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ABSTRACT
High-accuracy physiological emotion recognition typically
requires participants to wear or attach obtrusive sensors (e.g.,
Electroencephalograph). To achieve precise emotion recog-
nition using only wearable body-worn physiological sensors,
my doctoral work focuses on researching and developing a
robust sensor fusion system among different physiological
sensors. Developing such fusion system has three problems:
1) how to pre-process signals with different temporal charac-
teristics and noise models, 2) how to train the fusion system
with limited labeled data and 3) how to fuse multiple sig-
nals with inaccurate and inexact ground truth. To overcome
these challenges, I plan to explore semi-supervised, weakly
supervised and unsupervised machine learning methods to
obtain precise emotion recognition in mobile environments.
By developing such techniques, we can measure the user
engagement with larger amounts of participants and apply
the emotion recognition techniques in a variety of scenarios
such as mobile video watching and online education.
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1 INTRODUCTION
My PhD thesis aims to build a robust sensor fusion system for
emotion recognition in mobile environments. The research
on emotion recognition using physiological signals focuses
on analyzing the physiological behavior of the human neu-
ral systems [20], in which emotion changes according to
Cannon’s theory [7]. According to Cannon’s theory, we feel
emotions and experience physiological reactions such as
sweating, trembling, and muscle tension simultaneously. Un-
like the facial expressions, physiological behaviors in human
neural systems are involuntarily activated and therefore can-
not be easily controlled. Thus, it is more objective to measure
the emotion of people through physiological sensors [21].

An important step for emotion recognition, using physio-
logical signals, is multi-modal fusion. Mobile environments
are uncontrolled environments that users’ mobility is not
constrained by any devices. [19]. Thus, this kind of environ-
ments present a challenge for multi-modal fusion because the
signals have noise and different physiological signals have
different temporal characteristics [15]. In addition, obtaining
large amounts of data and accurately labeling them are also
big challenges in mobile environments. While previous work
has combined body-worn sensors (e.g., eye tracking, GSR)
to address the low accuracy rates for recognizing emotion
states (e.g., arousal, valence and dominance [18]), more work
is needed for addressing some of the existing challenges of
multi-modal fusion algorithms.
There are three kinds of methods to fuse signals from

different sensors: data level fusion, feature level fusion and
decision level fusion, each depending on when information
from the different sensors is combined [10]. Traditionally,
physiological signals are often fused in decision level us-
ing classifiers such as Support Vector Machine (SVM) and K
Nearest Neighbor (KNN) [6, 20]. However, decision level fu-
sion depends highly on the precision of ground truth, which
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is difficult to get in mobile environments. Additionally, fu-
sion methods in decision level cannot generate new features
frommulti-modal signals. That means if the selected features
are not appropriate for classification, the system will be in-
accurate no matter how well-designed the fusion method
is. To solve these problems, we propose to explore fusion
methods in data and feature level and use weakly supervised
or unsupervised machine learning methods to fuse the phys-
iological signals for robust emotion recognition in mobile
environments.
The proposed model will be based on principles of what

neural and psychological activities these signals reflect. Thus,
we will develop machine learning algorithms which are in-
terpetable by psychological theories. The system will both
consider the signals from the Peripheral Nervous System
(PNS), such as Electrodermal activity (EDA), and from the
Central Nervous System (CNS), such as pupil dilation and
saccade amplitude. We believe the weakly supervised or un-
supervised machine learning models, such as Generative
Adversarial Networks (GAN) [13] and Deep Canonical Cor-
relation Analysis (DCCA) [1], will ensure the robustness
of the fusion method towards noise and inaccurate ground
truth caused by mobile environments. Unlike supervised ma-
chine learning models which fuse different signals according
to the ground truth labels, unsupervised machine learning
models fuse multi-modal signals according to the relation-
ship between elements of data (i.e., correlation, energy or
entropy of data) [25, 26]. Thus, we believe that it will make
the model robust to inaccurate ground truth labels. The final
goal of this research is to build a robust sensor fusion system
based on psychological models, which could increase the
accuracy of recognizing emotional status such as arousal,
valence and dominance in mobile environments.

