
Theoretical Computer Science 34 (1984) 157-168
North-Holland

157

ON THE SIMULATION OF MANY STORAGE HEADS BY ONE*

Paul M.B. VIT ANYI

Centre for Mathematics and Computer Science, Kruislaan 413, 1098 Sf Amsterdam, The Netherlands

Abstract. Each multitape Turing machine, of which the storage heads scan O(log n) distinct
squares in each interval of n steps, for all n;;,, I, can be real-time simulated by an oblivious
one-head tape unit. To sill!l1late but the normal pushdown store, on-line by an oblivious one-head
tape unit, requires lJ(n../ n) time. (This improves the known lJ(n log n) lower bound for the
on-line simulation of multitape Turing machines by oblivious one-tape Turing machines.)

Key words. Multi tape Turing machines, on-line simulation by single head tape units, upper bounds,
lower bounds, real-time simulation by oblivious one-head tape unit, uniform logarithmic space,
multicounter machines, augmented counter machines, pushdown stores.

1. Introduction

It is generally the case that additional access pointers in storage enhance computing
power. In real-time (k + 1)-tape Turing machines are more powerful than k-tape

Turing machines [l]. Analogous results hold with all heads placed on the same tape

[7, 11], head-to-head jumps added [7], and for multihead finite automata with and
without head-to-head jumps [5, 10]. Recently it was shown that k-tape Turing
machines require nonlinear time to on-line simulate (k + 1)-tape Turing machines

[6]. With respect to upper bounds there are essentially two facts known. Each
multitape machine can be on-line simulated by a one-head tape unit in square time

[4], and by a two-tape Turing machine in time 1 O(n log n) [3]. Both of these

simulations can be made oblivious (the first one in the obvious way and the second

one as in [8]), retaining the same simulation time. In [8] it was furthermore shown

that each oblivious multitape Turing machine, simulating a single pushdown store,
requires {l (n log n) time. Thus, for on-line simulation of multitape Turing machines

by one-head tape units the fastest simulation time is somewhere in between a

nonlinear lower bound and a square upper bound, while for on-line simulation by

* This work is registered at the Centre for Mathematics and Computer Science.
1 We use the mnemonic 'order of magnitude' notations as follows:

f(n) E O(g(n)) if there are positive constants c and n0 such that lf(n)\,,;: cg(n) for all n"" n0 ;

f(n) E {] (g(n)) if there is a positive constant c such that f(n);;,, cg(n) for infinitely many n;
f(n)E B(g(n)) if f(n)E O(g(n))nlJ(g(n));
f(n) E o(g(n)) if f(n) E O(g(n))- B(g(n)).

Note that there are subtle differences possible about how to define the above notions. Contrary to the
customary usage, for our purposes the precise definitions do matter, at least with respect to the natural
extension to two-variable functions in Section 3.

0304-3975/84/$3.00 © 1984, Elsevier Science Publishers V.B. (North-Holland)

158 P. M. B. Vitanyi

oblivious one-head tape units the lower bound is n log n and the upper bound n 2 •

We improve this situation in two ways. First, in Section 2, we show that for a
restricted class of multitape Turing machines, viz. machines of which the storage
heads scan O(Iog n) distinct squares in each interval of n steps, for all n ~ I, each
member can be real-time simulated by an oblivious one-head tape unit belonging
to that class. Second, in Section 3, it is demonstrated that each oblivious one-head
tape unit, on-line simulating a single pushdown store, requires n(nJ7;) time. This
improves the previous best n (n log n) lower bound on the time to simulate multitape
Turing machines on-line by oblivious one-head tape units. In the proof we found
it advantageous to define and use the mnemonic order of magnitude symbols in a
particular, unusually specific, fashion for two-variable functions.

