
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
{DEPARTMENT OF OPERATIONS RESEARCH)

BW 127/80

J. BLAZEWICZ, J.K. LENSTRA, A.H.G. RINNOOY KAN

SCHEDULING SUBJECT TO RESOURCE CONSTRAINTS:
CLASSIFICATION AND COMPLEXITY

Preprint

~
MC

AUGUSTUS

kruislaan 413 1098 SJ amsterdam

PILln;t.ed a..t ·t:.he Ma:t.he.ma.ti.c.ai. Ce.n.tJr.e, 413 /OuJ.,l6£.a.a.n, Amt.t:.eJtdam.

The Ma.t:.hema..tlc.ai. Cen:tlte, 6ounded t:.he 11-t:.h 06 FebJr.uaJr.y 1946, -U a. non­
pMn.l:t ,lr,J,:Ut.u..ti,on a1.mi.ng a:t. t:.he pJwmo.tlori. 06 J:'U/[£ ma:t.hemati.c..6 and ,i;a
a.ppU.c.ati.on6. It:. 1.1, ~pon6M.ed by t:.he Net:.hVLf.a.nd.6 GoveJtnment :thltou.gh t:.he.
Net:.heJrl.a.ncLs Ottga.nl.zazi.o n 6 oJc. t:.he Adva.nc.ement o 6 PuJr.e Ru ealU!.h (Z. W. 0.) •

1980 Mathematics Subject Classification: 90B35, 68C25

SCHEDULING SUBJECT TO RESOURCE CONSTRAINTS:
CLASSIFICATION ANO COMPLEXITY

J. BLAZEWICZ

Politechnika Poznanska, Poznan, Poland

J.K. LENSTRA

Mathematisch Centrum, Amsterdam, The Netherlands

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam, The Netherlands

ABSTRACT

In deterministic sequencing and scheduling problems, jobs are to be processed

on machines of limited capacity. We consider an extension of this class of

problems, in which the jobs require the use of additional scarce resources

during their execution. A classification scheme for resource constraints is

proposed and the computational complexity of the extended problem class is

investigated in terms of this classification. Models involving parallel ma­

chines, unit-time jobs and the maximum completion time criterion are studied

in detail; other models are briefly discussed.

KEY WORDS & PHRASES: scheduling, jobs, machines, resource constraints,

classification, polynomial algorithm, NP-hardness.

NOTE: This report will be submitted for publication in a journal.

1

1. INTRODUCTION

In the traditional class of deterministic sequencing and scheduling problems

[Conway et al. 1967; Graham et al. 1979], jobs ,J1 , ••• ,Jn consisting of one or

more operations are to be processed on machines M , ••• ,M • Each machine can
1 m

handls at most one job at a time and each job can be executed by at most one

machine at a time. Thus, at any timg, the execution of a job is restricted

by the presence of a single scarce resource. We shall consider an extension

of this class by allowing for the presence of more than one scarce resource.

Each operation of a job requires the use of a given fraction of each of the

resources, and the problem is to find an optimal schedule subject to these

additional resource constraints. Such models occur for example in the con­

text of computer operating systems and project scheduling.

Various assumptions can be made about the number of resources, about

the amounts in which they are available, and about the amounts which are re­

quired by the operations. Section 2 introduces a simple classification

scheme for resource constraints that captures many variations of the model.

It expands the classification scheme for scheduling problems given in

[Graham et al. 1979], the relevant part of which is included as an Appendix.

In general, the addition of resource constraints to a scheduling problem

may affect its computational complexity. In particular, certain well-solved

problems, for which polynomial-time algorithms exist, may be transformed into

NP-hard ones, for which the existence of such algorithms is very unlikely

[Karp 1975; Garey & Johnson 1979]. The obvious research program would be to

determine the borderline between easy and hard resource constrained schedul­

ing problems, much in the same vein as has been done for the traditional

class, and possibly through the use of an extension of the computer aided

complexity classification developed for that purpose [Lageweg et al. 1980].

