
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

J.A. Bergstra, J.W. Klop

Algebra of communicating processes with abstraction

Departm_ent of Computer Science

Bibliott1eek •
Centrumvoor Wisl<unde en Informatica

Amsterdam

Report CS-R8403 January

11111111111 llll llll I II~~(lil\"~\llii~i\ 11111111111111\I Ill II
3 0054 00044 5370

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam
$,

ALGEBRA OF COMMUNICATING PROCESSES WITH ABSTRACTION

J.A. BERGSTRA, J.W. KLOP

Centre for Mathematics and Computer Science 3 Amsterdam

We present an axiom system ACP, for communicating processes with silent

actions ('t-steps'). The system is an extension of ACP, Algebra of Communi

cating Processes, with Milner's ,-laws and an explicit abstraction operator.

By means of a model of finite acyclic process graphs for ACP, syntactic pro

perties such as consistency and conservativity over ACP are proved. Further

more the _Expansion Theorem for ACP is shown to carry over to ACP,. Finally,

termination of rewriting terms according to the ACP, axioms is proved using

the method of recursive path orderings.

r.:. I {'.. F~:t C-t/:t Se1r-11, 17':, r-1.", .,
1980 MATHEMATICS SUBJECT CLASSIFICATION: 68B10, 68C01, 68D25, 68F20.

1982 CR. CATEGORIES: F.1.1, F.1.2, F.3.2, F.4.3.

KEY WORDS & PHRASES: concurrency, communicating processes, internal actions,

process algebra, bisimulation, process graphs, handshaking, terminating

rewrite rules, recursive path ordering.

NOTE: This report will be submitted for publication elsewhere.

Report CS-R84 03

Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

INTRODUCTION

The equational theory ACPr is an integration of ACP (Algebra of Communica

ting Processes) and Milner's r-laws. This paper studies the finite proces

ses according to ACPT, i.e. the initial model of ACPr- In particular the

following aspects are considered:

(i) Construction of a model of finite acyclic process graphs (modulo bi

simulation) for ACPr-

(ii) A proof that the model of (i) is in fact the initial model of ACP~;

stated in different terms this amounts to the soundness and completeness

of ACP,:- for finite processes.

(iii) Analysis of a reduction system related to ACPr: using recursive path

orderings termination of the reduction system is shown.

(iv) A proof of the Expansion Theorem.

(v) A proof of the associativity of parallel composition.

The paper is virtually self-contained, though some proofs make use of

propositions shown in [3] .

l

Related literature. ACPL was defined in [4]; the subsystem ACP was defined

in [2]. Abstraction was studied in [3]. The formulation of the Expansion

Theorem is taken from [5] .

Both ACP and ACPL have been derived from Milner's ccs ([12]). In parti

cular ccs contains the operators +,II ,a. for each atom a and derives as laws:

Al,A2,A3 and Tl.,T2,T3. The axioms Cl,C2 are from HENNESSY [10]; WINSKEL [13]

surveys communication formats of atomic actions. The operator• is present

in Hoare's CSP [ll] as';' and in DE BAKKER & ZUCKER [l] as 1
0

1
• We refer

to GRAF & SIFAKIS [9J"for a proof-theoretic discussion of the -c--laws.

BROOKES & ROUNDS [6] contains an explicit description of bisimulation modu

lo -c- on finite graphs.

The structure of this paper is as follows:

1. THE AXIOM SYSTEM ACP.z:-

2. THE MODEL OF FINITE ACYCLIC PROCESS GRAPHS FOR ACP-i;

3. THE EXPANSION THEOREM FOR ACP-c-

APPENDIX I. TERMINATION OF ACPL REDUCTIONS PR-OVED BY RECURSIVE PATH ORDERINGS

APPENDIX II. AN INDUCTIVE PROOF OF ASSOCIATIVITY OF MERGE IN ACP..:-

REFERENCES.

2

1. THE AXIOM SYSTEM ACPr

Let A be a finite set of atomic actions, containing a constant~, and let

- I. Ax A ~A be a communication function which is commutative and associa

tive and for which &la= b. A communication alb= c is said to be proper if

c1 b. Further we consider the constant T, for the silent action; we write

A~= Au{~}. Silent actions are obtained from applications of the abstraction

operator "!"I which renames atoms E I k A into r.

The signature of the equational theory ACP-r,-is as follows:

+ alternative composition (swn)

• sequential composition (product)

II parallel composition (merge)

LI_ left-merge

I communication merge

dH encapsulation

rI abstraction

6 deadlock I failur>e

r silent action

Table 1.

Here the first five operators are binary, dH and TI are unary. The operation

dH renames the atoms in H into f and TI renames the atoms in I into T.Here

Hand I are subsets of Az::; in fact H<;:A and Ie;;,A-{6} (since we do not want

to rename r into 6 or conversely).

The communication function I is extended to the communication merge,

having the same notation, between processes (i.e. elements of a model of AC~).

The left column in Table 2 (next page) is the axiom syste~ ACP (without

T). In Table 2, 'a' varies over A.

The axioms Tl,2,3 are the 'Y-laws' from MILNER [12].

Notation: often we will write xy instead of x.y.

The initial algebra of the equational theory ACPc::- in Table 2 is called

Ar..J
"C.

3

ACP,

x+y = y+x Al XT = X Tl

x+(y+z) = (x+y)+z A2 TX + X = TX T2

X + X = X A3 a(-rx+y) = a(-rx+y) + ax T3

(x+y)z=xz+yz A4

(xy)z ~- x(yz) AS

X + 0 = X A6

OX = o A7

alb= bla Cl

(alb)lc = al(blc) C2

ola = o C3

X IIY = X lL y + y lL X + X I y CMl

a lL x = ax CM2 T ll_x = TX TMl

(ax)tly = a(xl!y) CM3 (-rxllLY = ,(xllyl TM2

(x+y)lLz; xll_z + y[Lz CM4 ,Ix= o TCl

(ax) I b = (a I b) x CMS xi,= o TC2

al{bx) = (ajb)x CM6 (-rxllY = xly TC3

(ax)j(by) = (alb)(xllY) CM7 XI (-ry) = XI y TC4

(x+y)jz = xlz + yjz CM8

xj(y+z) = xjy + xlz CM9

clH(-r) = -r OT

'I(-r) = T Tll

aH(a) = a if a</;H 01 ,
1

(a) = a if ail TI2

aH(a) = o if aeH 02 'I(a) = L if aEI TI3

aH(x + y) = aH(x) + aH(y) 03 'I(x + y) = 'I(x) + 'I(y) TI4

aH(xy) = aH(x).aH(y) 04 'I(xy) = 'I(x).,I(y) TIS

Table 2.

4

2. THE MODEL OF FINITE ACYCLIC PROCESS GRAPHS FOR ACPr

Let G be the collection of finite acyclic process graphs over Ar. In order

to define the notion of bisimulation on G, we will first introduce the notion

of b-normal process graph. A process graph g E G is b -normal if whenever an

edge

occurs in g, then the nodes has outdegree 1 and the node t has outdegree 0.

In anthropomorphic terminology, let us say that an edge 0---,@ is an

ancestor of~ if it is possible to move along edges from t to s';

likewise the latter edge will be called a descendant of the former. Edges

having the same begin node are brothers. So, a process graph g is 6-normal

if all its 6-edges have no brothers and no descendants.

Not'e that for g € G the ancestor relation is a partial order on the set

of edges of g.

We will now associate to a process graph g E G a unique g' in i-normal

form, by the following procedure:

(1) nondeterministic b-removal is the elimination of ab-edge having at least

one brother,

(2) b-shift of ab-edge~ in g consists of deleting this edge,

creating a fresh node t' and adding the edge~.

Now it is not hard to see that the procedure of repeatedly applying (in arbi

trary order) (1), (2) in g will lead to a unique graph g' which is b-normal;

this g' is the 6-normal form of g. It is understood that pieces of the graph

which have become disconnected from the root, are discarded.

Example: g =

I:
= g'.

~
()_~ Q. ~ a. (1)

b 6
-c 'C" r 't"

C

We can now define bisimulation between process graphs g
1

,g
2

EG. First

some preliminary notions: a trace O-_is a possibly empty finite string over

Ac:; thus a--e A~. With e (CT) we denote the trace <T where all r-steps are erased,

e • g. e (a -c -c b 1:- c -c) = abc.

If g E: G, a path rr: s
0
~ sk in g is a sequence of edges of the form

(k ~ O} where the si are nodes of g, the hi are edges between si and si+l'

and each e.E A is the label of edge h .. (The h. are needed because we work
l --r; l l

with multigraphs.} The trace trace(7T} associated to this path TT is just

2.1. DEFINITION. A bisimulation modulo L (orL-bisimulation) between finite

acyclic process graphs g
1

and g
2

is a relation Ron NODES(g
1

) x NODES(g
2

)

satisfying the following conditions:

(i) (ROOT(g
1

} ,ROOT(g
2

}) ER,

(ii) For each pair (s
1

,s
2

)E Rand for each path 17"
1

: s
1

»t
1

in g
1

there is a path rr
2

: s
2

----'J>>t
2

in g
2

such that (t
1
,t

2
)E Rand

e(trace(77i)> = e(trace(7T
2
)). (See Figure la)

(iii) Likewise for each pair (s
1

,s
2

)E Rand for each path rr
2

: s
2

»t
2

in g
2

there is a path rr
1

: s
1

----'J>>t
1

in g
1

such that (t
1
,t

2
}ER

and e (trace (7T
1

)) = e (trace (~)). (See Figure lb.)

