
INFORMATION AND CONTROL SS, 20-39 (1982)

On Efficient Simulations of Multicounter Machines*

PAUL M. B. VITANYI

Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands t

An oblivious I-tape Turing machine can simulate a multicounter machine on-line
in linear time and logarithmic space. This leads to a linear cost combinational logic
network implementing the first n steps of a multicounter machine and also to a
linear time/logarithmic space on-line simulation by an oblivious logarithmic cost
RAM. An oblivious log*n-head tape unit can simulate the first n steps of a
multicounter machine in real-time, which leads to a linear cost combinational logic
network with a constant data rate.

1. INTRODUCTION

In many computations it is necessary to maintain several counts such that,
at all times, an instant signal indicates which counts are zero. Keeping k
counts in tally notation, where a count is incremented/decremented by at
most an unit in each step, governed by the input and the set of currently zero
counts, is formalized in the notion of a k-counter machine or k-CM, Fischer
et al..(1968). Multicounter machines have been studied extensively, because
of their numerous connections with both theoretical issues and more or less
practical applications. The purpose of this paper is to investigate the depen
dence of the required time and storage, to maintain counts, on storage
structure and organization, and the cost required by a combinational logic
network. To do this, we use a notion of auxiliary interest: that of an
oblivious Turing machine. An oblivious Turing machine is one whose head
movements are fixed functions of time, independent of the inputs to the
machine, cf. Pippenger and Fischer (1979). The main result obtained here
shows that an oblivious Turing machine with only one storage tape can
simulate a k-counter machine on-line in linear time and in storage
logarithmic in the maximal possible count. These bounds are optimal, up to
order of magnitude, also for on-line simulation by nonoblivious machines.

It is obvious that, for any time function T(n), given a k-counter machine
or a k-pushdown store machine, which operate in time T(n), we can find a

*A preliminary version was presented at the 9th International Colloquium on Automata,
Languages, and Programming held in Aarhus, Denmark, the third week of July 1982. This
work is registered at the Mathematical Centre as IW 167/IW 197.

t In the autumn of 1983 the "Mathematical Centre" changes its name to "Centre for
Mathematics and Computer Science."

20
0019-9958/82 $2.00
Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

SIMULATIONS OF MULTICOUNTERS 21

time equivalent k-tape Turing machine (k-TM). However, such an "obvious''
Turing machine simulation will, apart from using k storage tapes, also use an
amount of <9(T(n)) storage. In Pippenger and Fischer (1979) it was shown
that, for the pushdown store, of which the contents cannot be appreciably
compacted, the best we can do for on-line simulation by an oblivious Turing
machine is 2 storage tapes, <9(T(n) log T(n)) time and <9(T(n)) storage. For
the multicounter machine, Fischer et al. (1968) demonstrated a linear
time/logarithmic space simulation by a 1-tape Turing machine. In
Corollary 2 of Schnorr (1976) it was shown how to simulate a T(n) time-,
S(n) storage-bounded multitape Turing machine on-line by an oblivious 2-
tape Turing machine in time O(T(n) log S(n)) and storage O(S(n)).
Combining the compacting of counts of Fischer et al. (1968) and the method
of Schnorr (1976) we achieve the best previously known on-line simulation
of a k-counter machine by an oblivious Turing machine: 2 tapes,
O(T(n) log log T(n)) running time and O(log T(n)) storage. It is somewhat
surprising to see that we can restrict a Turing machine for on-line simulation
of a k-counter machine to l storage tape, logarithmic storage, oblivious head
movements and still retain a linear running time.

In Section 2 this result is derived and connected with a linear cost
combinational network for doing the same job. This network processes the
inputs in sequence and may incur a time delay of @(log n) between
processing an input and producing the corresponding output (followed by the
processing of the next input). Since we would like to obtain a constant data
rate, i.e., a constant ti~e delay between processing the ith input at the ith
input port and producing .the ith output at the ith output port, 1 ~ i ~ n, we
show in Section 3 how to real-time simulate n steps of a multicounter
machine by an oblivious log* n-head tape unit and use this to obtain a linear
cost combinational network with such a fast response time. (Recall that
log* n is the number of consecutive iterations of taking the logarithm to get
a number less than or equal to l, when we start from n.) It is not our
purpose here to introduce an odd machine model with a variable number of
access pointers. One should rather think of it as an expedient intermediate
step to derive the desired result for fixed n. Subsequently, we note that cyclic
networks or VLSI circuits (where the length of the wires adds to the cost)
can real-time simulate a multicounter machine in logarithmic (area) cost.
(Recall that VLSI stands for very large scale integrated circuits.) In
Section 5 we analyse the cost of simulating a multicounter machine on-line
by a logarithmic cost RAM. This turns out to be O(n) time and O(log n)
space by the oblivious version, which is optimal, also for nonoblivious
RAMs. For the relevant definitions of multicounter machines (Fischer and
Rosenberg, 1968; Fischer et al., 1968), multitape Turing machines (e.g.
Rosenberg, 1967), combinational logic networks (Pippenger and Fischer,
1979), real-time and linear time on-line simulation (Pippenger and Fischer,

22 PAUL M. B. VITANYI

!979) and oblivious computations (Pippenger and Fischer, 1979; Schnorr,
1976) we direct the reader to these references.

