descendant of the former. Edges 

having the same begin node are brothers. So, a process graph g is 6-normal 

if all its 6-edges have no brothers and no descendants. 

Not'e that for g € G the ancestor relation is a partial order on the set 

of edges of g. 

We will now associate to a process graph g E G a unique g' in i-normal 

form, by the following procedure: 

(1) nondeterministic b-removal is the elimination of ab-edge having at least 

one brother, 

(2) b-shift of ab-edge~ in g consists of deleting this edge, 

creating a fresh node t' and adding the edge~. 

Now it is not hard to see that the procedure of repeatedly applying (in arbi

trary order) (1), (2) in g will lead to a unique graph g' which is b-normal; 

this g' is the 6-normal form of g. It is understood that pieces of the graph 

which have become disconnected from the root, are discarded. 

Example: g = 

I: 
= g'. 

~ 
()_~ Q. ~ a. (1) 

b 6 
-c 'C" r 't" 

C 

We can now define bisimulation between process graphs g
1

,g
2

EG. First 

some preliminary notions: a trace O-_is a possibly empty finite string over 

Ac:; thus a--e A~. With e (CT) we denote the trace <T where all r-steps are erased, 

e • g. e ( a -c -c b 1:- c -c) = abc. 



If g E: G, a path rr: s
0 
~ sk in g is a sequence of edges of the form 

(k ~ O} where the si are nodes of g, the hi are edges between si and si+l' 

and each e.E A is the label of edge h .. (The h. are needed because we work 
l --r; l l 

with multigraphs.} The trace trace(7T} associated to this path TT is just 

2.1. DEFINITION. A bisimulation modulo L (orL-bisimulation) between finite 

acyclic process graphs g
1 

and g
2 

is a relation Ron NODES(g
1

) x NODES(g
2

) 

satisfying the following conditions: 

(i) (ROOT(g
1

} ,ROOT(g
2

}) ER, 

(ii) For each pair (s
1

,s
2

)E Rand for each path 17"
1

: s
1 

»t
1 

in g
1 

there is a path rr
2

: s
2 

----'J>>t
2 

in g
2 

such that (t
1
,t

2
)E Rand 

e(trace(77i)> = e(trace(7T
2
)). (See Figure la) 

(iii) Likewise for each pair (s
1

,s
2

)E Rand for each path rr
2

: s
2 

»t
2 

in g
2 

there is a path rr
1

: s
1 

----'J>>t
1 

in g
1 

such that (t
1
,t

2
}ER 

and e (trace (7T
1

)) = e (trace ( ~)). (See Figure lb. ) 

I 

-rr-i: 
't-------------

t1 

Figure 1. ( a) (b) 

Let g
1

,g
2 

be in 6-normal form. Then g
1

,g
2 

are bisimilar modulo r (or 

T-bisimilar.) if there is a L-bisimulation between g
1

,g
2

. 

Notation: g 1-rg2 . 

Note that for a r-bisimulation R between g
1

,g
2 

we have: Domain(R} = 

NODES(g
1

) and Codomain(R} = NODES(g
2

}. Also note that an equivalent defini

tion is obtained by letting rr
1 

in 2.l(ii} consist of one edge, likewise 

TT
2 

in 2 .1 (iii}. 

2.2. DEFINITION. Let g
1

,g
2 

EG be ind-normal form. A rooted bisimulation 

5 
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modulo r between g
1

,g2 is a bisimulation modulo L between g
1

,g
2 

such that 

the root of g1 is not related to a non-root node of g
2

, and vice versa. 

Notation: g
1 

t::::? g2 . 
r;r. 

2.3. DEFINITION. Let g
1

,g2 E.G with 6-normal forms gi resp. g2. 
Th -E---7 g J.•f I - g' en gl - 2 gl - 2· r ,T. r ;c 

2.4. EXAMPLES. aTb3 ~ ab6 (Figure 2a ), r ;,. 
ab - a C::('Z:b + t"'t"b) (Figure 2b) r,r 

a (-Cb+ b) ~ ab (Figure 2c) r,r 

c (a+ b) ~ c (r(a + b) + a) (Figure 2d) 
r ,t" 

A negative example: see Figure 2e. The heavy line denotes where it is not 

possible. to continue a construction of the bisimulation. 

- -1 a ct a.. a. ll. 

t: r ~~b 
b __-/ b I, ~ 
& __-/ 

(a) (b) (c) 

(d) (e) 

Figure 2. 
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Since we intend to construct from Ga model for ACPr, we will now de

fine operations +,., 11, lL, I, oH,TI on G. (Cf. [3] where +,.,II, IL were defi

ned in the context of the axiom system PA.) 

(1) The ~ g
1 

+ g
2 

is the result of identifying the roots of g
1 

,g
2

. 

(2) The product g
1

.g
2 

is the result of appending g
2 

at all .end nodes of g
1

. 

(3) The merge g
1

llg
2 

is the 'cartesian product graph' of g
1

,g
2

, enriched by 

'diagonal' edges for nontrivial communication steps, as follows: 

if is a subgraph of the cartesian product graph, then 

the arrow o c )0 (where c = a I b) is inserted; result: 

(Here 1: has only trivial communications: "l:'I a= rl-c- = b.) 

Example. Let Ar= {a,b,c,r,6p where the only nontrivial communication 
a b 

is: alb= c. Then, writing ab for the graph -10 ,o ,o, we have: 

abllbabr is the process graph as in Figure 3a. 

a. 6 a. 6 

6 C. I, b h 

a 

I, b 
6 

r 7: -r '!' 'C 

6 a. I, 

Figure 3. (a) (b) (c) 

(4) The left merge g
1 

lL g
2 

is like g
1

11 g
2 

but omitting all steps which are 

not a first step from g
1 

or the descendant of such a first step. 

Example: in the situation of th~ previous example we have abll_babt as 

the graph in Figure 3b and babr lL ab as in Figure 3c 
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(Note that we have omitted the diagonal edges labeled with b, resulting from 

trivial communications. This is allowed in view of our preference of &-normal 

graphs. Indeed, a 'diagonal' b-edge can always be omitted by (1) of the b
normalization procedure.) 

(5) The communication merge g
1

lg
2 

is harder to define since it is in general 

not, as g
1 
lL g 2 is, a subgraph of g

1 
II g

2
• The reason behind the definition 

can be understood by considering e.g. ~Laxl~-c:Lby and evaluating this term 

according to the axioms of ACP : 

-z:-raxlr1:--cby = axlby = (alb). (xllY). 

We define: 

g
1 
I g2 = I.{<t ~ s). (g1 II g2) s I t ~ s is a maximal communication 

step in g
1

llg
2 

such that t can be reached from the root via 

a sequence of '?:-steps}· 

Here 'maximal' refers to the p.o. given by the ancestor relation. The 

sequence of L-steps may be empty. Further, 

of g with roots. 

(g) denotes the subgraph 
s 

Example. (i) Let g
1 

= 7:ard, g
2 

=z:Tbd. Let a I b= c be the only nontrivial 

communication. Then g
1

llg2 is as in Figure 4(a) and g
1

lg
2 

as in Figure 

4 (b) : 

-r a. 1: c:l 

7: "t" -c: -r T" 

r -z: t: T T 
-r 

Ii 
"t" d.. T c(_ 

cl. c,(_ et. cf. 
r a. r d. 

r cf. 

Figure 4. ( a) (b) 

C 
Here the heavily drawn edge o--~>o is an edge t ~ s as in the defi-

nition of g
1

!g
2

. 
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b a a b 
(ii) Let g

1 
be ... , z:- ~, >o and g

2
: .... , -c- ~:, ,o, where the only non-

trivial communications .are ala=a0 and blb=b0
• Then g

1
llg

2 
and g

1
lg

2 
are as in Figures 5 (a) resp. (b) : 

(a) (b) Figure 5. 

Using ACP~ we calculate with terms corresponding to g
1

,g
2

: 

(ba+ta) I (ab+c::b) = balab + bali::-b -t< 1:alab + z:al-c-b = 

(bla). (allb) + balb + alab +alb= S + b 0 a + a 0 b + S = b 0 a + a 0 b. 

(6) The definition of the operators OH; tI on process graphs g E G is easy: 

they merely rename some atoms (labels at the edges) into ~ resp. -c. 

This ends the definition of the structure {j, = G(+,.,11 ,lL ,I ,aH,tI). The 

domain of process graphs <j is itself not yet a model of ACP (e.g. 