Rather than attempting such a complete and probably somewhat tedious analy­

sis, we will concentrate on single operation models with unit processing

times and the maximum completion time criterion. Section 3 presents our

results for these models. Section 4 deals briefly with some other models,

dz. extensions to other optimality criteria, preemptive scheduling, and

multi-operation models. Section 5 contains some concluding remarks.

2

2. CLASSIFICATION OF RESOURCE CONSTRAINTS

The classification scheme for resource constrained scheduling problems in­

troduced in [Graham et al. 1979] will be used in this paper as well. Briefly,

a problem type corresponds to a three-field notation aJSjy, where a speci­

fies the machine environment, a indicates certain job characteristics, and

y denotes the optimality criterion. Readers not familiar with this notation

are referred to the Appendix, where all the relevant definitions can be

found.

We shall expand this classification scheme by al.lowing the jobs to re­

quire the use of additional scarce resources. Suppose that there are t re­

sources R1 , ••• ,Rt. For each resource J\i, there is a positive integer size

sh which is the total. amount of~ available at any given time. In single­

operation models, there is for each resource~ and job Jj a nonnegative

integer requirement rhj which is the amount of l\i required by Jj at all

times during its execution. A schedule is feasible with respect to the re-

source constraints if at any time t the index set St of jobs being executed

at t satisfies l· S rh. ~ sh (h = 1, ••• ,t). In mul.ti-operation models,
]€ t J

there is for each resource 1\i and operation o .. a nonnegative integer re­
l.J

quirement rh .. , with a similar condition for the feasibility of a schedule.
l.J

The presence of scarce resources will be indicated in the second field

of our classification scheme by

res")...crp

where")..., cr and pare characterized as follows.

If").._ is a positive integer, then the number of resources tis constant

and equal to :X; if :X = •, then t is part of the input.

If~ is a positive integer, then all resource sizes sh are constant and

equal to cr; if cr =•,then all sh are part of the input.

If pis a positive integer, then all resource requirements rhj (rhij)

have a constant upper bound equal to p ; if p = • , then no such bounds

are specified.

Many types of resource constraints are not represented by this classification,

but in a sense more than enough detail is included already. In fact, we shall

3

assume that A, o and Pare either equal to 1 or to•; this restriction still

generates most of the relevant and previously studied problem. types.

Remembering that a = 1 excludes p .. •, we obtain six types of resource

constraints, some of which are obvious generalizations of others. Figure 1

illustrates these six types and the simple transformations between them; an

arc from type (a) to type (b) indicates that (a) is a special case of (b).

lte,6 • • •

Jr.el,· 11

Jte.6111

Figure 1. Reductions between six types of resource constraints.

We can draw an additional arc from res•·· to resl•• under the restric­

tion that the machines and resources are all saturated in each feasible

schedule, i.e., lstl : m and IjESt rhj: ~ (h = 1, ••• ,t) at any time t m1til

a given deadline. In this case the 1 requirements r 1j, ..• ,rtj can be encoded

into a single mixed radix number r 1j [Garey & Johnson 1975].

3. SINGLE-OPERATION MODELS WITH UNIT PROCESSING TIMES AND THE C CRITERION
max

We will now investigate the computational complexity of models involving

parallel identical or uniform machines, Wlit-time jobs, (possibly empty)

precedence constraints and the maximum completion time criterion. Theorems

1 to 7 determine the complexity of all such problems; the complete picture

is given in Figure 2.

our starting point is the observation that a polynomial algorithm exists

for the case of two identical machines, even under the most general type of

resource constraints.

4

,----------
1
1

' I
I

' I
' ' ' 1

' I
' I
I
I
1

Q.2

□ NP-hard

---- 1

!
I
1

' ' I
1
1
1
1

Q_
1

'

I I , _______________________ J

r-----------------------
' I
I
I

'

I
I
1

' I
I
I
I
I
I
I
I
I
I

-----------------------J

□ minimally NP-hard
(see Theorems 2, 3, 4, 7)

Q solvable in polynomial time Qmaximally solvable in polynomial time
(see Theorems 1, 5, 6)

Figure 2. Complexity of airesAcrp,8 3,p.=llc problems. J max

THEOREM 1 [Garey & Johnson 1975]. P2lres·••,pj=llcmax is solvable in

O(in2+n2l) -time.