2. LINEAR-TIME ON-LINE SIMULATION BY

OBLIVIOUS ONE-HEAD TAPE UNITS WITH AN

APPLICATION TO COMBINATIONAL LOGIC NETWORKS

We first point out one of the salient features of the problem of simulating
k-CMs on-line by efficient oblivious Turing machines. Suppose we can
simulate some abstract storage device S on-line by an efficient oblivious
Turing machine M. Then we can also simulate a collection of k such devices
S 1, S 2 , ••• , S k' interacting through a common finite control, by dividing all
tapes of M into k tracks, each of which is a duplicate of the corresponding
former tape. Now the same head movements do the same job on k
collections of tracks as formerly on the tapes of M, so the time and storage
complexity of the extended M are the same as those of the original. While
the problem of. say, simulating a k-counter machine in linear time by a k'
tape Turing machine, for k' < k, stems precisely from the fact that k' is less
than k. the problem of simulating a k-counter machine by a k '-tape oblivious
Turing machine in linear time is the same problem as that of simulating a !
counter machine in linear time by a k'-tape oblivious Turing machine.
Hence, for a proof of feasibility it suffices to look for the simulation of I
counter only. (For a proof of infeasibility we would have the advantage of
knowing that the head movements are fixed, and are the same for all input
streams. Besides, we could assume that we needed to simulate an arbitrary.
albeit fixed, number of counters.) Fischer et al. (1968) observed that a 1-TM
can simulate a k-CM on-line in linear time. Their simulation uses O(log n)
storage, for n steps by the k-CM, which is clearly optimal. It is a priori by
no means obvious that an oblivious multitape TM can simulate but one
counter in linear time. We shall show that the cited result can be extended to
hold for oblivious Turing machines as well.

In our investigation we noted that head reversals are not necessary to
maintain counters. We did not succeed in getting the idea below to work in
an oblivious environment, and include it here as a curiosity, possibly
folklore, item. Suppose we want to simulate a k-CM C with counts
x,,x2, ... ,xk represented by the variables n 1 through nk. The number of
simulated steps of C is contained in the variable n. For i = l, 2, ... , k, if count
X; is incremented by o E {-1, 0, +l f, then

ll; f- ll; + 2 for 3=+1;

ll;f-n; + 1 for 0=0;

ll; f- ll; for b=-1.

SIMULATIONS OF MULTICOUNTERS 23

Let us, for i = I, 2, ... , k, denote the current count on the ith counter of C by
xi.

THEOREM 1. For i = l, 2, ... , k, we have .Ri = 0 iff ni = n.

Proof Let n be the number of steps performed by C. Let Pi be the
number of+ l 's, ri be the number of O's, and qi be the number of -1 's, added
to the ith counter, 1 < i < k, during these n steps. So Pi+ qi+ r; = n for all i,
1 < i < k. By definition we have ni = 2p; + ri. Suppose ni = n. Then it
follows that Pi= qi and therefore Pi - qi= xi = 0. Conversely, let
.Xi =Pi - qi= 0. Then Pi= qi and ni =Pi+ qi+ ri = n. I
Hence we obtain:

COROLLARY. A one-way k-CM C can be simulated in real-time by a
(k + 2)-head one-way non-writing finite automaton F of which the heads can
detect coincidence. Hence, four heads without head reversals suffice to accept
all recursively enumerable sets.

(Hint: I head reads the input from left to right, 1 head keeps the count of n
by its distance to the origin, and the remaining k heads so keep the counts n 1

through nk. It was shown by Minsky (1961) that 2-CMs can accept all
recursively enumerable sets. We assume that the tape is unbounded, whatever
the input may be.) After this digression we show

THEOREM 2. If C is a k-counter machine, then we can find an oblivious
I-tape Turing machine M that simulates Con-line in time O(n) and storage
O(log n) for n steps by C.

Following Pippenger and Fischer (1979), we note that in Theorem 2,
"machine" can be replaced by "transducer" and the proof below will still
hold.

Proof It shall follow from the method used, and is also more generally
the case for simulation by oblivious Turing machines (cf. above), that if the
theorem holds for 1-CMs, then it also holds for k-CMs, k > 1. Let C be a 1-
CM. The simulating oblivious 1-TM M will have one storage tape divided
into 3 channels, called the n-channel, the y-channel, and the z-channel. The
storage tape is one-way infinite to the right, with the leftmost square called
the Oth or start square. At the start of the computation the storage tape head
is positioned on the start square. If, in the current step of C its count c is
modified to c + 6, 6 E j-1, 0, +l f, then

b= +l

b=O
b=-1

=> n<-n+ I;y<-y+ I;z<-z,

=> n<-n + I;y<- y; z<-z,
=> n .,.__ n + 1; y <-- y; z .,.__ z + 1,

24 PAUL M. B. VITANYI

where n is the count contained on the n-channel, y is the count contained on
they-channel and z is the count contained on the z-channel. Hence, always

c=y-z, (1)

and

y + z < n. (2)

The count n on the n-channel is recorded in the usual binary notation, with
the low order digit in the start square and the high order digit on the right,
see Fig. I. For any input sequence, we call the interval of steps by the
simulating oblivious machine M, used to simulate the ith step of the
simulated counter machine C, the ith cycle.

At the start of the cycle simulating the ith step of C, for i = p2j > 0 and p
is odd, squares 0 through j - 1 on the n-channel contain l 's and square j
contains a 0. So in this cycle, Ms head, starting from square 0, travels right
to square j and deposits a 1 there. It turns all 1 's on squares 0 through j - I
into O's during this pass. The head then returns to square 0. This main
tenance of the count n completely fixes Ms head movements, so M is
oblivious.

The representation of y and z is in a redundant binary notation. If y is
denoted by y0 y 1 • •• J;, with yj in square j of they-channel (0 <J < i), then
yjE jO, 1,2} and y=:LJ=oYj2j. Similarly for the count z. So the represen
tation of y[z] over jO, 1, 2} is not unique. We also use a distinguished
symbol called blank, denoted by -, to fill the squares of the infinite
nonsignificant portion of a tape channel. At the start of the simulation, all
squares of the channels of Ms tape contain blanks. Finally, the head covers
2 squares on the tape, and shifts 1 square in 1 step of M. The head is like a
window covering 2 tapesquares and its position is the position of the left
square it covers. So it has a look-ahead of I. The left symbol under scan is
said to be the symbol in the left window and the right symbol under scan is
the symbol in the right window.

