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ABSTRACT 

Algebraic specifications of abstract data types can often be viewed 

as systems of rewrite rules. Here we consider rewrite rules with conditions, 

such as they arise e.g. from algebraic specifications with positive condi­

tional equations. The conditional Term Rewriting Systems thus obtained which 

we will study, are based upon the well-known class of left-linear, non-am­

biguous TRS's. A large part of the theory for such TRS's can be generalized 

to the condlitional case. Our approach is non-hierarchical: the conditions 

are to be e~valuated in the same rewriting system. We prove confluency re­

sults and termination results for some well-known reduction strategies. 
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INTRODUCTION 

This paper is concerned with Term Rewriting Systems involving condition­

al rewrite rules. Such systems arise in a natural way from algebraic data 

type specifications using positive conditional equations, but may just as 

well appear in a different context. Our aim is to provide a self-contained 

introduction in the subject covering various topics, such as: confluency, 

reduction strategies and termination, and decision algorithms for normal forms. 

While working in this subject we received PLETAT, ENGELS & EHRICH [14]. 

This paper has had a considerable influence on our ideas, leading us, how­

ever, to a different proposal for the semantics of conditional rewrite rules, 

avoiding hierarchies, but introducing circularities that turn out to be not 

problematic in the end. Acknowledgement: We thank Klaus Drosten for detecting 

an error in a previous version of Definition 7.2 and suggesting a correction. 

We will now give a survey of the paper. We will consider systems E of 

positive conditional equations, as they are called in [6] , which have the 

form 

t = s 
n n t = s ' 

for some n ~ O. Here the t. = s. (i=l, ... ,n) and t = s are equations, pos-
i ]_ 

sibly containing varables. Such systems arise for instance in algebraic se-

mantics as specifications of abstract data types, see [6]. If Eis a sys­

tem of positive conditional equations, E will be the 'unconditional part' u 
of E, that is the set of equation schemes obtained by removing the condi-

tions (i.e. the LHS's of the implications). The system of equation schemes 

E can be made into a Term Rewriting System (TRS), by choosing a direction 
u 

of rewriting: t-+ s. Often this direction is clearly suggested by the equa-

tion t = s. Now we will impose (just as in [14]) the restriction that the 

TRS E is non-ambiguous and left-linear. For such TRS's, which we will call 
u 

of type O in this paper, the syntactical theory is well developed; 

cf. [ 3, 8, 9, 10, 1 1 , 13 J • 

While it is clear how to associate a TRS to a system of equation schemes 

(anyway in the case we are considering) , this is less clear in the presence 

of conditions. I. One possibility is to consider 'conditional reduction rule 
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schemes' of the form 

t -+ s 

Such conditional reduction rule schemes will be called of type I. Likewise a 

TRS is of type I if it contains only reduction rules of type I. 

II. Another possibility is to consider conditional rules of the form 

A••• A t i S ~ t -+ s 
n n 

where 'i' denotes 'having a common reduct'. 

III. Thirdly, one could consider 

A ••• At -+->s 
n n t -+ s ' 

where -> is the transitive reflexive closure of-+. 

It turns out that this last possibility yields in general not a con­

fluent reduction (i.e. having the Church-Rosser property). A 'better' type 

of conditional reduction rule is: 

III 
n 

t-+ s 

where then. ,i = I, ... ,k, are closed normal forms in the sense of the un­
i 

conditional E 
u 

Now in all cases I, II, III(n) there is an obvious circularity involved 

in the definition of the reduction relation -+-. In [14] this problem is 

solved by means of an hierarchical approach: the conditions (which are there 

of type III , to be precise: of the form t. -> true) must be evaluated on n l. 

a lower level of the hierarchy. Here we will not suppose such a hierarchical 

structure of the TRS's, and define the reduction relation(-+) by a 'least 

fixed point' construction; for type I and III reductions we can then prove 
n 

confluency. That is, the circularity is harmless in case III , and also 
n 

for type I. In fact, the whole syntactical theory for type O carries over 

without effort to type I and III, including termination criteria. However, 
n 
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a major problem with the conditional TRS's is that the set of normal forms 

and the set of redexes need not be decidable. 

For type III in general it is not surprising to see that such reductions 

need not be confluent, for, it is not clear that a condition t. -+> s. is 
1 1 

"stable" under reductions. For type II it does seem reasonable to conjecture 

confluency; but we will show that in fact this conjecture is false. The case 

of type I is very easy. 

The really interesting case is III • We will show that III -reductions 
n n 

are confluent, and have in general all desirable properties of 0-reductions, 

including termination (when possible) of reduction strategies like full sub­

stitution (or full computation), leftmost reduction, parallel outermost re­

ductions. Most of these results are already obtained in [14], but for the 

'hierarchical' III -TRS' s • 
n 

Note that we have not placed restrictions on the conditions t. = s. 
1 1 

(type I) or t. -+> n. (type III), other than the unconditional normal form 
1 1 n 

requirement (which can be iilmlediately checked by looking only at the LHS's t 

of the RHS's t ➔ s of the conditional rules) in III . This is intended: the 
n 

t. = s. or t. -+> 
1 1 1 

n. may have other variables than the ones int= s. E.g. 
1 

the rule (as in the definition of an equivalence relation) 

E(x,y) -+> true & E(y,z) -+> true 

is allowed. 

E(x,z) ➔ 

On the other hand, an unconditional rule like 

E(x,x) -+ true 

true 

will not be allowed here, since we stipulated that the unconditional part 

E of the TRS's 
u 

Ewe will consider, must be of type 0. Let us call a TRS 

E' of type O' if it can be obtained from a type 0 TRS by identifying 

some variables in the LHS's of the rule schemes. 

Now we give a translation of type III systems into type O and of type 
n 

II into type O'. We do not, however, explore the formal aspects of this 

translation and use it mostly as a heuristic tool to show that type II and 

III reductions are in general not confluent. 

A survey of the confluency results is given in the following figure, 

where an upward line means that a TRS of the lower type is also a TRS of the 

higher type. The central point in this diagram, type III , will also be 
n 
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focus of our interest in this paper. 

\ 
\ 

\ Ill 

I~lvu 

0 

\ 

/ 

\ 
\ 

\ O' 
X 

O" \ 

\ 
\ (in general) 

\ not confluent 
confluent\ 

The wavy downward arrows refer to the 'translation' mentioned above and 

given in Section 5. Type O" is a subtype of O', obtained by stipulating 

that the 'non-linear' operators may not occur in the RHS's of the rule 

schemes (Section 1.5). 

We have included an Appendix devoted to O'Donnell's theorem that 'even­

tually outermost' reductions (including the parallel outermost reductions) 

must terminate when possible, and likewise for leftmost reductions in the 

case of left-normal rules. In fact, we prove a stronger version, applying 

also to the case of Term Rewriting Systems with bound variables, such as 

;\-calculus. Indicating the presence of bound variables with'*', all our 
8 4 1 . * * * . results except • genera ize from Oto O, I to I, III to III • Since 

n n 
bound variables are not the main topic of this paper, we have separated this 

proof in an Appendix so that it can easily be omitted (or,singled out). 

* Type O reductions systems are called 'regular Combinatory Reduction Systems' 

in [II] , where 'regular' means 'non-ambiguous and left-linear! 

The structure of the sequel of this paper is as follows. 
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1.1. Term Rewriting Systems. We will briefly introduce the well-known 

notion of a Term Rewriting System (TRS), as studied e.g. in [3,8,9,10,11,13]. 

First we will consider unconditional TRS's. 