Turing machines, simulation and obliviousness

We regard machines as transducers, that is, as abstract storage devices connected
with input- and output terminals. Thus we consider the machine as hidden in a
black box, and the presented simulation results concern the input/ output behaviour
of black boxes and are independent of input/ output conventions or whether we
want to recognize or to compute. By a k-tape Turing machine we mean an abstract
storage device, consisting of a finite control connected with k single-head linear
storage tapes, and an input- and an output terminal. A one-tape Turing machine is
the same as a one-head tape unit. The transducers effect a transduction from input
strings to output strings by producing the ith output just before reading the (i +I)st
input command. A machine A simulates a machine B on-line in time T(n) if, for
all n > 0, the input/ output behaviour of B, during the first n steps, is exactly mimicked
by A within the first T(n) steps. That is, for each input sequence ii. i2 , ••• , ik, ... ,
read from the input terminal, the output sequences written to the output terminal
are the same for A and B, and if t1 .;:;; t2 .;:;; • • ·,;;;; tk,;;;; • • • are the steps at which B
reads or writes a symbol, from or to the terminals, then there are corresponding
steps t; .:;:; t~,;;;; • • ·,;;;; tk.:;:; • • • at which A reads or writes the same symbols and
tl,;;;; T(ti), for all i ~ l. In the sequel we write simulation for on-line simulation.

Simulation in time T(n) = n is called real-time simulation; simulation in time
T(n) E O(n) is called linear time simulation. A Turing machine is oblivious if the
movements of the storage tape heads are fixed functions of time, independent of
the particular inputs to the machines (see e.g. [8]). There are many reasons why
one may want to restrict attention to oblivious computations. For instance, oblivious
Turing machine computations translate efficiently to combinational logic networks,
while ordinary Turing machine computations do not. We mention two less often
cited motives, of a more heuristic nature, for focussing attention on oblivious
computations, of which the second one is pure conjecture. Suppose we can simulate
some abstract storage device Sin time T(n) by an oblivious one-head tape unit M.
Then we can also simulate k copies of S, say Si. S2, ••• , Sk, interacting through a
common finite control, by dividing M's tape into k tracks, modifying M's finite

Single llead rersus mam lieiu1' 159

control, and letting the head on each track do the same joh as it formerly did on

the total tape. Thus, the resulting oblivious one-head tape unit ,\J ', with modified

finite control and expanded tape alphabet, uses the same time and space as did M.

Lemma l. I. ~{we can simulate a pushdown store by an oblivious one-head tape unit

in time T(n), then we can simulate each multitape Turing machine by an oblivious

one-head tape unit in time T(n), using just the same space.

Proof. Replace each tape of the multi tape Turing machine by two pushdown stores

and apply the preceding argument to multipushdown store machines. 0

Conjecture 1.2. If tt·e can simulate each m11/1itape Turing machine by a one-head tape

unit in time T(n), then we can also simulate each multitape Turing machine by an

oblivious one-head tape unit in time T(n).

The intuitive background for this conjecture is as follows. If we can accommodate
the multitude of headmovements of arbitrary many-headed multitape Turing

machines by the limited number of trajectories available to the single head of a

one-head tape unit, then a single trajectory has to serve such a general multitude

of input streams that there is no reason to suppose that the machine needs to take

advantage of particular input streams. Thus, since the essential generality of the

task at hand is captured in a strategy for one trajectory, the simulating machine

ought to be able to follow the strategy and that trajectory for all input streams.

2. Uniform space and fast simulation of many heads by a single oblivious one

For on-line computations (viz. the transducer type of computations) it is, perhaps,

unreasonable that the workspace accessed in any length input interval may be

arbitrarily large, for unbounded storage complexity, if the machine has been comput

ing long enough previously. For example, if a real-time Turing machine M has

storage complexity O(log n), then in the interval of steps, for the processing of the

2"th input symbol, the machine M can access B(n) distinct storage squares. In the

interval of steps, for the processing of the 22"th input symbol, the machine M can

access (-1(2") distinct squares, and so on. In certain aspects, this seems not what we

would expect of a complexity measure for on-line computation. Considering on-line

computation the theoretical counterpart of, e.g., interactive computer use, it would

entail that, if we forget to log out of a terminal over the week end, then the computer

may use far more memory for identical commands than if we did not forget to log

out. Thus, we propose a space complexity measure, independent from the origin of

the time scale, and only depending on the sizes of the intervals of steps.

160 P.M.B. Vitanyi

Definition 2.1. Let M be a multitape Turing machine, and let for any unbounded
input sequence w the interval of steps by M, executed in processing w, from the
(m + 1)st through (m + i)th step, be denoted by !'::,,;, for all m ;:, 0 and i;:, I. For any
unbounded input sequence w, and any m ~ 0 and i > 0, we denote by U'::,,; the
number of distinct squares, summed over all of M's storage tapes, which are visited
by some storage tape head during /';;,,;. The uniform space complexity U (n) of M is
defined as

U(n) =sup{ U'::.,n Im;:, 0 & w an unbounded input sequence}.