5

Proof. Given any instance of P2lres•••, p.=tlc , construct a graph G with
J max

vertices 1, ••• ,n and edges {j,k} whenever rhj+rhk ~ sh (h = 1, .•• ,i). Thus,

the vertices correspond to the jobs and the edges to pairs of jobs that can

be executed simultaneously. Next, obtain a matching S (i.e., a set of vertex­

disjoint edges) in G of maximum cardinality. Obviously, the minimum value of

C is equal to n-1s1. Construction of G requires O(in2) time, and the al-max
gorithm from [Even & Kariv 1975] finds Sin O(n2½) time. This proves the

polynomial time bound. D

The correspondence between resource feasible sets of jobs and certain subsets

of vertices in a graph can be turned around to obtain NP-hardness results

for problems with three identical or two uniform machines. Given any graph

G with vertex set V and edge set E, jobs and resource constraints of type

res•11 ·can be defined in the following way:

for each vertex j Ev, introduce a job Jj;

for each vertex pair {j,k} i E, introduce a resource R{j,k} of size

s,. k} = 1 with requirements r{. k} . = r{. k} k = 1, r{. k} . = 0 lJ, J, ,J J, , J, ,1.

otherwise.

Thus, two jobs can be executed simultaneously if and only if the correspond­

ing vertices are adjacent.

THEOREM 2. P3lres•11,p.=1lc is NP-hard in the sr.rong sense·.
J max

Proof. We present a straightforward transformation from the following NP­

complete problem [Garey & Johnson 1979]:

PARTITION INTO TRIANGLES: Given a graph G = (V,E) with IV! = 3t, can V

be partitioned into t disjoint subsets, each containing three pairwise

adjacent vertices?

Given any instance of this problem, we construct an instance of P3lres•11,

p. =11 C in the way indicated above. Clearly, PARTITION INTO TRIANGLES has
J max

a solution if and only if there exists a feasible schedule with value

C ~ t. D max

6

THEOREM 3. Q2lres•11,p,=1lc is NP-hard in the strong sense.
J max

Proof. In this case, we start from the following NP-complete problem [Garey

& Johnson 1979]:

PARTITION INTO PATHS OF LENGTH 2: Given a graph G = (V,E) with !vi= 3t,

can V be partitioned into t disjoint subsets, each containing three

vertices, at most two of which are nonadjacent?

Given any instance of this problem, we construct an instance of Q2\res•11,

pj=llcmax in the way indicated above, with machine speeds q 1 = 2, q 2 = 1.

It is easily seen that PARTITION INTO PATHS OF LENGTH 2 has a solution if

and only if there exists a feasible schedule with value c ~ t. D
max

Theorems 1, 2 and 3 indicate that, when there are no precedence constraints,

we can restrict our attention to the case of a single resource. First, we

recall a classical NP-hardness result.

THEOREM 4 [Garey & Johnson 1975]. P3jres1••,p.=1lc is NP-hard in the
J max

strong sense.

Proof. When the machines and resources are all saturated, P3jres1·•,pj=tlcmax

is equivalent to the following problem:

3-PARTITION: Given a set S = {1, •.. ,3t} and positive integers

a a b with " a. = tb, can S be partitioned into t disjoint 1•···· 3t' ljES J
3-element subsets S. such that L · a. = b (i = 1, • • •, t)?

l. JESi J
This celebrated problem was the first numbe:::::- problem proved to be NP-complete

in the strong sense. D

It turns out that polynomial algorithms exist for all special cases of

Qlres·••,pj=llcmax whose complexity status has not been settled so far.

solution methods are presented in Theorems 5 and 6.