A Term Rewriting System r is a triple< F, V, JR> where Fis a set of 

ranked operators, i.e. each FE F has an arity which is the number of ar­

guments Fis supposed to act upon. The arity may be 0, in which case Fis 

also called a constant. Vis a set of variables, necessary to describe the 

set of reduction ru.Ze schemes, JR. A reduction rule scheme, or rule scheme 

for short, is a pair (t,s), written as t + s, where t,s E Ter(r), the set 

of terms built from F and V. So JR is a binary relation on Ter(r). The set 

of closed r-terms, Terc(r), contains only terms without variables 

a,b,c, ••• ,x,y,z EV. We will use t,s for terms, but sometimes also 

M,N, •••• An instantiation pis a map V-+ Terc(r). If t E Ter(r) , then 

p(t) denotes the result of substituting p(x) for the variables x occurring 
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int. 

lR is the set of all closed instances obtained from the rule schemes 

JR; i.e. if t ➔ s e: ]R. then p(t) + p(s) e: JR for all p. The elements of :iR 
are called closed PUles; we will drop the word 'closed' sometimes. The LHS's 

of the rules are called redexes; RED(E) is the set of all redexes of E. A 

term without redexes as subterms is a nomal fom; NF(E) is the set of nor­

mal forms. 

A context C [ ] is a term with one 'hole'; C [t] is the result of 

substituting tin this open place. 

If Risa binary relation on Terc(E) , then Rm will be the 'contextual 

closure' of R, defined by: 

(t,s) e: R ~ (C [ t] , C [ s]) e: R for all C [ ] . 

R* is, as usual, the transitive reflexive closure of R. For notational ease, 

wrl.·te R0 --(Rm)* • h ~0 
-- • 1 1· we Note tat~ =, syntact1.ca equa 1.ty. 

If the infix notation t +sis used, the relation+ will be called 

'reduction' and instead of -+-0 we use the notation --+> (which is easier 

to use in reduction diagrams). 

I. 2. Applicative vs. ranked TRS' s ; TRS 's with signature 

As we have introduced TRS's in I.I, each operator has a fixed arity 

and term formation is otherwise unrestricted. In practice however, we will 

often deal with TRS's having a signature, as in Example 2.3(i). The con­

cept of signature is standard in the litterature, and we will not give a 

definition here. See e.g. [10] • Nowhere, however, in this paper will the 

concept of signature play a role; that is, everything works out for TRS's 

with signature exactly as for TRS's without signature restrictions. (Of 

course, a TRS without signature restrictions can also be viewed as haying 

a trivial signature with one sort.) 

Instead of ranked TRS's (i.e. each operator has a fixed arity), one 

can also consider applicative TRS's. The prime example of such a TRS is 

Combinatory Logic (CL) as in [5] , with basic operators S,K,I and terms 

Me: Ter(CL) given by the inductive definition 



M: := I,K,S / (M1M2) , and reduction rules schemes 

Sxyz -+- xz(yz) 

Kxy -r X 

Ix -+- x 
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(here the convention of bracket association to the left is used). An appli­

cative system E can easily be viewed as a ranked system EA , by introducing 

a binary operator A( , ) and considering S,K,I as 0-ary operators (constants). 

Then the rules of CLA are 

A(A(A(S,x) , y) , z) --. A(A(x,z) , A(y,z)) 

A(A(K,x) ,y) --. x 

A(I,x) --+ x . 

Vice versa, a ranked TRS E can be viewed as a 'sub-TRS' of an applicative 
r 

TRS E; e.g. if E = {C, P(x,Q(y)) --+ Q(x)} then E is a 'sub-TRS' of 
r r 

t(see I.4.0), where E has terms defined by M: := C,P,Q / (M1M2) and the 

rule Px(Qy)-+- Qx. So the terms of (an isomorphic copy of) Er would be 

given by 

In fact, we may use TRS's which are partly applicative and partly 

ranked; e.g. 

CL + D(x,x) -+- I • 

At one point, however, there is a crucial difference between ranked and 

applicative TRS's, namely in the formulation of a theorem about non-linear 

TRS's, see 1.5.2.2. 

1.3. Regular reductions 

An important class of reduction systems is the class of regulaP TRS's 

E = < F, V, JR> • Here the rule schemes in JR are subject to the following 

conditions: 

(i) if t ➔ s E JR, the leading symbol oft is an operator E F (sot i V); 

(ii) if t ➔ s E JR, then the variables ins occur already int 

(iii) if t ➔ s E JR, then tis lineal', i.e. no variable occurs more than 
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(iv) 

once int. (The rule scheme t ➔ sis called left-linear if tis linear.) 

if JR= {t. ➔ s. Ji EI} then the rule schemes do not 'interfere', 
i i 

i.e. they are non-ambiguous. One also says that JR has the non-over-

lapping property. This property is defined as follows. 

1.3.1. DEFINITION. Let JR = {r. Ji E I} where r. = t. ➔ s. be the set of rule 
i i i i 

schemes of a TRS I . We may suppose that JR contains no rule schemes which 

can be obtained from each other by renaming of variables. I is called a 

non-(1Jnbiguous (or non-overlapping) TRS iff the following holds: 

(i) if the r.-redex p(t.) contains the r.-redex p'(r.), where if j and 
i i J J 

p,p' are some instantiations, then the redex p'(r.) is already con­
J 

tained by p(x) for some variable x occurring int.; 
i 

(ii) if the r.-rectex p(t.) contains the r.-redex p'(t.) for some p,p', then 
1. i i i 

either p(t.) = p'(t.) or p'(t.) is already contained by p(x) for some 
i i i 

variable x occurring int .. 
i 

1.3.2. EXAMPLE. (i) JR = {P(Q(x)) -r R(x), Q(R(x)) -r S} is ambiguous 

by clause (i) of Def. 1.3.1 ; 

(ii) JR= {P(P(x)) -r P(x)} is ambiguous by clause (ii) ; 

(iii) JR = {D(x,x) -r E, ... } yields a nonregular TRS since the displayed 

rule scheme is not left-linear. 

REMARK. It is possible to be slightly more liberal in the definition of 

ambiguity, without losing any of the properties of regular reductions. 

Namely, define: 

(where JR = {r./i E I} 
i 

r. = t. ➔ s.) is a weakly i i i 

non-ambiguous TRS iff the following holds: 

(i) if the r ~ -red ex p ( t.) contains the r. -redex p' ( t.) where i f j and 
- i J J 

p,p' are some instantiations, then the redex p'(t.) is either 
J 

(a) 

(b) 

already contained by p(x) for some x int, or 

p(t.) = p'(t.) and p(s.) = p'(s.) . (I.e. the rules p(r.) 
i J" i J i 

and p'(r.) coincide.) 
J 

(ii) as in Def. 1.3.1. 

Note that non-ambiguity of I depends only of the LHS's t. of the rule 
i 



schemes in ]R., while for weak non-ambiguity also the RHS's 

sidered. 
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s. must be con-
1 

An example of a set of weakly non-ambiguous rule schemes, which is am-

biguous, is given by the 'parallel or' rule schemes: 

or (true, x) - x 

or (x, true) - x. 

Let us call a TRS which is leftlinear and weakly non-ambiguous, a weak­

ly regular TR.S·. Then the theory for regular TRS' s as e.g. in [ 1 1 J , on which 

most of the sequel is based, seems to carry over without problems to weakly 

regular TR.S's. We will stick to regular TR.S's as the basis for the sequel, 

however. 

1.4. Reduction diagrams for regular reductions 

Let I be a regular TRS. Then, as is well-known, I I= CR. (I has the 

Church-Rosser property.) I.e.: if R1 = t 0 + t 1 + ••• + t 
n 

= t + t' + ••• + t' are two 'divergent' reductions of t 0 E Ter(I), then 
0 1 m 

there are 'convergent' reductions R3 = tn + •.. + s and R4 
Instead of saying that I has the CR-property, we will also 

tions are confluent. 

= t' ➔ ••• + s • 
m 

say that I-reduc-

A stronger version of the CR-theorem for regular TR.S's asserts that 

convergent reductions R3 ,R4 can be found in a canonical way, by adjoining 

'elementary diagrams' as suggested in the following figure: 

t. 
l 

t' 
m 

' 

~6 

---

---

..... 

, .... 

V(R 1,R2) 

" 

t n 

.. '1 
r, s 
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In this way the reduction diagram V(RI,R2) originates, and in [11] it is 

proved that the construction terminates and yields R3,R4 as desired. It is 

fairly evident how to define the elementary diagrams; e.g. if E = CL as in 

1.2, then the following are examples: 

Sab(Ic) a(Ic)(b(Ic)) Ka(Ib) Kah 

ac(b(Ic)) 

Sabe 
ac(bc) a 0 a 

Here '0' denotes an 'empty' or 'trivial' step, necessary to keep the reduc·­

tion diagram in a rectangular shape. 0 -steps also occur in elementary dia­

grams of the form, e.g. 