<j ~ x + x = x) . However: 

2 .5. THEOREM. (i) Rooted -z:--bisimulation ( ~ ) is a congruence on r:. 
r,'C 7 

(ii) C ;- is a model of ACP-r. 
tJ r,-z: 

PROOF. (i) Let g,g',h,h'E G. We want to show that 

g 4---+ g' & h ~ h' -r,~ r,T gllh =::t g' llh' r, t: 

and likewise for the other operators. Only the cases [I ,[L ,I are interesting 

and we start with 11 . 

Suppose, then, that Sis a r,r-bisimulation between g,g' and Tis a 

r,r-bisimulation between h,h'. Lets be a typical node of g, s' of g', t of 

h and t' of h' . Then we define the following relation S x T between the node 

sets of gllh and g' llh': 

((s,t),(s',t'))E SXT ~ (s,s')E s & (t,t')ET. 

We claim that S x T is a r,r-bisimulation between gllh and g' llh'. 
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Proof of the claim. 
u 

• (s
1 
,t

2
) be a "horizontal step" in gll h, where u E A-c. 

u 

Hence a path as in the definition of bisimulation can be found whose 

trace is externally equivalent to u and whose end point bisimulates with 

t
2

. This path can be 'lifted' to gllh. 

(2) Likewise for a "vertical step" in gll h. 

(3) (s
1 
,t

1
) c ) (s

2
,t

2
) is a "diagonal step" (a communication step) in 

gllh, and ((s
1
,t

1
),(si,ti))ESXT. Now a path as required can be found 

from the data ( s
1

, si) E. S and ( t
1

, ti) E T and an inspection of Figure 6 : 

a c'-T 
(s1,t2) 

r- T 

(s1 ·V r r 

b 
b 

(s2,tl 
r 

-r r 
(s2,t2) 

Figure 6. 

The case of lL is easy since g lL h is a subgraph of g II h. 

The case of I: we use the same notation as above. To prove: 

glh ~ g'lh'. 
r, "C" 

g II h g g I II h I g' 

't" i;-i__, 

h (\,I:-) 
Ct 

(spt,) 

Figure 7. 
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An r,r-bisimulation between glh and g'lh' can now be constructed as follows 

from sx.T. The graph glh is now the sum of the c .. (gllh)( t )(i=l,2) as 
J. s. , . 

1. 1. 

in the definition of I and as indicated in Figure 7 (a). 

For the sake of clarity, we will formally distinguish the "diagonal" 

edges from the other ones; this can be done by a suitable renaming of the 

alphabet and adapting the communication function. Thus, if a I b = C, we adopt 

a fresh symbol ~ and postulate a I b = ~. Now the underlined symbols do not 

occur in g,h which makes it possible to speak in a formal way about "diagonal" 

steps. Note that the bisimulation SxT is also a bisimulation when diagonal 

steps are marked as such. 

Now given a summand p = c .. (gllh) ( t) of glh, we can find via SXT 
1. s. , . 

1. 1. 

a corresponding summand p' = c .. (g' llh') ( , t'). It is easy to see that the 
1. s. , . 

step c. in g' llh' is also 
1. 

maximal in the 1. 1. sense of the definition of I. 
Clearly p bisimulates with p', via the restriction of S T to the appropriate 

area. In this way we find that glh bisimulates with g'lh'. 

(ii) The proof that C /~ is a model of ACP is tedious, routine, and o
il r,"C 

mitted. D 

We will now analyse into an equivalence generated by certain 
r,r 

elementary graph reductions. This is done in [ 3] for L-bisimulation 

(without the condition 'rooted;) and in the absence of b; these results will 

be the basis for the sequel. We repeat from [ 3] the main definitions. 

2.6. DEFINITION. Let gEG._ 

(i) A subgraph g' of g consists of an arbitrary subset of the set of edges 

of g (plus their labels E Arl together with the nodes belonging to these 

edges. 

(ii) Let sENODES(g). Then (g) is the subgraph of g consisting of all nodes 
s 

and edges which are accessible from s (including s, the root of (g)s). 

We will call (g)s a full subgraph. 

(iii) An ~ in g is a subgraph of the form as in Figure 8 (a), where uE A-c

The u-edge at the left is called the primary edge of the arc. Ifi in Figure 

8 (a) n = m ~ 0 the arc has the form ~s in Figure 8 (b) and is called of type 

I. If n + m = 1 the arc has the form as in Figure 8 (c) or (d) and is called 

of type II resp. III. Arcs of type I,II,III are called elementary arcs. ,, 
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u 

'C" 

.. r .-,· 
T" 

(a) 

u u u 

(b) 

u 

u u 

u 

(c) (d) Figure 8. 

2.7. DEFINITION. On G we define the following reduction procedures: 

Sharing. Let g E G contain nodes s1 , s 2 such that (g) sl is isomorphic 

to (g) . Then g reduces tog' where s
1

,s
2 

are identified. 
s2 

[ i] 

[ii] Removal of a non-initial deterministic r-step. 

If s1 ~ s 2 occurs in g and the outdegree of s
1 

is one (so the displayed 

r-step has no brothers), and if moreover sf is not the root of g, then the 

nodes s
1

,s2 may be identified after removal of the r-step. 

[iii] Arc reduction. In an arc the primary edge may be deleted. The arc 

reduction is called of type I,II,III if the arc is of that type. Such arc 

reductions are also called elementary. 

So the subgraph as in Figure ~a) may be replaced by that in Figure 9(b): 

Figure 9. (a) (b) 

[iv] Nondeterministic &-removal, as explained in the beginning of this 

section. 

[v] &-shift; also defined above. 

If none of the reduction possibilities in [i]-[v] applies tog, then 

we call g a normal process graph. 

Notation. If g reduces tog' by one application of [i]-[v], we write 

g ~ g'. The transitive reflexive closure of~ is denoted by~. 
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2.8. EXAMPLE. 

r 

Figure 10. 

The following fact is trivial: 

2. 9. PROPOSITION. Every process graph reduction g
1 
~g

2
...,. .•. must terminate 

eventually. 

Without the routine proof we state the 'soundness' of the reduction 

procedure ~> w. r. t. 

2 .11. DEFINITION. ( i) Let g E G be in ~ -normal form. Let R be an r ,T-bisimula

tion between g and itself. Then R is called an autobisimulation of g. 

(ii) g is rigid if it can only be in autobisimulation with itself via the 

identity relation. 

2.11.1. EXAMPLE. The following process graph is not rigid since it admits 

the displayed nontrivial autobisimulation: 

Figure 11. 

2.12. THEOREM. (i) Normal process graphs are rigid. 

(ii) If g
1

,g
2 

are normal process graphs and g1 ~r,~ g2 , then g1 and g
2 

must be identical. 

PROOF. The theorem is a simple corollary of the analogous Theorem 8.1.9 in 

[ 3 ] , where 'normal' , 'rigid' are defined w. r. t --r (without the condition 
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'rooted') and in the absence of b. The present graph reductions [i]-[v] dif

fer f;rom those in [ 3 ] since there [iv], [v] are absent and in [ ii] the T-step 

may,be an initial one. 

Proof of (ii): suppose g
1 

,g
2 

are normal and g
1 

- r ,-z: g 2 • 

Case (1). g
1

,g
2 

are also 'normal' in the sense of [ 3]. Then since g
1 

-r;r:g
2 

implies g
1 

,.__..r g
2

, an application of Theorem 8.1.9 in [ 3] yields the identi

ty of g
1

,g
2

. 

Case (2). If g
1

,g
2 

are normal but not 'normal' as in [ 3 ], one of them, say 

g
1

, must start with a deterministic r-step: i.e. g
1

=1:"gi· Then since 

g
1 
~r ~ g

2
, also g

2 
= ~g2. Moreover, gi,g2 must be 'normal' as in [ 3 ]. 

I 

Also gi ~r,"C' g 2, hence gi ~r g2. By Theorem 8.1.9 in [ 3 ] , we have 

gi = g2. Therefore g
1 

= g
2

. 

Proof of (i): similar. D 

2.13. COROLLARY. Let g
1

,g
2

EG. Then the following are equivalent: 

( i) +-+ gl -r,-c g2 

(ii) g
1

,g
2 

reduce (by [i]-[v]) to the same normal graph 

(iii) g
1

,g
2 

are convertible via applications of [i]-[v]. 

PROOF. Suppose (i). Reduce g
1

,g
2 

to normal gi,g2; this is possible by Pro-

position 2.9. Since reduction~> is sound w.r.t ~ , also g' =::z g'. 
r,r 1 r,r 2 

By Theorem 2.12(ii) it follows that gi and g2 are identical. Hence (ii). 