I

-rr-i:
't-------------

t1

Figure 1. (a) (b)

Let g
1

,g
2

be in 6-normal form. Then g
1

,g
2

are bisimilar modulo r (or

T-bisimilar.) if there is a L-bisimulation between g
1

,g
2

.

Notation: g 1-rg2 .

Note that for a r-bisimulation R between g
1

,g
2

we have: Domain(R} =

NODES(g
1

) and Codomain(R} = NODES(g
2

}. Also note that an equivalent defini

tion is obtained by letting rr
1

in 2.l(ii} consist of one edge, likewise

TT
2

in 2 .1 (iii}.

2.2. DEFINITION. Let g
1

,g
2

EG be ind-normal form. A rooted bisimulation

5

6

modulo r between g
1

,g2 is a bisimulation modulo L between g
1

,g
2

such that

the root of g1 is not related to a non-root node of g
2

, and vice versa.

Notation: g
1

t::::? g2 .
r;r.

2.3. DEFINITION. Let g
1

,g2 E.G with 6-normal forms gi resp. g2.
Th -E---7 g J.•f I - g' en gl - 2 gl - 2· r ,T. r ;c

2.4. EXAMPLES. aTb3 ~ ab6 (Figure 2a), r ;,.
ab - a C::('Z:b + t"'t"b) (Figure 2b) r,r

a (-Cb+ b) ~ ab (Figure 2c) r,r

c (a+ b) ~ c (r(a + b) + a) (Figure 2d)
r ,t"

A negative example: see Figure 2e. The heavy line denotes where it is not

possible. to continue a construction of the bisimulation.

- -1 a ct a.. a. ll.

t: r ~~b
b __-/ b I, ~
& __-/

(a) (b) (c)

(d) (e)

Figure 2.

7

Since we intend to construct from Ga model for ACPr, we will now de

fine operations +,., 11, lL, I, oH,TI on G. (Cf. [3] where +,.,II, IL were defi

ned in the context of the axiom system PA.)

(1) The ~ g
1

+ g
2

is the result of identifying the roots of g
1

,g
2

.

(2) The product g
1

.g
2

is the result of appending g
2

at all .end nodes of g
1

.

(3) The merge g
1

llg
2

is the 'cartesian product graph' of g
1

,g
2

, enriched by

'diagonal' edges for nontrivial communication steps, as follows:

if is a subgraph of the cartesian product graph, then

the arrow o c)0 (where c = a I b) is inserted; result:

(Here 1: has only trivial communications: "l:'I a= rl-c- = b.)

Example. Let Ar= {a,b,c,r,6p where the only nontrivial communication
a b

is: alb= c. Then, writing ab for the graph -10 ,o ,o, we have:

abllbabr is the process graph as in Figure 3a.

a. 6 a. 6

6 C. I, b h

a

I, b
6

r 7: -r '!' 'C

6 a. I,

Figure 3. (a) (b) (c)

(4) The left merge g
1

lL g
2

is like g
1

11 g
2

but omitting all steps which are

not a first step from g
1

or the descendant of such a first step.

Example: in the situation of th~ previous example we have abll_babt as

the graph in Figure 3b and babr lL ab as in Figure 3c

8

(Note that we have omitted the diagonal edges labeled with b, resulting from

trivial communications. This is allowed in view of our preference of &-normal

graphs. Indeed, a 'diagonal' b-edge can always be omitted by (1) of the b
normalization procedure.)

(5) The communication merge g
1

lg
2

is harder to define since it is in general

not, as g
1
lL g 2 is, a subgraph of g

1
II g

2
• The reason behind the definition

can be understood by considering e.g. ~Laxl~-c:Lby and evaluating this term

according to the axioms of ACP :

-z:-raxlr1:--cby = axlby = (alb). (xllY).

We define:

g
1
I g2 = I.{<t ~ s). (g1 II g2) s I t ~ s is a maximal communication

step in g
1

llg
2

such that t can be reached from the root via

a sequence of '?:-steps}·

Here 'maximal' refers to the p.o. given by the ancestor relation. The

sequence of L-steps may be empty. Further,

of g with roots.

(g) denotes the subgraph
s

Example. (i) Let g
1

= 7:ard, g
2

=z:Tbd. Let a I b= c be the only nontrivial

communication. Then g
1

llg2 is as in Figure 4(a) and g
1

lg
2

as in Figure

4 (b) :

-r a. 1: c:l

7: "t" -c: -r T"

r -z: t: T T
-r

Ii
"t" d.. T c(_

cl. c,(_ et. cf.
r a. r d.

r cf.

Figure 4. (a) (b)

C
Here the heavily drawn edge o--~>o is an edge t ~ s as in the defi-

nition of g
1

!g
2

.

9

b a a b
(ii) Let g

1
be ... , z:- ~, >o and g

2
: , -c- ~:, ,o, where the only non-

trivial communications .are ala=a0 and blb=b0
• Then g

1
llg

2
and g

1
lg

2
are as in Figures 5 (a) resp. (b) :

(a) (b) Figure 5.

Using ACP~ we calculate with terms corresponding to g
1

,g
2

:

(ba+ta) I (ab+c::b) = balab + bali::-b -t< 1:alab + z:al-c-b =

(bla). (allb) + balb + alab +alb= S + b 0 a + a 0 b + S = b 0 a + a 0 b.

(6) The definition of the operators OH; tI on process graphs g E G is easy:

they merely rename some atoms (labels at the edges) into ~ resp. -c.

This ends the definition of the structure {j, = G(+,.,11 ,lL ,I ,aH,tI). The

domain of process graphs <j is itself not yet a model of ACP (e.g.

<j ~ x + x = x) . However:

2 .5. THEOREM. (i) Rooted -z:--bisimulation (~) is a congruence on r:.
r,'C 7

(ii) C ;- is a model of ACP-r.
tJ r,-z:

PROOF. (i) Let g,g',h,h'E G. We want to show that

g 4---+ g' & h ~ h' -r,~ r,T gllh =::t g' llh' r, t:

and likewise for the other operators. Only the cases [I ,[L ,I are interesting

and we start with 11 .

Suppose, then, that Sis a r,r-bisimulation between g,g' and Tis a

r,r-bisimulation between h,h'. Lets be a typical node of g, s' of g', t of

h and t' of h' . Then we define the following relation S x T between the node

sets of gllh and g' llh':

((s,t),(s',t'))E SXT ~ (s,s')E s & (t,t')ET.

We claim that S x T is a r,r-bisimulation between gllh and g' llh'.

10

Proof of the claim.
u

• (s
1
,t

2
) be a "horizontal step" in gll h, where u E A-c.

u

Hence a path as in the definition of bisimulation can be found whose

trace is externally equivalent to u and whose end point bisimulates with

t
2

. This path can be 'lifted' to gllh.

(2) Likewise for a "vertical step" in gll h.

(3) (s
1
,t

1
) c) (s

2
,t

2
) is a "diagonal step" (a communication step) in

gllh, and ((s
1
,t

1
),(si,ti))ESXT. Now a path as required can be found

from the data (s
1

, si) E. S and (t
1

, ti) E T and an inspection of Figure 6 :

a c'-T
(s1,t2)

r- T

(s1 ·V r r

b
b

(s2,tl
r

-r r
(s2,t2)

Figure 6.

The case of lL is easy since g lL h is a subgraph of g II h.

The case of I: we use the same notation as above. To prove:

glh ~ g'lh'.
r, "C"

g II h g g I II h I g'

't" i;-i__,

h (\,I:-)
Ct

(spt,)

Figure 7.

11

An r,r-bisimulation between glh and g'lh' can now be constructed as follows

from sx.T. The graph glh is now the sum of the c .. (gllh)(t)(i=l,2) as
J. s. , .

1. 1.

in the definition of I and as indicated in Figure 7 (a).

For the sake of clarity, we will formally distinguish the "diagonal"

edges from the other ones; this can be done by a suitable renaming of the

alphabet and adapting the communication function. Thus, if a I b = C, we adopt

a fresh symbol ~ and postulate a I b = ~. Now the underlined symbols do not

occur in g,h which makes it possible to speak in a formal way about "diagonal"

steps. Note that the bisimulation SxT is also a bisimulation when diagonal

steps are marked as such.

Now given a summand p = c .. (gllh) (t) of glh, we can find via SXT
1. s. , .

1. 1.

a corresponding summand p' = c .. (g' llh') (, t'). It is easy to see that the
1. s. , .

step c. in g' llh' is also
1.

maximal in the 1. 1. sense of the definition of I.
Clearly p bisimulates with p', via the restriction of S T to the appropriate

area. In this way we find that glh bisimulates with g'lh'.

(ii) The proof that C /~ is a model of ACP is tedious, routine, and o
il r,"C

mitted. D

We will now analyse into an equivalence generated by certain
r,r

elementary graph reductions. This is done in [3] for L-bisimulation

(without the condition 'rooted;) and in the absence of b; these results will

be the basis for the sequel. We repeat from [3] the main definitions.