Ia a a 
Ia a or a or even r----------, 
I I I I I 

I I I I I 

I I I I I 

l0 I 

0l :0 I I I 
I I I 

I I 
I I I I I 
I I I L--------~ ________ _. 

a 0 a a 
Ia a a 

The reduction R3 constructed above in V(RI,R2) is called the projection of 

RI by R2 , written: R3 = R1JR2 . Similarly R4 = R2!R1 • 

1.4.0. Sub-TRS's. Up to here we have only considered regular TRS's 

E = < F,V, 1R > where term formation is unrestricted. However, since most 

of the relevant properties of regular TRS's derive from the notion of re­

duction diagram, it is sensible to enlarge the class of regular TRS's such 

that they include also 'sub-TRS's' E' of E, defined as follows: 
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Let T .=. Ter(E) be such that Tis closed w.r.t. element~ry diagrams. 

(I.e. if t 0,t 1,t2 ET such that t 0 + t 1,t0 + t 2 then all terms involved in 

V(t0 + t 1,t0 + t 2) are in T.) Then the restriction E' of E to Tis called 

a sub-TRS of E. We write E' CE. 

So, in the sequel a regular TRS may be either a 'full' TRS where term 

formulation is unrestricted or a sub-TRS of a 'full' TRS. This means that 

TRS's where term formation is restricted by signature requirements are also 

in our scope. 

The next three subsections 1.4.1, ••• , 1.4.3 are preliminaries only for 

the Appendix. 

1.4.1. The Parallel Moves Lennna 

Let R be a E-reduction 

tr.9.ction of redex swill be 

Now consider 

s 

t' 
0 

V s 
(to- to, 

to ➔ ••• ➔ tn and let 

displayed (sometimes) 

R) . . 
R 

s .=. t 0 be a redex. Con-

by the notation ta s ' -►-ta. 

t n 
,,, 

SJ 

s R' 2 = t + t 0 / R • 

s 
3 

-~ s 
4 

t' 
n 

Then the reduction R' (the projection of the reduction step t 0 ~ t 0 by R) 
consists of a reduction of all the 'descendants' of s via R. 

1.4.I.I. Descendants. The notion of 'descendant (via R)' is defined as fol­

lows. 

(i) If t +sis a rule scheme and p(t) + p(s) an instantiation such· that 

t' .=. p(x) for some occurrence of a variable x int, then t' gives rise 

to some copies, called descendants oft', in p(s), depending on the 

possible occurrences of x ins. 

(ii) Furthermore, if c1 [c2 [p(t)]J ~ c1[c2 [p(s) J ], where c2 [ J is 

not the trivial context (i.e. p(t) Sj- c2[p(t)]), then c2[p(s)] is the 
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(unique) descendant of c2 [p (t) ] . 

Notation. If M - N is a reduction step, Ac M, B c N then A-·-·+ B 

means 'Bis a descendant of A'. 

REMARK. If Bis a descendant of A, A is also called an ancestor of B. Des­

cendants of redexes are also called residuals. Note that the contrac-tum p(s) 

of a redex p(t) is not a descendant of p(t). 

If in (ii) c2 [ ] is allowed to be the trivial context, the resulting 

notion will be that of 'quasi-descendants'. So the contractum of a redex is 

a quasi-descendant of that redex. 

Note that residuals of a r.-redex are again r.-redexes. Furthermore, 
i i 

note that in the above reduction diagram, R' consists of a construction of 

disjoint residuals s 1,s2 , •.. of s. (This would not be the case in the pres­

ence of bound variables as in ~-calculus.) 

1.4.2. Equivalent reductions. The very useful notion of 'equivalence of 

reductions' was introduced first in [12] Intuitively, two reductions 

R1,R2 , both from t tot', are equivalent (written R1 ~ R2) when the 'same' 

reduction steps are performed but possibly in a permuted order. Since re­

dexes may be nested and contraction of one redex may multiply subredexes, 

it is not quite clear what 'permuted' means; but via the notion of reduction 

diagram this can be made precise: 

(so V(R 1,R2) has empty right and lower sides.) 

1.4.3. Finite Developments. Let t be a I:-term and let JR be a set of redex 

occurrences int. Then a reduction oft in which only residuals of redexes 

in JR are contracted, is called a development (of t w.r.t. JR). It is not 

hard to prove that every development oft w.r.t. JR must be finite (See e.g. 

[3,11,13].) 

A development t 0 ➔ ••• + tn of t 0 w. r. t. JR is called complete if it 

cannot be prolonged (i.e. int there are no residuals of redexes in JR 
n 

left). All complete developments oft w.r.t. JR and in the same result. 

We even have: 



1.4.3.I. PROPOSITION. AZZ corrrpZete deveZopments oft w.r.t. lR, a set of 

redex occurrences int, are equivaZent. 

For a proof, see e.g. [II]. D 

1.5. NONLINEAR REDUCTIONS. 
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1.5.1. Type 0' TRS's. For the purpose of a classification to be used in this 

paper, we will call a regular TRS to be of type O. We will in the sequel 

briefly be concerned with a class of .TRS' s which will be called to be of 

type O' and which is obtained as follows from type O TRS's. 

Let L = < F,V,lR> be a TRS of type O. Let L1 be a TRS < F,V,lR '> whose 

set of rule schemes lR' is obtained from lR by identifying some of the vari­

ables occurring in the rule schemes which were previously different. So L 1 

is no longer left-linear. 

1.5.I.0. EXAMPLE.: L has set of rule schemes lR = {D(x,y) ➔ E, 

C(x) ➔ D(x,C(x)) , B ➔ C(B)} • 

Identifying x,y we obtain L 1 with rule schemes lR = {D(x,x) ➔ E, 

C(x) ➔ D(x,C(x)) , B ➔ C(B)}. 

Now L is of type 0, and hence L F CR. However, for the O' TRS L' the CR 

property does not hold; for, consider CB ➔ D(B,CB) ➔ D(CB,CB) ➔ E and 

CB ➔ C(CB) ➔ C(D(B,CB)) - C(D(CB,CB)) ➔ C(E). Then C(E), E have no common 

reduct, as can easily be proved. 

I. 5. 2. Type O" TRS' s. Now let L = < F, V, lR > be a TRS of type O'. 

1.5.2.0. DEFINITION. (i) Lett ➔ s E lR be a non-leftlinear rule scheme. Let 

P be the leading symbol oft. Then Pis called a nonZinear operator. 

(ii) Now suppose that Lis a ranked TRS of type O'. Then Lis called of 

type O" if none of its nonlinear operators occurs in a RHS of some rule 

scheme in lR • 

The following theorem is a corollary of a result in [II], as noted by 

[4]. 

I. 5. 2. I. THEOREM. Let L be of type O". Then L I= CR • □ 
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1.5.2.2. REMARK. The hypothesis that I is ranked in Def. 1.5.2.O (ii) is 

essential for the confluency of O" - reductions. For, consider I= CL (as 

in 1.2) augmented by the rule Dxx ➔ E. Then, as demonstrated in [II], the 

counterexample to CR for I' in Example 1.5.1.O can be simulated for the 

present I= CL+ Dxx ➔ E. Yet the only nonlinear operator Din I occurs in 

no RHS of a rule scheme. 

Translating I to a ranked TRS IA, we get the rule schemes of CLA (see 

1.2) augmented by A((A(D,x),x) ➔ E. Now A is the nonlinear operator (not D) 

and indeed A occurs in several RHS's of rule schemes of IA, as has to be 

the case since I !=/CR implies evidently that also IA l=I CR • 

2. CONDITIONAL TERM REWRITING SYSTEMS 

Algebraic specifications of abstract data types often contain not only equa­

tion schemes t(~) = s(i)(which can be modeled by reduction schemes 
➔ ➔ ➔ ➔ ➔ 

t(x) ➔ s(x)) , but also conditional equation schemes ~(x) => t(x) = s(x) 

where~ is some predicate of the 
➔ 

rule schemes of the form ~(x) ~ 
➔ 

some 'well-behaviour' of the ~(x) 

variables i. Indeed, conditional reduction 
➔ ➔ 

t(x) ➔ s(x) are considered in [13] . There 

is explicitly required in order to have 

confluency and other properties of the generated reductions. 