From (ii) we have (iii) trivially. From (iii), since reduction is sound, 

we have again (i). D 

2.14. REMARK. As a further corollary (which we do not need here) one obtains 

the confluency of the graph reductions [i]-[v]. This follows immediately 

from the termination property of the graph reductions (Proposition 2.9), 

together with Lemma 2.10 and Theorem 2.12(ii). 

2.15. COROLLARY. Let g
1

,g
2

EG. Then gl ~r,-r: g
2 

iff g
1

,g
2 

are convertible 

by means of the graph reductions [i],[ii],[iv],[v] and elementary arc reduc

tions [iii]I,[iii]II,[iii]III. 

PROOF. Every arc can be filled up with elementary arcs. • 
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In the sequel when closed terms in the signature (+,. ,a e Ar) are men

tioned, we wi-11 always mean terms modulo the basic congruence given by the 

axioms Al,2,5 in Table 2 (associativity of+,. and commutativity of+). To 

such terms we will refer as '+,.-terms' or as 'basic terms'. 

2.16. DEFINITION. Lett be a basic term. 

(i) Then [t] denotes the interpretation oft inf; so [t] is a process 

graph. 

(ii) [ t] denotes the interpretation of t in C / ~ ; so [ t] is a process I r,-c 
graph modulo r,r-bisimulation. 

(iii) Let gE G. Let g' be the process tree obtained from g by 'unraveling' 

the shared subgraphs. Then fg! is the basic term corresponding to the tree 

g'. 

Example. If g is then g' is and { g} = de + a ( be + e) . 

C 

e 
C 

2.17. PROPOSITION. Let g
1

,g
2

E G and suppose g
1 
~g

2 
via an elementary 

graph reduction [i],[ii],[iiiI,II,III],[iv],[v]. Then the basic terms ~g
1
l 

and ig
2

~ can be proved equal using the A-axioms (about +,.,b) in Table 2, 

Al-7, and the r-laws Tl-3. (See Figure 12) 

Figure 12. 

gl elementary graph 
reduction step 

:l 
tl ============ 

Al-7, Tl-3 

1 J 

PROOF. In case { i], t
1 
= t

2
. Case [ ii] translates into an application of Tl 

(or several such). Case [iiiI]: removal of a double edge. This translates 

into applications of x + x = x (A3) .. 

Case [ iiiII] translates to terms as an application of -c(x + y) + x = r(x + y) , 

where x = uz (see Figure 13a), or, if y is empty, Tx + x = rx (T2). The former 
~ 



16 

equation follows from T2 and A3: 

"[(x +y) +x = r(x +y) +x +y +x = r(x +y) +x +y = Y(x +y). 

Case [iiiIII] translates to terms as an application of 

u (tz + y) = u (rz + y) + uz (u E A-z:-) . 

(See Figurel3b) The case that u=r follows fromT2; the case that u;!c is 

just the third -c-law T3; for z or y empty an appli_cation of 'l'.l _is needed. • 

(b) 
u u 

Now we can prove an important fact: 

2.18. LEMMA. Suppose t,s are basic terms. Then: 

C 1~ I= t= s ==9 Al-7, Tl-3 I- t= s. 
(/ r,t: 

u 

Figure 13. 

PROOF. Suppose C/'==! I= t= s. Then [t] ~ [s]. By Corollary 2.15, the ti r,-c r,-r 
graphs [t], [s] are convertible via elementary graph reductions: 

Now Proposition 2.17 states that 

Since Al-7 I- ~[t]l = t and likewise for s, we have Al-7 ,Tl-3 I- t = s. D 

By a similar method (essentially by leaving out all reference tor) one 

proves 

2.19. LEMMA. Suppose t,s are basic terms not containing r. Then: 

C;=± I= t=s 9> Al-7 I- t=s. I r, -i: 

2.20. ELIMINATION THEOREM. Lett be a closed term in the signature of ACPr. 

Then, using the axioms of ACPr except Al-7 and the r-laws Tl-3 as rewrite 

rules from left to right, t can be rewritten to a basic term t'. 



PROOF. See Appendix I. D 

Combining the previous results we now have, writing AT for the set of 

axioms Al-7,Tl-3: 

2.21. LEMMA. (i) 

Figure 14. t3======t4 
AT 
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I.e. if ACP-c I- t
1 

= t
2

, then t
1 

and t
2 

can be reduced by means of the rewrite 

rules (from left to right) associated to the axioms in ACP~-AT to basic terms 

t
3
,t

4 
which are convertible via the AT-axioms. 

(ii) Every term t can be proved equal in ACPr to a basic term t'; moreover, 

t' is unique modulo AT . 

. PROOF. (i) Suppose ACPL 1- t
1 

= t
2

. By the Elimination Theorem 2. 20 we can re-

write t
1
,t

2 
to resp. basic terms 

rules. By the fact that C /~ d r,r 
Hence (Lemma 2 .18) A:T I- t 3 = t 

4
. 

(ii) Immediate from (i). • 

t 3 ,t
4 

using the axioms in ACP~-AT as rewrite 

is a model of AC~ we have <j,l+-+r, r I= t 3 = t 4 . 

2.22. EXAMPLES. The following examples illustrate Lemma 2.2l(i): 

( i) 

(ii) 

(z-a + a) I b 

t 
ralb + alb 

i 
alb+ alb 

aT LL b 

i 
a(-rll b) 

-z:-alb 

l 
alb 

t 
a(i-LI_ b + b[l_T+ 7:lb) 

1crb + bT + f) = a(rb +_ bT) -

all_b 

l 
a(Tb + b) = a-rb = ab 
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(iii) ("Z:a+a)Llb -z:all_b 

t J 
t::atl_ b + all_ b T(a II b) 

t 

•~bl 
r(allb) + all_ b 

t 
T(atl_b + bll_a + alb) + 

i 'I'/ 

T(ab + ba + alb) + ab 
(*) 

-Z:-(ab + ba + aln> 

Here (*) is an instance of the (from AT) derivable rule 

T(x + y) + X = T(x + y) . 

As a further corollary we have: 

2.23. THEOREM. (i) C;":::::!. is isomorphic to A'::, the initial algebra of ACP~
rf r,r 

(ii) ACPr is conservative over ACP (the latter over the alphabet A). 

I.e., for r-less terms t
1
,t

2
: 

PROOF. (i) We have to prove: 

C 1- I= s= t # ACP-r:- r s = t. ? r,"l:" 

(~) is Theorem 2. 5 (ii) . For <•) , suppose C / =z. I= s = t. Then also 
if r,r 

f-/-=::::::t. F s' = t' for some basic terms s' ,t' such that ACP-z:- r s = s' ,t = t'. 
? r~ . 
The result now follows by Lemma 2.18. 

(ii): suppose t
1
,t

2 
are closed terms in the signature of ACP (sor-less and 

-s:-less), and suppose ACP-z:- I- t
1 

= t
2

. Let t
3
,t

4 
be basic terms such that 

ACP-c- f- t
1 

= t
3

, t
2 

= t
4

. Since t
3
,t

4 
can be obtained by rewrite rules ACP'l:"-AT, 

we have ACP f- t
1
=t

3
, t

2
=t

4
. Now by Lemma 2.19, Al-7 r t

3
=t

4
. Hence 

ACP f- t
1 

= t
2 

. 0 
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3. THE EXPANSION THEOREM FOR ACPT" 

The Expansion Theorem is an important algebraic tool since it helps in brea

king down a merge expression x1 l l x 2 11 •.• 11 xk. For CCS, an Expansion Theore~ 

is proved in MILNER [12]. For ACP (i.e ACPr without~) the analogous theorem 

is proved in BERGSTRA & TUCKER [5 ]. As an example we mention the Expansion 

Theorem for ACP in the case k = 3 : 

xllYllz = xlJ_ (yllz) + ylJ_ (zllx) + zlJ_ (xlly) + 

(ylz>Li_x + (zlx)[Ly + (xly)!Lz. 

In [ 5 ], the Expansion Theorem is proved by a straightforward induction on 

k starting from the assumptions: 

(a) the handshaking axiom xlylz = b (i.e. communications are binary), 

(b) the axioms of standard concurrency for ACP: 

Table 3. 

(x[J_y) [Lz = xii (yllz) 

(xly) lL z = xi (yll_z) 

xly = ylx 

xllY = Yllx 

xi (ylz) = (xly) lz 

xii (Yllz) = (xllY) llz 

The standard concurrency axioms are fulfilled in the main models of ACP, to 

wit the term model (initial algebra) Aw of ACP, the projective limit model 

A00 and the graph model ar' ( see [ 4 ] ) • 

For ACPr this is no longer true; all axioms of standard concurrency 

hold in the initial algebra A~ of ACP~ except the second one. 