THEOREM 5. Q2lres1••,p.=1lc is solvable in O(n log n) time.
J max

The

· tan of Q2lres1••,pJ.=11cmax' an optimal schedule can be Proof. Given any ins ce

f 11 · way. suppose that q 1 ~ q 2 • First, schedule all obtained in the o owing

7

jobs on M1 in order of nonincreasing resource requirement. Next, successive­

ly remove the last job from M1 and schedule it as early as possible on M2,

as long as this reduces the value of C •
max

This O(n log n) algorithm clearly generates the best schedule among

those satisfying the following properties:

(a) the jobs J. on M1 are executed in order of nonincreasing r 1J. without
. J

machine idle time;

(b) the jobs Jk on M2 are executed in order of nondecreasing r 1k;

(c) r 1j ~ r 1k for all Jj on M1 and all Jk on M2 •

The correctness of the algorithm will now be proved by showing that any

feasible schedule can be transformed into a schedule that is at least as

good and satisfies properties (a), (b) and (c).

To avoid the introduction of some cumbersome notation, the transforma­

tion is presented in an informal way. Starting from a feasible initial sched­

ule, one proceeds as follows (cf. Figure 3).

Step 1. Move the jobs that are executed on M2 while M1 is idle to M1•

Interch?-llge parts of the schedule simultaneously on both machines such that

the jobs or fractions of jobs that are executed on M1 while M2 is idle are

in the first positions on M1•

Step 2. Interchange parts of the schedule simultaneously on both ma­

chines such that all jobs Jk on M2 are in order of nondecreasing r 1k.

Step 3. Rearrange the (fractional) jobs Jj that are executed on M1
while M2 is busy in such a way that they are in order of nonincreasing r 1j

and the preemptions created by Step 2 are eliminated. (This does not lead to

resource infeasibility.)

Step 4. Insert the (fractional) jobs that are executed on M1 while M2
is idle in positions on M1 chosen in such a way that all jobs Jj on M1 are

in order of nonincreasing r 1j and the preemptions created by Step 1 are

eliminated; it may be necessary to introduce periods of idle time on M2 •

Left-justify the resulting schedule.

Step 5. Let Jj be the last job on M1 and Jk the last job on M2• If

r 1j ~ r 1k, the transformation terminates. Otherwise, schedule

position of Jk on M2, schedule Jk as early as possible on M1,

the schedule, and return to Step 1 •

J. in the
J

left-justify

None of these steps increases the value of C • After each application max

·8

of Steps 1 to 4, properties (a) and (b) are satisfied, and after a finite

number of applications of Step 5, property (c) holds as well. This validates

the algorithm given above. D

Instance of Q211tul••,p.=llC :
J max

n = 6; q 1 = 1/2, q2 = 1/3; '°l = 6, Jtlj = j (j = 1, •.. ,6).

Notation: Initial schedule

j J. on M1 during 1/ql = 2 time units
Jtlj J

.61

Jtlk k Jk on M2 during l/q2 = 3 time units
• • •
012345678910

Iteration 1
Step 1

6 5 2

4 • •

Step 4

6 5

1

Step 2

6 5 3 5 2

4
.

Step 5

6 5 3 4

++
I + I 2 '

1

2

4 6

• • . .

Step 3

6 5 5 3 2

4
Iteration 2
Optimal schedule

6 5 4 3

+i 2 1 I

. . •

. .

. • • . . . ~
Figure 3. Illustration of transformation of a Q2! cesl• • ,pj=l lcmax schedule.

THEOREM 6. Qlres1•1,p.=1lc is solvable in O(n3) time.
J max

Proof. Given any instance of QI resl • 1 ,p .=1 IC , construct a transportation
J max

network with n sources j (j = 1, ••. ,n) and mn sinks (i,k) (i = 1, ..• ,m; k =
1, ••• ,n). Each arc (j, (i,k)) has a cost cijk' to be defined below. The arc

flow xijk is to have the following interpretation:

if Jj is executed on Mi in the k-th position,

otherwise.