2.6. DEFINITION. Let gEG._

(i) A subgraph g' of g consists of an arbitrary subset of the set of edges

of g (plus their labels E Arl together with the nodes belonging to these

edges.

(ii) Let sENODES(g). Then (g) is the subgraph of g consisting of all nodes
s

and edges which are accessible from s (including s, the root of (g)s).

We will call (g)s a full subgraph.

(iii) An ~ in g is a subgraph of the form as in Figure 8 (a), where uE A-c

The u-edge at the left is called the primary edge of the arc. Ifi in Figure

8 (a) n = m ~ 0 the arc has the form ~s in Figure 8 (b) and is called of type

I. If n + m = 1 the arc has the form as in Figure 8 (c) or (d) and is called

of type II resp. III. Arcs of type I,II,III are called elementary arcs. ,,

12

u

'C"

.. r .-,·
T"

(a)

u u u

(b)

u

u u

u

(c) (d) Figure 8.

2.7. DEFINITION. On G we define the following reduction procedures:

Sharing. Let g E G contain nodes s1 , s 2 such that (g) sl is isomorphic

to (g) . Then g reduces tog' where s
1

,s
2

are identified.
s2

[i]

[ii] Removal of a non-initial deterministic r-step.

If s1 ~ s 2 occurs in g and the outdegree of s
1

is one (so the displayed

r-step has no brothers), and if moreover sf is not the root of g, then the

nodes s
1

,s2 may be identified after removal of the r-step.

[iii] Arc reduction. In an arc the primary edge may be deleted. The arc

reduction is called of type I,II,III if the arc is of that type. Such arc

reductions are also called elementary.

So the subgraph as in Figure ~a) may be replaced by that in Figure 9(b):

Figure 9. (a) (b)

[iv] Nondeterministic &-removal, as explained in the beginning of this

section.

[v] &-shift; also defined above.

If none of the reduction possibilities in [i]-[v] applies tog, then

we call g a normal process graph.

Notation. If g reduces tog' by one application of [i]-[v], we write

g ~ g'. The transitive reflexive closure of~ is denoted by~.

13

2.8. EXAMPLE.

r

Figure 10.

The following fact is trivial:

2. 9. PROPOSITION. Every process graph reduction g
1
~g

2
...,. .•. must terminate

eventually.

Without the routine proof we state the 'soundness' of the reduction

procedure ~> w. r. t.

2 .11. DEFINITION. (i) Let g E G be in ~ -normal form. Let R be an r ,T-bisimula

tion between g and itself. Then R is called an autobisimulation of g.

(ii) g is rigid if it can only be in autobisimulation with itself via the

identity relation.

2.11.1. EXAMPLE. The following process graph is not rigid since it admits

the displayed nontrivial autobisimulation:

Figure 11.

2.12. THEOREM. (i) Normal process graphs are rigid.

(ii) If g
1

,g
2

are normal process graphs and g1 ~r,~ g2 , then g1 and g
2

must be identical.

PROOF. The theorem is a simple corollary of the analogous Theorem 8.1.9 in

[3] , where 'normal' , 'rigid' are defined w. r. t --r (without the condition

14

'rooted') and in the absence of b. The present graph reductions [i]-[v] dif

fer f;rom those in [3] since there [iv], [v] are absent and in [ii] the T-step

may,be an initial one.

Proof of (ii): suppose g
1

,g
2

are normal and g
1

- r ,-z: g 2 •

Case (1). g
1

,g
2

are also 'normal' in the sense of [3]. Then since g
1

-r;r:g
2

implies g
1

,.__..r g
2

, an application of Theorem 8.1.9 in [3] yields the identi

ty of g
1

,g
2

.

Case (2). If g
1

,g
2

are normal but not 'normal' as in [3], one of them, say

g
1

, must start with a deterministic r-step: i.e. g
1

=1:"gi· Then since

g
1
~r ~ g

2
, also g

2
= ~g2. Moreover, gi,g2 must be 'normal' as in [3].

I

Also gi ~r,"C' g 2, hence gi ~r g2. By Theorem 8.1.9 in [3] , we have

gi = g2. Therefore g
1

= g
2

.

Proof of (i): similar. D

2.13. COROLLARY. Let g
1

,g
2

EG. Then the following are equivalent:

(i) +-+ gl -r,-c g2

(ii) g
1

,g
2

reduce (by [i]-[v]) to the same normal graph

(iii) g
1

,g
2

are convertible via applications of [i]-[v].

PROOF. Suppose (i). Reduce g
1

,g
2

to normal gi,g2; this is possible by Pro-

position 2.9. Since reduction~> is sound w.r.t ~ , also g' =::z g'.
r,r 1 r,r 2

By Theorem 2.12(ii) it follows that gi and g2 are identical. Hence (ii).

From (ii) we have (iii) trivially. From (iii), since reduction is sound,

we have again (i). D

2.14. REMARK. As a further corollary (which we do not need here) one obtains

the confluency of the graph reductions [i]-[v]. This follows immediately

from the termination property of the graph reductions (Proposition 2.9),

together with Lemma 2.10 and Theorem 2.12(ii).

2.15. COROLLARY. Let g
1

,g
2

EG. Then gl ~r,-r: g
2

iff g
1

,g
2

are convertible

by means of the graph reductions [i],[ii],[iv],[v] and elementary arc reduc

tions [iii]I,[iii]II,[iii]III.

PROOF. Every arc can be filled up with elementary arcs. •

15

In the sequel when closed terms in the signature (+,. ,a e Ar) are men

tioned, we wi-11 always mean terms modulo the basic congruence given by the

axioms Al,2,5 in Table 2 (associativity of+,. and commutativity of+). To

such terms we will refer as '+,.-terms' or as 'basic terms'.

2.16. DEFINITION. Lett be a basic term.

(i) Then [t] denotes the interpretation oft inf; so [t] is a process

graph.

(ii) [t] denotes the interpretation of t in C / ~ ; so [t] is a process I r,-c
graph modulo r,r-bisimulation.

(iii) Let gE G. Let g' be the process tree obtained from g by 'unraveling'

the shared subgraphs. Then fg! is the basic term corresponding to the tree

g'.

Example. If g is then g' is and { g} = de + a (be + e) .

C

e
C

2.17. PROPOSITION. Let g
1

,g
2

E G and suppose g
1
~g

2
via an elementary

graph reduction [i],[ii],[iiiI,II,III],[iv],[v]. Then the basic terms ~g
1
l

and ig
2

~ can be proved equal using the A-axioms (about +,.,b) in Table 2,

Al-7, and the r-laws Tl-3. (See Figure 12)

Figure 12.

gl elementary graph
reduction step

:l
tl ============

Al-7, Tl-3

1 J

PROOF. In case { i], t
1
= t

2
. Case [ii] translates into an application of Tl

(or several such). Case [iiiI]: removal of a double edge. This translates

into applications of x + x = x (A3) ..

Case [iiiII] translates to terms as an application of -c(x + y) + x = r(x + y) ,

where x = uz (see Figure 13a), or, if y is empty, Tx + x = rx (T2). The former
~

16

equation follows from T2 and A3:

"[(x +y) +x = r(x +y) +x +y +x = r(x +y) +x +y = Y(x +y).

Case [iiiIII] translates to terms as an application of

u (tz + y) = u (rz + y) + uz (u E A-z:-) .

(See Figurel3b) The case that u=r follows fromT2; the case that u;!c is

just the third -c-law T3; for z or y empty an appli_cation of 'l'.l _is needed. •

(b)
u u

Now we can prove an important fact:

2.18. LEMMA. Suppose t,s are basic terms. Then:

C 1~ I= t= s ==9 Al-7, Tl-3 I- t= s.
(/ r,t:

u

Figure 13.

PROOF. Suppose C/'==! I= t= s. Then [t] ~ [s]. By Corollary 2.15, the ti r,-c r,-r
graphs [t], [s] are convertible via elementary graph reductions:

Now Proposition 2.17 states that

Since Al-7 I- ~[t]l = t and likewise for s, we have Al-7 ,Tl-3 I- t = s. D

By a similar method (essentially by leaving out all reference tor) one

proves

2.19. LEMMA. Suppose t,s are basic terms not containing r. Then:

C;=± I= t=s 9> Al-7 I- t=s. I r, -i:

2.20. ELIMINATION THEOREM. Lett be a closed term in the signature of ACPr.

Then, using the axioms of ACPr except Al-7 and the r-laws Tl-3 as rewrite

rules from left to right, t can be rewritten to a basic term t'.

PROOF. See Appendix I. D

Combining the previous results we now have, writing AT for the set of

axioms Al-7,Tl-3:

2.21. LEMMA. (i)

Figure 14. t3======t4
AT

17

I.e. if ACP-c I- t
1

= t
2

, then t
1

and t
2

can be reduced by means of the rewrite

rules (from left to right) associated to the axioms in ACP~-AT to basic terms

t
3
,t

4
which are convertible via the AT-axioms.

(ii) Every term t can be proved equal in ACPr to a basic term t'; moreover,

t' is unique modulo AT .

. PROOF. (i) Suppose ACPL 1- t
1

= t
2

. By the Elimination Theorem 2. 20 we can re-

write t
1
,t

2
to resp. basic terms

rules. By the fact that C /~ d r,r
Hence (Lemma 2 .18) A:T I- t 3 = t

4
.