Example: (alrb) IJ_c = (alb)c and al (rb[lc) = (alb)c + (ajc)b + alblc. 

For a proof of the validity of some of the axioms of standard concurrency in 
w A~, see Appendix II. 

Fortunately, the Expansion Theorem carries over from ACP to ACPL in 

exactly the same form. This is what we will prove in this section. The under-
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lying intuition is that II and lL behave in ACPr just like in ACP, with the 

convention that r cannot communicate. For' I' the same is true if its arguments 

x,y are 'saturated' in the sense that they have been maximally exposed to the 

rewrite rule associated to T2: 1.:-x ~ rx +x. As an example, consider ralb. 

Evaluated according to ACP, we have 

-c-a I b = ( r-1 b) a = ~ a = S. 

However, according to ACPr: 

ralb = alb, 

which may be different from£ Now suppose that ra is made 'saturated' in .the 

above sense, i.e. replaced by ra + a. Then also by ACP: 

(ta + a) l b = r a I b + a I b = (?: I b) a + a I b = S + a I b = a I b, 

just as in ACP-z:-. 

The proof below of the Expansion Theorem will also entail the associati

vity of II. Nevertheless, we have given in Appendix a totally different proof 

of the associativity of II in A~, by means of an induction to term complexity. 

This is done, because the latter proof yields some useful identities (some 

of the axioms of standard concurrency) and for the curious fact that the 

proof requires an application of the third r-law (T3). (In computations with 

and applications of ACPr the first two r-laws turn up frequently; this seems 

not to be the case for the third r--law.) 

3.1. DEFINITION.Tis the set of basic terms in normal form w.r.t. the re

write rule associated to A4: (x + y) z ~ xz + yz. (This means that if t E: T, 

then [t], the interpretation oft in the domain of process graphs Gin Section 

2, is a process tree.) 

3.2. NOTATION. Let s,tET. We write si;;;;t, ifs is a summand of s, i.e. 

if t = s or t = s + r for some r. 

Example: a (rb + c) c: a (rb + c) + ab. 

3. 3. DEFINITION. Let x ET. Then x is saturated if: 

Example: (i) b + ra is not saturated but becomes so after an application of 



the r-law T2: b +ra + a. 

(ii) b + r(a +c:-c) + a +rc + c is saturated. 

3.4. PROPOSITION. Let XE T. Then there exists a saturated yET such that 

ACP-i;- f- X = y (in fact, even T2 r X = y). 
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3.5. NOTATION. We will denote by x a saturated y as in Proposition 3.4. For 

definiteness, we take y of minimal length. So, e.g., b+ra = b+ra+a. 

The next proposition says that a merge in ACP~ (anyway in its initial 

algebra~) can be carried out by treating the atom T as if it were an 'ordi

nary', non-communicating atom. Formally, this can be expressed by extending 

the alphabet with a fresh symbol t (acting as a stand-in for r) which does 

not communicate, replacing all ~•sin a merge by t and after evaluating the 

merge restoring the r's by means of the operator r{t}. The same is true for 

lL ; for I it is true under the condition that the arguments are saturated. 

Thus: 

3 .6. PROPOSITION~ Let x, y E T be terms over the alphabet A1:. Let t !l A'C and 

extend the communication function on ~ to (Au { t} )"C' such that t does not 
t 

communicate. Further, let x be the term resulting from replacing all occur- • 

rences of r by t. Then: 

(i) ACP-c I-
t t 

x II Y = T {tl (x 11 Y ) 

(ii) ACP't" I-
t t 

xll_y= c::{tJ(x li_y) 

(iii) ACP"C" I- xi Y = Tlt}(xtlYt) 

PROOF. (i) Let X = (r) + I a. + 
1. 

l b x ' + I r x" and j j k' 

y = (r) + I c + l d y' + I 1: y" e m m p 

where a.,b.,ce,d EA. 
1. J 111 

Then x 11 y = x IL y + y lL x + x I y = 

(ryl 

(rx) 

+ I a.y 
1. 

+ l C X e 

+ lb. (x '. II y) 
J J 

+ l d (y' llx) m m 

+ l r(xkllYI~ + 

+ l r(y"llx) + 
p 
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(rlz:> + I-rice> + ( }:rl d y') + < I T 11: y" > + 
m m p 

( Ia.In + }:ailce + }:a. Id y' + La. lcY" + 
l 1 m m l p 

(Lb.x'.l·n + }:b.x'. le + }:b.x'.!dy' + I b.x'. !ry" + 
J J J J e J J m m J J p 

(lex" Ir) + 
k 

l z:x" I c 
k e + 'tx" Id y' 

l k mm + I --z::x" 1-cy" 
k p 

Here the five enclosed summands can be skipped, in view of the following 

Claim: x'i;;;;x & y'i;;;;y ~ x'IY' i;; xly cr(x!ly). 

Proof of the claim. If x 'c: x, y' c y then by the linearity laws CM8, 9 for 'I ' 

at once: x' IY' !;;; x!y. Further, xly c:: r(x!ly) follows since 

ACPr 1- Z:-(x!ly) = "C(xLI_ y + yll_x + x!y) 

-C(xLI_ y + y[L_x + x!y) + x!y. 

L r(y" !Ix) (since a.C:x); like-
p l 

wise the other four enclosed summands can be shown to be summands of non

enclosed summands. On the other hand, the five corresponding summands in 
t t < 

Y{t} (x IIY) are equal too, since t does not communicate. The remaining 

summands pose no problem, e.g.: 

follows by 

and the induction hypothesis 

(induction on the sum of the term complexities). 

(ii) The case of LL is similar to that of [L. 

(iii) It is easy to show that a saturated term x ET can be decomposed as 

follows: 
n m e 

X = (c) + i!l ai + j!lbjyj + k!l ~xk 
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where a. ,b. -EA, n,m,e ~O and the xk are again saturated. Note that the length 
l J . 

of xk is less than that of x. We will use this for an induction on the lengths 

of x,y in the statement to prove. 

We consider a typical example; the general proof involves only greater 

notational complexity. Let 

y = r + c + dy l + ry 
2 

+ y 
2 

. 

Then 

air + ale + aldy
1 

+ ajry
2 

+ aly2 + 

bx1 1r + bx
1 

le + bx
1

!dy
1 

+ bx
1 

lry2 
+ bxl IY2 + 

Tx2 1r + c:x21c + TX2 I dyl + -z:x)ry2 + -rx2 1y"2 + 

x21r + x2lc + x2!dyl + x2 !ry2 
+ x2IY2 

Note that the enclosed summands can be skipped, since (by virtue of the sa

turation requirement) they are equal to other summands: e.g. a l.ry 2 = a I y2 
(by axiom IC4), bx

1
1ry

2 
= bx

1
!y

2
• Now these are just the terms which are 

'lost' when evaluating r{tj(xtlY~) (since t does not communicate). Namely: 

_t,_t 
X y = 

alt + ale + t 
a!dy

1 
+ & + ,-t a y 2 

+ 

t t t t a . t,-t bx
1

1t + bx
1

1c + bx
1

!dy
1 

+ + bxl Y2 + 

s + & + b + 6 + f, + 

_t, x
2 

t + _t, x
2 

C + _ti t 
x2 dyl + J + -t,-t 

x2 Y2 . 

To see that r{tf (xtlyt) = xly we can inspect the summands separately (since 

t'{t} distributes over+). Indeed, alr = "t"{t/alt) = b; and e.g. x)dy1 = 

1:{t}(x~ I dy ~) follows by the induction hypothesis, using the fact that 
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In the same way one can prove the following proposition which generali

ses Proposition 3.6(i) and is of independent interest: 

3.7. PROPOSITION. Let I<;;A be such that IIA = {~} . (Here IIA = {cl :]iEI,aEA 

I } h 
. w i a = c • ) T en in Jli.-c : 

(ii) Moreover, let (AIA)n I= fj. Then in A~: 

3.8. COROLLARY. A; I= xii (yllz) = (xllY> llz. 

PROOF. Lett be as in Proposition 3.6. Note that Proposition 3.6(i) entails 

(xllY> t = xtllyt. Now: 

t t t t t 
xii <Yllz) = 1:"{tl(x II <Yllz) ) = T{t} (x II (y llz )) (*) 

. t t t 
L{t} ((x IIY >llz) = (xlly>llz. 

