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f 1 f . 1 . . . *) A proo rue or restoring og1c circuits 

by 

J.A. Bergstra & J.W. Klop 

ABSTRACT 

An axiomatic semantics is given for restoring logic circuits, both 

statically and dynamically. As an example the Muller C-element is discussed 

in detail. It is shown that a consistent circuit reacts in an unambiguous 

way on new inputs. 

KEY WORDS & PHRASES: switching theory, Muller C-eLement, restoring Logic, 

axiomatic semantics 

*) This report will be submitted for publication elsewhere. 





INTRODUCTION. 

A perfect switch (in the notation of REM [6,7]) is a logic component connec

ting three wires: 

S(a,b;c) S(a,b;-c) 

The switch S(a,b;c) connects a and b if the voltage of c is high (1) and dis

connects a and b if e's voltage is low (O); the switch S(a,b;-c) connects 

a and b if c has voltage O and disconnects them if c has voltage 1. 

A circuit is a configuration of wires and switches, with several wires 

connected to constants O or 1. An interesting example is the Muller C-circuit 

(see REM [6] for a discussion). This circuit has a memory capacity of one bit. 

0 --c:=i--c=::J--,-----, 

inputs a b 

d output 

1 

C 
output 

a b 

a b 

In stable states the wires of a circuit will have voltages O and 1. 

Some wires then, preferably including the ones that are used as outputs, 

will be restoring in the sense that the circuit keeps their voltages firmly 

at 0 or 1. 

To decide which wires are indeed restoring is very much a matter of the 

physical implementation of the circuit. Further the voltages of certain wires 

may be changed thus invoking a process of change throughout the circuit. 

Describing this is principally a matter of physics as well. Yet, in the worus 



2 

of MEAD & CONWAY [4],p.68: "It is important to simplify our mental model of 

integrated circuitry, so as to more quickly and easily analyze or explain the 

the function of a given circuit, and more easily visualize and invent new 

circuit structures without drifting too far away from physically realizable 

and workable solutions." 

The present aim is to find an axiomatic semantics of circuits by provi

ding proof rules about restoring logic and circuit dynamics. Viewed mathema

tically, the rules are plausible, and a semantical theory about much more 

complex circuits can probably be based on them (that theory must describe 

clocks, timing and communication). 

In HOPCIROFT & ULLMAN [l] p.46 an exercise (2.1) about analyzing a cir

cuit occurs. The analysis made there (on p.52) is inconsistent with ours; 

the proof rules we offer reject that circuit as being inconsistent. 

Of cour:se a typical question might now be posed. For which operational 

semantics are these axioms and rules sound and complete? We have not the 

slightest idiea on how to find a plausible semantics underlying these proof 

rules, apart from systems of partial differential equations that defeat any 

analysis. 

It must be mentioned that classical switching theory (see e.g. MILLER 

[5], or KOHAVI [3] Chapter 11) contains much information about similar types 

of circuits (viz. asynchronous sequential circuits). Our axiomatic semantics 

might be new however. 

This work has been inspired by reading M. REM's paper [6]. There REM 

explores fonnal semantics for circuits, useful as a basis for a theory of 

silicon compilation. 

The structure of the remainder of this paper is as follows: 

1. Preliminary definitions. 

2. Restoring logic circuits. 

3. Circuits subject to changing inputs. 

4. An example in detail: the Muller C-circuit. 

Appendix: Inputs and outputs. 

References. 
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1. PRELIMINARY DEFINITIONS 

In this section we will give the basic definitions of circuits, subcircuits, 

and labeled circuits. Our definition of 'circuit' is (adapted) from REM [6]. 

1.1. DEFINITION. A circuit C is 

( i) a graph ( consisting of a set of nodes la, b, c, .. -} and some arcs between 

the nodes), such that 

(ii) each arc is labeled by "a" or "-a" for some node named a, 

(iii) together with a specification of two disjoint subsets CID, cJl. of the 

set of nodes. 

1. 2. EXAMPLE. ( i) a• b 
eb 

(ii) a([) oa 

(iii) a([) • • b 
C 

C we-----,---~•• dJ 
-b 

(iv) • • 
a b 
~ 
di d e b fID 

In examples (ii), (iii), (iv) the nodes in C(!) are designated by writing (I) at 

that place, likewise for C]. Note that the circuit graphs may be disconnec

ted and may have multiple arcs between a pair of nodes. 