9

The number of resource requiring jobs executed simultaneously must never be

allowed to exceed the resource size. This can be effectuated by requiring

that these jobs are assigned only to the fastest s 1 machines. Thus, assume

that qh ~ qi for all h = 1, ... ,s1 and all i = s 1+1, .•. ,m, and define

k/q.
l.

otherwise.

Then the problem is to minimize

max. . k{ c .. kx .. k} l.,J, l.J l.J

subject to

I~=1 I~=1 xijk = 1 (j =

I;=1 xijk :,; 1 (i =

xijk 2 0 (i =

1, .•. ,n),

1, ..• ,m; k = 1, ••• ,n),

1, ••• ,m; j = 1, ... ,n; k = 1, ... ,n).

This bottleneck transportation problem can be formulated and solved in O(n3)

time. D

Note. Similar transportation network models provide efficient solution meth­

ods for QJres1·1,pJ.=lly, where y E {max.{f. (C.) },I. f. (C.)} for arbitrary
J J J J J J

nondecreasing cost functions f. (j = 1, ... ,n).
J

When the presence of precedence constraints between the jobs is allowed,

NP-hardness in the strong sense has been established for P2lres1••,tree,

p.=llc [Garey & Johnson 1975] and P2lres111,prec,p.=1lc [Ullman 1976].
J max J max

These results are both dominated by Theorem 7.

THEOREM 7. P2lres111,chain,p.=1jc is NP-hard in the strong sense.
J max

10

Proof. We prove this result by means of a transformation from 3-PARTITION

(see Theorem 4), where we assume without loss of generality that ¼b < a. < ½b
J

for all j ES. Given any instance of this problem, we construct an instance

of P2jres111,chain,p.=1lc in the following way:
J max

there is a single chain L of 2tb jobs:

L = J'
1

+J'
b+l

+J'
2

+J'
b+2

-+ • · • -+Jb +J1

+ +J' +J . • . 2b b+l

+ .•. + Jb +

+ .•• +J2b+

+J' +J' -+ -+J' +J +J + +J .
(t-l)b+l (t-1)b+2 •.. tb (t-l)b+l (t-1)b+2 ..• tb'

for each j Es, there are two chains K. and K'., each of a. jobs:
J J J

+ Jjaj' K. = Jj 1 + Jj2 +
J

+ J' . jaj' K' = Jj 1 + J' +
J j2

moreover, it is required that K. precedes K~, i.e., JJ•a· + J'. 1 ;
J J J J

the primed jobs do require the resource, the unprimed jobs do not.

We claim that 3-PARTITION has a solution if and only if there exists a feasi-

ble schedule with value C s 2tb.
max

Suppose that 3-PARTITION has a solution {s 1 , .•• ,St}. A feasible schedule

with value C
max

= 2tb is then obtained as follows (cf. Figure 4). First, the

chain Lis scheduled on machine M1 in the interval [0,2tb]; note that this

leaves the resource available only in the intervals [2(i-1)b,(2i-1)b] (i =

1, ... ,t). For each i E {1, .•. ,t}, it is now possible to schedule the three

chains K. (j E s.) on machine M2 in the interval [2 (i-1) b, (2i-1)b] and the
J l.

chains K'. (j E s.) on M2 in [(2i-1)b,2ib]. The resulting schedule is feasible
J l.

with respect to resource and precedence constraints and has total length 2tb.

Part of feasible instance for 3-PARTITION:
b = 15, a1 = 4, a2 = 5, a3 = 6; Si= {1,2,3}.

Part of feasible schedule for P2l~e1.illl,cha.,i.n,pj=llCmax=

~ 1~- _- ---
2 (,l-1) b (U-1) b Ub

•: Jk, o: Jk ((,l-l)b+l s ks ib); □: Jjk' •: Jjk (j E Si, 1 s ks a1).