Here (*) follows from the associativity of II in ACP (see [ 2 ] ) • D 

3.9. EXPANSION THEOREM FOR ACP~. Let communication be binary. Then in A~: 

I IL i,j 
(x. x.) xk 

l. J 

i . i, j 
where Xk is the merge of x1 , .•. ,xk except xi and Xk is the merge of x1 , .•. ,xk 

except x. ,x. (k~3). 
l. J 
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): xillx! + ): - 1- lL -i, j (x. x.) xk = ]. J 

): xi lL x! + ' I lL i,j 
l (x. x .) xk . 

]. J 

Here (*) is the Expansion Theorem for ACP (see [ 5 ]) and (**) is by Proposi

tion 3.6. D 
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APPENDIX I. TERMINATION OF ACPrREDUCTIONS PROVED BY RECURSIVE PATH ORDERINGS 

In this Appendix we will prove the termination result in the Elimination Theo

rem 2.20 by the method of recursive path orderings as inDERSHOWITZ [7]. Since 

we will give a slightly different presentation of recursive path orderings, a 

short account of this method will be given. our presentation replaces Dersho-

witz's inductive definition of the recursive path ordering by a reduction pro

cedure (which may be seen as a.n 'operationalisation' of that inductive defini

tion). This reduction procedure provides a somewhat easier notation in appli

cations. 

We start with the basis of the recursive path ordering method, the Krus

kal Tree Theorem. First we need a definition: 

1. DEFINITION. (i) Let D be the domain of finite commutative rooted trees whose 

nodes are labeled with natural numbers; alternatively one may consider an ele

ment t of Das a partially ordered multiset of natural numbers such that t has 

a least element. 

Example: t = 3 
/I" 

5 7 8 
I I 
9 0 

I\ 
1 5 

We will use the self-explaining notation t=3(5,7(9),8(0(1,5))). This notation 

is ambiguous since the 'arguments' of the 'operators' may be permuted, e.g. 

also t=3(8(0(5,l)),5,7(9)). 

(ii) Let t, s ED. We say that s is covered by t, notation s 6 t, if there is an 

injection r: NODES(s) ~NODES(t) which is an order-preserving isomorphism 

and. such that for all nodes oc. E NODES (s) we have: label (o<.) ¢ label ('f(o<.)) where 

;i, is the ordering on lN. 

Example: s=2(9,7(4,0))!;;t as in (i): 

s = 2 -- Cf -7" 3 = t 
I\ ------·/1"'-

9--... 7- 5 7 8 :£\---_-_-_ ~ --~::; i-.,, b 
Figure 15. 

'-, '-....., I\ 
------"::::--- ___ ,,...s,;11 

-::::. -
(Note that the embedding f is unique in this case.) 
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Clearly, c: is a p.o. on D. Now there is the following beautiful theorem: 

2. KRUSKAL TREE THEOREM. Let t
1
,t

2
,t

3
, .•. be a sequence in D. Then for some 

i< j: t.i;;;;;t .. 
1. J 

In fact, this is not the most general formulation of the theorem; see DER

SHOWITZ [ 7] • The formulation there is stronger in two respe'cts: the linear 

ordering of the labels (in our case lN) can be taken to be a partial order 

which is well-founded; and secondly, Kruskal's original formulation concerns 

noncommutative trees and an embedding r as above must also respect the 

'left-to-right' ordering. Clearly, that version implies immediately the 

above statement of the Tree Theorem. For a short proof see DERSHOWITZ [8]. 

The next definition is from [7]: 

3. DEFINITION. The p.o. I> on Dis defined inductively as follows: 

t:::: n(t
1

, ... ,tk) C> m(s
1

, ... se) = s (k,e;;.O) iff 

or 

or 

(i)f n > m and t I> s. for all i = 1, ... , e 
1. 

(ii) n=m and {t
1

, ... ,tk} C>C> {s
1

, ... ,se} where I>!> is the p.o. on multi

sets of elements of D induced by t>, 

(iii) n< m and t. t;i, s for some iE {1, ... ,k}. 
1. 

It is implicit in [7] that an equivalent definition of~ is: 

4. DEFINITION. The p.o. [>on Dis defined inductively as follows: 

(a) t = n(t
1

, ••• ,tk) I> m(s
1

, ••• ,se)1 = s (k,e ;i, O) iff 

(i) as above 

or 

(ii) ,as above 

or 

(iii)' s=t. for some iE{l, ... ,k}. 
1. 

(b) I> is transitive. 

(Here the cases (i), (ii), (iii)' may overlap. The transitivity has to be re

quired. explicitly now.) 
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5. EXAMPLE. t = 5 
I\ 

6 7 
I 
8 

C> 4 = s 
/1"'-

6 5 4 

/\ '"' 6 8 6 6~ 
/I'\:-......._ 

8 8 8 8 

Proof: By (i) from Definition 3, tt>s if: (a) tt>6 and (b) ti> 5 
I\ 

6 8 

and (c) t C> 
1
4 

6 \6 
/\~ 
8888 

(a) follows by (iii) of Definition 3; (b) follows by (ii) and 7 ~8 (by (iii)). 
8 

(c) follows from (d) t t> 6 and (e) t I> 6,-.._ • 
/\~::--,. 

8 88 8 

(d) is by (iii) and (e) is so by . (iii) since 7 C> 6 (by (i) , (iii)) . a a'1

~8 

So,· establishing that t C> s requires a miniature proof. Another presen

tation may be more convenient: instead of by the inductive definition above 

we can also define [> by an auxiliary reduction procedure as follows. 

Let D* be D where some nodes of t E D may be marked with *. E.g. 

3*(1,2*(4)) = 3* E D*. 
I \ 

l 2* 
I 
4 

(The marker* can be understood as a command to replace the marked term by 

a lesser term. ) 

6. DEFINITION. On D* a reduction relation ==(>is defined as follows. 

(0) n(t
1

, .•. ,tk) ~n*(t
1

, ... ,tk) (k~O) 

(1) if n >m then n* (t
1

, ... ,tk) c::=;>m(n* (t), ... ,n* (t)) 

(k) 0, s ~ 0 copies of n* (t) ) 

(2) n*(t1 , ... ,tk) ==l>n(ti•···•ti,t2 , ... ,tk) (k>l, s~O copies of ti) 

(3) n*(t
1

, ... ,tk) =:>ti (iE: {l, .•. ,k}, k~l) 

(4) if t ==(> s then n(--,t,--) =5> n(--,s,--). 

Furthermore,~ is the transitive reflexive closure of~-

,, 
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(In fact, (4) is superfluous for the definition of==:>>; without it one easi

ly derives: if t ==;>s then n(--,t,--) ~n(--,s,--) .) 

We are only interested in *-free tE D<;; D*. Now we have by a tedious but 

routine proof which is omitted: 

7. PROPOSITION. Let t, s ED (i.e. not containing *) . Then: 

t ~ s iff t ~ s. 

8. EXAMPLE. (i) 4 =;'>4* ~3(4*,4*)==¢'3(2(4*),4*) ==:>3(2(1),4*) ==C>3(2(1),0). 

(ii) Cf. Example 5: 

t = /t"----
5* 5* 5* 
/\ I\ /\ 

676767 
I I I 

8 8 8 

4 ~ 

/;"' 
6/ 5 4 

I \ I\ 

6 8 6 7 
I 

8 

4 9>) 

6 ~/ ~ 4 
I\ / '-. 

6 7* 1\* ,5,* 
8 6 7 6 7 

I I 
8 8 

4 

6 /f ""'4 
I\ I\ 

=I>> 

6 8 6 6~ 
/\~ 

7* 7* 7* 7* 
I I I I 

8 8 8 8 

In DERSHOWITZ [7] the following facts about t> are proved: 

9. PROPOSITION. t> is a partial order. 

The proof requires a simple induction to show the irreflexivity. 

10. PROPOSITION. (i) 

(ii) [> t. 
l. 

(1~ i ~ k) 

(iii) t > s =? n ( .. , t, .. ) I> 1'l ( •• , s, .. ) 
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PROOF. Using Proposition 7, (i)-(iii) are immediate; e.g. (ii): 

• * • d. ( ) * ) ( ) n ( t) ==O- n ( t) ==0- ti an ( 1.) : n t
1 

, ... , tk =¢, n ( t
1 

, ... , tk c-::=> n t 
2 

, ... , tk . 

As to (iv): n(t) ==O-n*(t} ==:;>m(n*(t), ... ,n*(t)) ~m(t
1

, ... ,tk). D 

Using Proposition 10 one shows easily: 

11. PROPOSITION. s !;;;;; t ~ t I) s. 

From this we have 

12. THEOREM .(Dershowitz}. (The termination property for the recursive path 

ordering I> ) [> is a well-founded partial order. 