2 TECHNICAL PROBLEMS
Generally, there are three major technical problems in the
thesis:
P1. Pre-processing signals across physiological sensors
The signals from different physiological sensors have dif-
ferent characteristics. That includes different temporal
characteristics (P1.1) and different error models to the
noise (P1.2).
Different sensors have different sampling rates and dif-

ferent response time for emotions. For example, both pupil
diameter [4] and skin conductance response (SCR) [3] con-
tain information to predict the arousal of the Autonomic
Nervous System (ANS). However, the change of pupil diame-
ter occurs 200ms [23] after the stimulus, while SCR takes 1-2
seconds [14]. Such asynchronicity makes it challenging to
fuse multi-modal sensor data to extract joint psychological
features from the raw signals.

In addition, mobile environments can result in noise and
sparsity in the raw data collected by physiological sensors
[16]. Since different sensors have different hardware struc-
tures and error models, it is a challenge to design filters or
neural networks to erase noise from the signals. The move-
ment of the subjects will also result in some unpredictable
noise. For example, the electrodes of GSR sensors could sud-
denly detach from the skin because of the movement of
subjects’ hands. Such uncertainty makes it more challenging
to erase noise from physiological signals.

P2. Limited amount of data
A fusion system based on machine learning models requires
a large amount of data for training [9, 24]. However, it is
challenging to collect large amounts of data (P2.1) and
label them (P2.2).
It is costly to collect physiological sensor data since we

need to recruit users for experiments. In addition, it is also
difficult to equip a large number of users with multiple phys-
iological sensors. Thus, the challenge is how to automati-
cally augment data with suitable artificial samples when the
amount of data is limited.
Labeling a large amount of data is very costly and time-

consuming since we need users to reflect on and label their
own emotional states (e.g., through self-report question-
naires). Thus, the challenge is how to train the fusion system
with a small amount of labeled data and a large amount of
unlabeled data.

P3. Labeling ground truth data
A fusion system based onmachine learningmethods requires
precise labels for training. However, the labels collected in
mobile environments may not be precise enough, be mis-
aligned temporally to the actual state at which they were
experienced, or be altogether inaccurate.

Inexact labelling (P3.1) is common and sometimes in-
evitable for emotion recognition. For example, signals with
a duration of one hour can be labelled as happy according to
the self report of subjects. However, it does not mean that
the subjects feel happy all the time during the entire process
of the one-hour experiment. If we train the network with
inexact labels, the fusion system will easily over fit. [25].
In mobile environments, some of the signals could be in-

accurately labelled (P3.2). This is due to the high variance
and even inaccurate self-reports when users label their own
past emotional states. Classic supervised machine learning
methods need precise labels to build discriminative mod-
els. Thus, if the ground truth labels are not precise, most
widely-used supervised machine learning methods will have
problems such as mis-convergence and over-fitting [12].
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3 RESEARCH QUESTIONS
To solve these technical problems, we set out to answer the
following research questions. Each research question is asked
to address the corresponding problem.
Research question 1: Can machine learning methods auto-
matically pre-process the signals across multiple physiological
sensors?

The signals from different physiological sensors have dif-
ferent characteristics. Filters and alignment techniques are
used in traditional methods for the pre-processing of phys-
iological signals across sensors [2, 8, 17]. However, these
methods need to be designed manually and are inefficient to
unpredictable noise. One possible solution is to use machine
learning methods to automatically pre-process signals across
sensors.
RQ1.1:Which learning techniques are most suitable for fusing
the asynchronous physiological signals to increase the accuracy
of mobile emotion recognition?