Figure 4. Illustration of transformation from 3-PARTITION to

P2jres111,chain,p.=1lc .
J max

11

Conversely, suppose that there exists a feasible schedule with value

c :S 2th. It is clear that in this schedule both machines and the resource max
are saturated until time 2tb. Moreover, the chains K. (j ES) are executed

J
in the intervals [2(i-1)b,(2i-1)b] (i = 1, ••• ,t) and the chains K~ (j ES)

J
in the remaining intervals. Lets. be the index set of chains K. completed

i J
in the interval [2(i-1)b, (2i-l)b], for i = 1, ••• ,t. Consider the £et s 1 • It

is impossible that I. 8 a. > b, due to the definition of S; the case
JE 1 J 1

L· s a. < b cannot occur either, since this would lead to machine idle
JE 1 J

time in [b,2b]. It follows that l· a.= b, and our assumption about the
JES J

size of aj (j ES) implies that 1s111= 3. This argument is easily extended

to an inductive proof that {s1 , •.• ,st} constitutes a solution to 3-PARTI-

TION. D

4. OTHER MODELS

We will next comment on the computational complexity of three variations of

the models considered in the previous section, viz.

(1) extensions to other optimality criteria,

(2) preemptive scheduling, and

(3) multi-operation models.

4.1. Other optimality criteria

If the c criterion is replaced by other optimality criteri"a such as the.
max

total completion time Ic. or the maximum lateness L , most results can be
J max

extended in a straightforward way.

In fact, all the NP-hardness results of Theorems 2, 3, 4 and 7 carry

over immediately to both Ic. and L • For Ic., we use the fact that the
J max J

machines are saturated in each of the transformations; e.g., in Theorems 2

and 4 we have cmax :St if and only if Icj :S ~t(t+l). For Lmax' we define due

dates d. = 0 for all jobs, so that L = C
J max max

It has been noted already that the transportation network model of

Theorem 6 provides polynomial algorithms for Qlresl•l,pj=lly, where Y = Icj

or y = L • The matching approach of Theorem 1 is easily adapted to solve
max

12

P2jres•••,p,=1l}:c. as well: simply schedule the paired jobs before the re-
J J •

maining ones. It seems a safe conjecture that the algorithm of Theorem 5 can

be modified to solve Q2jres1••,p.=lj}:c.; we leave this as a challenge to the
J J

reader. However, P2lres•••,p.=1jL and Q2jres1••,p.=1IL remain open
J max J max

problems. We mention that Pjres1•1,r.,p.=1IL , where the r. denote integer
J J max J

release dates at which the jobs become available, is solvable in polynomial

time [Blaze~icz 1979].

4.2. Preemptive scheduling

If the processing times are arbitrary and preemption is allowed, the nature

of the models changes considerably. It now becomes of interest to consider

the general case of parallel unrelated machines.

The problem Rlpmtn,res•••lc can be formulated as a linear program
max

in the following way (cf. [Weglarz et: al. 1977; Slowinski 1980]). First,

introduce a dummy job J 0 with rho =·O for h = 1, .•• ,£, representing machine

idle time. Define Sas the set of all resource feasible m-tuples k =
(k 1, .•. , km) of job indices; each k is characterized by:

k. E {0,1, ••• ,n} for i = 1, ••• ,m;
l.

each j E {1, ••. ,n} occurs at most once;

\m rhk ~ s for h = 1, •.. ,£.
li=O i h

To each k Es, associate a variable~, representiug the time during which

Jk , •.• ,Jk are simultaneously executed on M1, ••. ,Mm respectively. Then the
1 m

problem is to minimize

subject to

\m 1(I k . x.)/~i·J· = 1 Li= k€S, i=J JC

~ ~ 0

(j = 1 , ... , n) ,

(k € S) •

This linear programming problem has O(nm) variables. For a fixed number of

machines, its size is bounded by a polynomial in the size of the scheduling

problem. The existence of a polynomial algorithm for linear programming

[Khachian 1979] therefore implies that Rmipmtn,res•••lc is solvable in max

13

polynomial ti.me.