PROOF. Suppose t
0 

I> t
1 

t>t
2 

[> ••• is an infinite descending chain w.r.t. [>. 

Then, by the Kruskal Tree Theorem 2, t. ~ t . for some i < j. So by Proposition 
1. J 

11, t. ~t .. However since l> is a p.o., this contradicts t. )t.. D 
J 1. 1. J 

13. Application to ACI\-. We want to prove that the rewrite rules (from left 

to right) associated to the axioms of ACP~ except Al,2,5, Cl,2 and Tl,2,3 

are terminating. These rewrite rules have, in tree notation, the following 

form: (see Table 4,. next page). 

Note that the occurrence of 11 in the RHS of the rules CM3; CM7 pre

vents us to order the operators directly in a way suitable for an applica

tion of the termination. property of recursive path orderings. Instead, we 

have to rank the operators II, [L, I simply by (e.g.} the natural number 

that is the sum lxl + lYI of the lengths of the arguments x,y. Here lxl is 

inductively defined by: 

lal = lrl = 1 

I x • YI = l x I + I Y I for D = + , • , 11 , IL , I 

I dH (x} I = I TI (x) I = Ix I . 

The ranked operators 11 , lL , I , +, • , O , TI are partially ordered as follows: 
n n n H 

!In> [Ln,ln 

11 n, I n > II n-1 

lln,ILn,ln > .)+ 

dH,T"I >· 
( See Figure 16. ) 
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A3. +---'? X CM5,6. I I\ /\\ ' 

I/""-X X 
\ X /, / b a X 

A4. ' + CM7. I ' 
/\ ' /\ /\ , I/ ""II + z . 

/\ /\ /\ /\ I\ a/ \b /\ 
X y X z y z a » b y X y 

A6. CM8,9. I ' + ' + ~ X /"'-. / " /\ + z I I 
I\ 1, /'-, 

X y X z y z 

A7. 
b 

D1,2. . ~ 
dH ----4 a, ~ &(\ I 
a 

Likewise OT. 

C3. D3. oH ' + 

I ~ b I a/ \d 
6/ \a 

+ 
/\ 1H 1H 

X y X y 

CML 
D4. 

dH II . 
+ /\ I\ , u_/ u_''--, I I 

X y dH ?>H 
/\ /\ I " 

/\ I I 
X y y X X y X y X y 

CM2. [1_ Tll-5: . , 

/\ /\ analogous to DT, D1-4. a X 

Likewise TMl. 

CM3. lL TCl,2. 
b ~ 

a/\11 
I ' /\ , 

;\ y 
/'\_ 

/\ T" x 
a X X y 

Likewise TM2. 

CM4. lL ' 
1'C3,4. I ' I , + , 

I\ u_l ""u_ I"" /"" + z . y X y 
I\ /\ /\ /\ 

X y X z y z 1: X 

Table 4: Rewrite rules associated to the axioms of ACPL-=-{Al,2,5; Cl,2; Tl,2,3}~ 



32 

Figure 16. 

Now consider a closed ACP-c-term T. Rank all II, [L , I-operators in T by the 

sum of the norms I -I of their arguments. 

Example: T = (abli_cd) lL ('cql (r+uv)) will be ranked as 

Tr = (abli_ 
4

cd) [L 
9 

(rql 
5 

(r + uv)). 

To T we associate an element t E D by writing down the formation tree of T : 
r r 

. lL 9 

IL/ ~I 
/'\ /\ 

• . + 

/\ /\ I\ I\ 
a be d r qr 

/\ 
Figure 17. U V 

(In fact, we must assign to the a,t", II , IL , I ,+, .,aH, t"I natural numbers 
n n n 

corresponding to the p.o. in Figure 16 above. To all atoms we assign, say,O.) 

Now we have: 

13.1. THEOREM. The rewrite rules in Table 4 have the termination property. 
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PROOF. Let ~ be the recursive path ordering induced by the p~o. on the 

ranked operators as defined above. We will show that for each closed instance 

t-'? s of the rewrite rules, we have t t> s. In order to do so, we use the alter

native definition of I> as ~ (the transitive closure of ~). We will treat 

some typical cases. 

A3. + =l> +* =(>- X 
/\ I\ 
X X X X 

A4. . =j;> ~* ==£> + ==C>-

/\ /\ !\.* + z + z 

+ =t> + 

(\.* /\ . . 
I\ /\ /\ /\ X y X y + z + z 

I\ I\ 

/\ /\ /\ I\ + z + z X 2'. y z 
I\ /\ X y X y X y X y 

CML II IX l+I YI =¢' II~ =t> 

/\ /~l+IYI 
X y X y 

+ =P>-

/1~ 
11* n* 11* 

/ {xl+I YI/ ~x l+I YI / {x l+I YI 
X y X y X y 

Table 5. 
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CM3. ll_ 
/ \Jxl+IYI 

• y 

I\ 
a X 

. . 
a/~11 

/ ~+IYI 

* ~ * 
;\• l,l+IYI/ \•l'l•IYI 

I ""' a 11 1x1 + !YI 

I\ 
X y 

• y • y 
I\ I\ 

a x a x 

* CM7. 

1
12+1>1+ IYI 

=> I 2 + !xi+ !YI 
. 

\ /\ /\ . . . . * 1* 
/\ /\ /\ I\ ;\ 1,1+ IYI/ \l'l+IYI 

a X b y a X b y 
. . . 

/\ 
a X 

/\ I\ \ 
b y a x b y 

. . 

/~ I~ 
I 2 II Jxl + IYI 

a/\b */ ~ * 
/ \ 1,1 +IYI;\ 1,1 + IYI 

I II I\ /\l+IYI 

a b x y 

/\ b/\ /\ ;\ 
a x y a x b y 

Table 6. 
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APPENDIX II. AN INDUCTIVE PROOF OF ASSOCIATIVITY OF MERGE IN ACPr 

We will prove that in ACPr the following identities between closed terms are 

derivable: 

(1) (x[i y) [L z = xll_ (yllz) 

(2) (x!ay) LI_ z = xi (ayll_ z) 

(3) xly = y!x 

(4) xlly = y!lx 

(5) x!(y!z) = (xly)lz 

(6) xii (yllz) = (xl!y) llz 
Table 7. 

These are the axioms of standard·concurrency as in Table 3 (Section 3), ex

cept for (2) which is a special case of the second axiom of standard concur

rency. (Alternatively, (2) may be replaced by: 

(xly) LL z ,,.; xi (y[L z) if y is stable. 

Here y is 'stable', in the terminology of MILNER [12], if it does not start 

with a t"-step.) 

In Corollary 3.8 a different proof of (6) is given. The present proof 

uses an essentially straightforward induction to the lengtlB of the terms in

volved; the induction has to be simultaneously applied to several of (1)-(6). 

These identities, however,· are interesting in their own right. 

The proof has two main parts; in the first and easiest part, identities 

(3), (4), (5) are proved. The second part takes care of the main identity, (6); 

the proof is complicated by the fact that we have in ACPr only the weak ver

sion (2) of the second axiom of standard concurrency. 

All identities (1)-(6) are proved for basic terms ET (see Definition 

3.1). In view of the Elimination Theorem 2.20 this entails the identities 

for all closed ACPr-terms x,y,z. 

l. PROPOSITION. Let x, y, z ET. Then: 

(i) ACP-c;- r xly = ylx 

(ii) AC1:r r xllY = yllx. 
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PROOF. Let !xi be the length in symbols of x (see Definition in Appendix I,13). 

The proof uses an induction to !xi+ IYI• We prove (i), (ii) simultaneously. 

The induction hypothesis is: (i) ,(ii) are proved for all x',y' such 

that Ix' I + I y' I .( Ix I + I y I . First we will prove the induction step of (i) , 

xly = y!x. 

Case 1. x=x
1 

+x
2

• So !xii< lxl, i=l,2. Then xly = (x
1 

+x
2

) IY = x
1

!y + x
2

1Y 

= (ind. hyp.) y!x
1 

+ y!x
2 

= YI (x
1 

+x
2

) = y!x. 

Case 2 • y = y 
1 

+ y 
2

: similar. 

Case 3 . x = T : x I y = rl y = 6 = y Ir = y Ix. 

Case 4. y = 7: : similar. 

Case 5. x = rx': xly = rx' IY = x' IY = y!x' = ylrx' = y!x. 