We will consider reduction rule schemes such as they can be associated 

to what is called in [6] positive conditional equations. These are of the 

form 

t = S A ••• A t = S I I n n t = s 

where t.,s.(i=J[, ••• ,n) and t,s are open terms. The basic assumption that 
l. l. 

we will make (just as in [13] and [14]) to deal with positive conditional 

equation schemes, is that the RHS's t = s of these implications, when viewed 

as reduction rule schemes t ➔ s, constitute a TRS of type O. The condition 
n 

M t. = s. will not be subject to restrictions. In particular it may con-
i= I 1 1 

tain variables not occurring int= s. 

In order to treat(*) as a conditional reduction rule scheme, some 

possibilities concerning the LHS Mti = si arise, as expressed in the fol­

lowing definition. It will turn out (in section 6) that,only two of the 

four possibilities are sensible and interesting. 
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2.1. DEFINITION. (i) A conditional TRS Eis a triple< F,V,m.> where Fis 

a set of operators and Va set of variables and m. is a set of conditional 

reduction rule schemes of the form 

A ••• A t D s n n t ➔ s 

Here D is= (convertibility),+ (having a connnon reduct) or-¥~ • Eis 

cailed, respectively, to be of type I, II or III. 

(ii) If r is a conditionsl reduction rule scheme, r (the unconditional 
u 

part of r) is the RHS t ➔ s of r. 

Likewise m. = { r I r E m.} and E = < F, V, m. > • u u u u 
C (iii) As before, Ter(E) is the set of terms of E, Ter (E) the set of closed 

(iv) 

terms and p denotes an instantiation. 

An unconditional noY'rnal foy,,n of Eis a normal form of E • (I.e. a 
u 

term which cannot be unified with the LHS t of the RHS t ➔ s of some 

r E m_.) 

We will mainly be interested in the following subclass of type III 

TRS's: 

2.2. DEFINITION. Let Ebe of type III where in every conditional rule scheme 

t ➔ s 

then. (i=1, ••• ,k) are closed unconditional noY'rnal foY'rns. 
1 

Then Eis called to be of type III 
n 

2.3. EXAMPLES. (i) This example of an algebraic specification, modeled as 

a type III TRS, is given in [14]. The III - TRS's there considered, 
n n 

have conditional rule schemes of the form 

B --r> true ~ t ➔ s 

where Bis of boolean type; an important difference with the present paper 

is the hierarchical structure underlying the III - TRS's studied in [14]. 
n 

(See section 10 below.) 
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BOUNDED-STACK 

sorts: b-stack, entry, bool, int 

constants: O,M E int, true E bool, ~Eb-stack,$ E entry 

functions: PUSH; b-stack x entry + b-stack 

axioms: 

POP: b-stack + b-stack 

TOP: b-stack + entry 

<: int x int+ bool 

# b-stack + int 

S: int + int 

# (0)-. o 
# (PUSH (x,y)) - s(#(x)) 

M -r S(S(S(S(O)))) 

POP (0) - 0 

(less than) 

( # size) 

(S: successor) 

# (x) < M -> .true POP (PUSH(x,y))-+ x 

TOP (0) - e 
# (x) < M -> true TOP (PUSH(x,y)) -~ y 

(ii) The following example is included merely for illustrative purposes. 

'Trivial Combinatory Logic' , TCL, has the same operators I, K, Sas 

CL in 1.2, and has conditional rule schemes: 

a -r> I A b --+-> I A c --+> I 

a -+> I A b --r> I 

Sabe -+ ac(bc) 

a -+> I 

TCL is a type III TRS. 
n 

Kah 

Ia 

-+ a 

-+ a 

(iii) CL+ the conditional rule scheme x + y => D(x,y) +Eis a type II 

TRS. 

2.4. Generating the rules from the conditional rule schemes. 

k 
If r = . ti!.. t. -> n. => t + s is a type III conditional rule 

i= 1 i i n 
scheme and pis an instantiation, then 
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p(r) = 
k 
M p(t.) -> n .... p(t) + p(s) 
i= 1 1 1 

is called a conditional closed rule. The word 'closed' will sometimes be 

dropped; but the presence of conditions will always explicitly be mentioned. 

So a rule has the form p(t) - p(s), without conditions. The rules 

p(t) - p(s) which give rise to the reduction steps C [p(t)] - C [p(s)], 

are generated from JR., the set of conditional reduction rule schemes, as 

follows. 

First we recall the notation JR., for the set of closed instances of the 

conditional reduction rule schemes in JR., and R0 for the contextual, tran­

sitive reflexive closure of a binary relation on Terc(E)(a set of rules). 

In order to bring out the 'least fixed point' aspect of the reduction -

that is determined by JR., we define: 

2.4.1. DEFINITION (Application of sets of conditional rules.) 

(i) Let X be a set of closed conditional rules M t. -> n. .. t- s 
l. l. 

and let Y be a set of closed rules t. - s. (j E I). Then X (Y) 
J J 

('X applied to Y') is the following set of closed rules: 

t-+ s E X(Y) <==> t - s E y or . there is a conditional , . 
rule M t. -➔> n. .. t ➔ s in X such that t. -+> n. E Y 0 for 

i<k l. l. l. l. 

all i < k. 

Notation: X2(Y) = X(X(Y)) , etc. 

(ii) Now let I=< F,V,lR> be a TRS of type III • Then R(E) is the set n 
rules of I, and we define: 

R(E) = U iRn (0) • 
nEW 

(iii) Now the reduction relation - of I is R(E)m (the monotonic· or 

'contextual' closure of R(E)) and -> is R(E)m * (= R (r) 0 ) 

(iv) We will define the intermediate reductions k (k E w): 
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(So () = (/Jm = 16 and ~> = (/Jm * = 0* = - . ) 
(v) RED(I) l.S the set of redexes, i.e. the LHS's of elements of R(I). 

is the set of normal forms, i.e. terms not containing a redex. 

2.4.1.1. REMARK. (i) Note that~ = U ~ • 
kEW 

NF (I)· 

(ii) Definition 2.4.I is given for type III(n) conditional rule schemes, but 

it is obvious how to adapt the definition to the case of type I, II. 

2.4.1.2. EXAMPLE. Consider TCL as in Example 2.3 (ii). Then e.g. SIII --+> I, 

S(SIII) II --r> I . However SSII is a normal form, albeit not an uncondi­

tional one. 

3. STABILITY OF CONDITIONS 

Let us for the moment consider conditional TRS's where the condition~ in a 

conditional reduction rule scheme 

➔ ➔ 

~(x,y) 
➔ ➔ 

t(x) ➔ s(x) 

➔ 
is an arbitrary predicate. Here the variables y do not occur in the RHS of 

the implication. 

(Note that the :intended meaning of the quantification of the variables 

; , y is as follows: 

➔ -➔ ➔ ➔ 
Vx , y [~(x,y) 

➔ ➔ 
t(x) ➔ s(x)] 

which is by predicate logic equivalent to 

➔ ➔ + ➔ Vx [i(3y ~(x,y) ➔ ➔ 
t(x) -- s(x)].) 

Let I be a conditional TRS where the conditional rule schemes have the form 
➔ ➔ 

~(x,y) 

type 0. 

t(t) ➔ s(1), and such that the unconditional part I 
u 

(Note that if pis an instantiation such that ~(p~,py) 

is of 



19 

(whence A= p(t(~)) - p(s(~)) =Bis a rule of E) and Cc A is a proper 
➔ 

subredex, then because Eu is of type O, C .=. p(xi) for some xi Ex(= x1, ••• ,xn). 

Now suppose that we have two diverging reduction steps 

➔ ➔ 
~(px,py) 

' A ______ -?! 
I 
I 
I 

contraction 
of C 

A' 

I 
I 
I 
I 
I 

-------- ;f 
D 

B 

Then the construction of the corresponding elementary diagram needs 

the validity of the condition 

➔ ~(p(x1), ••• ,p(x.)', ••• ,p(x) ,p(y)), 
l. n 

where p(x.)' results from p(x.) by contracting C. 
l. l. 