(ii) Immediate from (i). •

t 3 ,t
4

using the axioms in ACP~-AT as rewrite

is a model of AC~ we have <j,l+-+r, r I= t 3 = t 4 .

2.22. EXAMPLES. The following examples illustrate Lemma 2.2l(i):

(i)

(ii)

(z-a + a) I b

t
ralb + alb

i
alb+ alb

aT LL b

i
a(-rll b)

-z:-alb

l
alb

t
a(i-LI_ b + b[l_T+ 7:lb)

1crb + bT + f) = a(rb +_ bT) -

all_b

l
a(Tb + b) = a-rb = ab

18

(iii) ("Z:a+a)Llb -z:all_b

t J
t::atl_ b + all_ b T(a II b)

t

•~bl
r(allb) + all_ b

t
T(atl_b + bll_a + alb) +

i 'I'/

T(ab + ba + alb) + ab
(*)

-Z:-(ab + ba + aln>

Here (*) is an instance of the (from AT) derivable rule

T(x + y) + X = T(x + y) .

As a further corollary we have:

2.23. THEOREM. (i) C;":::::!. is isomorphic to A'::, the initial algebra of ACP~
rf r,r

(ii) ACPr is conservative over ACP (the latter over the alphabet A).

I.e., for r-less terms t
1
,t

2
:

PROOF. (i) We have to prove:

C 1- I= s= t # ACP-r:- r s = t. ? r,"l:"

(~) is Theorem 2. 5 (ii) . For <•) , suppose C / =z. I= s = t. Then also
if r,r

f-/-=::::::t. F s' = t' for some basic terms s' ,t' such that ACP-z:- r s = s' ,t = t'.
? r~ .
The result now follows by Lemma 2.18.

(ii): suppose t
1
,t

2
are closed terms in the signature of ACP (sor-less and

-s:-less), and suppose ACP-z:- I- t
1

= t
2

. Let t
3
,t

4
be basic terms such that

ACP-c- f- t
1

= t
3

, t
2

= t
4

. Since t
3
,t

4
can be obtained by rewrite rules ACP'l:"-AT,

we have ACP f- t
1
=t

3
, t

2
=t

4
. Now by Lemma 2.19, Al-7 r t

3
=t

4
. Hence

ACP f- t
1

= t
2

. 0

19

3. THE EXPANSION THEOREM FOR ACPT"

The Expansion Theorem is an important algebraic tool since it helps in brea

king down a merge expression x1 l l x 2 11 •.• 11 xk. For CCS, an Expansion Theore~

is proved in MILNER [12]. For ACP (i.e ACPr without~) the analogous theorem

is proved in BERGSTRA & TUCKER [5]. As an example we mention the Expansion

Theorem for ACP in the case k = 3 :

xllYllz = xlJ_ (yllz) + ylJ_ (zllx) + zlJ_ (xlly) +

(ylz>Li_x + (zlx)[Ly + (xly)!Lz.

In [5], the Expansion Theorem is proved by a straightforward induction on

k starting from the assumptions:

(a) the handshaking axiom xlylz = b (i.e. communications are binary),

(b) the axioms of standard concurrency for ACP:

Table 3.

(x[J_y) [Lz = xii (yllz)

(xly) lL z = xi (yll_z)

xly = ylx

xllY = Yllx

xi (ylz) = (xly) lz

xii (Yllz) = (xllY) llz

The standard concurrency axioms are fulfilled in the main models of ACP, to

wit the term model (initial algebra) Aw of ACP, the projective limit model

A00 and the graph model ar' (see [4]) •

For ACPr this is no longer true; all axioms of standard concurrency

hold in the initial algebra A~ of ACP~ except the second one.

Example: (alrb) IJ_c = (alb)c and al (rb[lc) = (alb)c + (ajc)b + alblc.

For a proof of the validity of some of the axioms of standard concurrency in
w A~, see Appendix II.

Fortunately, the Expansion Theorem carries over from ACP to ACPL in

exactly the same form. This is what we will prove in this section. The under-

20

lying intuition is that II and lL behave in ACPr just like in ACP, with the

convention that r cannot communicate. For' I' the same is true if its arguments

x,y are 'saturated' in the sense that they have been maximally exposed to the

rewrite rule associated to T2: 1.:-x ~ rx +x. As an example, consider ralb.

Evaluated according to ACP, we have

-c-a I b = (r-1 b) a = ~ a = S.

However, according to ACPr:

ralb = alb,

which may be different from£ Now suppose that ra is made 'saturated' in .the

above sense, i.e. replaced by ra + a. Then also by ACP:

(ta + a) l b = r a I b + a I b = (?: I b) a + a I b = S + a I b = a I b,

just as in ACP-z:-.

The proof below of the Expansion Theorem will also entail the associati

vity of II. Nevertheless, we have given in Appendix a totally different proof

of the associativity of II in A~, by means of an induction to term complexity.

This is done, because the latter proof yields some useful identities (some

of the axioms of standard concurrency) and for the curious fact that the

proof requires an application of the third r-law (T3). (In computations with

and applications of ACPr the first two r-laws turn up frequently; this seems

not to be the case for the third r--law.)

3.1. DEFINITION.Tis the set of basic terms in normal form w.r.t. the re

write rule associated to A4: (x + y) z ~ xz + yz. (This means that if t E: T,

then [t], the interpretation oft in the domain of process graphs Gin Section

2, is a process tree.)

3.2. NOTATION. Let s,tET. We write si;;;;t, ifs is a summand of s, i.e.

if t = s or t = s + r for some r.

Example: a (rb + c) c: a (rb + c) + ab.

3. 3. DEFINITION. Let x ET. Then x is saturated if:

Example: (i) b + ra is not saturated but becomes so after an application of

the r-law T2: b +ra + a.

(ii) b + r(a +c:-c) + a +rc + c is saturated.

3.4. PROPOSITION. Let XE T. Then there exists a saturated yET such that

ACP-i;- f- X = y (in fact, even T2 r X = y).

21

3.5. NOTATION. We will denote by x a saturated y as in Proposition 3.4. For

definiteness, we take y of minimal length. So, e.g., b+ra = b+ra+a.

The next proposition says that a merge in ACP~ (anyway in its initial

algebra~) can be carried out by treating the atom T as if it were an 'ordi

nary', non-communicating atom. Formally, this can be expressed by extending

the alphabet with a fresh symbol t (acting as a stand-in for r) which does

not communicate, replacing all ~•sin a merge by t and after evaluating the

merge restoring the r's by means of the operator r{t}. The same is true for

lL ; for I it is true under the condition that the arguments are saturated.

Thus:

3 .6. PROPOSITION~ Let x, y E T be terms over the alphabet A1:. Let t !l A'C and

extend the communication function on ~ to (Au { t})"C' such that t does not
t

communicate. Further, let x be the term resulting from replacing all occur- •

rences of r by t. Then:

(i) ACP-c I-
t t

x II Y = T {tl (x 11 Y)

(ii) ACP't" I-
t t

xll_y= c::{tJ(x li_y)

(iii) ACP"C" I- xi Y = Tlt}(xtlYt)

PROOF. (i) Let X = (r) + I a. +
1.

l b x ' + I r x" and j j k'

y = (r) + I c + l d y' + I 1: y" e m m p

where a.,b.,ce,d EA.
1. J 111

Then x 11 y = x IL y + y lL x + x I y =

(ryl

(rx)

+ I a.y
1.

+ l C X e

+ lb. (x '. II y)
J J

+ l d (y' llx) m m

+ l r(xkllYI~ +

+ l r(y"llx) +
p

22

(rlz:> + I-rice> + (}:rl d y') + < I T 11: y" > +
m m p

(Ia.In + }:ailce + }:a. Id y' + La. lcY" +
l 1 m m l p

(Lb.x'.l·n + }:b.x'. le + }:b.x'.!dy' + I b.x'. !ry" +
J J J J e J J m m J J p

(lex" Ir) +
k

l z:x" I c
k e + 'tx" Id y'

l k mm + I --z::x" 1-cy"
k p

Here the five enclosed summands can be skipped, in view of the following

Claim: x'i;;;;x & y'i;;;;y ~ x'IY' i;; xly cr(x!ly).

Proof of the claim. If x 'c: x, y' c y then by the linearity laws CM8, 9 for 'I '

at once: x' IY' !;;; x!y. Further, xly c:: r(x!ly) follows since

ACPr 1- Z:-(x!ly) = "C(xLI_ y + yll_x + x!y)

-C(xLI_ y + y[L_x + x!y) + x!y.

L r(y" !Ix) (since a.C:x); like-
p l

wise the other four enclosed summands can be shown to be summands of non

enclosed summands. On the other hand, the five corresponding summands in
t t <

Y{t} (x IIY) are equal too, since t does not communicate. The remaining

summands pose no problem, e.g.:

follows by

and the induction hypothesis

(induction on the sum of the term complexities).

(ii) The case of LL is similar to that of [L.

(iii) It is easy to show that a saturated term x ET can be decomposed as

follows:
n m e

X = (c) + i!l ai + j!lbjyj + k!l ~xk

23

where a. ,b. -EA, n,m,e ~O and the xk are again saturated. Note that the length
l J .

of xk is less than that of x. We will use this for an induction on the lengths

of x,y in the statement to prove.