Case 6. X = a, y = b: xly = alb= bla = y!x. 

Case 7. ,x = ax', y = by': xly = ax' !by' = (alb) (x' IIY') = 

Case 8. X = a, y = by': xly = (alb)y' = (bla)y' = ylx. 

Case 9. x = ax', y = b: similar. 

(bl a) (y' !Ix') 

(Note that in case 7 the induction hypothesis for (ii) is used.) 

Next to show (ii) xllY = y!lx: 

xllY = x[Ly + y[lx + xly = y[Lx + x[l y + ylx = yl!x. D 

2. PROPOSITION. Let x,y,z ET. Then ACP-c- I- xi (y!z) = (x!y) lz. 

PROOF. Induction on Ix I + I y I + I z I . 

= y!x. 

Case 1. x = x
1 

+x
2

. Then xi (y!z) = x
1

1 (y!z) + x
2

1 (y!z) = (x
1

!y) lz + (x
2

1y) lz = 

( (x
1 

I y) + (x
2 

I y) ) I z = ( (x
1 

+ x
2

) I y) I z = (x I y) I z. 

Case 2. Similar with y and z sums of smaller terms. 

Case 3. x,y,z have one of the forms a,r,au,ru. We mention one of the 43 ca-

ses: (Tx' lay') lb= (x' lay') lb= x' I (ay' lb) = Tx' I (ay' lb). Note that 

one of the cases is just axiom C2 from ACPr (Table 2 ) . 0 

For the second half of the proof we need two preparatory propositions. 

3. DEFINITION. Let x, y be closed ACP-z:-- -terms. Then we define: ACP-c I- x G y 

if for some closed term z, ACPr I- y = x + z. 

3.1. REMARK. Note the difference with c as defined for T, in Definition 3.2. 

The present 'summand inclusion' , ACPr I- .. C •• , is just C modulo ACP-i:- -equal

i ty. Ih the sequel we will sometimes write xi;;;; y where ACP r I- xi;; y is meant, 
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if it is clear that we are working modulo ACP~-equality. 

4. EXAMPLE. (i) ACP-r;- I- a i;:;;;; ra (since a=a+ra) 

(ii) ACP-z:- I- a\;;; all-c- (since allr = i::-a+ at +air =Ta+ a) 

(iii) ACPr I- & i;;;; x, for all x 

(iv) ACPr I- a+ -z::a + -cb !;;;" b+ ta+ rb. ;;:! 

5. PROPOSITION. Let x,y be closed terms. Then: 

ACPi; f- x i;;_ y & ACP-r f- y i;; x =9 ACP-z:: f- x = y . 

PROOF. We may suppose, by the Elimination Theorem 2.20, that x,y ET. 

Suppose ACP-r I- y = x + z for some z E T and ACP-z:- f- x = y + u for some u E T. 

Then ACP-i:- I- x = x + z + u. Therefore the process trees corresponding to x and 

x+z+u bisimulate: [x] ~ [x+z+u]. (Here [x] is the interpretation of 
· r,r 

x in the graph domain <j as in Section. 2; since x ET this is a process tree.) 

Say R is a r,r-bisimulation between [x] and [x + z + u] = [x] + [z] + [u]. Let 

R' be the restriction of R to (the node sets of) [x] and [x] + [z]. Now R' 

need not be a bisimulation between these trees; however if I is the trivial 

(identity) bisimulation between [x] with itself, then it is not hard to see 

that R' u I is a r,r-bisimulation between [x] and [x] + [z] = [x_+ z]. (Alterna

tively: let R be a bisimulation as indicated which is maximal w.r.t. inclu

sion. Then the restriction R' is a bisimulation as desired.) 

Hence ACP, I- X = X + z = y. • 

6. PROPOSITION. Let x be a closed term. Then ACPr I- x IL -c- = x. 

PROOF. we may suppose x E: T, and use induction on. Ix I . 
If x = x

1 
+x

2 
then xll_r = x

1
!Lr+ x

2
LI_r= x

1 
+ x

2 
= x. 

If x - a then a LI_ Y = ar = a. 

If x = ax' then ax' ll_r = a(x' 11-r) = a(x' ll_r + -r!L x' + x' l·q = 

a (x' tL 7: + "t x' + & ) = a (x' + 7: x' ) = aTx' = ax' • 

The cases x = r, x = tx' are similar. D 

We will now start the simultaneous proof of (1), (2), (6) in Table 7. 
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7. THEOREM. Let x, y, z be closed ACPr-terms and a E A. Then: 

(i) ACPr I- (x[L y) llz = x[L (yllz) 

(ii) ACP-c- 1- (xlay)[Lz=xl(ayLi_z) 

(iii) ACP-c- I- xii (Yllz) = (xllY> llz. 

PROOF. We may assume x, y, z E. T; this makes an induction to Ix I + I y I + I z I pos

sible. We will prove (i)-(iii) by a simultaneous induction. Let the induction 

hypothesis be that (i)-(iii) are proved for all x',y' ,z'E T such that 

lx'I +ly'I +lz'I < lxl +IYI +lzl. 

First we prove the induction step (i) : (x 11_ y) II z = x 11_ (y II z) • 

Case (i) 1. x = x
1 

+ x
2

. Then (x LI_ y) IL z = (x
1 

lL y) IL z + (x
2 

LI_ y) IL z = (ind. 

hyp.) x
1

Li_ (y!lz) + x
2

11_ (yl!z> = (x
1 

+x
2

) tL (yl!z). 

Case (i)2. x = r. Then: (xll_y) [Lz = -r:y [L z = r-(yllz) = rll_ (yllz) = x[L (yl!z). 

Case (i)3. x =?:"x'. Then: (xLi_y)ll_z = r(x'IIY>lLz = 7:((x'IIY>llz) = T(x'll(Yllz)) = 

-rx' lL (yl!z) = xtL <Yllz). 

The cases x = a, x = ax' are similar. This ends the proof of the induction 

step (i). 

Next consider the induction step (ii): (xlay) lL z = xi (ay[L z). 

This will again be proved by a case distinction according to the formation 

of xET: x = x
1 

+x
2

, x = 1:", Tx', b, or bx'. 

Case (ii)l. x = x
1 

+x
2

. Then xl(ayLi_z) = (x
1

+x
2

>1(ay[Lz) = x
1

1(ayLi_z) + 

x
2

1 (ay lL z) = (x
1 

I ay) 11_ z + (x
2
1 ay) lL z = (x

1 
I ay + x

2
1 ay) lL z = 

((x
1 

+x
2

) lay) LI_z = (xlay) 1Lz. 

Case (ii)2. x = -c. Then (~lay) ll_z = xi (ay[Lz) = 6. 
Case (ii)3. x = rx'. Then (xlay) ll_z = (rx' lay) [Lz = (x' lay) lL z = x' I (ay[L z) 

= rx' I (ayLI_ z) = xi (ay[Lz). 

Case (ii)4. x = b. Then (x!ay)Li_z = (blay)[Lz = (bla)y [Lz = (bla)(yl!z), 

and also xi (ayll_z) = bl (ay[Lz) = bl (a(yllz» = (bla) (yl!z). 

Case (ii)S. x =bx'. Then (xlay) LL z = (bx' lay) ll_z = (bla) (x' llY> lL z = 

(bla) ((x' IIY) llz), and xi (ayli_ z) = bx' I (ay[Lz) ""bx' la(y!lz) = 

(bla) (x' 11 (yliz)). By the induction hypothesis for statement (iii) 

therefore (x I ay) lL z = x I (ay lL z) . 

This ends the proof of the induction step (ii). 



Now consider the induction step (iii): L = xii (yllz) = (xllY> llz = R. 

By the axioms in ACPr, we have: 

Likewise 

L = xii <Yllz) = xlL (y!lz) + <Yllz) ll_x + xi <Yllz) = 

xlL (yl!z) + (y!Lz + ylz + z[Ly)!Lx + xl(y[Lz + zll_y + ylz> = 

xll_ (yllz} + (yll_ z) [Lx + (yjz) tl_x + (zll_y} tl_x +·xi (y[Lz} + 

xl(ztl_y} +xl(ylz}. 

R can be expanded. We will use the following abbreviations: 

L = el + .•. +e7 and R = r 
1 

+ . • . + r 
7 

where 

el = xlL (Yllz> rl = ex lL y> l1_ z 

e2 = (y!L z) [Lx r2 = (xly)tl_z 

e3 = (ylz) tl_x r3 (y[Lx)[Lz 

e4 = (z[L y} [Lx r4 = zlL (xllY> 

es = xi (y[Lz} r5 = cxu_ y> I z 

e6 = xl(zli_y} r6 = (y!Lx) lz 

e7 = xi (ylz) r7 = (xjy)lz 

Claim. e. c R, for i=l, ... ,7. 
i-
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From the claim the induction step (iii) follows at once. Namely, we then 

have: xii (yllz> c: (xl!Yl llz, hence by Proposition l(ii): xii (yllz) i;;zll (xl!y) (*). 