1:11+111111 v
~

read-write head

n-channel

y-channel

z-channel

FIG. I. The configuration on Ms tape after it has simulated 31 steps of C. consisting oC
consecutively, 16 add i's, 11 add D's, and 4 add -1 's. The head has returned to the start
position.

SIMULATIONS OF MULTICOUNTERS 25

We now explain the operation of M. The intuitive idea behind a 2 in
square j of the y I z I-channel is an as yet unprocessed carry from the jth to
(j + I)th position of the binary representation of y[z [. During the left-to
right sweeps of the head, governed by the moves indicated for the updating
of n, the machine maintains invariants (I) and (2). During the corresponding
right-to-left sweeps, back to the start square, M maintains also invariant (3).
We maintain (with allowance for the borderline case j = 0),

and

\fj) 0 [(yj > 0-=:;, zj- t, zi, zj + 1 E { 0, -f)

& (zj > O=;,yJ-1•YJ·Y;+ 1 E {0,-f)],

\fj)O[(yi=- =;,y;_ 1 E {-, l,2f)

& (z; = - -=:;, Z;_ 1 E {-, 1, 2 f) [.

(3a)

(3b)

The latter condition gets rid of nonsignificant leading O's. (The reader will
notice that the notation for a count c, according to the invariants (I)-(3) as
above, basically consists of a symmetric redundant binary representation
using the digits -2, -1, 0, 1, 2, by invariant (3b) without leading
nonsignificant O's. The positive digits of this representation are stored on the
y-channel, the negative digits are stored, in positive form, on the z-channel.
As usual a digit d in position j contributes dlj to the total count. Invariant
(3a) means that a proper positive digit and proper negative digit cannot be
adjacent, there has to be a 0 in between.)

The validity of the simulation is now ensured if we can show the following
assertions to hold at the end of Ms cycle to simulate the ith step of C. for all
i > 0.

(a) For all i, i ~ l, the simulator M can always add 1 to either
channel y or z in the cycle simulating step i of C.

(b) M can maintain invariants (l)-(3) to hold at the end of each
simulation cycle.

(c) The fact that (1 }-(3) hold at the end of the ith simulation cycle of
i'vf, for all i) 0, ensures that the count of C is 0 subsequent to C's ith step iff
both they-channel and z-channel contain blanks on all squares subsequent to
the completion by M of the ith cycle.

CLAIM !. Assertion (a) holds at the start of each simulation cycle.

Proof of claim. In the process of simulating the ith step of C, M takes
care of (a) during its left-to-right sweep, by propagating all unprocessed
carries on squares 0, l , ... ,j on both the y-channel and z-channel to the right,
leaving only O's or l 's (and possibly blanks) on squares 0, 1, .. .,j and

26 PAUL M. B. VITANYI

deposing a digit d, O,,;:; d,,;:; 2_ (or po~sibly a bla?k), ~n square j + I of the
channel concerned, for i = p2' and p 1s odd. The mput is processed by, at the
start of each cycle, incrementing the digit in the start square of the
appropriate channel by the proper amount. . This leads to at most a_n
unprocessed carry in the start square. Assuming that M has adopted this
strategy, we prove the claim by induction on the number of steps of C,
equivalently, the number of simulation cycles of M.

Clearly, the claim holds at the start of the first cycle. Suppose the claim
holds for simulation cycles l, 2, ... , i - 1, then it also holds for the ith cycle,
since

Case I (i=2i). At the start of this cycle the count on channel .vlzl
can be at most 2; - 1. At the end of the right sweep the head covers square j.
Since the count, on either channel, now has reached at most 2i, it suffices to
put a O or I in square j. The relevant carries can always be propagated, since
by the inductive assumption the encoding scheme sufficed up to the ith cycle,
and so the maximum count on squares 0 through h (0 < h < j) on a channel
is less than 2 h + 2 because

h

\' 2.2j = 2(2"+ l - 1) = 2"+ 2 2.
;~o

Case 2 (i = p2i, with p > 1 and p odd). The square on the channels
scanned in the left window of the head, at the rightmost position of this
sweep, is square j. The last time square j was scanned in the left window was
2i cycles ago. The cycle concerned was i', with i' = (p - I) 2/. During cycle
i' also square j + I was scanned in the left window, since
i' = ((p- 1)/2) 2;+ 1• Hence, under the assumption that the scheme of
simulating steps !, 2, .. ., i - 1 of C by M was carried out correctly, square
j + I contains no 2 at the start of cycle i, since it was left with a blank, 0 or
I in cycle i' and has not been visited since. The maximum count left, at the
end of the i'th cycle, in squares 0, 1, ... ,j of either channel, was 21 + 1 - !.
Since then, 21 cycles have passed, and therefore the count to be represented,
by squares 0, !, ... ,} + I of either channel, cannot exceed

2H 1 - 1 + 21 + 2J+ 1 = 2.2J+ 1 + 2; - 1,

which certainly can be taken care of by a 2 in square j + l (covered by the
right window of the head in cycle i) and l 's in squares O through j - I. By
the same reasoning as in Case 1 all necessary intermediate carries, left on
squares 0 through j, by cycles i' + 1 through i - !, can be propagated right
during the current left-to-right sweep, leaving squares O through j with
blanks, O's or I's, and square j+ I with dE j-,0, 1,2f, when the head
returns to the origin, for both the y-channel and z-channel.

SIMULATIONS OF MULTICOUNTERS 27

Hence a left-to-right sweep can always update the y and z count
appropriately, under the assumed strategy of M, during its oblivious head
movements governed by the updating of the 11-count. I

CLAIM 2. Assertion (b) holds at the start of each simulation cycle.