We consider a typical example; the general proof involves only greater

notational complexity. Let

y = r + c + dy l + ry
2

+ y
2

.

Then

air + ale + aldy
1

+ ajry
2

+ aly2 +

bx1 1r + bx
1

le + bx
1

!dy
1

+ bx
1

lry2
+ bxl IY2 +

Tx2 1r + c:x21c + TX2 I dyl + -z:x)ry2 + -rx2 1y"2 +

x21r + x2lc + x2!dyl + x2 !ry2
+ x2IY2

Note that the enclosed summands can be skipped, since (by virtue of the sa

turation requirement) they are equal to other summands: e.g. a l.ry 2 = a I y2
(by axiom IC4), bx

1
1ry

2
= bx

1
!y

2
• Now these are just the terms which are

'lost' when evaluating r{tj(xtlY~) (since t does not communicate). Namely:

_t,_t
X y =

alt + ale + t
a!dy

1
+ & + ,-t a y 2

+

t t t t a . t,-t bx
1

1t + bx
1

1c + bx
1

!dy
1

+ + bxl Y2 +

s + & + b + 6 + f, +

_t, x
2

t + _t, x
2

C + _ti t
x2 dyl + J + -t,-t

x2 Y2 .

To see that r{tf (xtlyt) = xly we can inspect the summands separately (since

t'{t} distributes over+). Indeed, alr = "t"{t/alt) = b; and e.g. x)dy1 =

1:{t}(x~ I dy ~) follows by the induction hypothesis, using the fact that

24

In the same way one can prove the following proposition which generali

ses Proposition 3.6(i) and is of independent interest:

3.7. PROPOSITION. Let I<;;A be such that IIA = {~} . (Here IIA = {cl :]iEI,aEA

I } h
. w i a = c •) T en in Jli.-c :

(ii) Moreover, let (AIA)n I= fj. Then in A~:

3.8. COROLLARY. A; I= xii (yllz) = (xllY> llz.

PROOF. Lett be as in Proposition 3.6. Note that Proposition 3.6(i) entails

(xllY> t = xtllyt. Now:

t t t t t
xii <Yllz) = 1:"{tl(x II <Yllz)) = T{t} (x II (y llz)) (*)

. t t t
L{t} ((x IIY >llz) = (xlly>llz.

Here (*) follows from the associativity of II in ACP (see [2]) • D

3.9. EXPANSION THEOREM FOR ACP~. Let communication be binary. Then in A~:

I IL i,j
(x. x.) xk

l. J

i . i, j
where Xk is the merge of x1 , .•. ,xk except xi and Xk is the merge of x1 , .•. ,xk

except x. ,x. (k~3).
l. J

25

): xillx! +): - 1- lL -i, j (x. x.) xk =]. J

): xi lL x! + ' I lL i,j
l (x. x .) xk .

]. J

Here (*) is the Expansion Theorem for ACP (see [5]) and (**) is by Proposi

tion 3.6. D

26

APPENDIX I. TERMINATION OF ACPrREDUCTIONS PROVED BY RECURSIVE PATH ORDERINGS

In this Appendix we will prove the termination result in the Elimination Theo

rem 2.20 by the method of recursive path orderings as inDERSHOWITZ [7]. Since

we will give a slightly different presentation of recursive path orderings, a

short account of this method will be given. our presentation replaces Dersho-

witz's inductive definition of the recursive path ordering by a reduction pro

cedure (which may be seen as a.n 'operationalisation' of that inductive defini

tion). This reduction procedure provides a somewhat easier notation in appli

cations.

We start with the basis of the recursive path ordering method, the Krus

kal Tree Theorem. First we need a definition:

1. DEFINITION. (i) Let D be the domain of finite commutative rooted trees whose

nodes are labeled with natural numbers; alternatively one may consider an ele

ment t of Das a partially ordered multiset of natural numbers such that t has

a least element.

Example: t = 3
/I"

5 7 8
I I
9 0

I\
1 5

We will use the self-explaining notation t=3(5,7(9),8(0(1,5))). This notation

is ambiguous since the 'arguments' of the 'operators' may be permuted, e.g.

also t=3(8(0(5,l)),5,7(9)).

(ii) Let t, s ED. We say that s is covered by t, notation s 6 t, if there is an

injection r: NODES(s) ~NODES(t) which is an order-preserving isomorphism

and. such that for all nodes oc. E NODES (s) we have: label (o<.) ¢ label ('f(o<.)) where

;i, is the ordering on lN.

Example: s=2(9,7(4,0))!;;t as in (i):

s = 2 -- Cf -7" 3 = t
I\ ------·/1"'-

9--... 7- 5 7 8 :£\---_-_-_ ~ --~::; i-.,, b
Figure 15.

'-, '-....., I\
------"::::--- ___ ,,...s,;11

-::::. -
(Note that the embedding f is unique in this case.)

27

Clearly, c: is a p.o. on D. Now there is the following beautiful theorem:

2. KRUSKAL TREE THEOREM. Let t
1
,t

2
,t

3
, .•. be a sequence in D. Then for some

i< j: t.i;;;;;t ..
1. J

In fact, this is not the most general formulation of the theorem; see DER

SHOWITZ [7] • The formulation there is stronger in two respe'cts: the linear

ordering of the labels (in our case lN) can be taken to be a partial order

which is well-founded; and secondly, Kruskal's original formulation concerns

noncommutative trees and an embedding r as above must also respect the

'left-to-right' ordering. Clearly, that version implies immediately the

above statement of the Tree Theorem. For a short proof see DERSHOWITZ [8].

The next definition is from [7]:

3. DEFINITION. The p.o. I> on Dis defined inductively as follows:

t:::: n(t
1

, ... ,tk) C> m(s
1

, ... se) = s (k,e;;.O) iff

or

or

(i)f n > m and t I> s. for all i = 1, ... , e
1.

(ii) n=m and {t
1

, ... ,tk} C>C> {s
1

, ... ,se} where I>!> is the p.o. on multi

sets of elements of D induced by t>,

(iii) n< m and t. t;i, s for some iE {1, ... ,k}.
1.

It is implicit in [7] that an equivalent definition of~ is:

4. DEFINITION. The p.o. [>on Dis defined inductively as follows:

(a) t = n(t
1

, ••• ,tk) I> m(s
1

, ••• ,se)1 = s (k,e ;i, O) iff

(i) as above

or

(ii) ,as above

or

(iii)' s=t. for some iE{l, ... ,k}.
1.

(b) I> is transitive.

(Here the cases (i), (ii), (iii)' may overlap. The transitivity has to be re

quired. explicitly now.)

28

5. EXAMPLE. t = 5
I\

6 7
I
8

C> 4 = s
/1"'-

6 5 4

/\ '"' 6 8 6 6~
/I'\:-......._

8 8 8 8

Proof: By (i) from Definition 3, tt>s if: (a) tt>6 and (b) ti> 5
I\

6 8

and (c) t C>
1
4

6 \6
/\~
8888

(a) follows by (iii) of Definition 3; (b) follows by (ii) and 7 ~8 (by (iii)).
8

(c) follows from (d) t t> 6 and (e) t I> 6,-.._ •
/\~::--,.

8 88 8

(d) is by (iii) and (e) is so by . (iii) since 7 C> 6 (by (i) , (iii)) . a a'1

~8

So,· establishing that t C> s requires a miniature proof. Another presen

tation may be more convenient: instead of by the inductive definition above

we can also define [> by an auxiliary reduction procedure as follows.

Let D* be D where some nodes of t E D may be marked with *. E.g.

3*(1,2*(4)) = 3* E D*.
I \

l 2*
I
4

(The marker* can be understood as a command to replace the marked term by

a lesser term.)

6. DEFINITION. On D* a reduction relation ==(>is defined as follows.

(0) n(t
1

, .•. ,tk) ~n*(t
1

, ... ,tk) (k~O)

(1) if n >m then n* (t
1

, ... ,tk) c::=;>m(n* (t), ... ,n* (t))

(k) 0, s ~ 0 copies of n* (t))

(2) n*(t1 , ... ,tk) ==l>n(ti•···•ti,t2 , ... ,tk) (k>l, s~O copies of ti)

(3) n*(t
1

, ... ,tk) =:>ti (iE: {l, .•. ,k}, k~l)

(4) if t ==(> s then n(--,t,--) =5> n(--,s,--).

Furthermore,~ is the transitive reflexive closure of~-

,,

29

(In fact, (4) is superfluous for the definition of==:>>; without it one easi

ly derives: if t ==;>s then n(--,t,--) ~n(--,s,--) .)

We are only interested in *-free tE D<;; D*. Now we have by a tedious but

routine proof which is omitted:

7. PROPOSITION. Let t, s ED (i.e. not containing *) . Then:

t ~ s iff t ~ s.

8. EXAMPLE. (i) 4 =;'>4* ~3(4*,4*)==¢'3(2(4*),4*) ==:>3(2(1),4*) ==C>3(2(1),0).

(ii) Cf. Example 5:

t = /t"----
5* 5* 5*
/\ I\ /\

676767
I I I

8 8 8

4 ~

/;"'
6/ 5 4

I \ I\

6 8 6 7
I

8

4 9>)

6 ~/ ~ 4
I\ / '-.