Thus, finite automata correspond to Turing machines with uniform space com
plexity 0(1). A little reflection learns us the relation between uniform space com
plexity, on the one hand, and ordinary space complexity and time complexity on
the'other. If the (ordinary) space complexity of some Turing machine is S(n) and
if the time complexity is T(n), then its uniform space complexity U(n) E

D(S(Y- 1(n)))n O(n). Recall that finite automata have the exceptional property
that a storage facility, consisting of a collection of k finite automata, interacting
through a common finite control, can be replaced by a single finite automaton
without slowing down the computation. Below we show that additional tapes, or
nonobliviousness, likewise do not increase the power of an (oblivious) one-head
tape unit in uniform logarithmic space.

Lemma 2.2. Each multitape Turing machine of uniform space complexity O(log n)
can be real-time simulated by an oblivious one-head tape unit of also uniform space
complexity O(log n).

Proof. The proof uses a complicated tape manipulation technique developed in
[12], to simulate rnulticounter machines by oblivious one-head tape units in real-time.
Without going into details, an oblivious one-head tape unit M can be constructed
such that, for each i;:, 1, the pair of squares, or rather square contents or cells,
originally in positions i, i + 1, is scanned at least once in each time interval of c;
steps, for some small constant c, say c is about 3. Moreover, the head recognizes
such pairs when they are scanned (knows they are cells i, i + 1 for some i ~ 1) and
has always cells 1, 2 under scan. The tape unit M works by, in each step, interchanging
cells residing on the currently simultaneously scanned tapesquares. (M's fat head
scans a few adjacent squares simultaneously.) In this process, the identity of the
underlying squares is not important; the identity of the cells (index i above), however,
is fixed wherever they end up. The oblivious one-head tape unit M has uniform
space complexity @(log n). By Lemma 1.1 we only have to show that any pushdown
store P of uniform space complexity O(log n) can be real time simulated by the
described oblivious one-head tape unit. So, let P be a pushdown store which does
not change its stack height by more than O(log i) elements in each interval of steps
!~1 .;, for all m;:, 0, i;:, 2 and any w. In the simulating M, each cell (square contents)

Single head rer.rns many heads 161

can contain an ordered segment of P's stack consisting of 0, d or 2d elements, and

the first cell can contain an initial segment of P's stack of in between 0 and 2d

elements. Each cell i (i > I) strives for an occupancy of stack elements as follows.

If it contains 2d elements when cells i, i + l are scanned, then the last d elements

are shifted to cell i +I. If it contains 0 elements when cells i, i +I are scanned, and

cell i +I contains d or 2d elements, then the first d elements are shifted from cell

i +I to cell i. Cell !, being distinguished, shifts d elements out if it contains 2d

elements, and shifts d elements in if it contains d I (or less) elements, to and

from cell 2. According to the current input, elements are added/ deleted from the

segment in cell I in each step. Thus, a segment of d stack elements can be shifted

from the I st cell to the ith cell, or vice versa, in L:;- 1
1 c' ~ c' \c ?- 2) steps. Thus, for

all i ?- I, in c' steps id elements can be pushed or popped. Starting with an empty

stack, it is tedeous, but not difficult, to prove that at all times t ?- 0, for any input,

(i) no cell contains more than 2d stack elements;

(ii) if any cell contains stack elements, then cell I contains stack elements,

provided the stack height does not change more than id elements in l~•.c'· for all

m, i, w. Choosing d appropriately, which is possible since the stack height varies

O(log i) elements in each interval I;~ ... for all m, i, iu, (i) and (iil show that the

arrangement can real-time implement a uniform O(log n) space pushdown store. C

The next question is which computations, or problems, are in uniform logarithmic

space. In [12] it is shown that each multicounter computation is of this space

complexity. Uniform log space is, however, more extensive. Recall that multicounter

machines consist of a set of counters numbered say, 1,2, ... , k, which can execute

one-step arithmetic/boolean instructions as "add [subtract] I from counter i" and

"test counter i for O", I ~ i ~ k. Several other one-step instructions can be synthesized,

by using concealed auxiliary counters, such as tests for equality amongst counters

(by maintaining all the differences on extra counters). Instructions for which it is

known [2] that they cannot be so synthesized as one-step instructions are "set counter

i to O" or "set counter i to the value of counter j". Call multicounter machines,

with arbitrary integer initial counter contents allowed, and with those one-step

instructions added, augmented counter machines [ACMs]. The following lemma can

be proved [13].