Proof of Claim. As we saw in the proof of Claim 1, assertion (a) is
implemented during the left-to-right sweeps. During the right-to-left sweeps
assertion (b) is implemented. Clearly, assertion (b) holds at the start of the
1 th cycle. During its right-to-left sweeps, M subtracts in each step the 2-digit
numbers covered on the y- and z-channel from each other, leaving the
scanned positions on at least one channel containing only O's. M also
changes leading O's on either channel into blanks during its right-to-left
sweeps. Suppose the claim holds at the start of simulation cycles 1, 2, ... , i.
We show that then it also holds at the start of simulation cycle i + I. It is
obvious that M's strategy outlined above maintains invariants (I) and (2). It
is left to show that it also maintains invariant (3).

Case I (i = 2i). The count on they-channel (z-channel) can be at most
2;. Therefore, at the start of the ith right-to-left sweep, the head covers the
most significant digits on either channel, or is to the right of them, while on
its right-to-left sweep it encounters only blanks, O's or l 's. Moving left. it
subtracts the lesser number covered from the greater (or equal) number on
the other channel, at each step, meanwhile leaving blanks instead of leading
O's on either channel. The following situations can arise. (The symbol 0
stands for either a ''O'' or a "-".) If b + 2c = e + 2f,

abc a00 f-
def If d00

(i)

If b + 2c > e + 2f.

a b c a b' c' ~- ...
de f it d 0 0

(ii)

where b' + 2c' = b + 2c - e - 2f. If b + 2c < e + 2/,

abc a00
. f-

d e f ·11 d e' f' '
(iii)

where e' + 2f' = e + 2/- b - 2c. Since i = 2i, at the outset of the right-to
left sweep the head has blanks in its right window, since the maximal
position containing nonblank digits is square }. Hence there will be no
problem turning leading O's, created in the right-to-left cleaning, into blanks
during the travel to the low order square. Thus we maintain invariant (3b).

28 PAUL M. B. Vff,\NYI

Suppose that invariant (3a) is not satisfied after the right-to-left sweep.
Say, Yh > 0 and not all of zh-1' z,,, and z 11 +1 are 0 or blank, for some h > 2.
Let z 11 ~ 1 > 0. Then, according to (i)-(iii), the move

abc a00
. . . . •. t-- •..

d e f ·11 d e' !'

with f' = z h + 1 > 0, must have been the move of the right-to-left sweep
leaving the (h + I)th square, and for all values of a. d. e' the next move must
be

a 0 0 a' 0 0
d e' f' · · · 1- u · · · d' e" f'

which contradicts y 11 > 0. Let z 11 > 0, or let zh 1 > 0. This also leads to a
contradiction with Yh > 0, as we leave for the reader to check. For h E 1 O. l f
the argument proceeds similarly, with allowance for the borderline case.

Case 2 (i = p2< with p > l and p odd). At the start of the right-to-left
sweep, the square in the left window on either channel is square j. At the
start of this cycle, invariant (3) is satisfied for the complete tape, by the
inductive assumption. Therefore, at the start of the right-to-left sweep it is
satisfied for all squares h >j + 3, since at most square j + I can have been
changed by the head in this cycle. Moreover. either square j + 2 on the y
:hannel, or square j + 2 on the z-channel contains a 0 or blank. So at the
;tart of the right-to-left sweep we can assume that the situation is

Yj-1 yj Yj+ I Yj+2

zj--t zj zi+t 0

The last time square j + l was covered was in cycle i', which was 2j cycles
ago. According to the inductive assumption, condition (3) was satisifed at
the end of that cycle. Moreover, since i' = ((p - l)/2) 21 + 1, we have
according to the proof of Claim l that squares 0 through j + 1 contained
only O's, I's, or blanks at the end of that cycle. Assume that at the end of
cycle i' it holds YJ + 1 > 0. Then. also at the end of that cycle,
z.i, z.f+ 1 , z.i + 2 E {O, - }. Hence, the maximum count on squares 0 through
j + 2 on the z-channel, in that cycle, was 2.i - 1. So in the current cycle i, the
maximum count on these squares of the z-channel becomes at most
2.21 - 1 = 2.i+ 1 - 1. Consequently, at the start of the current right-to-left
sweep z1 + 1 , z1+ 2 E {O, - }. Recapitulating. if at the start of the current right
to-left sweep YHt > 0 then zH 2 ,z.i+I E {0,- f. and, similarly, if Z;+i > 0

SIMULATIONS OF MULTICOUNTERS 29

then YH 2 , YH 1 E {O, - f. Hence, at the start of this right-to-left sweep,
condition (3) is fulfilled for all squares h) j + 2, and if z.i + 1 I Y; + 1 I > 0 then
also Y;+ 1izH 1 I E jO, - f, with all leading O's turned into blanks up to, and
including, square j + I. So Case 2 reduces to Case l, except in case
.V;+ilz,;+il > 0, when the head starts its right-to-left sweep in the ith cycle,
and the subtraction of zH 1 z;[Y;+ 1 Y;] from Y; + 1 y;I z,; + 1 z.i I creates new
leading O's, which have to be turned into blanks. This difficulty, however. is
easily circumvented either by marking the most significant digits on the y
and z-channels, or by giving the head an extra look ahead. This proves the
claim. I

CLAIM 3. Assertion (c) holds at the start of each simulation cycle.

Proof of Claim. That a square on a channel can contain a blank only if
all squares right of it, on that channel, contain blanks, and that the represen
tations of y and z have no leading O's, at the start of each simulation cycle, is
a consequence of the proof of Claim 2. That y - z = c at the conclusion of
the ith simulation cycle of M, where c is the count of C after i steps, follows
because in the left-to-right sweep we add the correct amount to a channel
according to Claim 1, and in the right-to-left sweep we substract equal
amounts from either channel. It remains to show that as a consequence of
the maintenance of condition (3) assertion (c) holds under these conditions.