Now zll (x!IYl = zll (y!lx) C xii (z!IY> = xii (yl!z), where 'c:' follows from (*). 

So we have xii (yl!z) ~ (xllYl llz, and by Proposition 5: xii <Yllz} = (xllY) llz. 

The remainder of the proof is devoted to: 

Proof of the claim. 

(a) e
7 

= r
7

c. R by Proposition 2. 

(b) e
1 

= r
1 

c R is statement (i) of this theorem; this induction step has 

already been proved. Likewise for e 
2 

= r 
3 

c R and e 
4 

= r 
4 

c R. 

(c) e
3 

c r
6 

c: R. Here e
3 

= (zlyl IL x and r
6 

= zl (y[Lx). 

Induction on z: 
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Case (iii)(c)L z = z
1 

+z
2

. Then e
3 

= ((z
1 

+z
2

>1Y>ll.x = (z
1

1y)ll_x + 

(z
2

1y) ll_xc (ind. hyp.) z
1

1 (y[Lx) + z
2

1 (ytl_x) = 

(z
1 

+z
2

Jl(yll_x) = zl(y[Lx). 

Case (iii) (c)2. z = r. Then e
3 

= r
6 

= b. 

Case (iii) (c)3. z = rz'. Then e
3 

= (Z-z' IYl ll_x = (z' IY) IL x c z' I (yll_x) = 

rz'l(ytl_x) = z l<y[Lx). 

Case (iii) (c)4. z =a.Similar to the next case. 

case (iii) (c)S. z = az'. To prove (az' IYl ll_x Caz' I (y[Lx). We use an induc-

tion on y: 

Case (iii) (c)S.l. y = y
1 

+y
2

• Then (az'I (y
1 

+y
2

))ll_x = (az'ly
1

)[Lx + 

(az'ly
2
)ll_xc.az'l(y

1
[Lx) + az'l(Yzllx) = az'l((y

1
+y

2
)[Lx)= 

(az') I (yll_x). 

Case (iii) (c)S.2. 

Case (iii) (c)S.3. 

y = -c: (az' 11:") lL x = b llx =~Caz' I (rlL x). 

y = ry': (az' lry') ll_x = (az' IY') IL x C (az') I (y' lL x) 

(az') I (y' llx) (*) (az') 1-c(y' llx) = (az') I (ry' tl_x). 

(Note the curious manceuvre in steps ( *) • ) 

Case (iii)(c)S.4. y = b: (az'lblll_x = ((alb)z')[Lx = (alb)(z'llx) = 

(az') I (bx) = (az') I (blL x). 

Case (iii)(c)S.S. y = by': (az'lby')llx = ((alb)(z'!ly'))ll_x = 

(alb)(z'IIY'lllx) = (alb)(z'll<Y'llx)) = (az')Jb(y'llx) = 

az' I ( (by' ) LI_ x) • 

(*) 

(d) Finally we prove es c:: r
2 

+rs+ r
7 

c: R (and by permuting x,y we have then 

also e
6 
~ r

2 
+ r

6 
+ r

7 
!;; R) i.e.: 

I xi (ytl. z) f;; (xly) IL z + (xtl. y) lz + xi (ylz>. 

The proof is again by induction on Ix I + I y 1 + I z I • We start with an induction 

on x: 



Case (iii) (d)l. x = x
1 

+x
2

. Then xi (yll_z) = x
1

l (yl[_z) + x
2

1 (yll_z) C: 

(x
1

jy) llz + (x
1

ll_y) lz + x
1

1 (yiz) + (x
2

1y) lL z + 

(x
2

lly) lz + x
2

1 (yjz) = (xly) ll_z + (xll_y) lz + xi (ylz). 
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Case (iii) (d)2. x = 7:. Then xi (yLL z) = b c::: (xly) ll_z + (xll_ y) lz + xi (ylz). 

Case (iii) (d) 3. x =-ex'. Then -rx' I (yll_z) = x' I (yll_z) C. 

(x']y)ll_z + (x'll_y)lz + x'l(y!z) = 

(rx' IY> LL z + (x' !LY> lz + t:"x' 1 (yl z) C 

(rx'IY)LLz + (x'IIY>lz + rx'I (yJz) = 

(rx' IY> LL z + r(x' IIY> lz + rx' I (ylz) = 

(7:x' IY) II z + (Tx' !LY) lz + -rx' I (ylz) = 

(xly)LLz + (xlL.y)jz + xl(y!z). 

Case (iii) (d)4. x = a: similar to the next case. 

Case (iii) (d)S. x =ax'. To prove: 

(*) ax'l(yll_z) c:: (ax'ly)ll_z + (ax'll_y)lz + ax'l<ylz). 

Subinduction toy: write y = ("t") + Lc. + Lb.y~ + l'"CY"· 
1 J J e 

Clearly ax' I <Yllz) can be decomposed as a sum analogous to 

the sum expression for y. Each of these summands of ax' I (y lL z) 

will now be proved to be c the RHS of (*). 

Case (iii) (d)S.l. Summands b.Y'.: (ax')I (:b.y'. [Lz) = (by statement (ii) of 
J J J J 

this theorem) (ax'lb.y 1.)ll_zc:- (ax'ly)LI_zc. RHS(*). 
J J -

Case (iii) (d)S.2. Summands c.: as the previous case. 
1 

Case (iii) (d)S.3. Summand r: ax' I (rll_ z) = ax' lrz = ax' lz = (ax' IL 7:") lz 

since ax' = ax' lL -c- by Proposition 6. 

Case (iii) (d)S.4. Summands ry; (for convenience we drop the subscript e and 

write y = ry" +y*): 
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Now ax'l(-i::y"ll_z) = ax'lr(y"llz) = ax'!(y"llz) = 

ax' I (y"ll_ z + zll_y" + y' lz) = 

ax'I (y"ll_z) + ax'I (z[Ly") + ax'I (y"lz) C (ind. hyp.) 

(ax' IY") lL z + (ax' [Ly") lz + ax' I (y"!z) + 

(ax' I z) lL y" + (ax' ll_z) IY" + ax' I (y" I z) + ax' I (y" I z) = 

(Here the first summand equals the fifth by (ii) of this 

theorem, and likewise the second equals the fourth.) 

= (ax' I y") lL z + (ax' IL y") I z + ax' I (y" I z) = 

(ax' I y") ll z + (ax' IL y") I z + ax' I ('ry" I z) C:. 

(ax' IY) lL z + (ax' [Ly") lz + ax' I (ylz). 

This matches the RHS of (*) except for the second sum-

mand. So it remains to prove: 

If y = r:y" + y*, then (ax' IL y") I z c: (ax' ll y) I z (**) 

Proof of (**): induction on z. 

Case (iii) (d)5.4.l. z = z
1 

+z
2

. Then (ax' ll_y") I (z
1 

+ z
2

) = (ax' l]_y") lz
1 

+ 

(ax'll_y")lz
2 

c:= (ax'ILYllz
1 

+ (ax'll_y)lz
2 

= (ax'll_y)z. 

Case (iii) (d)S.4.2. z = -Z:::: (ax' ll y") It:' = b C RHS(**). 

Case (iii)(d)S.4.3. z='l:"z': (ax'lly")!(z:-z') = (ax'[Ly")lz' c:. (ax'liY)lz'= 

( ax ' lL Y) I (-z:: z ' ) . 

Case (iii) (d)S.4.4. z = b: (ax' lL y") lb= a(x' IIY") lb= (alb) (x' IIY"). 

Now x' 11 y = x' II (ry" + y* ) = x' lL ("r y" + y*) + (-ry" + y*) lL x' + 

XI I (-Cy" + y*) = L (y" 11 X') + T. 

So: (ax' lL y) lb= (alb) (x' IIY) = (alb) (r(y" llx') + T) t 
(alb) (r(y"llx') + T) + (alb) (y"llx'). Here "t" is an appli

cation of the third r-law, T3. Therefore (ax' lL y") I b = 

(alb) (x' IIY") C (ax' !LY) lb. 

Case (iii) (d)S.4.5. z = bz': similar. 

This ends the proof of induction step (iii), and thereby of the theorem. D 
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