6 7* 1* ,5,*
8 6 7 6 7

I I
8 8

4

6 /f ""'4
I\ I\

=I>>

6 8 6 6~
/\~

7* 7* 7* 7*
I I I I

8 8 8 8

In DERSHOWITZ [7] the following facts about t> are proved:

9. PROPOSITION. t> is a partial order.

The proof requires a simple induction to show the irreflexivity.

10. PROPOSITION. (i)

(ii) [> t.
l.

(1~ i ~ k)

(iii) t > s =? n (.. , t, ..) I> 1'l (•• , s, ..)

30

PROOF. Using Proposition 7, (i)-(iii) are immediate; e.g. (ii):

• * • d. () *) () n (t) ==O- n (t) ==0- ti an (1.) : n t
1

, ... , tk =¢, n (t
1

, ... , tk c-::=> n t
2

, ... , tk .

As to (iv): n(t) ==O-n*(t} ==:;>m(n*(t), ... ,n*(t)) ~m(t
1

, ... ,tk). D

Using Proposition 10 one shows easily:

11. PROPOSITION. s !;;;;; t ~ t I) s.

From this we have

12. THEOREM .(Dershowitz}. (The termination property for the recursive path

ordering I>) [> is a well-founded partial order.

PROOF. Suppose t
0

I> t
1

t>t
2

[> ••• is an infinite descending chain w.r.t. [>.

Then, by the Kruskal Tree Theorem 2, t. ~ t . for some i < j. So by Proposition
1. J

11, t. ~t .. However since l> is a p.o., this contradicts t.)t.. D
J 1. 1. J

13. Application to ACI\-. We want to prove that the rewrite rules (from left

to right) associated to the axioms of ACP~ except Al,2,5, Cl,2 and Tl,2,3

are terminating. These rewrite rules have, in tree notation, the following

form: (see Table 4,. next page).

Note that the occurrence of 11 in the RHS of the rules CM3; CM7 pre

vents us to order the operators directly in a way suitable for an applica

tion of the termination. property of recursive path orderings. Instead, we

have to rank the operators II, [L, I simply by (e.g.} the natural number

that is the sum lxl + lYI of the lengths of the arguments x,y. Here lxl is

inductively defined by:

lal = lrl = 1

I x • YI = l x I + I Y I for D = + , • , 11 , IL , I

I dH (x} I = I TI (x) I = Ix I .

The ranked operators 11 , lL , I , +, • , O , TI are partially ordered as follows:
n n n H

!In> [Ln,ln

11 n, I n > II n-1

lln,ILn,ln > .)+

dH,T"I >·
(See Figure 16.)

31

A3. +---'? X CM5,6. I I\ /\\ '

I/""-X X
\ X /, / b a X

A4. ' + CM7. I '
/\ ' /\ /\ , I/ ""II + z .

/\ /\ /\ /\ I\ a/ \b /\
X y X z y z a » b y X y

A6. CM8,9. I ' + ' + ~ X /"'-. / " /\ + z I I
I\ 1, /'-,

X y X z y z

A7.
b

D1,2. . ~
dH ----4 a, ~ &(\ I
a

Likewise OT.

C3. D3. oH ' +

I ~ b I a/ \d
6/ \a

+
/\ 1H 1H

X y X y

CML
D4.

dH II .
+ /\ I\ , u_/ u_''--, I I

X y dH ?>H
/\ /\ I "

/\ I I
X y y X X y X y X y

CM2. [1_ Tll-5: . ,

/\ /\ analogous to DT, D1-4. a X

Likewise TMl.

CM3. lL TCl,2.
b ~

a/\11
I ' /\ ,

;\ y
/'_

/\ T" x
a X X y

Likewise TM2.

CM4. lL '
1'C3,4. I ' I , + ,

I\ u_l ""u_ I"" /"" + z . y X y
I\ /\ /\ /\

X y X z y z 1: X

Table 4: Rewrite rules associated to the axioms of ACPL-=-{Al,2,5; Cl,2; Tl,2,3}~

32

Figure 16.

Now consider a closed ACP-c-term T. Rank all II, [L , I-operators in T by the

sum of the norms I -I of their arguments.

Example: T = (abli_cd) lL ('cql (r+uv)) will be ranked as

Tr = (abli_
4

cd) [L
9

(rql
5

(r + uv)).

To T we associate an element t E D by writing down the formation tree of T :
r r

. lL 9

IL/ ~I
/'\ /\

• . +

/\ /\ I\ I\
a be d r qr

/\
Figure 17. U V

(In fact, we must assign to the a,t", II , IL , I ,+, .,aH, t"I natural numbers
n n n

corresponding to the p.o. in Figure 16 above. To all atoms we assign, say,O.)

Now we have:

13.1. THEOREM. The rewrite rules in Table 4 have the termination property.

33

PROOF. Let ~ be the recursive path ordering induced by the p~o. on the

ranked operators as defined above. We will show that for each closed instance

t-'? s of the rewrite rules, we have t t> s. In order to do so, we use the alter

native definition of I> as ~ (the transitive closure of ~). We will treat

some typical cases.

A3. + =l> +* =(>- X
/\ I\
X X X X

A4. . =j;> ~* ==£> + ==C>-

/\ /\ !\.* + z + z

+ =t> +

(\.* /\ . .
I\ /\ /\ /\ X y X y + z + z

I\ I\

/\ /\ /\ I\ + z + z X 2'. y z
I\ /\ X y X y X y X y

CML II IX l+I YI =¢' II~ =t>

/\ /~l+IYI
X y X y

+ =P>-

/1~
11* n* 11*

/ {xl+I YI/ ~x l+I YI / {x l+I YI
X y X y X y

Table 5.

34

CM3. ll_
/ \Jxl+IYI

• y

I\
a X

. .
a/~11

/ ~+IYI

* ~ *
;\• l,l+IYI/ \•l'l•IYI

I ""' a 11 1x1 + !YI

I\
X y

• y • y
I\ I\

a x a x

* CM7.

1
12+1>1+ IYI

=> I 2 + !xi+ !YI
.

\ /\ /\ * 1*
/\ /\ /\ I\ ;\ 1,1+ IYI/ \l'l+IYI

a X b y a X b y
. . .

/\
a X

/\ I\ \
b y a x b y

. .

/~ I~
I 2 II Jxl + IYI

a/\b */ ~ *
/ \ 1,1 +IYI;\ 1,1 + IYI

I II I\ /\l+IYI

a b x y

/\ b/\ /\ ;\
a x y a x b y

Table 6.

35

APPENDIX II. AN INDUCTIVE PROOF OF ASSOCIATIVITY OF MERGE IN ACPr

We will prove that in ACPr the following identities between closed terms are

derivable:

(1) (x[i y) [L z = xll_ (yllz)

(2) (x!ay) LI_ z = xi (ayll_ z)

(3) xly = y!x

(4) xlly = y!lx

(5) x!(y!z) = (xly)lz

(6) xii (yllz) = (xl!y) llz
Table 7.

These are the axioms of standard·concurrency as in Table 3 (Section 3), ex

cept for (2) which is a special case of the second axiom of standard concur

rency. (Alternatively, (2) may be replaced by:

(xly) LL z ,,.; xi (y[L z) if y is stable.

Here y is 'stable', in the terminology of MILNER [12], if it does not start

with a t"-step.)

In Corollary 3.8 a different proof of (6) is given. The present proof

uses an essentially straightforward induction to the lengtlB of the terms in

volved; the induction has to be simultaneously applied to several of (1)-(6).

These identities, however,· are interesting in their own right.

The proof has two main parts; in the first and easiest part, identities

(3), (4), (5) are proved. The second part takes care of the main identity, (6);

the proof is complicated by the fact that we have in ACPr only the weak ver

sion (2) of the second axiom of standard concurrency.

All identities (1)-(6) are proved for basic terms ET (see Definition

3.1). In view of the Elimination Theorem 2.20 this entails the identities

for all closed ACPr-terms x,y,z.

l. PROPOSITION. Let x, y, z ET. Then:

(i) ACP-c;- r xly = ylx

(ii) AC1:r r xllY = yllx.

36

PROOF. Let !xi be the length in symbols of x (see Definition in Appendix I,13).

The proof uses an induction to !xi+ IYI• We prove (i), (ii) simultaneously.

The induction hypothesis is: (i) ,(ii) are proved for all x',y' such

that Ix' I + I y' I .(Ix I + I y I . First we will prove the induction step of (i) ,

xly = y!x.

Case 1. x=x
1

+x
2

• So !xii< lxl, i=l,2. Then xly = (x
1

+x
2

) IY = x
1

!y + x
2

1Y

= (ind. hyp.) y!x
1

+ y!x
2

= YI (x
1

+x
2

) = y!x.

Case 2 • y = y
1

+ y
2

: similar.

Case 3 . x = T : x I y = rl y = 6 = y Ir = y Ix.

Case 4. y = 7: : similar.

Case 5. x = rx': xly = rx' IY = x' IY = y!x' = ylrx' = y!x.

Case 6. X = a, y = b: xly = alb= bla = y!x.

Case 7. ,x = ax', y = by': xly = ax' !by' = (alb) (x' IIY') =

Case 8. X = a, y = by': xly = (alb)y' = (bla)y' = ylx.