Suppose that, at the end of the ith simulation cycle of M, not both the y
and z-channel contain but blanks and that, by way of contradiction,
y - z = 0. Then there is one channel, say y, which has a leading digit in
position j, j > 0, while the digits in the positions j and j - 1 on the z-channel
are blank. So the count represented by y is greater or equal to 2.i while the
count on z is smaller or equal to 2.L:J::;~ 2; = z.i - 2. So y- z) 2 which
contradicts the assumption. (For j = 0 we obtain y - z ~ 1.)

It remains to show that if c =F 0, then not both channels y and z can
contain only blanks. Since always, at the start of a cycle, c = y - z holds, if
c =F 0 then y =F z; so in that case at least one of the y-channel and z-channel
must contain a count unequal to zero. Hence there must be a square which
contains a digit d > 0 on one of these channels. I

By Claims 1-3 the on-line simulation of C by M is correct as outlined. It
is easy to see that the simulation uses O(log n) storage for simulating n steps
by C. We now estimate the time required for simulating n steps by C. In the
ith simulation cycle M needs to travel to square j, for i = p2.i and p is odd.
Therefore, M needs 2j steps for this cycle. For cycle i with i = p2.i and p is
even, i.e., i is even, M needs l step. Hence, for 2h+ 1 steps by C, the simulator
M needs all in all,

30 PAUL M. B. VITANYI

h

T(2h+ 1) = \' (2h-j. 2j) + 2h
j=l

h

= 2h+ I \' (j. 2-j) + 2h
j c I

00

<2h+l ~ (j·2-j)+2h
j=l

:,;;; 2 . 2h+ I + 2h

= 5. 2h.

Now, given n, choose h=llognj so that 2h<n<21i+i. T~en
T(n):,;;; T(2h +1):,;;; 5. 2h:,;;; Sn. Since the movement of Ms head has nothmg
to do with the actual counts y and z, but only with the number of steps
passed since the start of C, we observe that a k-CM can be simulated on-line
by an oblivious I-tape TM Mk, which is just like M, but equipped with Yr
and z .-channels, 1 :,;;; i:,;;; k, and therefore with a total of 2k + 1 channels. Just

I •

like Af, the new Mk uses B(log n) storage and T(n):,;;; Sn steps to simulate n
steps of Ck, the simulated k-CM, which proves the theorem. The covering of
2 or 3 tape squares by the head of M can be simulated easily by cutting out
I or 2 squares of the storage tape and buffering it in the finite control. The
swapping to and fro, from tape to buffer, according to the storage head
movement, is easily handled by a slightly larger finite control. This is similar
to the way to achieve the speed-up of Hartmanis and Stearns (1965). I

It is well known that oblivious Turing machine computations correspond
to those of combinational logic networks; cf. Pippenger and Fischer (1979)
or Schnorr (1976). The networks we consider are acyclic interconnections of
gates by means of wires that carry signals. It will be assumed that there are
finitely many different types of gates available and that these form a
"universal" basis, so that any input-output function can be implemented by
a suitable network. Each type of a gate has a cost, which is a positive real
number, say 1 for each. The cost of a network is the sum of the costs of its
gates. The method used above can be used to construct a combinational
logic network that implements the first n steps of the computation by a k
CM. Such a network will have n inputs carrying suitable encodings of the
symbols read from the input terminal and n outputs carrying encodings of
the symbols written to the output terminal, where we assume, for technical
reasons, that the k-CM is a transducer. If the input- and output-alphabets
have more than two symbols, the inputs and outputs of the network will be
"cables" of wires carrying binary signals. Using standard techniques, as in
the references above, it is easy to show, by imitation of the oblivious Turing
machine constructed in the proof of Theorem 2, that:

SIMULA T!ONS OF MUL TICOUNTERS 31

COROLLARY. If C is a k-CM transducer, then we can construct a
combinational logic network implementing n steps of C with cost O(kn).

3. REAL-TIME SIMULATION BY AN OBLIVIOUS
Jog* fl-HEAD TAPE UNIT AND A

CORRESPONDING COMBINATIONAL LOGIC NETWORK

In the simulations of the previous section we may incur a time delay of
@(log n) between the processing of an input and the production of the
corresponding output. For the combinational logic network with n input
ports and n output ports this is interpreted as follows. The (i + I)th input
port is enabled by a signal from the ith output port. Between this enabling
and the production of the (i + l)th output @(log n) time may pass. Note that
we can only process the (i + I)th input after the ith output is produced, since
the set of zero counts at step i influences the translation of the jth input to
incrementing/decrementing the various counters, for all j > i. To eliminate
the unbounded time delay we construct as an intermediate step, for each n, a
real-time simulation by an oblivious log* n-head tape unit. While this does
not solve the classic problem of simulating an arbitrary multicounter
machine in real-time by a Turing machine with a fixed number of tapes
(Fischer and Rosenberg, 1968; Fischer et al., 1968), it turns out that, with
respect to the resulting combinational logic network, the construction yields
as good a result as could be obtained from a real-time simulation of an
arbitrary multicounter machine by an oblivious Turing machine with a fixed
number of tapes. In the sequel we call a combinational network with 0(I)
time delay, between enabling the ith input port and the production of the ith
output, a constant data rate network.

For the log* n-head simulation we use basically that of the previous
section with the tape divided into log* n blocks of increasing sizes, each with
a resident head. The size of the Oth block is s(O) = x, for some constant x.
The size of block 1 is s(I) = 2-' - 1 and the size of block i, i > I, is
s(i) = 2su- ii_ Since we need @(log n) length tape to simulate n steps, we
need less than log* n blocks. The Oth block is maintained in the finite
control and, assuming the blocks are marked off, all heads can travel around
on local information alone. Only the head on block 1 needs to be connected
with the finite control to exchange information regarding the counts. See
Fig.2.