1.3. NOTATION. (i) Henceforth the nodes of circuit C will be called wires; 

they form the set W(C). The arcs will be called switches; S(C) is the set of 

switches. A switch between a,bE:.W(C), labeled by cE:.W(C), is named S(a,b;c). 

Likewise S(a,b;-c) denotes the switch between a,b labeled by -c. 

(It will be clear from the sequel that circuits containing more than 

one switch S(a,b;c) for fixed a,b,c are redundant. That is, we may assume 

that for each a,b,c~W(C) there is at most one S(a,b;c). Likewise for S(a,b;-c).) 

Note that S(a,b;c) and S(b,a;c) denote the same switch. 

(ii) To conform more to our intuitions, we will (in diagrams) not represent 

circuits as graphs but as networks where the wires are indeed wires and 

where as in RlEM [6] switches are denoted as follows: 

S(a,b;c) is ~ 
a b 

and S(a,b;-c) is _g-
a b 
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1.4. EXAMPLE .. The circuits of Example 1.2 are now represented by the dia-

grams 

( i) 

(iii) 

(ii) 

S (a,b;c) b 
(I) __g_---c:::;:=:}---g_7 

(iv) 

C d ::d. 

S(c,d;-b) 

a 

S(a,a;a) 

aJ~~~ 

NOR-circuit: :n 
C 

e 

f 

ID 

1.5. DEFINITION. C' is called a subcircuit of C, notation: C'c_ c, iff 

(i) W(C')<;;;;,W(C) and S(C')~ S(C), 

(ii) S(a,b; (-)c)E- S(C') ~ a,b,cEW(C'). (every switch in the subcircuit C' 

is supported by wires in C'), 

( iii ) c ' © <;. C© n w ( c ' ) and c ' :11 c;;;; c:ll n w ( c ' ) . 

1.6. EXAMPLE. In the NOR-circuit of Example l.4(iv) the heavily drawn part, 

consisting of {a,c,e,f}, lS(e,f;a)} is a subcircuit. (Note that it contains 

two separate parts.) Furthermore, C'© = 0 and c•:ll = {c}, if C' is the sub

circuit. 

b 
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C 

•-,-

"'~ ,_ 

e 
a 

I 
- I/ - I" 

f 

1.7. DEFINITION of labeled circuits. 

(i) The set of labels is {m,1,0,l}. Here© and i are called 'restoring O' 

and 'restoring l'. 

(ii) A labeling of a circuit C is a map L: W(C)-+ (ID,1,0,1}. 

A labeled circuit C is a pair (C,L) where Lis a labeling of C. 
-

5 

(iv) Let (C,L) be a labeled circuit. The weakening of L, written L, is the 

labeling defined by 

L (a) = 0 if L(a) = ID or L(a) = 0 
-L (a) = 1 if L(a) = 1 or L(a) = 1. 

(iii) (C',L') is a labeled subcircuit of the labeled circuit (C,L) iff 

c•~ C and L' = LrS(C') (L restricted to S(C')). 

(v) A labeling L of the circuit C is correct iff 

-
(1) L (a) = 0 for all a E. CG> 

-L (a) = 1 for all a" ct, 

- -(2) for every S (a,b;c) E S (C): L (c) = 1 9 L (a) = L (b) 
- - -for every S(a,b;-c)E S(C): L (c) = 0 =9 L (a)= L (b). 
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1.8. EXAMPLE. 

(I) 
(I) 

(I) 

(a) (b) 

Diagram (a) exhibits a correct labeling, while (b) does not. 

2. RESTORING LOGIC CIRCUITS 

We shall now present a proof system called RCL (for Restoring Circuit Logic) 

which is designed to prove statements of the form 

L '°icL a© 

(likewise for all). Often the subscript RCL will be omitted. Here it is im

portant that Lis required to be a correct labeling of the circuit C under 

consideration. 

The proof system RCL will be used to derive, from a given correct la

beling L of C, a stable labeling (as defined below in Definition 3.3). 