For a variable number of machines, Q!pmtn,res111jc can be solV&d as
max

follows. Replace the resource requiring jobs by a single job with execution

requi.rement I _1 pj; this eliminates the resource constraints. Next, apply
rl ·-

the O(m log m +Jn) algorithm for Qlpmtnlc from [Gonzalez & Sahni 1978] to
max

solve the resulting problem.

4.3. Multi-operation models

Multi-operation models, in which each 0!:)€ration has its own specific re­

source requirements, give rise to various interesting results and to many

open problems. By way of example, we consider open shops, flow shops and job

shops with two machines, nonpreemptable operations and the C criterion.
max

In the case of an open shop, 02lres•••,p.j=1lc is solvable by a
l. max

matching approach similar to the one used in Theorem 1. If the processing

times are arbitrary, even o2lres111jc remains unresolved.
max

Flow shop problems seem to be more difficult. F2lres111,p .. =lie .is
l.J max

solvable in linear time by appropriately grouping jobs together according

to their overall resource requirements. Little can be said about the immedi­

ate extensions of this model with unit processing times, but F2!res111lc
max

ii;r NP-hard in the strong sense by virtue of a simple transformation from

3-PARTITION. ·,

The simplest job shop model in this context, J2lres111,p .. =lie , is
l.J max

already NP-hard in the strong sense; the transformation from 3-PARTITION is

nontrivial.

5. CONCLUDING REMARKS

We have proposed a classification scheme for resource constrained scheduling

problems and outlined a range of initial results on their computational com­

plexity. Presumably, many of the remaining open problems can be resolved

along similar lines. We hope to have stimulated others to continue the in­

vestigation of this interesting research area.

14

APPEh'iJ)IX. CLASSIFICATION OF SCHEDULING PROBLEMS

Suppose that n jobs J 1 , ••• ,Jn have to be processed on m machines M1, ••• ,Mm.

Each machine can handle at most one job at a time and each job can be exe­

cuted by at most one machine at a time. Various job, machine and scheduling

characteristics are reflected by a three-field problem classification alBl'Y
[Graham et: al. 1979]. Let O denote the empty symbol.

Machine environment

The first field a= a 1a 2 specifies the machine environment.

If a 1 E {P,Q,R}, each Jj consists of a single operation that can be

processed on any M1 ; the processing time of Jj on Mi is pij (i = 1, .•• ,m;

j = 1, •.• ,n). The three values are characterized as follows.

a 1 = P (parallel identical machines): pij = pj for a given execution

requirement pj of Jj.

a 1 = Q (parallel uniform machines): pi.= p./q. for a given execution
J J l.

requirement p. of J. and a given speed q. of M .•
J J 1 l.

a 1 = R (parallel unrelated machines): p .. is arbitrary.
l.J

If a 1 E {O,F,J}, each J. consists of a set of m. operations O .. ; 0iJ' has to
J J l.J

be processed on a given machine µ .. during pi. time units (i = 1, ..• ,m.;
l.J J J

j = 1, ••• ,n). The three values are characterized as follows.

a. 1 = O (open shop): mj = m, µij == Mi.

a 1 ""' F (flow shop): m. = m, µ .. = M.; 0. 1 . has to be completed before
J l.J l. J.- , J

0. can start (i = 2, .•. ,m).
1.)

a 1 = J (job shop): m. andµ .. are arbitrary;µ. 1 . I µ 1.j and 0. 1 .
J l.J 1- ,J l.- ,J

has to be completed before 0 .. can start (i = 2, ..• ,mj).
l.J I= Cl 2 is a positive integer, then m is constant and equal to a 2; if a 2 is 0

then mis part of the input.

Job characteristics

The second field e c {el,e2,e3,e4} indicates a number of job characteristics,

which are defined as follows.

S1 = pmtn: Preemption (job splitting) is allowed; the processing of

any job may arbitrarily often be interrupted and resumed at the same

time on a different machine or at a later time on any machine.

81 = 0 : No preemption is allowed.