The encoding of the current counts uses y- and z-channels to store the
redundant binary integer representations, and "-" denotes the distinguished
blank symbol, as before. Each head covers four squares, like the two-square
window in the previous section, and is said to be positioned on the leftmost
square it covers. Each head, on information which is put in the first square

32 PAUL M. B. VITANYI

f----.., >---------<
s(l) s(2)

~----·-------------~

s (log*n - I)

log n

FIGURE 2

of its block, by the head on the previous block, makes a sweep from left-to

right over its block until it scans the end cell and then back fro~ right-to-left

until it scans the first cell. There it waits until the next sweep 1s due. Hence

such a complete sweep over block i, by the resident head, takes 2s(i) steps.

We maintain three invariants.

At all times t ~ 0 holds:

y + z ~ t,

y - z = current count,

and for all positions j on blocks 0 through log* n, denoted by j E J,

and

(4)

(5)

(6a)

\./ j[(y.=-==·=-)&-,(y =z-=O&y.+I =z I I =-)J. (6b)
}EJ .I .I .I j .I J

(For j=O the obvious allowances are made.) The movements of the heads

are governed by the count on the n-channel. Here this count may contain 2's

representing unprocessed carries. This does not occur on the segment of n

maintained on block 0, which is incremented by 1 in each step. When that

count reaches 0 again (modulo Y steps), a carry is sent to the head on

block l which then resides on the first square. Upon receiving a carry from

block 0, the head on block 1 makes a full sweep over block 1, processing the

carry, and returns to the first square. Since this takes 2s(1) = 2x steps, it is

SIMULATIONS OF MULTICOUNTERS 33

duly in position to receive the next carry. When the segment of the n count
in block 1 reaches 0 again, modulo 2s< 11 sweeps. at the right extreme of the
last of these sweeps a carry is propagated to the first square of block 2. This
carry, in its turn, instigates a sweep of the resident head over block 2. For
each i? 0, we associate with block i the length T(i) of the shortest interval
of steps in between the production of two consecutive nonzero carries from
block i to block i + !. In general, t;ach cycle of 2sui sweeps over block i
produces a carry to the first square of block i + 1, starting a sweep by the
resident head. Since such a sweep takes 2s(i + 1) steps, and a carry to block
i + I is produced at the end of intervals of T(i) steps, with T(i)? 2s(i) 2'u'.
the head on block i + l is in position to start its sweep upon receiving the
carry if

2s(i+ 1)~2s(i)2 110 ,

for all i) 1. Block 0 is instantly updated, and therefore we need

2s(I) ~ 2snn.

(7)

(8)

Since inequalities (7) and (8) are satisfied by the chosen block sizes, each
propagated carry to a block is processed immediately. Having fixed the
oblivious head movements, by starting a sweep over block i + I each time a
carry arrives from block i on the n channel, it remains to prove that the
present invariants (4)-(6) can be maintained at all times during the real-time
simulation. (Before proceeding, we remark that it is not necessary to assume
that the blocks are delimited on the tape initially. Using four extra counters
we can, as soon as we have the size of block i on one of then, determine
s(i + 1) before the first sweep over block i + 1 is due. Determining the size of
block I by the finite control, we can bootstrap the simulation of these four
counters in the main simulation itself, which thereby will be able to simulate
an arbitrary number of counters, and so succesively determine the blocks as
they are needed. However, for the present objective of eventually producing a
combinational logic network, there is no advantage in amplifying on this
construction.) We have to show:

(a) Each block can always receive incoming carries on the first square
of its y - [z -) channel, and, in particular, block 0 receiving the inputs never
overflows. That is, (4) and (5) are maintained at all times.

(b) Invariant (6) holds at all times.

From (a) and (b) it follows, by the same reasoning as in the last section, that
the current count y - z = 0 iff both y = z = 0 iff both y- and z-channel
currently contain blanks only iff bothy- and z-channel contain a blank in the
first position. The finite control, containing block 0, therefore knows
instantly when the count is zero.

34 PAUL M. B. VITANYI

CLAl~I I. Statement (a) can be maintained.

Proof Sketch. By induction on the consecutive blocks i.

Base case. A sweep over block 1 takes 2s(l) = 2sio> steps. Since a
channel v or z can accommodate a count of 2(2sio> - 1) on block 0, it
follows that, subsequent to the propagation of a carry (signifying a count of
2110 1) to block I, block O contains at most 2s<Ol - 1 on either channel. In the
next 2-« 01 - l steps the count may rise to 2(2510> - 1), but at the 2s< 11 >th step
a new carry is propagated to block I, restoring a count of at most 2'101 - l.

Induction. During its left-to-right sweeps, the head on block i, i > 0,
processes a 2 deposited in the first square of they, z-channels, of that block,
by propagating it as far as possible on the left two squares in the window. So
a 2 in the first square of a channel of block i may increment the contents of
the first square of that channel on block i + l by 1.

Assume that the first square of a channel on block), I <_j <_ i, is
incremented by at most I in between the starts of two consecutive sweeps
over that block. Identifying O's and blanks, and considering only one
channel, let block i contain OOO · · · 0 or 10 · · · 0 at the start of the t 1 th
sweep. By assumption, if block i contains 211 · · · 1 at the start of the t 1 th
sweep, t 2 > t 1, then t 2 - t 1 ~ 2sli> - I. So sweep t 1 causes an increment of I
on the first square of block i + I, by propagating the concerned 2 right,
leaving just O's. Also by the assumption, at the start of the (t 2 + I)th sweep,
block i contains 00 .. · 0 or 10 · .. 0 again. Since block i initially contains
blanks only, and t1 - t 1 + I~ 2sui, while a sweep over block i + 1 takes less
time than 2sui sweeps over block i, the assumption is shown to hold for
block i + 1 too, thus supplying the induction step. The assumption holds for
block I by the base case. So no channel on a block i, i > 0, ever contains a
local count of more than 2sw + I which, together with the base case, proves
the claim. I

CLAIM 2. Statement (b) can be maintained.