Case 9. x = ax', y = b: similar.

(bl a) (y' !Ix')

(Note that in case 7 the induction hypothesis for (ii) is used.)

Next to show (ii) xllY = y!lx:

xllY = x[Ly + y[lx + xly = y[Lx + x[l y + ylx = yl!x. D

2. PROPOSITION. Let x,y,z ET. Then ACP-c- I- xi (y!z) = (x!y) lz.

PROOF. Induction on Ix I + I y I + I z I .

= y!x.

Case 1. x = x
1

+x
2

. Then xi (y!z) = x
1

1 (y!z) + x
2

1 (y!z) = (x
1

!y) lz + (x
2

1y) lz =

((x
1

I y) + (x
2

I y)) I z = ((x
1

+ x
2

) I y) I z = (x I y) I z.

Case 2. Similar with y and z sums of smaller terms.

Case 3. x,y,z have one of the forms a,r,au,ru. We mention one of the 43 ca-

ses: (Tx' lay') lb= (x' lay') lb= x' I (ay' lb) = Tx' I (ay' lb). Note that

one of the cases is just axiom C2 from ACPr (Table 2) . 0

For the second half of the proof we need two preparatory propositions.

3. DEFINITION. Let x, y be closed ACP-z:-- -terms. Then we define: ACP-c I- x G y

if for some closed term z, ACPr I- y = x + z.

3.1. REMARK. Note the difference with c as defined for T, in Definition 3.2.

The present 'summand inclusion' , ACPr I- .. C •• , is just C modulo ACP-i:- -equal

i ty. Ih the sequel we will sometimes write xi;;;; y where ACP r I- xi;; y is meant,

37

if it is clear that we are working modulo ACP~-equality.

4. EXAMPLE. (i) ACP-r;- I- a i;:;;;; ra (since a=a+ra)

(ii) ACP-z:- I- a\;;; all-c- (since allr = i::-a+ at +air =Ta+ a)

(iii) ACPr I- & i;;;; x, for all x

(iv) ACPr I- a+ -z::a + -cb !;;;" b+ ta+ rb. ;;:!

5. PROPOSITION. Let x,y be closed terms. Then:

ACPi; f- x i;;_ y & ACP-r f- y i;; x =9 ACP-z:: f- x = y .

PROOF. We may suppose, by the Elimination Theorem 2.20, that x,y ET.

Suppose ACP-r I- y = x + z for some z E T and ACP-z:- f- x = y + u for some u E T.

Then ACP-i:- I- x = x + z + u. Therefore the process trees corresponding to x and

x+z+u bisimulate: [x] ~ [x+z+u]. (Here [x] is the interpretation of
· r,r

x in the graph domain <j as in Section. 2; since x ET this is a process tree.)

Say R is a r,r-bisimulation between [x] and [x + z + u] = [x] + [z] + [u]. Let

R' be the restriction of R to (the node sets of) [x] and [x] + [z]. Now R'

need not be a bisimulation between these trees; however if I is the trivial

(identity) bisimulation between [x] with itself, then it is not hard to see

that R' u I is a r,r-bisimulation between [x] and [x] + [z] = [x_+ z]. (Alterna

tively: let R be a bisimulation as indicated which is maximal w.r.t. inclu

sion. Then the restriction R' is a bisimulation as desired.)

Hence ACP, I- X = X + z = y. •

6. PROPOSITION. Let x be a closed term. Then ACPr I- x IL -c- = x.

PROOF. we may suppose x E: T, and use induction on. Ix I .
If x = x

1
+x

2
then xll_r = x

1
!Lr+ x

2
LI_r= x

1
+ x

2
= x.

If x - a then a LI_ Y = ar = a.

If x = ax' then ax' ll_r = a(x' 11-r) = a(x' ll_r + -r!L x' + x' l·q =

a (x' tL 7: + "t x' + &) = a (x' + 7: x') = aTx' = ax' •

The cases x = r, x = tx' are similar. D

We will now start the simultaneous proof of (1), (2), (6) in Table 7.

38

7. THEOREM. Let x, y, z be closed ACPr-terms and a E A. Then:

(i) ACPr I- (x[L y) llz = x[L (yllz)

(ii) ACP-c- 1- (xlay)[Lz=xl(ayLi_z)

(iii) ACP-c- I- xii (Yllz) = (xllY> llz.

PROOF. We may assume x, y, z E. T; this makes an induction to Ix I + I y I + I z I pos

sible. We will prove (i)-(iii) by a simultaneous induction. Let the induction

hypothesis be that (i)-(iii) are proved for all x',y' ,z'E T such that

lx'I +ly'I +lz'I < lxl +IYI +lzl.

First we prove the induction step (i) : (x 11_ y) II z = x 11_ (y II z) •

Case (i) 1. x = x
1

+ x
2

. Then (x LI_ y) IL z = (x
1

lL y) IL z + (x
2

LI_ y) IL z = (ind.

hyp.) x
1

Li_ (y!lz) + x
2

11_ (yl!z> = (x
1

+x
2

) tL (yl!z).

Case (i)2. x = r. Then: (xll_y) [Lz = -r:y [L z = r-(yllz) = rll_ (yllz) = x[L (yl!z).

Case (i)3. x =?:"x'. Then: (xLi_y)ll_z = r(x'IIY>lLz = 7:((x'IIY>llz) = T(x'll(Yllz)) =

-rx' lL (yl!z) = xtL <Yllz).

The cases x = a, x = ax' are similar. This ends the proof of the induction

step (i).

Next consider the induction step (ii): (xlay) lL z = xi (ay[L z).

This will again be proved by a case distinction according to the formation

of xET: x = x
1

+x
2

, x = 1:", Tx', b, or bx'.

Case (ii)l. x = x
1

+x
2

. Then xl(ayLi_z) = (x
1

+x
2

>1(ay[Lz) = x
1

1(ayLi_z) +

x
2

1 (ay lL z) = (x
1

I ay) 11_ z + (x
2
1 ay) lL z = (x

1
I ay + x

2
1 ay) lL z =

((x
1

+x
2

) lay) LI_z = (xlay) 1Lz.

Case (ii)2. x = -c. Then (~lay) ll_z = xi (ay[Lz) = 6.
Case (ii)3. x = rx'. Then (xlay) ll_z = (rx' lay) [Lz = (x' lay) lL z = x' I (ay[L z)

= rx' I (ayLI_ z) = xi (ay[Lz).

Case (ii)4. x = b. Then (x!ay)Li_z = (blay)[Lz = (bla)y [Lz = (bla)(yl!z),

and also xi (ayll_z) = bl (ay[Lz) = bl (a(yllz» = (bla) (yl!z).

Case (ii)S. x =bx'. Then (xlay) LL z = (bx' lay) ll_z = (bla) (x' llY> lL z =

(bla) ((x' IIY) llz), and xi (ayli_ z) = bx' I (ay[Lz) ""bx' la(y!lz) =

(bla) (x' 11 (yliz)). By the induction hypothesis for statement (iii)

therefore (x I ay) lL z = x I (ay lL z) .

This ends the proof of the induction step (ii).

Now consider the induction step (iii): L = xii (yllz) = (xllY> llz = R.

By the axioms in ACPr, we have:

Likewise

L = xii <Yllz) = xlL (y!lz) + <Yllz) ll_x + xi <Yllz) =

xlL (yl!z) + (y!Lz + ylz + z[Ly)!Lx + xl(y[Lz + zll_y + ylz> =

xll_ (yllz} + (yll_ z) [Lx + (yjz) tl_x + (zll_y} tl_x +·xi (y[Lz} +

xl(ztl_y} +xl(ylz}.

R can be expanded. We will use the following abbreviations:

L = el + .•. +e7 and R = r
1

+ . • . + r
7

where

el = xlL (Yllz> rl = ex lL y> l1_ z

e2 = (y!L z) [Lx r2 = (xly)tl_z

e3 = (ylz) tl_x r3 (y[Lx)[Lz

e4 = (z[L y} [Lx r4 = zlL (xllY>

es = xi (y[Lz} r5 = cxu_ y> I z

e6 = xl(zli_y} r6 = (y!Lx) lz

e7 = xi (ylz) r7 = (xjy)lz

Claim. e. c R, for i=l, ... ,7.
i-

39

From the claim the induction step (iii) follows at once. Namely, we then

have: xii (yllz> c: (xl!Yl llz, hence by Proposition l(ii): xii (yllz) i;;zll (xl!y) (*).

Now zll (x!IYl = zll (y!lx) C xii (z!IY> = xii (yl!z), where 'c:' follows from (*).

So we have xii (yl!z) ~ (xllYl llz, and by Proposition 5: xii <Yllz} = (xllY) llz.

The remainder of the proof is devoted to:

Proof of the claim.

(a) e
7

= r
7

c. R by Proposition 2.

(b) e
1

= r
1

c R is statement (i) of this theorem; this induction step has

already been proved. Likewise for e
2

= r
3

c R and e
4

= r
4

c R.

(c) e
3

c r
6

c: R. Here e
3

= (zlyl IL x and r
6

= zl (y[Lx).