Lemma 2.3. Each augmented counter machine can be real-time simulated by a un(form

log space oblivious one-head tape unit.

None the less, uniform log space computations are not very powerful if we impose

time restrictions.

Lemma 2.4. There are (ordinary) log space/ real-time Turing machines such that the

fastest uniform log space Turing machines simulating them use exponential time.

162 P.M.B. Vitanyi

Proof. Take as an example the on-line recognition of2
•

L={@w1@w/iY · · ·@w2•@ · · ·lwj is a palindrome in {O, l}*,j~ 1,

& # W2' = # W2'+1 = ... = # W2 1+ 1_1=2(i + 1), i ~ O}.

Recognition in real-time/log n space. On one track of its single storage tape the
recognizing machine maintains a binary count of the number of received @' s. During
the update of the @ count, it can write the first half of the, simultaneously read,
current word Wcurrent on a second track and, while proceeding back to the origin,
compare it with the second half. Due to the particular choice of the lengths of the
consecutive palindromes in a word of L, the recognizing machine can be oblivious.
Thus Lis recognized by a real-time oblivious one-head tape unit in logarithmic space.

Recognition in uniform log n space. To on-line check whether w2• is a palindrome,
a candidate machine must access n (i) storage tape squares. By definition it takes
f2(2i) steps to do so. 0

Obviously, any real-time multitape Turing machine computation can be simulated
on a uniform log n space Turing machine in exponential time. Thus, by Lemmas
1.1, 2.2-2.4 we have the following theorem.

Theorem 2.5. (i) In real-time, multicounter machines are less powerful than uniform
log n space Turing machines.

(ii) In real-time, uniform log n space multitape Turing machines are equally powerful
as uniform log n space oblivious one-head tape units.

(iii) There are log n space/ real-time one-tape Turing machines which cannot be
simulated by uniform log n space multitape Turing machines in less than exponential
time.

What is the most extensive uniform space complexity class for which nonoblivious
ness or extra heads do not increase the power of the device under the real-time
restriction? We do not know yet. However, we can give an upper bound on the
uniform space complexity allowing linear time simulation, of multitape Turing
machines, by oblivious one-head tape units. Viz., each real-time multitape Turing
machine, which can be linear time simulated by an oblivious multitape Turing
machine, has uniform space complexity o(n/1og n). This can easily been proven
similar to the overlap argument in [8] (used to prove that an oblivious Turing
machine, simulating a single pushdown store, needs D(n log n) time). Recall that
the overlap, in an input segment of length i, is the maximum number of distinct
storage locations which are visited both during the first part of the input segment
and during the remainder of the input segment, for all partitions of the input segment
in two consecutive pieces. To simulate a real-time Turing machine with uniform

2 Below we use # x to denote the length of a string x and # X to denote the cardinality of a set X.

Single head versus many heads 163

space complexity U(n), in linear time by an oblivious Turing machine, the overlap

in each input segment of length i needs to be D(U (i)), for all i > O. Setting n = i1°g"

and summing all independent overlaps as in [8], the resulting total must be majorized

by the simulation time T(n) of the oblivious simulator. The argument leads in fact
to the more general trade-off:

logn

I riu(i) E O(T(n)/n),
i=l

which for T(n) E O(n) yields

logn

I riu(i) < c
i=l

for some constant c ~ 0, from which the above statement follows.