The system RCL is built as a 'Natural Deduction' proof system and has 

the following axioms and rules: 

I. Axioms: a© if a E cm 

all if a E: ell. 

II. Switch rules: 

III. Assumption rules: 

ai ct 
bl! 

S(a,b;c) 

a© ell 
b© 

S (a,b;c) 

ai cG> 
b:ll 

S (a,b;-c) 

a(I) c© 
bG> 

S(a,b;-c) 

al* aO * 
a]( aG> 

This rule enables us to assume that al will be strengthened to aft. This 



assumption is marked by'*', and in the next rule we have the means 

of discharging the assumption. 

IV. Restoring logic rule: 

7 

if ~* 
a11 

is a proof, then al-, 
all 

is a proof. 

p p 

a1 a1 

(and likewise with 1,1 replaced by 0,U>) 

Here P must be nonempty; that is, the two displayed occurrences of 1 a1l 1 

may not coincide. Further, it is allowed to discharge (i.e. crossing 
al 

out'*') all occurrences of at* simultaneously. 

A proof Pis assumption rule free if it contains no undischarged'*'. If 

P has the form, say, 

am b1 cl d0 et d0 am 

~-7 fm 

where am, b1l are axioms and Pis assumtion rule free, we may write 

cl , d0 , ell I- fU> . 

Finally, if Lis a correct labeling such that L(c) = 1, L(d) = 0, L(e) = 11, 

we may write 

L I- fU). 

To ease some formulations, we will also write L I- pi if L(p) = i, ie{m,11,0,l}. 

2.1. REMARK. Note that it is not possible to give 'redundant' proofs; e.g. =~ is not allowed. 

2.2. EXAMPLES. (i) 'NOT' is the circuit 

Now all 
c'.11 

bO S 
1 

hence bO I- cl. Likewise b:1 f- co. 

b 

1 

d 
0 

a 

C 
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(ii) Let C be 

Now bl 
* b.li a1 
b.li 

(iii) Let C be 

and let L (c) = 

Hence dl I- at. 

(iv) Let C be 

and let L(b) = l; so Lis correct. 

hence bl /' . Therefore bl 1- bll . 
bi at 

b1 

1 
al cl 

ll d b 

L (d) = 1. Then 

all 
dl '! 
dll 

ell b1 
al 

j c!acd_d a C 

e b j 

Then cl , el I- e1 , d , all • E. g. : 

el '! 
el 

at a:ll 
cl 

a1 

el'! 
e:ll 

ell 
bll. 

2.3. REMARK. Note that the proof system RCL only restores values 0,1. It is 

not possible to change values Oto 1 or 1 to 0. (In the next section this 

will be possible, however.) 

2.4. DEFINITION. Let (C,L) be a correctly labeled circuit. Then the RCL

closure of L, notation L, is defined by 

L ~CL ai~ L(a) = i, for all ae.W(C) and iE: {m,li,0,l}. 

Since Lis correct, Lis uniquely determined. (For, in (C,L) some of the 

a0, bl in (C,L) are 'strengthened' to a©, bll.; values do not change sign.) 
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2.5. DEFINITION. (C,L) is an everywhere restoring labeled circuit if Lis 

correct and L: W(C) • {ID,i}. 

Note that if (C,L) is everywhere restoring, then L = L. (The reverse 

is not true: consider e.g. the circuit C in Example 2.2(ii) with L(b) = 0 

and L (a) = :ll • ) 

3. CIRCUITS SUBJECT TO CHANGING INPUTS 

We will now describe the dynamic behaviour of a circuit C, i.e. what happens 

after a change of the values at some 'input ports'. This means that co, cf 
are modified. Since the circuit may have memory capacity (internal states), 

as is the case e.g. in the Muller C-circuit (see next section), the 'old' 

labeling has to be taken into account during such a modification. However, 

combining the modification of the inputs with the old labeling will, in 

general, result in an incorrect labeling. To describe these transformations 

of incorrectly labeled circuits we use a reduction system which closely 

resembles and is based on the proof system RCL in Section 2. The objective 

is that this reduction system enables us to 'reduce' the circuit, starting 

from a possibly incorrect labeling and via possibly incorrect intermediate 

labelings, to a 'stable' final labeling, which is then the result of the 

input modification: 

(C,L) • (C,L') • (C,L") • ... • (C,Lf. 1 > • 
ina 

We will assume that after an input modification the old labeling L lingers 

on in weakened form, that is, as L • First we define the reduction system. 