Induction on z:

40

Case (iii)(c)L z = z
1

+z
2

. Then e
3

= ((z
1

+z
2

>1Y>ll.x = (z
1

1y)ll_x +

(z
2

1y) ll_xc (ind. hyp.) z
1

1 (y[Lx) + z
2

1 (ytl_x) =

(z
1

+z
2

Jl(yll_x) = zl(y[Lx).

Case (iii) (c)2. z = r. Then e
3

= r
6

= b.

Case (iii) (c)3. z = rz'. Then e
3

= (Z-z' IYl ll_x = (z' IY) IL x c z' I (yll_x) =

rz'l(ytl_x) = z l<y[Lx).

Case (iii) (c)4. z =a.Similar to the next case.

case (iii) (c)S. z = az'. To prove (az' IYl ll_x Caz' I (y[Lx). We use an induc-

tion on y:

Case (iii) (c)S.l. y = y
1

+y
2

• Then (az'I (y
1

+y
2

))ll_x = (az'ly
1

)[Lx +

(az'ly
2
)ll_xc.az'l(y

1
[Lx) + az'l(Yzllx) = az'l((y

1
+y

2
)[Lx)=

(az') I (yll_x).

Case (iii) (c)S.2.

Case (iii) (c)S.3.

y = -c: (az' 11:") lL x = b llx =~Caz' I (rlL x).

y = ry': (az' lry') ll_x = (az' IY') IL x C (az') I (y' lL x)

(az') I (y' llx) (*) (az') 1-c(y' llx) = (az') I (ry' tl_x).

(Note the curious manceuvre in steps (*) •)

Case (iii)(c)S.4. y = b: (az'lblll_x = ((alb)z')[Lx = (alb)(z'llx) =

(az') I (bx) = (az') I (blL x).

Case (iii)(c)S.S. y = by': (az'lby')llx = ((alb)(z'!ly'))ll_x =

(alb)(z'IIY'lllx) = (alb)(z'll<Y'llx)) = (az')Jb(y'llx) =

az' I ((by') LI_ x) •

(*)

(d) Finally we prove es c:: r
2

+rs+ r
7

c: R (and by permuting x,y we have then

also e
6
~ r

2
+ r

6
+ r

7
!;; R) i.e.:

I xi (ytl. z) f;; (xly) IL z + (xtl. y) lz + xi (ylz>.

The proof is again by induction on Ix I + I y 1 + I z I • We start with an induction

on x:

Case (iii) (d)l. x = x
1

+x
2

. Then xi (yll_z) = x
1

l (yl[_z) + x
2

1 (yll_z) C:

(x
1

jy) llz + (x
1

ll_y) lz + x
1

1 (yiz) + (x
2

1y) lL z +

(x
2

lly) lz + x
2

1 (yjz) = (xly) ll_z + (xll_y) lz + xi (ylz).

41

Case (iii) (d)2. x = 7:. Then xi (yLL z) = b c::: (xly) ll_z + (xll_ y) lz + xi (ylz).

Case (iii) (d) 3. x =-ex'. Then -rx' I (yll_z) = x' I (yll_z) C.

(x']y)ll_z + (x'll_y)lz + x'l(y!z) =

(rx' IY> LL z + (x' !LY> lz + t:"x' 1 (yl z) C

(rx'IY)LLz + (x'IIY>lz + rx'I (yJz) =

(rx' IY> LL z + r(x' IIY> lz + rx' I (ylz) =

(7:x' IY) II z + (Tx' !LY) lz + -rx' I (ylz) =

(xly)LLz + (xlL.y)jz + xl(y!z).

Case (iii) (d)4. x = a: similar to the next case.

Case (iii) (d)S. x =ax'. To prove:

(*) ax'l(yll_z) c:: (ax'ly)ll_z + (ax'll_y)lz + ax'l<ylz).

Subinduction toy: write y = ("t") + Lc. + Lb.y~ + l'"CY"·
1 J J e

Clearly ax' I <Yllz) can be decomposed as a sum analogous to

the sum expression for y. Each of these summands of ax' I (y lL z)

will now be proved to be c the RHS of (*).

Case (iii) (d)S.l. Summands b.Y'.: (ax')I (:b.y'. [Lz) = (by statement (ii) of
J J J J

this theorem) (ax'lb.y 1.)ll_zc:- (ax'ly)LI_zc. RHS(*).
J J -

Case (iii) (d)S.2. Summands c.: as the previous case.
1

Case (iii) (d)S.3. Summand r: ax' I (rll_ z) = ax' lrz = ax' lz = (ax' IL 7:") lz

since ax' = ax' lL -c- by Proposition 6.

Case (iii) (d)S.4. Summands ry; (for convenience we drop the subscript e and

write y = ry" +y*):

42

Now ax'l(-i::y"ll_z) = ax'lr(y"llz) = ax'!(y"llz) =

ax' I (y"ll_ z + zll_y" + y' lz) =

ax'I (y"ll_z) + ax'I (z[Ly") + ax'I (y"lz) C (ind. hyp.)

(ax' IY") lL z + (ax' [Ly") lz + ax' I (y"!z) +

(ax' I z) lL y" + (ax' ll_z) IY" + ax' I (y" I z) + ax' I (y" I z) =

(Here the first summand equals the fifth by (ii) of this

theorem, and likewise the second equals the fourth.)

= (ax' I y") lL z + (ax' IL y") I z + ax' I (y" I z) =

(ax' I y") ll z + (ax' IL y") I z + ax' I ('ry" I z) C:.

(ax' IY) lL z + (ax' [Ly") lz + ax' I (ylz).

This matches the RHS of (*) except for the second sum-

mand. So it remains to prove:

If y = r:y" + y*, then (ax' IL y") I z c: (ax' ll y) I z (**)

Proof of (**): induction on z.

Case (iii) (d)5.4.l. z = z
1

+z
2

. Then (ax' ll_y") I (z
1

+ z
2

) = (ax' l]_y") lz
1

+

(ax'll_y")lz
2

c:= (ax'ILYllz
1

+ (ax'll_y)lz
2

= (ax'll_y)z.

Case (iii) (d)S.4.2. z = -Z:::: (ax' ll y") It:' = b C RHS(**).

Case (iii)(d)S.4.3. z='l:"z': (ax'lly")!(z:-z') = (ax'[Ly")lz' c:. (ax'liY)lz'=

(ax ' lL Y) I (-z:: z ') .

Case (iii) (d)S.4.4. z = b: (ax' lL y") lb= a(x' IIY") lb= (alb) (x' IIY").

Now x' 11 y = x' II (ry" + y*) = x' lL ("r y" + y*) + (-ry" + y*) lL x' +

XI I (-Cy" + y*) = L (y" 11 X') + T.

So: (ax' lL y) lb= (alb) (x' IIY) = (alb) (r(y" llx') + T) t
(alb) (r(y"llx') + T) + (alb) (y"llx'). Here "t" is an appli

cation of the third r-law, T3. Therefore (ax' lL y") I b =

(alb) (x' IIY") C (ax' !LY) lb.

Case (iii) (d)S.4.5. z = bz': similar.

This ends the proof of induction step (iii), and thereby of the theorem. D

43

REFERENCES

[l] DE BAKKER, J.W. & J.I. ZUCKER, Processes and the denotational semantics
of concurrency, Information and Control, Vol.54, No.1/2, 70-120, 1982.

[2] BERGSTRA, J.A. & J.W. KLOP, Process algebra for communication and mutual
exclusion, Report IW 218/83, Mathematisch Centrum, Amsterdam 1983.

[3] BERGSTRA, J.A. & J.W. KLOP, An abstraction mechanism for process algebras,
Report IW 231/83, Mathematisch Centrum, Amsterdam 1983.

[4] BERGSTRA, J.A. & J.W. KLOP, Algebra of Communicating Processes, Report
IW 2 .. /84, Centrum voor Wiskunde en Informatica, Amsterdam 1984.

[5] BERGSTRA, J.A. & J.V.TUCKER, Top-down design and the Algebra of Communi
cating Processes, Report CS-R8401 , Centrum voor Wiskunde en Infor
matica, Amsterdam 1984.

[6] BROOKES, S.D. & w.c. ROUNDS, Behavioural equivalence relations induced
by programming logics, Proceedings 10th ICALP, Barcelona 1983,
Springer LNCS 154 (ed. J. Diaz), 97-108.

[7] DERSHOWITZ, N., Orderings for term-rewriting systems, Theoretical Compu
. ter Science 17 (1982), 279-301.

[8] DERSHOWITZ, N., A note on simplification orderings, Information Proces
sing Lett.2(5) (1979)212-215.

[9] GR..l\F, S. & J. SIFAKIS, A modal characterization of observational congru
ence on finite terms of CCS, to appear in Proceedings 11th ICALP,
Antwerpen 1984.

[10] HENNESSY, M., A term model for synchronous processes, Information and
Control, Vol.51, No.l (1981), 58-75.

[11] HOARE, C.A.R., A model for communicating sequential processes, in:
"On the construction of programs" (eds. R.M. McKeag and A.M.
McNaghton), Cambridge University Press (1980), 229-243.

[12] MILNER, R., A Calculus for Communicating Systems, Springer LNCS 92, 1980.

[13] WINSKEL, G., Synchronisation trees, Proceedings 10th ICALP (ed. J. Diaz)
Barcelona 1983, Springer LNCS 154, 695-711.