3. Improved lower bound on the time to simulate multitape Turing machines by oblivious

one-head tape units

In view of Lemma 1.1, any lower bound on the time to simulate multitape Turing

machines, by oblivious one-head tape units, also holds for the simulation of a single

pushdown store by the latter (and obviously, vice versa). The following theorem

improves the known lower bounds. In the proof we make extensive use of crossing

sequences. For a one-head tape unit we assume that, when it makes a move, it first

overprints the symbol scanned and changes state, then moves the head. Thus, for

any pair of adjacent tape squares we can list the sequence of states in which the

unit crosses from one to another. The first crossing must always be from left to

right; after that, crossings alternate in direction. The sequence of states so related

to an intersquare boundary, or square, is called a crossing sequence. The concept

seems to originate from [9].

Theorem 3.1. Any oblivious one-head tape unit simulating the typical pushdown store

requires n (nl;;) time.

Proof. Let M be the fastest oblivious one-head tape unit for simulating a typical

pushdown store in, say, time T(n). It is known that T(n) E D(n log n)nO(n 2). Let

lm,i denote the interval of steps by machine M to process the (m + 1)st through
(m + i)th input command. (Do not confuse these intervals with the I-intervals of the

previous section. The subscripts refer to the sequence of input commands, instead

of the sequence of steps, and since M is oblivious a superscript referring to particular

input sequences is unnecessary, and therefore suppressed. For simplicity we assume

that, in an oblivious machine, the steps at which it reads or writes a symbol are the

same for all input streams. However, it is not necessary to assume this subtility in

order to derive the desired results.) Let M have n 1 states and n2 storage tape symbols.

164 P.M.B. Vitdnyi

Assume that M's tape is one-way infinite. Consider the set of all input streams of
length n. Let [O, c0 n) be some initial c0 n-length3 tape segment, let [csn, oo) be a final
tape segment, consisting of all of the tape but an initial csn-length tape segment,
and let [c0 n, c5n) be the segment in between, for some constants c5 > c0 > 0, yet to
be chosen. See the diagram below.

[c5 n, oo)

The idea is to show that there must be an inputsegment I m,Jm, for which the storage
head starts out on the final tape segment [csn, oo), and will not traverse more than
(Cs - c0) n tapesquares, thus staying out of the initial tapesegment [O, c0 n). Con
sequently, the information which has originally been recorded on the initial tapeseg
ment [O, c0 n/2), must have been transported over the intervening tapesegment
[c0 n/2, c0 n), in order to be accessed during I m,Jm· This then entails long crossing
sequences for each square in the intervening tape segment, the sum of which yields
the claimed lower bound on the running time. Below we shall use three functions
S, P and Q,

S, P, Q:IR xN~ fll>(N),

with IR the set of positive rationals, N the set of natural numbers and fll>(N) the
powerset of the set of natural numbers:

def

S(c, n) = UI l ~j~ n and the tapesegment visited in ~. 1 is contained in [O, en)},

def

P(c, n) = {j I I ~ j ~ n and the tapesegment visited in I j.JJ has length at least cj},

def

Q(c, n) = {j I I ~ j ~ n and the tapesegment visited in Ij.JJ is contained in [en, oo)}.

It follows straightaway from the above definitions that for

O<c0 < c5 -cp (I)

we have

Q(co. n) 2 {I, 2, .. ., n }- S(Cs, n) - P(Cp, n). (2)

We wish to use the mnemonic devices O(n), il(n), <9(n) and o(n) to classify
the cardinalities of the above two-variable functions. We therefore define for #
X(c, n), with X = S, P or Q,

X(c, n) E O(n) if there is a L1 > 0 such that, for each c > 0, there
is an nc > 0 so that # X (c, n) ~ L1n, for all n ""' n0

3 To avoid a cumbersome notation we tacitly assume, while indicating a value in a discrete universe
of integers by a noninteger value, that the ceiling of the noninteger value is intended. T.!:_ms, by [x, y]~e
mean the tapesegment consisting of the f xlth through f y lth tape square. Likewise, by Jx we mean rJ x1.

Single head versus many heads 165

X (e, n) E !2 (n) if there is a S > 0 such that, for each e > 0, # X (e, n)
;;;., Sn, for infinitely many n,

X(e, n) E E>(n) if # X(e, n) E O(n) n !2(n),

#X(e,n)Eo(n) if #X(e,n)EO(n)-E>(n).

Claim 1. If T(n) E o(n 2), then # S(e, n) E o(n).