3.1. DEFINITION. Consider the class of labeled circuits (C,L) where C is 

fixed and Lis arbitrary (and possibly incorrect). On this class of labelings 

of C a relation " • " , called reduction, will be defined as follows. 

First we define in (1), (2) ,(3) below the reduction relation on labeled 

subcircuits (C' ,L') of (C,L). such (C',L') as in the LHS's of (1), (2), (3) 

will be called redexes, and may be conceived as 'elementary' parts which 

are candidates for reduction. 

(1) Input reduction rules. 

ID 
i 

jJ i 

(I) 
(I) 

1 

(i = 0,1) 

(i = 0,1) 
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(2) Switch reiduction rules. 

~ ~ (i = 0,1) 

~ ~ (i = 0,1) 

_L _L 
(i 0,1) 

([) i (0 ([) 

_JL _JL (i = 0,1) 
JI i .11 .11 

(3) Restoringr logic reduction rule. 

Let (C' ,L') be a correctly labeled subcircuit. (So L' is defined, by Defini

tion 2.3.) Suppose L' 1' L'. Then: 

(C' ,L') --"? (C' ,L'). 

(4) Subcircuit rule. If (C',L')<;:. (C,L) and (C',L') ~ (C',L"), then 

( C I L ) ~ ( C I L [ L II /L I ] ) • 

Here L[L"/L'] is L where L' is replaced by L", i.e.: 

L[L"/L'] (a) = {L" (a) if a E W (C') 

L(a) otherwise. 

3.2. NOTATION. (i) The transitive reflexive closure of•~• will be denoted 

by •~> '. 
(ii) If (C,L) ~ (C,L'), we will say: (C,L) reduces in one step to (C,L'). 

For brevity we will sometimes write L ~ L'. 

3.3. DEFINITION. (i) A labeled circuit (C,L) is in normal form iff no reduc

tion rule applies to it. (C,L) has a normal form iff (C,L) ~> (C,L') for 

some L' such that (C,L') is in normal form. 

(ii) (C,L) is unambiguous if it has precisely one normal form. 

(iii) (C,L) is stable if it is correct and in normal form. 

(iv) (C,L) is inconsistent if it has an incorrect normal form. 
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we will now consider whether it is possible to reduce a labeled cir

cuit to a normal form, and whether such a normal form is unique. We start 

with a simple observation. 

3.4. PROPOSITION. Every labeled circuit (C,L) has a normal form. Moreover, 

every reduction of (C,L) must end in a normal form. 

PROOF. In every reduction step the number of occurrences of O,i increases. 

(In the restoring logic reduction rule, this is so because we required 

there L' i L' .) Furthermore, occurrences of OJ and j are permanent. Since 

W(C) is finite, the proposition follows. • 

3.5. LEMMA. Let (C,L 0 ) be a consistent labeled circuit (not necessarily 

correct), and suppose that (C,L 0 ) ~ (C,L1 ) and (C,L0 ) ~ (C,L 2 ). 

Then there is a labeling L 3 such that (C,Li) ~ (C,L 3 ) for i = 1,2. 

PROOF. We will distinguish redexes of type (1), (2) or (3), according to 

the rules in Definition 3.1 (i.e. (1): input reduction rules, (2): switch 

reduction rules, and (3): restoring logic reduction rule). 

If the two redexes (R. ,L.) c (C,L ) which are reduced in the steps 
l l - 0 

(C,L 0 ) ~ (C,Li) (i = 1,2), are disjoint (in an obvious sense) then the 

statement in the lemma is evidently true. Likewise if (R1 ,L1 ) and (R2 ,L 2 ) 

are identical (as subcircuit occurrences). Otherwise the following cases 

arise. 

Case 1. The two redexes are both (1)-redexes. This can only be the case 

if they are disjoint or identical. 

Case 2. 

E.g.: 

(R1 ,L1 ) is a (1)-redex and (R2 ,L 2 ) is a (2)-redex. 