To answer this question, we propose to design deep learn-
ing networks to automatically extract features from the raw
data of different psychological signals with different tem-
poral characteristics. By comparing it with methods which
need manual feature extraction and synchronization, we will
answer the question whether or not the deep structure could
also have excellent performance on physiological signals.
RQ 1.2: Can unsupervised machine learning methods elim-
inate the effect of signal noise that is an outcome of mobile
environments?
Classic supervised machine learning methods need pre-

cise raw signals to build discriminative models. Thus, if the
raw signals are not precise, most widely-used supervised
machine learning methods will have problems such as mis-
convergence and over-fitting. That is why we propose to
use unsupervised methods such as Restricted Boltzmann Ma-
chine (RBM) and DCCA to extract features considering the
probability distribution of the data set.
Research question 2: Do semi-supervised and unsupervised
learning methods benefit the training process of mobile emo-
tion recognition across sensors when the amount of data are
limited?
The amount of data for emotion recognition is compar-

atively small due to the difficulty of equipping users with
multiple physiological signals. That could cause problems
such as mis-convergence and over-fitting when the fusion
system is trained. Thus, it remains a challenge how to develop
machine learning algorithms for mobile emotion recognition
with limited number of data.
RQ 2.1: How to adapt data augmentation methods that are
suitable across different physiological signals when the amount
of sample data is limited?

One possible solution is using the collected data to train a
generative model (e.g., GAN), and then extend the size of data
set by artificially generating more samples by this model.
Many generative models such as Generative Adversarial
Network (GAN), Hidden Markov Model (HMM), Gaussian
Mixed Model (GMM) and Naive Bayes Model can be used to
generate probability distributions for physiological signals.
It is essential to adapt appropriate generative models to be
suitable for one or more physiological signals.
RQ 2.2: Can semi-supervised learning methods benefit the
training processing of the fusion system when only a small
amount of data are labelled?
Labeling a large amount of physiological signals is very

costly and time-consuming. However, it is difficult to train
a fusion system without precise ground truth. One possible
solution is that we only label a small amount of signals and
train the fusion system with both labeled and unlabeled sig-
nals with semi-supervised learning methods.
Research question 3: Do weakly supervised machine learn-
ing methods increase the accuracy of mobile emotion recogni-
tion across sensors when some of the ground truth labels are
inexact or inaccurate?
Collecting accurate ground truth labels is quite difficult

for emotion recognition in mobile environments. Weakly
supervised learning methods take potential inaccuracy of
ground truth into consideration during the training process,
which makes them robust to inexact and inaccurate labels.
RQ 3.1: Can multi-instance learning methods increase the
accuracy of emotion recognition when the signals from different
sensors are labeled in an inexact way?

Inexact labelling is common and sometimes inevitable for
emotion recognition. If we train the network with inexact la-
bels, the fusion systemwill easily over fit. Multi-instance (MI)
learning is a variant of inductive machine learning, where
each learning example contains a bag of instances instead of
a single feature vector [11]. For sensor-based emotion recog-
nition, the entire signals and their segments can be viewed
as bags and instances respectively. The methods have been
successfully implemented in the fields for image and voice
recognition. Thus, it is worthwhile finding out whether they
can benefit the fusion system for mobile emotion recognition
as well.
RQ 3.2:Which mathematical principle is suitable for identi-
fying potentially inaccurate labels in signals across multiple
physiological senors?
In mobile environments, some of the signals could be in-

accurate labelled due to subjective self-reports when users
label their own past emotional states. In practice, a basic
idea to solve this problem is to identify the potentially mis-
labeled examples [5], and then try to make some correction
[26]. There are several mathematical principles in previous
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research, such as minimax entropy principle [25], that at-
tempt to infer ground-truth labels from the data. Thus, it is
essential to find out which principle is the most appropriate
one to identify the potentially mislabelled data for emotion
recognition.