3.1. DEFINITION. If in the above situation for every p the validity of~ 

is preserved, then~ is called a stable condition. 

3.2. THEOREM (O'Donnell [13]). Let Ebe a conditional TRS with conditional 

rule schemes ~(~,y) ~ t(~) + s(~) such that E is of type O and all 
u 

conditions~ are stable. Then E - reductions are confluent, and corronon re-

ducts can be found by the canonic:Jal reduction diagram construction as in 

r.4. 

PROOF. The stability of the conditions ensures that elementary diagrams can 

be constructed, as if we were working in E • D u 

COROLLARY. Type I reductions are confluent. 

PROOF. Consider a type I conditional rule scheme: 

➔ ➔ 
t(x) + s(x) 
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+ ➔ 

Then the condition ~(x,y) defined by the,LHS of this implication is obvious-
• • ( ➔ ➔) ( ➔ ➔) • • ly stable, since if t. px,py = s. px,py then reduction in one of the 

i i 

p(x.) does not disturb the equality (as it is the transitive reflexive 
J 

symmetric closure of reduction). □ 

3.4. REMARK. Intuitively, confluency for type III reductions is not plausi.:.. 

ble, since if 

➔ ➔ 
T. = t.(p(x,y)) 

i i 

➔➔ 
-> s.(p(x,y)) = S. 

i i 

(cf. the proof of Coroll. 3.3) then reduction in one of the p(xj) may very 

well disturb the condition: 

T. s. 
]. ]. 

l 1 
T! s! 

]. ]. 

and now T ! -> S ! cannot be expected; even if CR would hold we have only 
]. ]. 

s. 
]. 

s. 
]. 

For III - reductions however, S. is a closed normal form and hence we may n l. 

hope to have stability: 

Ti~Si 

T'. 
]. 

Likewise, for II - reductions, stability is not a priori impossible: 
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1 

A bit surprisingly, it will turn out that in the case of II - reductions, 

CR. fails. 

First we establish the 

4. CONFLUENCY OF TYPE III REDUCTIONS n 

THEOREM. Let Ebe a type III n TRS. Then E- reductions are confluent, and 

21 

common reducts can be found by the canonical reduction diagram construction 

as in 1 .4. 

PROOF. We recall the definition of the intermediate reduction relations 

- (n € w) in Definition 2.4.1. n 

CLAIM. Let A - B and A - C . So A--+ B and A--+ C. Let V be n m 
the elementary diagram determined by these two reduction steps. Then for 

the common reduct D (see figure) we have not only B --+> D and C --+> D, 

but even B -> D and C -> D. m n 

A B 
' r 

n 

m V m 

'/ -- ~ f 

C n D 
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Clearly, the result in the theorem follows.at once from the claim, since we 

already know that diagram constructions (as in 1.4) by repeatedly adjoining 

elementary diagrams, must terminate in a completed diagram. 

PROOF OF THE CLAIM. By induction to n +m. 

Basis: n = m = 0. In this case the claim is vacuously true, since O is 

the empty relation. 

Induction step: Suppose the claim is true for all n,m such that n +ms k. 

Consider n,m with n + m = k +I. Say n > O. The only interesting case is that 

where A is a redex, A - p(t) containing a proper subredex S which is 

contracted in the step 

A - p(t) -

B -

P (x) 
~ 

C [S] 

m 

C [S '] 

'--v----' 
P' (x) 

A---+ C : 
m 

n 

------ --- -), 

n? 

C s s ) - P (s) 

ml 

ml 

C S' s I ) - D 

-

In the reduction B -> D where copies of Sare contracted, there is no 

problem : B -> D. 
m 

The question is, however, whether the step B --➔ D is an n - step. 

Let the step A ----+- B be generated by the conditional rule scheme 

M t. -+> n. => t ➔ s , via instantiation p. This means, by defini-
i<k l. l. 

tion of - ' 
that p (t.) -r n. for i < k. Because E is of type o, 

n l. n-1 l. u 
we have S .=. p (x) for some x int. Say p(x) = C [SJ for some context C [ 

We have to prove that also p' ( t.) ~ 1 ~ n. for i < k , where 
l. n- l. 

p' (x) = C [S'] , S' is the contractum of S, and p' (y) = p (y) for y :f:. ·x. 

For, then B = p'(t) -n n 
will be a consequence. 

]. 

B 
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Now the induction hypothesis states that 

LJ I m m 

-~ 
n-1 

(i.e. the claim holds for n-1,m). So we can construct a diagram e.g. as in 

the figure: 

p (ti) = -- C [S] - - C [S] - - C [SJ - -

' r 

n-1 n-1 n-1 
s m m m 

,/ ,i, 1, 
, 

n-1 n-1 n-1 
s m m m m 

m 
,/ \II ,, 

n-1 n-1 n-1 

s m 

I/ ,11 
-

n..:.J n-1 

p'(t.) = -- C[S']-- C[S'] -- C [S'] --
1 

.. 
r 

n-1 
m 

,v 

' , I 
I 
I 
I 
I 
I 
I 

I 
I 
1 

I 
I 
I 
I 

I 
I 
I 

I 
I 
I 

n. 
1 

0, empty 
reduction 

n. 
1 

Hence p ' ( t . ) 
1 

-n---1-~ ni (i<k) • This proves the claim and thereby the 

theorem. □ 

5. EMBEDDING CONDITIONAL TRS'S IN UNCONDITIONAL ONES 

By introducing some more operators in a conditional TRS of type II or III, 

we can eliminate the conditions. That is, the conditional TRS's can be em­

bedded in unconditional ones. We will not explore the more formal aspects 

of this embedding, but use it as a heuristic tool to construct the counter­

examples to the CR-property for some type II and TRS's in the next section, 
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and moreover we will use the embedding in 9rder to state a natural criterion 

for decidability of the set of normal forms in a type III TRS r, in sec-· 
n 

tion 8. 

5.1. DEFINITION. Let I=< F,V,lR = {r.l i e:J} > be a TRS of type III. 
l. 

(i) To each conditional rule scheme 

r. 
l. 

k 
M t. --+-> s. 
j= 1 J J 

t -+- s 

we associate the pair of rule schemes r ! , r'.' (i e: J) 
l. l. 

lR J> = { r ! , r ! . I i e: J} u { Ix --+- x } • 
u l. l.l. 

5.2. DEFINITION. Let r = < F,V,lR = {rili e:J} > be a TRS of type II. 

(i) To each conditional rule scheme 

r.: 
l. 

k 
M.1 t. + s. 
3= J J 

.... t --- s 

we associate the pair of rule schemes r ! r " ( i e: J) l. , i 

(ii) I 0 is defined analogous to Definition 5.1. 



5.3. PROPOSITION. (i) Let L be of type III. Then L0 is a ZeftZineaP TRS 

(but possib Zy ambiguous). 

(ii) Let L be of type IIIn • Then L0 is of type 0. 

(iii) Let L be of type II • Then LO is of type O' (but not of type O"). 

PROOF. Obvious. 

5.4. PROPOSITION. Let L be of type III • Then for au t,s E Ter(L) 
n 

i I= t ~>s r I= t-+>s. 
0 

PROOF. A routine induction on n (in --+->); each L - reduction step can be n 
simulated in L0 , by construction. 

5.4.1. REMARK. The reverse implication(.-) in Proposition 5.4 holds also, 

but since we have no need for it, we will omit a proof. 

6. TYPE II AND III REDUCTIONS ARE NOT CONFLUENT 

6. 1 • Consider the type II TRS L where lR = 

{ 
x + C(x) 
B-+ C(B) 

C(x) -+ E 

Then L0 is a type O' TRS with lR.0 = 

C(x)--+- o(x,C(x)) E 

o(x,x)-+ I 

Ix-+ x 

B -+ C(B) 

25 

□ 

□ 

(Note that we use ranked and applicative notation simultaneously; cf. 1.2) 

Cf. Example 1.5.1.0. As in Example 1.5.1.0, L0 I# CR : 
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B--+ C(B) -r o (B ,C(B))E--+ ~ (C(B),C(B))E--+ IE--+ E 

1 
C(E) 

and now C(E) t E as is easily seen. 