~~ 
Then the common reduct is (!)_OJ_r 

l ____ F_t],__ ______ ~---/ 
y 
R2 
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A case as e.g. ~• f~ 1 cannot arise, since (C,L0 ) is consistent. 

1 

~ 
R2 

For, this subcircuit reduces either to 
(!) j[ 

(l)~orto 

and during every further reduction this configuration stays the same. 

In particular, any normal form of (C,L0 ) is incorrect, whence (C,L0 ) is 

inconsistent. 

The other cases of the type: (1)-redex versus (2)-redex are analogous. 

Case 3. (R1 ,L1 ) and (R2 ,L2) are both (2)-redexes. 

A typical example: 

~ 
~ 

Rl '--------y----' 
R2 

which leads to the common reduct consisting of the same circuit with 0 

replaced by 11. 

Cases like 

~ 
cannot occur since such a configuration reduces to a permanent (i.e. in 

every further reduction) incorrect labeled circuit (viz. the same subcir

cuit where 1 is replaced by either (I) or 1). 

The other cases of this type, (2) versus (2), are similar. 

Case 4. (2) versus (3). 

(a) If the (2)-redex (R1 ,L1 ) is part of the (3)-redex (R2 ,L2), there is no 

problem, due to the correctness requirement in a (3)-redex. 

(b) Otherwise we have e.g. the following situation: 

I 
I 

/ 
I 

I a / 
~::::· 

\ 

~---- R -- - 2 



several subcases arise according to the values of a and L2 (a). We will 

treat some typical subcases. The most interesting case of this proof is 

subcase (iii) • 

(i) i = 0 and L2 (a) = ID: the circuit is inconsistent. 

13 

(ii) i = 0 and L2 (a) = 1 or 1: cannot happen, since in a correct labeling 

(in casu L2 ) values can only be restored. 

(iii) i = 0 and L2 (a) = 0. 

CLAIM: the common reduct is 

I 

I 
I 

t a·/." 

\ 

' ' 

•, •, 

, ..... _ 

Proof of the claim: Let (R2,L2) be the subcircuit of (R2 ,L2 ) obtained by 

* removing a and the switches connected to a; L2 is L2 restricted to R2 . 

Clearly, (R2,L2) is also a (3)-redex, that is, L2 is correct. Reducing 

this (3)-redex yields (R2,L2). Adding a, the switches connected to a and 

the labeling a0 again, results in (R2 ,L2), because in the proof L2 1- L2 

the value a0 cannot be used, and also switches S(b,c; (-)a) cannot appear 

in the proof L2 I- L2 • 

To reach the common reduct we only have to replace in (R2 ,L2 ) the 

value a0 by a~. 

The remaining cases for this type: (2) vs (3) are similar. 

Case 5. (1) versus (3). 

If the (1)-redex (R1 ,L1 ) is a part of the (3)-redex (R2 ,L2 ) there is no 

problem, since L2is correct. Otherwise we have a situation like 
I 

I 

'a 
,a I • 
.I -r-':•·· 
~ . 

Rl ',.._ 
'-..._ R 

- 2 

and this is analogous to subcase 4b(iii) above. 

Case 6. (3) versus (3). This last case is easy: let (R1 ,L1 ) and (R2 ,L2 ) be 

both (3)-redexes. Let (R1 u R2 , L1 u L2 ) denote the result of combining the 
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two subcircuits into one subcircuit. Clearly L1u L2 is again correct. Then 

(Rl u R2 , L1 U L2) is a common reduct of (Rl v R2 , L1 u L2) and (Rl u R2 , L1uL 2). 

• 
3.6. REMARK. Proposition 3.4 can be rephrased, in a well-known terminology, 

as stating that the reduction•~• has the Strong Normalization (SN) (or 

Strong Termination) property. Lemma 3.5 says that•~• is weakly confluent, 

or: has the weak Church-Rosser property (WCR). Combining these two properties 

we have the 

3.7. UNIQUE EVALUATION THEOREM. Let (C,L) be a consistent labeled circuit. 

Then (C,L) is unambiguous. Moreover, every reduction of (C,L) terminates 

eventually in the unique normal form. 