Proof Sketch. Contrary to the simulation in the previous section, we
preserve invariant (6) while going from left-to-right, on a block, in
propagating a carry. Going from right-to-left nothing is changed, so invariant
(6) will hold at all times. We do so by subtracting the 3 bit pieces of they
and z-count, in the left three windows, while going from left-to-right. If a
nonzero digit replaces a 0 or a blank on a channel, this is required to be in
the middle window of the three, and the three positions covered on the other
channel are replaced by O's (or blanks). This still allows us to propagate a 2
as far as the central position of the three windows, so to the first square on
the next block at the right extreme of the sweep. From the proof of Claim 1
we have seen that a carry to the first square of the next block was sufficient.

SIMULATIONS OF MULTICOUNTERS 35

The rightmost (fourth) square covered by the head serves to detect adjacent
blanks, so as to return created leading O's to blanks immediately. Such a
look-ahead suffices for this purpose, due to the fact that, since in;ariant (6)
holds and 2's can occur only on the first square of a block, and in the
window, only one new nonsignificant leading 0 can be created, per channel,
in one sweep on the rightmost nonblank block. I

Hence we have

THEOREM 3. We can simulate the first n steps of a multicounter machine
by an oblivious log* n-head tape unit in real-time and logarithmic space.
(Similarly we can directly construct an oblivious log* n-tape Turing machine
for the same job.)

Just as we argued in the previous section, we can construct a
corresponding combinational logic network. Since only the squares which

are being rewritten need to be represented by logic components, and the time
to make a sweep over block i + 1 is 2s(i + 1), while there is only one such
sweep in each consecutive interval of T(i) steps, with T(i) ~ 2s(i) 2 sw =

2s(i) s(i + 1), the cost of this network is reduced from the expected
@(n log* n) by not representing squares covered by a head which does no
rewriting.

THEOREM 4. We can implement the first n steps of a k-counter machine
on an O(kn) cost combinational logic network with a constant data rate.

Proof The network has a constant data rate, i.e., a time interval 0(1)
between enabling the ith input port by the (i - 1)th output and producing the
ith output, 1 :;:::; i:;:::; n, since it is derived from a real-time simulation. Each
piece of logic circuitry, representing four squares covered by a head which is
moving, has cost c(k) linear proportional to the number k of counters

simulated. (So c(k) is independent of the number of steps n.) The state of the
finite control (containing block 0) is represented by cost d(k) pieces of logic
connected to the input ports; d(k) is a linear function of k too. In each
consecutive interval of T(i) ~ 2s(i) 2sui steps, the head on block i + l is
active for only 2sui + 1 steps. Hence such a head is active for only O(n/ s(i))

steps out of n, for all i, 1 :;:::; i < log* n. Summing this for all blocks i, and
adding the cost for the blocks 0 connected to the input ports, we obtain a
total cost C(k, n),

tog·~ I nc(k)
C(k, n) = n(c(k) + d(k)) + ;~

1
--;(]) = O(kn). I

For the knowledgeable reader we add that the log* 11-head tape unit can
be viewed as an iterative array with a limited amount of oblivious local

activity.

36 PAUL M. B. VITANYI

4. SIMULATION BY CYCLIC NETWORKS AND VLSI

When we are not restricted to acyclic logic networks, but are allowed
cvclic logic networks, or work in the framework of the VLSI model of
c~mputation recently advanced in Mead and Conway (19 80), it is not
difficult to see

THEOREM 5. If C is a k-CM transducer, then we can construct:

(i) a cyclic logic network, simulating n steps of C in real-time, with
cost O(k log n);

(ii) a VLSI circuit, simulating n steps of C in real-time, with area
O(k log n).

Proof We prove (ii), which clearly implies (i). The VLSl circuit
realizing the claimed behaviour could look as indicated in Fig. 3. Each row
of logics blocks stores one count in ordinary binary notation, with the low
digit contained in the left block. Each block stores two bits: one for the
binary digit of the count, and one to indicate whether the count digit
contained is the most significant bit of that count. Carries are propagated
along the top wire of each row, borrows along the bottom wire. The middle
wires of each row transport information concerning the most significant bit
in that row. Each block contains the necessary logic to process and transmit
correctly carries, borrows, and information concerning the most significant
bit. The finite-control-logic rectangle processes the input signals and the
information from the leftmost block of each row, viz. whether they contain a
most significant bit 0 of the corresponding count, to issue carries or borrows
to the leftmost block of each row and to compute the output signal. We leave
it to the reader to confirm that, subsequent to receiving the input signal, the
corresponding output signal can be computed in time O(log k), which
corresponds to the bit length of an input signal for driving k counters. Hence
the VLSI circuit simulates the k-CM in real-time. Since the area occupied by
the wires, emanating from each block, can be kept to the same size as the

flog n l columns

FIG. 3. VLSI circuit simulating k-counter machine.

SIMULATIONS OF MULTICOUNTERS 37

area occupied by the block itself, the rows of blocks, together with the wires,
take all together O(k log n) area. The finite control logic structure contains
some trees of depth log k, so its area can be kept to O(k log k). Under the
assumption that k E O(n) this yields the required result. I

To fit a long thin rectangle in a square, as often is necessary to implement
the structure on chip, we can fold it without increasing the surface area
significantly. Note that the structure contains no long wires, and that it does
not have to be overal synchronized: local synchronization is all we need.
Hence it is a practical design. In fact, the design is a particular type of VLSI
circuit known as linear systolic array; cf. Mead and Conway (1980).