(2) e2 specifies the resource constraints; see Section 2.

(3) e3 E {prec,tree,chain,o}.

15

e3 = prec (arbitrary precedence constraints) : A directed acyclic graph

H with vertices 1, ... ,n is given; if B contains a directed path from

(4)

j to k, we write Jj -+ Jk and require that Jj is completed before Jk can

start.

s3 = tree (tree-like precedence constraints): H has outdegree at most

one for each vertex or indegree at most one for each vertex.

83 = chain (chain-like precedence constraints): H has both outdegree

and indegree at most one for each vertex.

83 =

84 €

84 =

8 4 =

0 (no precedence constraints): H has no arcs.

{pij=l,o}.

P .. =1: Each operation has unit processing time.
1.J

o: The processing times are arbitrary nonnegative integers.

(If a 1 E {P,Q}, then pij is replaced by pj; if a 1 = R, then ~4 = 0 .)

Optimality criteria

The third field y denotes the optimality criterion chosen. Any feasible

schedule defines for each J. a completion time c. and, given an integer due
J J

date dJ., a lateness L. = c.-d. (j = 1, ... ,n). Some common optimality crite-
J J J

ria involve the minimization of

C = max{c1, ••. ,c} (maximum completion time);
max n

Ic. = c1+ .•. +c (total completion time);
J n

L = max{L 1 , ••• ,L} (maximum lateness).
max n

ACKNOWLEDGMENTS

The authors gratefully acknowledge stimulating discussions with J. Weglarz.

The research of the last two authors was partially supported by NATO Special

Research Grant 9.2.02 (SRG. 7) and by NSF Grant MCS78-20054.

16

REFERENCES

J. BI.AZEWICZ (1979) Deadline scheduling of tasks with ready times and re­

source constraints. Information Processing Let;t;. 8,60-63.

R.W. CONWAY, W.L. MAXWELL, L.W. MILLER (1967) Theory of Scheduling, Addison­

Wesley, Reading, Mass.

s. EVEN, o. KAR:IV (1975) An O(n2 "5) algorithm for maximum matching in gener­

al graphs. Proc. 16t;h Annual IEEE Symp. Foundat;ions of Computer Science,

100-112.

M. R. GAREY, D. S • JOHNSON (19 7 5) Complexity results for multi processor sched­

uling under resource constraints. SIAM J. Comput;ing ,!, 397-411.

M.R. GAREY, D.S. JOHNSON (1979) Comput;ers and Int;ract:ability: a Guide to the

Theory of NP-Completeness, Freeman, San Francisco.

T. GONZALEZ, s. SAHNI (1978) Preemptive scheduling of unifonn processor sys­

tems. J. Assoc. Comput. Mach. 25 ,92-101.

R.L. GRAHAM, E.L. LAWLER, J .K. LENSTRA, A.H.G. RINNOOY KAN (1979) Optimiza­

tion and approximation in deterministic sequencing and scheduling: a

survey. Ann. Discrete Math. ~,287-326.

R.M. KARP (1975) On the computational complexity of combinatorial problems.

Networks ~,45-68.

L.G. KHACHIAN (1979) A polynomial algorithm in linear programming. Soviet;

Mat;h. Dokl. 20,191-194.

B.J. LAGEWEG, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1980) Computer

aided complexity classification of deterministic scheduling problems.

To appear.

R. SLOWINSKI (1980) Two approaches to problems of resource allocation among

project activities - a comparative study. ·J. Operational Res. Soc.~,

711-723.

J .D. ULLMAN (1976) Complexity of sequencing problems. In: E.G. COFFMAN, JR.

(ed.) (1976) Comput;er & Job/Shop Scheduling Theory, Wiley, New York,

139-164.

J. WEGLARZ·, J. BLAZEWICZ, W. CELLARY, R. SLOWINSKJ: (1977) Algorithm 520:

an automatic revised simplex method for constrained resource network

scheduling. ACM Trans. Math. Soft;ware ,1,295-300.