PROOF. A direct consequence of SN and WCR for•~•, via 'Newman's Lemma' 

( see e . g. [ 2] ) • D 

3.8. EXAMPLE. This example shows that an inconsistent (C,L) may have several 

correct normal forms. Let C be the circuit: 

b d 
C e 

a 

ll Q) 

Now let (C,L) be: (a,b,c,d,e) = (m,1,ll,m,o>, a correct initial labeling. 
-

Then (C,L ) is: (a,b,c,d,e) = (0,1,1,0,0), the weakened labeling. 
-Let (C' ,L ) be: (a,b,c,d,e) = (ll,1,1,0,0>, change of input a. 

-
(C' ,L ) reduces to(a,b,c,d,e) = (ll,ll,1,11,o>, a correct normal form. (Apply the 

restoring logic reduction rule on the left 'cycle', followed by an application 

of a switch reduction rule.) Likewise (C' ,L) reduces to 

(a,b,c,d,e) = Cfl,l,0,(1),a)) 

by applying the restoring logic rule first on the right 'cycle'. Finally, 

by an application of this rule on both cycles simultaneously, we obtain the 

incorrect normal form (a,b,c,d,e) = (],j),ll,(1),(1)). 



3.9. EXAMPLE. Let circuits 'AND' and 'OR' be defined as follows: 

ID 

AND OR 

(the '--+' arrows denote input and output ports). 

Let C be the circuit 

a 
C 

b 
d 
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Now (a,b,c,d) = (O,i,O,]) is a stable labeling. After weakening to (0,1,0,l) 

and changing the inputs (a,b) simultaneously to (i,O) we obtain (i,0,0,1), 

an incorrect normal form. 

(If the inputs (a,b) are changed sequentially to (1,0), the result is 

either (i,o,t,i) in case a is first changed, or (i,0,0,0) in case bis first 

changed. Both labelings are stable.) 

3.10. EXAMPLE. This example occurs in HOPCROFT & ULLMAN [1] (as Exercise 2.1, 

p.46, solution on p.52), where it is asked to analyze the dynamic behaviour. 

However, the circuit with the correct labeling as displayed below in diagram 

(a) is inconsistent after weakening and changing the value of the input a 

to 0. We then have the labeling as in diagram (b). (See next page.) 

a 

b 

Diagram (a) 
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Diagram (b) : 

(I) 
a 

0 

1 

.__ ___________ _ 
I 

I 
__ _j 

0 

a 

0 

(I) 

This labeling is an incorrect normal form. In [1], p.52 an intuitive proce

dure is sketched to reach from this labeling a correct normal form: take 

the values for y1 ,y2 (i.e. 0,1) and "compute further" till stabilization 

occurs. Then (y1 ,y2 ,z1 ,z2) will be (1,1,ID,1). However, if z1 ,z2 is taken 

as starting point for this intuitive stabilization, then the result is 

(ID,ID,0,0). Our reduction procedure does not suffer from this ambiguity, 

since the labeled circuit in diagram (b) is rejected as being inconsistent. 

The essential difficulty of this circuit is already present in the sub

circuit indicated by the rectangle above, which was considered in Example 3.9. 

tion: 

We are now in a position to describe the effects of an input modifica-

(1) Let circuit C be given with a correct labeling L. 

(2) Weaken L to L. 

(3) Modify CV, ct. Result: a circuit C' with C'ID,C'1. 

(Note: the underlying circuit, i.e. C without specification of CID, 

ct has of course remained the same in C'.) 
-

(4) (C',L) is now an incorrectly labeled circuit, which is not in 

normal form. If (C',L) is inconsistent, i.e. has an incorrect 
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normal form, the circuit is disqualified. Otherwise: 

(5) Reduce (C',L) .to the unique correct normal form (C' ,L'). 

In the next section we will apply the reduction system and the proce

dure defined above to analyze the behaviour of the Muller C-circuit. We will 

close this section with two definitions, for which we need the concept of 

an I/0-circuit (input/output circuit). Up to here, it was (deliberately) 

not specified for a circuit which channels where the input and output channels. 