5. SIMULATION BY RAMS

For simulation with a uniform cost RAM it is clear that we can simulate a
multicounter machine on-line with constant delay and constant storage.
Constant delay is the RAM analogue for real-time, i.e., if T(n) is the time for
simulating n steps by the multicounter, then the RAM simulates on-line with
constant delay if T(n + 1) - T(n) < c for some constant c and all n. It is
easy to see, that a logarithmic cost RAM cannot simulate a real-time counter
machine on-line with constant delay, since such a RAM can only address
registers of bounded index and bounded contents.

At first glance it seems that we can do no better than O(n log n) time for
simulation of a counter machine by a logarithmic cost RAM. If we simulate
with a tally mark in each register, we have to use indirect addressing to
maintain the top of the counter, requiring O(n log n) time and O(n) storage
to simulate n steps. Using a binary count we need only k registers for a k
counter machine, but need again O(n log n) time and O(log n) storage.
Define an oblivious RAM as one in which the sequence of executed
instructions, as well as the sequence of accessed storage locations, is a
function of time alone. Due to the usual restrictions of the arithmetic
operations of RAMs to + and - , as well as to the needed translation of
input commands with respect to the set of currently zero counters into the
basic counter instructions, we need to augment the RAM with some
constant-bit-length Boolean/arithmetic instructions in order not to be
artificially precluded from obtaining the following result by imitation of the
simulation in Section 2. (If we do not add these extra operations Theorem 6
might only hold for nonoblivious RAMs by purely irrelevant definitional
reasons.) Since we view the RAM as an abstract storage device performing a
transduction, we also assume it is connected to the input and an output
terminal, and dispense with the usual "accept" instruction. Using the
simulation in Section 2 we obtain

38 PAUL M. B. VITANYI

THEOREM 6. We can simulate a k-counter machine on-line by an
oblivious logarithmic cost RAM in O(kn) time and O(k log n) storage.

Proof. Implement the simulation of Section 2 on a RAM, storing the
head position of the I-tape Turing machine in register I and the jth square
contents in register j + !. Then the sequence of executed instructions in the
RAM program, and the sequence of accessed registers, can be made a
function of time alone. So the RAM is oblivious. The time for simulating
sweeps of length j on the RAM is

(
j+ 1)

0 k ;~~ log i = O(kj log j).

So if T(2h+ 1) is the time needed to execute the first 211 + 1 steps of the
multicounter we obtain

T(2h+ 1)EO (~~ (k2h-jjlogj)+k2h)=O(k2 11 + 1).

So T(n) E O(kn) and the storage used is O(k log n). I
This simulation is optimal in both space and time, even for nonoblivious
RA Ms.

6. FINAL REMARKS

Comparing our solution of the linear time simulation of a k-CM with the
nonoblivious one of Fischer et al. (1968), the reader will notice that our
average time complexity is the same as the worst case time complexity there.
So in actual fact, that earlier solution runs often faster than the one presented
here. Fischer and Rosenberg (1968) showed that the Origin Cossing
Problem: "'report when all k counts simultaneously reach O" admits a real
time one-tape Turing machine solution. Contrary to the former linear time
simulation, the latter method seems to contain inherently nonoblivious
.features, preventing us from turning it into an oblivious version. It has been a
classic question, cf. the cited references, whether or not the Axis Crossing
Problem: "'report when one out of k counters reaches O" or more generally
"on-line simulate a k-counter machine" can be done in real-time by a
(nonoblivious) k'-tape Turing machine for k' < k. A reasonable approach
may seem to show that, anyway, a real-time simulation of multicounter
machines by oblivious one-head tape units is out of the question. In the
event, intuition is wrong. We have noticed, cf. Section 2, that if we restrict
the simulation device to its oblivious counterpart we have the advantage that

SIMULATIONS OF MULTICOUNTERS 39

if I counter is simulatable, then k counters can be simulated in just the same
way. This key observation has led us in the meantime, by augmenting the
ideas presented here with an involved tape manipulation technique, to a real·
time simulation of multicounter machines by oblivious one-head tape units,
thus solving the above problem with a considerable margin, Vitanyi (1982).
Although superficially it would seem that this farther reaching result obviates
the present ones we like to point out that:

(a) The present results are far simpler to derive and will suffice for
many applications, as will some of the distinctive techniques.

(b) To derive the linear cost, constant data rate, combinational logic
network the present route by way of a log* n·head tape unit suffices.

(c) The RAM simulation result seems difficult to derive, if at all, from
the simulation in Vitanyi (1982) without regressing to the simulation given
here.

REFERENCES

FISCHER, M. J. AND ROSENBERG, A. L. (1968), Real-time solutions of the origin-crossing
problem, Math. Systems Theory 2, 257-264.

FISCHER. P. C., MEYER, A. R., AND ROSENBERG, A. L. (1968). Counter machines and
counter languages. Math. Systems Theory 2. 265-283.

HARTMANIS. L AND STEARNS. R. E. (1965). On the computational complexity of algorithms.
Trans. Amer. Math. Soc. 117. 285-306.

MEAD. C. A., AND CONWAY. L. A. (1980). ..Introduction 10 VLSI Sys/ems:·
Addison-Wesley, New York.

MINSKY. M. (1961). Recursive unsolvability of Post's problem of tag and other topics in th~
theory of Turing machines, Ann. of Math. 74. 437-455.

PIPPENGER. N .. AND FISCHER, M. J. (1979). Relations among complexity measures. J. Assoc.
Compw. Mach. 26. 361-384.

ROSENBERG. A. L. (1967), Real time definable languages. J. Assoc. Complll. Mach. 14,
645-662.

SCHNORR. C. P. (1976), The network complexity and Turing machine complexity of finite
functions. Acta f!1form. 7, 95-107.

YITANYI. P. M. B. (l 982). Real-time simulation of multicounters by oblivious one-tape Turing
machines, in .. Proceedings 14th Annual ACM Symposium on Theory of Computing."
pp. 27-36, Assoc. Comput. Mach .. New York. (Final version: .. An optimal simulation of
counter machines," SIAM J. CompUI .. to appear.)