Proof. Assume T(n) E o(n 2) and# S(e, n) E E>(n). (By definition# S(e, n) E O(n).)
Thus, there is a S > 0 such that, for each e > 0, we have # S(e, n);;;., Sn for infinitely
many n. In the remainder of the proof of Claim I, when we use n, we tacitly assume
that, for the concerned constant e, we only consider those values for n, of which
there are infinitely many by contradictory assumption, such that # S(e, n);;;., 8n.
Thus, for a set of 26 n distinct input sequences, of length n, the distinguishing input
commands are all received and processed while the head is on the [O, en) tape
segment, and the input commands received with the head on the final [en, co) tape
segment are identical. To distinguish between all of these input command sequences
afterwards, we need to utilize at least xn tapesquares of storage with

(3)

Assume that x is minimal with respect to (3). Since 8 is assumed to be independent
of c, we are at this stage still free to choose e to suit our argument. So set e to x/3.
Consider the crossing sequences associated with the squares of the tapesegment
[en, 2cn) (see diagram below).

[O, en) [en, 2cn) [2en, oo)

Suppose, that some square on the stapesegment [en, 2en) has a crossing sequence
of length o(n). Then, to distinguish the 28" input sequences of length n, which differ
only while the head is on the tapesegment [O, en), we must have

(4)

for n large enough. The assumed minimality of x in (3) is, for large enough n,
contradicted by inequality (4), so we conclude that all squares on the tape segment
[en, 2cn) have crossing sequences of length D(n). The time T(n) must by definition
rnajorize the sum of the lengths of the crossing sequences, so

T(n);;;., en·D(n) E !2(n2). (5)

Since (5) contradicts the assumed T(n) E o(n 2), we conclude that # S(e, n) E o(n),

and the claim is proven. D

Claim 2. lfT(n)eo(n.Jn), then #P(e,n)Eo(n).

166 P. M. B. Vitanyi

Proof. Assume T(n) E o(n) and # P(c, n) E 0(n). (By definition P(c, n) E O(n l.)
Thus, there is a fi > O such that, for each c > 0, we have # P(c, n) ~on, for infinitely
many n. In the sequel of the proof of this claim we assume that the used values for
n are, for each particular c > 0, chosen such that # P(c, n) ~ <5n. For each index
j E P(c, n l we have

-
T(j +.,,j)- T(.i) ~ cj. (6)

Therefore, for each such j, the av_erage value A/ of the lengths # Ij',l 's, of intervals
l r. 1 's, for the set {j' lj ~ j' ~ j +Jj}, is given by

#I .-:- .- cJJ
Ar = --.£::1 ~ c.J j ~ -. . Jj 2

(7)

By assumption there are on distinct elements in P(c, n), so a fortiori also on distinct
indices j, 0 ~j ~ n, with an average value of # I1.1 of at least cJ}/2, by (6) and (7).
Denote the set of these indices by J". Then,

n Sn

T(n)= I Ii.1~4 I cJJ~1 I cJ}Efl(nfn). (8)
j=O jEln j=O

By (8) we contradict the assumption, and consequently prove the claim. 0

Claim 3. For each e > 0 there are positive constants o and n0 such that # S(8, n) ~en
(respectively, # P(o, n) ~ en) for all n ~ ns.

Proof. The proof follows by Claims I and 2, according to the definition of o(n). 0

Proof of Theorem 3.1 (continued). Assume, by way of contradiction, that T(n)E
o(n.J-;;). Then, choosing Cs, Cp and cQ according to (1), by (2) it follows from Claims
l, 2 and 3 that

Q(c0 n)~ n- # S(cs, n)- # P(cp, n)~(l-e)n, (9)

for arbitrary small constant e > 0, depending on cs and Cp, for n large enough. Since
all indices in Q(c0 n) are distinct, and m(c0 , n) is the largest index in Q(cQ, n), it
therefore follows that

't/ e 3 o [m (o, n) :;;. (1 - e) n], (1 O)
£>0 8>0

by the choice of c5, Cp and c0 for n large enough. Now consider, for some 8 > 0
for which E <~in (10), the input ensemble

(11)

)ince T(n) E o(n..J-;;), we have T(J7i) E o(n314), and therefore, for all large enough
1, the tape head never leaves the initial tapesegment [O, on/2) during the interval
· o., n· Thus, for the input ensemble (11), we must pop an arbitrary sequence of O's