(In the Appendix we will deal with this questionJ Let us assume in advance that 

an I/0-circuit is defined. Then we define 

3.11. DEFINITION. (i) Let C be an I/0-circuit. C is called fully consistent 

if for every possible assignment of values ID,1 to the input channels and 

every correct labeling L extending-this input assignment, the resulting 

labeled circuit (C,L) is consistent. 

(ii) Let (C,L) be a correctly labeled I/O-circuit. Then (C,L) is fully res

toring if it is consistent and the values of the output channels in the 

unique normal form (C,L') are ID or 1. 

4. AN EXAMPLE IN DETAIL: THE MULLER C-ELEMENT 

We will now apply the reduction system in Section 3 to derive the behaviour 

of the Muller C-circuit, as shown in the Introduction. The circuit has inputs 

a,b and outputs c,d. 

(1) Start with (a,b) = (ID,ID) and the correct labeling L1 shown in diagram 1 

below (the value off is arbitrary). Replace (a,b) by (ID,1) after weake

ning L1 to L1 , as in diagram 2. 

(2) The enclosed subcircuit (C 1 ,L2) in diagram 2 is correctly labeled. Using the 

restoring logic rule (2.IV) we prove: 

gl 
g11 

cID 
iID 

mo k1 
di aID 

gi 

Likewise we prove that all values in the subcircuit C' are made restoring 

. L' in 2 • 
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Now the restoring logic reduction rule enables us to substitute 

these restored values instead. This yields (C',L2). From this labeling 

we prove 

gt b1 
f1 and 

m© aO 
n© 

thus arriving at a stable position L2 . 

(3) Now change (a,b) to, say, (1,1), after weakening L2 to L2 • Then we arrive 

at the stable position L3 in diagram 3, without using this time the res

toring logic (reductio~ rule. Note the non-restoring no. 

Continuing this analysis we find the (expected) behaviour of the Muller c
circuit as in the transition diagram 4 below. Here the 4-tuples indicate 

the value of (a,b,c,d). (The dotted lines denote a simultaneous change of 

the input values a,b.) Note that the circuit is fully restoring: i.e. the 

output values are always restoring. Also the circuit is fully consistent. 

The circuit has six stable positions, not taking into account the values 

off and n which are irrelevant in some labelings. 

1 
Diagram 1: h 

© e g C 

© m 
am ~ 

i 

b 
m 

b a a 
m m 0 © 

di m p 
m 

e 



Diagram 2: 
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Diagram 4: 

APPENDIX: INPUTS AND OUTPUTS 

For a circuit C we are interested in deciding which wires can serve as inputs 

and which ones can serve as outputs. Already in the simple case of one switch 

~ it is clear that the situation is not straightforward: 

(i) if a is an input, bis not; 

(ii) if bis an input, then a is not; 

(iii) c is not an output. 

-+ ..... 
Let (C,a,b) be a circuit C together with a specification of disjoint 
.......... • • 

sets a,bE:W(C). Here a= a 1 , ... ,an and b = b1 , ... ,bm. Furthermore we employ 

the followin9 

NOTATIONS. (i) l is the set of correct {0,1} -labelings of C. 

( ii) J = { l1l, 11J n is the set of n-tuples of restoring values 11l, :11 (which will 
• 

serve as assignments to a= a 1 , ... ,an). 

(iii) For LEL and ci..= (O<'..(l), ... ,ol(n))EJ we write L[ol.] to denote L relabeled 
• 

by Ol on a, that is: 

(L [ IX.] ) ( a . ) = ol.( i) 
l. 

(i 1, ... , n) 
• 

(L[O<'..]) (c) = L(c) if c i a. 

(iv) If L[ol] is consistent, it has a unique normal form which is denoted 

by NF(L,cX). Further, F(L,o(.) = NF(L,<X) - . Note that F:£x'J~ L (i.e. F(L,U'.'..) is 

again correct). 
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Now we can state the definition of input and output ports: 

DEFINITION. Let (c,1,b) ,£, J be as described. Suppose for all LE£, ci...EJ: 

(i) L[ol] is consistent 

(ii) NF(L,C(.) (b.)E {o,tj (j = l, •.. ,m). 
J 

•• • 
Then (C,a,b) is called a restoring I/0-circuit with input ports a and 

• 
output ports b. 
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