By analogy, we have also E l=I= CR : 

Bi C(B) 

' B --~ C(B) E 

i 
C(C(B)) 

i 
C(E) 

and now C(E) ! E, as can easily be proved. 

6.2. A variant of this counterexample, the type III TRS E' with lR = 

{ 
X --+> C(x) 
B, -r C(B) 

C(x)--+ E 

shows that type III reductions are in general not confluent. 

6.3. EXAMPLE. Consider the type II TRS as in Example 2.3 (iii): 

E =CL+ xi y ~ D xy ➔ E. Then, intuitively, the CR-problem for E 

is the same as for E0 = CL = {D xy --+ o(x,y) E, o(x,x) -+ I}. Again, it is 

intuitively clear that E0 has the same CR-problem as 

EIS= CL+ {Dxy-+ o'(x,y), o'(x,x)-+ E}. 

But this is nothing else than i:8 =CL+ {Dxx--+ E} for which E6 ~ CR 

by a counterexample analogous to the one in Example 1.5.1.0. (Cf.also Remark 

1 • 5. 2. 2) • Hence E l=I= CR. 

7. THE COMPLEXITY OF NORMAL FORMS 

Given an unconditional TRS E, the set NF(E) of normal forms is clearly 

decidable. This is no longer true when E is of type I or III , in which 
0 n 

cases the complexity of NF(E) can even be complete n1 • (By the nonconfluency 
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result of the last section we will no long~r consider type II TRS's and type 

III TRS's in general.) 

We will give some conditions for E in order to have a decidable set of 

normal forms, which is important if one wants to use terminating reduction 

strategies (see section 9). 

7.1. DEFINITION. Let Ebe a TRS (of type O, I, III). 
n 

(i) Then the set of nomal foms of E , NF(E), is the set of E-terms M 

such that 7 3 N M + N. 

(ii) Let E be the unconditional TRS (so of type O) associated with E. Then 
u 

NF(E) c NF(E) is called the set of unconditional nomaZ foms of E. 
u -

(iii) Let E have the conditional rule schemes r 1, ••• ,rn. Then M E Ter(E) is 

a r. -preredex if M is a (r.) - redex of E • (Recall that (r.) is 
1 1 U U 1 U 

the unconditional part of r .• ) 
1 

In the case of III - TRS's, which are our main interest, the normal 
n 

forms are naturally partitioned in a hierarchy, as follows. 

7.2. DEFINITION. Let Ebe a III -TRS. 
n 

(i) By induction on n we will define the set NF (E) c NF(E) of nomaZ foms 
n -

of orde:r> n. 

Basis. NF0 (E) = NF(Eu), the set of unconditional normal forms. 

Induction step. Suppose the set of normal forms of order n, NF (E), is de­n 
fined. Then NF 1(E) is defined by: 

n+ 

ME NF 1(E) iff whenever M' c Mis an r-predex (where r is a conditional 
n+ 

rule scheme of E and r is t 1 +> n 1 A ••• A tk +> ~ ~ t + s , so M' is 

an instance oft, say M'= p(t)), then for some j e: {I, ••• ,k}: 

3 l::;; n p(t.) +> N 
J 

& n .• 
J 

We will call a normal form of order n also a n-nomaZ fom. 

(ii) NFf(E), the set of normal forms of finite order, is U NF (E). 
nEW n 

7.2.I. PROPOSITION. (i) NF0 .=_ NF 1 c NF 2 c 

(ii) NF f .=_ NF. 
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PROOF. (i) obvious; (ii) follows by a simpie induction from the CR property 

for III TRS's (Theorem 4), noting that CR implies unicity of normal forms. n . 

□ 

7.2.2. FIGURE. So we have a 'spectrum' of irreducibility as follows: 

NF£ 

Ter(I) 

normal forms (NF) reducible terms 

7.3. EXAMPLE. Consider TCL as in Example 2.3 (ii). Then SII is a O-normal 

form, Q = SII (SII) is a I-normal form, SQ n Q is a 2-normal form. In fact, 

every non-reducible term will be in this case a normal form of finite order 

(by Proposition 7.5 below). 

7.4. PROPOSITION. Let I= <F,V,IR> be of type III • Suppose IR is finite.Then: n 
(i) The set NFf(I) of normal forms of finite order is semi-decidable. 

(ii) The set NF(I) of normal forms may be v.ndeaidable. 

PROOF. (i) is. apparent from the definition. (ii). Consider the TRS CL , as 

in 1.2. It is well~known that the natural numbers can be represented by CL­

terms n , which are in normal form ; furthermore, there exists a CL-term E , 

also in normal form, which acts as an enumerator in the sense that, if 
j 7 

: Ter (CL) -+ lN is a recursive coding of CL-terms: 

E l"Ml ~> M 

for all ME Ter (CL). For a proof, see [I] p. 162. 

Now consider I= CL extended by a new operator T and the conditional 

rule 

Tx-+ I • 



Note that the E - reduction -+ , thus obtai~ed, satisfies 

Ex --+> 0 Tx--+ 1 • 

Hence, if NF(E) were decidable, the set 

{ M E Ter ( CL) I E M -+> 0 } 

and in particular 

{ n E Ter(CL) I En -+> 0 } 

would be decidable. Since E f CR (Theorem 4) and noting that, hence, 

E n -+-> M and E n -+-> _Q implies M --+-> 0 , this would mean that 

{M E Ter(CL) I M -+-> 0 } 
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is a decidable set, which is not true. (This follows e.g. from a theorem of 

Scott, see [l] p. 140, as follows: 

If 0 :j- X 5j Ter(CL) and Xis closed under equality, then Xis not recur­

sive.) 

So NF(E) is not decidable. D 

7.4.1. REMARK. If NF(E) is not decidable, it is clearly also not semi-deci­

dable, since the complement Ter(E)-NF(E) is semi-decidable. Being the com­

plement of a semi-decidable set (i.e. of complexity E~), NF(E) has always 

complexity IT~. For E as in the proof of Proposition 7.4 (ii), it is not hard 
0 to show that NF(E) is complete rr 1 • 

Next we will state some conditions for III - TRS's which ensure the 
n 

decidability of the set of normal forms. 

7. 5. DEFINITION. ( i) Let E be a I I I - TRS. Then E 'has subtePl71 aondi tions ' 
n 

iff for every instance of a conditional rule scheme 

p(t)-+ p(s) 
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we have 

p(t.) a: p(t)(i.e. p(t.)is a proper subterm of p(t)) for all 
i -r i 

i=l, ..• ,k. 

(ii) As a special case of (i), we say that E 'has vaI'iahZe conditions' iff 

every conditional rule scheme is of the form 

t - s 

whe:re x 1 , ••• , ~ are variables occurring in t. 

7.6. PROPOSITION. If Eis a III - TRS having subterm conditions, then: 
n 

(i) NF(E) = NFf(E) 

(ii) NF(E) is decidable. 

PROOF. (i) Let M be a term which is not reducible, and suppose that Mis not 

a normal form of finite order. Choose M minimal so, w.r.t. c. Hence all 

proper subterms of Mare normal forms of finite order. Let m be the maximum 

of their orders. Then clearly Mis a normal form of order m + I, since E has 

subterm conditions. 

(ii) The set of reducible terms is semi-decidable (just generate all pos­

sible finite reductions, as in Definition 2.4.1). By Proposition 7.4(i) and 

(i) of this Proposition, its complement NF is also semi-decidable. Hence 

both the set of reducible terms and NF are decidable. 

7 .6.1. EXAMPLE. TCL , in Example 2.3 (ii), has variable conditions. Hence 

NF is decidable. 

7.7. DEFINITION. Let Ebe a TRS. 

(i) Then E ~ SN ('E has the Strong Normalization property') 

□ 

iff there are no infinite E-reduction. Equivalently: iff every E-reduction 

terminates eventually (in NF(E)). 