4 RESULTS TO DATE
To answer the research questions, we have conducted one
experiment to collect user affect data in mobile settings. In
addition, we have developed a feature extraction algorithm
to extract joint features from skin conductance response and
pupil diameters for the prediction of valence and arousal.
1) Mobile user affect data collection experiment
The purpose of this experiment is to collect ecologically valid
user affect data in mobile environments, which can be used
to train emotion recognition algorithms to robustly classify
user affective states in mobile environments. The experiment
was conducted in a mobile setting. The participants was told
to walk freely or stand as their wish during the experiment.
They were equipped with a wearable eye-tracker to capture
their eye movement and a Empatica E4 wristband. The partic-
ipants were also asked to annotate their valence and arousal
in real-time using an mobile application developed by us. All
the signals including the real-time annotation by users were
synchronized by a NTP sever.

From this experiment, we got the eye movement and phys-
iological signals in a mobile environment. The data collected
in this experiment has two features: 1) we collected the
real-time emotion annotations which are synchronized with
physiological signals. Compared with the "inexact labels" de-
scribed in section 2 (P3.1), the continuous annotation could
help us to analyze emotions for each segmentation of the
videos, which could promote the accuracy of emotion recog-
nition in time domain. 2) previous experiments on affect data
collection are mostly conducted in a static and desktop envi-
ronment. Our experiment was conducted in an uncontrolled
environment where the participants can move freely with-
out any constrain, which is more similar to the application
scenarios such as watching a video when waiting for a train,
on a bus or on a metro. The design of experiment and
annotation method will be submitted to CHI 2020.
2) Correlation-based feature extraction algorithm
To overcome the challenge of different temporal characteris-
tics and noise model among signals, we designed a feature
extraction algorithm that maximizes the correlation coef-
ficient of pupil diameter and skin conductance responses
for participants watching the same video clip. To boost per-
formance given limited data, we implement an incremental
learning system without a deep architecture to classify emo-
tions along the arousal and valence dimensions. We test our
method on the MAHNOB-HCI [22] database, and achieve

accuracies of 82.9% and 82.1% for arousal and valence, re-
spectively. Our method outperforms not only state-of-art ap-
proaches, but also widely-used traditional machine learning
and deep learning methods. The details of the algorithm
and the testing results were submitted to ICMI 2019.

5 FUTURE PLAN
In the future, we will further explore unsupervised, semi-
supervised and weakly supervised models to answer the
research questions. We will conduct more experiments in
different scenarios to validate the robustness of our algo-
rithms. Generally, our future plan can be summarized into
three stages:
1) Adapt and validate the fusion algorithmson the data

we collected in mobile environments.
In this stage, we will compare the testing result for our fea-
ture extraction algorithm between the static environment
(data from MAHNOB-HCI [22] database) and the mobile en-
vironment (data we collected). Moreover, we will develop a
regression model to predict the valence and arousal using
the continuous emotion annotation we got from mobile user
affect data collection experiment. The analysis will try to
explore which parameters in the fusion system will improve
or decrease the accuracy of emotion recognition in different
environments. This will help us answer RQ 1.1 and RQ1.2.
2) Semi-supervised learning algorithms to fuse the sen-

sor signals when only partial of the samples are la-
beled.

In this stage, we will conduct an experiment which only
partial of the samples are labeled and try to develop a semi-
supervised learning algorithms for emotion recognition. This
will enable us to collect large amounts of unlabelled data for
training, which will low the cost and simplify the process of
affect data collection. This will help us answer RQ 2.1 and
RQ 2.2.
3) Multi-instance learning algorithms for long dura-

tion emotion recognition.
In this stage, we will conduct an experiment which users
will wear physiological sensors for a long duration such as
one day or one week. The data collected in this experiment
can only have inexact ground truth from users’ self-report.
Thus, we plan to design multi-instance learning algorithms
to solve this problem. This will help us to answer RQ 3.1.

Since the users will be equippedwith physiological sensors
for a long duration, his or her self-report on what emotion he
or she feels may be inaccurate. We will develop an algorithm
to detect this inaccuracy and base on that, we will be able to
answer RQ3.2.
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