Single head versus many heads 167

and l 's of length /;;,, originally recorded on the initial 5n/2 length tapesegment
[O, 8n/2), while never leaving the final tapesegment [Sn, oo) (see the diagram below):

[O, 8n/2) [5n/2, 5n) [8n, oo)

Again using a crossing sequence argument, we obtain the contradictory T(n) E

il(nFn), and hence the theorem. For suppose that any square in the tapesegment
[5n/2, 5n) had a crossing sequence of length not exceeding efn during Io,m for a
small constant e > 0 yet to be chosen. Then for the input ensemble (11), the number
of distinguishable final contents of the tapesegment [8n, oo), subsequent to the
processing of n-length input sequences, is bounded above by nfJ". Yet there are
2.r;; distinct initial sequences to be popped, without leaving the final tapesegment
[5n, oo). Choosing the constant e such that

(12)

for n large enough, implies that not all distinct pushed 0-1 sequences of the input
ensemble (11) can be distinguished in the popping phase, thus fooling the machine.
Consequently we must assume that the crossing sequences of all squares of the
tapesegment [c5n/2, 5n) have length greater than e.J;; for some fixed constant e > 0
such that inequality (12) does not hold. Since the time T(n) majorizes the sum of
the lengths of the crossing sequences, we have

1 / Sn/;
T(n);i?=28n·e...;n;i?= , (13)

2 log n1

for some 5 > 0. Since the contradictory assumption T(n) E o(n.J-;;) leads to (13),
the theorem is proven. 0

Note added in proof

Wolfgang Maass (l6th ACM-STOC, 1984), Ming Li (Manuscript, Comput. Sci.
Department, Cornell Univ., 1984) and the present author (C.W.I., Tech. Rept.
CS-R8406, March 1984) have independently improved the lower bound, to simulate
two one-head tape units by one (nonoblivious) one-head tape unit, to il(n2). The
actual results are stronger than this in a variety of ways.

References

[I] S.O. Aanderaa, On k-tape versus (k +I)-tape real-time computation, in: R.M. Karp, ed., Complexity
of Computation, SIAM-AMS Proceedings Vol. 7: (Amer. Math. Soc., Providence, RI, 1974) 75-96.

[2] P.C. Fischer, A.R. Meyer and A.L. Rosenberg, Counter machines and counter languages, Math.
Systems Theory 2 (1968) 265-283.

P.IH.B. V'itanyi

[3j F.C. Hermie and R.E. Stearns, Two-tape simulation of multitape Turing machines, J. ACM 13

(l 966) 533-546.
[4] J.E. Hopcroft and J.D. Ullman, Formal Languages and their Relations to Automata (Addison-Wesley,

Readin~. MA, 1969\.
i5] L Janiga, Real-time computations of two-way multihead finite automata in: L. Budach, ed.,

Fundamentals o{ Computation Tiieory (FCT '79) (Akademie Verlag, Berlin, DDR, 1979) ~14-218.

[6] W. Paul, On-line simulation of k + l tapes by k tapes requires nonlinear time, In.form. Conrro/ 53
\ 1982! l-8.

Pl W. Paul, J. Seiferas and J. Simon, An information-theoretic approach to time bounds for on-line

computation, f. Compul. System Sci. 23 (198 l) 108-126.
[81 N. Pippenger and M.J. Fischer, Relations among complexity measures, f. ACM 26 (1979) 361-381.

[9] !\1.0. Rabin, Real-time computation, Israel J. Math 1 (l 963) 203-2 l l.

[JO) \VJ. Savitch and P.M.B. Yitanyi, On the power of real-time two-way multihead finite automata

with jumps, Inform. Process. Lett. 19 (1984) 3 l-35.

[1 l] P.M.B. Vitanyi, On the power of real-time Turing machines under varying specifications, 7th Coll.

on Automata, Languages and Programming (ICALP '80), Lecture Notes in Computer Science 85

(Springer, Berlin, 19801 658-671.

[12] P.M.B. Vitanyi, An optimal simulation of counter machines, SIAM J. Comput. 14 (1985) to appear.

[13] P.M.B. Vitiinyi, An optimal simulation of counter machines: The ACM case, SIAM J. Compur. 14
l 1985) to appear.