(ii) E F WN ('Weak Normalization') iff every M € Ter(E) has a normal form, 

i.e. there exists an R = M ➔ ••• ➔ N with N € NF(E). 
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7.8. DEFINITION. Let Ebe a III - TRS. Then: n 
(i) E r , .. N 

,:> 0 iff every reduction terminates eventually in a O-normal form; 

(ii) E 1= SNf iff every reduction terminates eventually in a normal form of 

finite ord,~r. 

7.9. THEOREM. (Criteria for NF-decidability in III -reductions). Let Ebe a 
n 

III - TRS .. Then the following implications hold. 
n 

I ( i) l: I= SNO 

J triv. 

I (iii) l:u I= SN I (iv) 
l: I= SN£ 

Jj,triv. 
~iv. 

Jtriv. 

l(vi) 
l: I= SN 

n as in 7 .6 

(viii) 
NF (l:) is dee idable 

I (ii) 
. l: 0 I= SN 

(v) 
l: has subte 
conditions 

~op. 7.6 

PROOF. (v) => (vii) => (viii) is Proposition 7.6. (iii) => (vi) , 

(i) => 

initions. 

(iv) => (vi) and (iv) => (vii) follow trivially from the def-

To prove (ii) => (iv), assume E, I= SN. By Proposition 5.4, E I= SN . Hence 
0 

it suffices to prove NFf(E) = NF(E). For a proof by contradiction, suppose 

there is a normal form M without finite order. Say M _ C [p (t)] for some con-

ditional rule scheme ti ➔> nl I\ ... I\ tk +> ~ => t +sand some context 

C [ J • By SN , all p(t.)(i=l, .•• ,k) have a normal form n'. . One of then~ 
l. l. l. 

must be wrong (n ! t n.) and without finite order. Say n! is such a wrong 
l. l. l. 

normal form without finite order. Write M' = n! 
. . io 

Since M' is a normal form without f1.n1.te order, the same reasoning as 

for M applies to M'. Continuing in this way we fined an infinite sequence 

M, M',M'', ..... This sequence is reflected in an infinite reduction in E0 
as follows. (Here we use Proposition 5.4 which says that reductions 1.n E 

can be simulated in E0 .) 
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and so on. 

M _ C [p (t)] ➔ C [ o( p(t 1) , ••• ,p (ti), ••• , p (tk)) p (s)] 
0 l Prop. 5.4 

V 

□ 

7.9.1. REMARK. Most of the valid implications between (i), ••• ,(viii) are 

displayed in the diagram of implications in Theorem 7.9. Several of the non­

implications follow by considering the next example. A positive answer to 

the. following question would yield a useful criterion for NF - decidability: 

does (iii) => (viii) hold?((iii) ~ (vii) as the next example shows.} 

7.10. EXAMPLE. (i) Let r have as operators 

and conditional rule schemes: 

c-> o A+B 

C + D 

D ➔ F 

F ➔ A • 

A,B,C,D~E,F,O, all of arity O, 

Then NF(E) = {A,B,C,E,0} and NFf(E) = {B,E,O} • Since NF(E) :/: NFf(E) , we 

must have r O Ir SN. Indeed this is the case; r O has rule schemes: 

A -➔ oCB 

o O -r I 

Ix -➔ x 

D -➔ o' FE 

o'O-➔ I 

C -+ D 

F -➔ A 

and now A - o CB-➔ o DB -r o(o'FE) B -+ o(o'AE) B -+ • • • yields an in­

finite reduction. 
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(ii) I: has as only scheme the conditional rule scheme 

L(L(x)) -+> 0 L(x) -+> l • 

Then L(O) is a normal form without finite order. In fact, 

8. CRITERIA FOR TERMINATION. 

In this section we will mention some criteria, given in [11], for termina­

tion, i.e. properties implying I: I= SN , which hold for I: of type O and 

which generalize to type I, III . The proofs are verbatim the same as those 
n 

for type O in [11] and will not be repeated here. 

We will suppose that some 'oracle' is given telling us what the redexes 

of I are (i.e. the LHS's of the rules in R(I:) as defined 1n 2.4.1). Let 

RED(E) be thE~ set of I:-redexes. In this connection, let us mention the 

Question. An~ the following equivalent? 

(i) NF(I:) is decidable 

(ii) RED(E) is decidable. 

( (ii) => (:i.) is trivial. Furthermore, it is easy to show that 

I: I= SN & NF(I:) decidable RED(I:) decidable. 

However, since we are concerned with termination criteria and, in the next 

section, with terminating reduction strategies, this concern would trivia­

lize when SN is already assumed.) 

8. l. DEFINITION. (i) A rule scheme t -+ s is non-e1'asing when t, s have the 

sane variabli~s (e.g. Kxy -+ x is an erasing rule scheme). 

(ii) A type O TRS I: is non-erasing when all its rule schemes are. 

(iii) A type I or III TRS I: is non-erasing when I: is non-erasing. 
n u 

Notation: I: I= NE • 

8.2. THEOREM. Let I: be of type I or III 
n 

Then: I: I= NE => ( I: I= WN <=> r I= SN) . 

(For WN, SN see Definition 7. 7.) 
□ 
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So in order to prove Strong Normalization for a non-erasing TRS of type I, 

III it is sufficient to prove Weak Normalization. n 

8.3. DEFINITION. Let r be of type I or III. 
n 

r I= WIN (Weak Innermost Normalization) iff every r-term has a normal form 

which can be found by reducing innermost r-redexes. 

8.4. THEOREM. (O'DONNELL [13]) 

Let r be of type I or III • Then: 
n 

rl=WIN.,..;. L I= SN • 

8.5. DEFINITION. Let r be of type I or III • r I= DR (Decreasing Redexes) 
n 

iff there is a map d: RED(r) -+- 1N, such that 

(i) if R' is a residual of R in some reduction step, then d(R) ~ d{R') ; 

(ii) if R' is created by contraction of R in some reduction step, then 

d (R) > d (R' ) • 

8.6. THEOREM. Let r be of type I or III 
n 

Then: 

D 

L I= DR L I= SN • D 

9. TERMINATING REDUCTION STRATEGIES 

Analogous to the previous section, also the main results about terminating 

reduction strategies for type O TRS's carry over to the case of I or III 
n 

TRS's. In order to execute strategies, we assume again an oracle deciding 

for us whether a r -redex is also a r-redex. 
u 

For the definitions of the following strategies we refer to [11,13,14]. 

9.1. THEOREM. Let r be a type I or III TRS. Then the following are termi­
n 

nating reduction strategies (i.e. find the normal form when it exists) 

(i) the 'full substitution' strategy (or 'full computation' strategy) 

(ii) the 'parallel outermost' strategy. 
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PROOF. (i) As for the type O case, see [11] • 

(ii) As for the type O case, see [13]; or see the Appendix in Section 12. D · 

10. HIERARCHICAL CONDITIONAL TRS'S 

In [ 14] an interesting class of III -TRS 's is introduced and analyzed , name­
n 

ly conditional TRS's with a hierarchical structure. In order to define 

these hierarchically structured TRS's, first the following definition. 

IO.I. DEFINITION. (i) Let lR be a set of conditional rule schemes, and 
c T -Tc Ter (E) some set of terms. Then lR (.=. lR) is the set of all conditional 

rules obtained by instantiations p: V-+ T. 

(ii) If E = <F,V,lR> and E' = <F',V,lR'-> are TRS's, then 

F C F' & ]R C ]R. 1 • 

Now Pletat et.al. consider in [14] TRS's obtained as follows. 

Given is a finite chain r 0 c E 1 c ••• c r· where E. = < F. , V, ]R. > , 
- - -n i l. l. 

i ~ n, m0 contains only unconditional rule schemes, Ri+l (i<n) contains 

conditional rule schemes M t. -+> n. => t -+ s of type III such that 
J J n 

the conditions t. ~ n. contain only terms E Ter(E.). 
J J l. 

(In fact the E. (i ~ n) in the definition of [ 14] are subject to sig-
1. 

nature restrictions; this does not seem essential however.) 

Furthermore, let Ebe En; then the set of closed rules of E, ¾(E), is 

defined by the following inductive definition. (Cf.Definition 2.4.1; we 

write ¾(E) instead of R(E) here to denote that the hierarchy has to be 

taken into account.) Let T. abbreviate Terc(E.) , i = 0, ••• , n. 
l. l. 

In order to have the CR property, [l4] requires the property of 'forward­

preserving': 

A E Ti & A ➔ BE¾ (Ei+l) 

i < n. This property is implied by a syntactic requirement, viz. if 
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M t. -+> n. 
J J 

t +sis a conditional rule scheme in ]Ri+l , then t 

contains a 'new' operator E F. 1 - F •• 
l. + l. 

Also in this approach the problem of decidability of the set of redexes, 

RED(E) , and of the set of normal forms, NF(E), arises. (The example in the 
0 proof of Proposition 7.4(ii) , where NF(E) was complete n1 , applies also 

in this hierarchical case.) 

We note that the hierarchical approach does not yield always the same 

congruence on the set of terms as our definition. Namely: let A be an alge­

braic specification with conditional equations. Suppose to A we can associ­

ate a type IIIn TRS EA , as in Example 2. 3 ( i) ('BOUNDED STACK 1 ) which was 

taken from [14]. Then the reduction-+ which we have constructed as a 'least 

fixed point', yields the same congruence as the initial algebra semantics 

of A. We will not give the routine proof of this fact here. 

However, when A is 'partitioned' so as to obtain a hierarchical 

TRS EA, the reduction relation given by ¾(EA) may yield a congruence which 

is strictly coarser than the congruence of the initial algebra semantics. 

A simple example to show this is: 

10.2. EXAMPLE. EO = < { P,~,0} , V, {P(~x) + 0} >, 

EI = < { P, ~, 0 , A, B, C } , V, { P ( (!x) + 0, C + C, 

A(x) -- B} > 

Now the chain E0 .=. E1 determines a hierarchical TRS in the sense of [14] , 

which is 'forward complete'. According to our definition 2.4.I, R(E 1) con-

tains A(~C)-+ B, since also P(~C)-+ 0 E 

For the hierarchical TRS , P(QC)-+ 0 , since 

C 
C Ter (E 0). Hence A(~C)-+ B '-

Probably it will be possibly to extend the definition of hierarchical 

TRS in a simple way so as to obtain coincidence of the congruence thus de­

termined and the congruence of the initial algebra semantics. 



11. POSSIBLE EXTENSIONS 

In this section we will mention some directions in which the preceding re­

sults can be generalized, and a direction in which such a generalization 

fails. 

11.1. Disjunctions. It is not hard to prove that also disjunctions may be 

allowed in the LHS of a type I or III conditional reduction rule scheme, 
n 

while retaining the confluency results. 

E.g. 

x -> 0 v (x -+> 1 A y -+> O) P(x,y)-+- (Q 
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is such a type III conditional rule scheme. The 'effect' of this conditional 
n 

rule scheme is the same as that of the pair of conditional rule schemes 

X -+> 0 P(x,y)-+ (Q 

X --+> 1 A y -+> 0 P(x,y)-+ (Q. 

(If E contains such a pair r 0, r 1 , where (r0)u = (r 1)u, Eu will be ambi­

guous; but this ambiguity is entirely harmless.) 

11.2. Infinite disjunctions. In the same way we may admit infinite disjunc­

tions in the LHS of a type I or III conditional rule scheme. Thus we ob-
n 

tain rules like 

P(x)-+- (Jl 

('If x has an unconditional normal form, then P(x)-+ (Q.') 

11.3. Bound variables. It is also possible to derive the preceding results 

(except the one about WIN, in Theorem 8.4) for CR S's as in [11], i.e. 

TRS's with bound variables, having reduction rule schemes like e.g. 
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(Ax. A(x))B --+- A(B) 

µx. A(x) --+- A(µx. A(x)) 

C(Ax. M(x), Ay. N(y))--+- Ay. M(N(y)) 

In the next section we generalize a result of O'Donnell to this case. 

11.4. Ambiguous TRS's. In [8] a confluency theorem is proved for (uncondi­

tional) TRS's that are left-linear, but may be ambiguous (i.e. have critical 

pairs, see [8]) : 

THEOREM. (HUET [8]). If Tis a leftlinear TRS and foP evePy aPitiaal paiP 

< P, ~ > we have P -/f-➔ IQ , then T is aonfluent. 

(Here -11--➔ denotes parallel reduction at disjoint occurrences.) We remark 

that the confluency of TRS's as in Huet's theorem is innnediately disturbed 

when conditions are added of types I, or III •· The following TRS E pro-
n 

vides a simple counterexample to the CR property: 

{ 
P(IQ(x))--+- P(R(x)) 

E ~(H(x)) --+- R(x) 

S (x) -> T ~ R(x) -+ R(H(x)) 

The only critical pair of E is < A,B > as in the diagram: 

P(~(H(x))) P(R(H(x))) - B 

l 
I 
I 

A - P(R(x)) -11--+ P(R(H(x))) - B 

Indeed A f-➔ B , hence E I= CR by Huet's theorem. However in Ethe terms u 
A , B have no connnon reduct, since the condition S(x) -+> T is never true. 
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12. APPENDIX. Parallel outermost and leftmost reductions. 

In this appendix we will give an account of O'Donnell's ingenious proof that 

parallel outermost reductions are terminating whenever possible, and like­

wise for leftmost reductions if an additional assumption is made. Our version 

of the proof will illustrate our terminology of reduction diagrams, which, 

we feel, exhibits the structure of the proof more clearly. Moreover, we will 

prove a strengthened version, applying also to the case of term rewriting 
-;;f' 

systems with bound variables (e.g. a TRS containing A-calculus). This ans-

wers a suggestion in O'DONNELL [13] ('Further Research',p.102), namely to 

generalize his Theorem 10 to 'SRSs with pseudoresidual maps' • In fact, our 

generalization goes further than that; it applies also to the class of 'Com­

binatory Reduction Systems' as in [II] . 

12.1. PROPOSITION. Let V be an elementary Peduction diagPam as in the figuPe, 

and let Ri =. Mi(i=0,2,3) be Pedexes such that¾-•-•+ R2 -•-•+ R3 • (See 

def. 1.4.I.I.) 

Then there is a unique Pedex R1 =. M1 such that R0 -•-•+ R1---•+ R3 • 

'-, 

RO-·-·-·-· R1 
! ! 
! I 
I V i 
! i 
I ! 
R2 ·-·-·-·- R3H 

'~ -

PROOF. Routine. □ 

12.2. DEFINITION. Let rr be a predicate on pairs of terms M,R such that 

R c Mand Risa redex. (If it is clear what Mis meant, we will call R such 

that rr (M, R) a '1T-redex' • ) 

(i) rr has property I if, in the situation of Proposition 12.1: 

'IT (M0 ,R0) & rr (M2,R2) & 'IT (M3 ,R3) .,. 'IT (M1 ,R1) • 

(ii) 'IT has property II if in every reduction step M R M' such that 

7 'IT (M,R) , every redex S' c M' such that 'IT(M' ,S') has an ancestor redex 
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S ~ M with ,r (M,S) • (" 7 ir-steps cannot ere.ate new ,r-redexes") 

12.3. PROPOSITION. (Separ>abiZity of developments) 

Let ,r have property II. Then every development R = M0 -+- • • • -+- Mn can be 

separ>ated into a 'ir-part' foZZ(Jl..,)ed by a '7 ,r-part'; i.e. there ar>e reductions 
Ro Rk-1 . 

R : M0 = N0 - • • • ---r Nk such that ,r (N. ,R.) (i< k) and 
,r Ro 1 1. 

R 7 ,r : Nk -'--+- • • • Nk+l = M11 such that 7,r (N j , Rj) (k~J <k+l) • 

Moreover, R is equivalent to R * R 7 • ( '*' denotes concatenation) 
1T 1T 

PROOF. Let R be a development of some set lR of redexes in MO • Let these be 

characterized by underlining their head symbol. Contracting each step an ar­

bit.rary underlined ,r-redex, must lead to a term in which all remaining un­

derlined redexes are 7,r-redexes. (This is so by the 'Finite Developments' 

Lemma I • 4 • 3 • ) 

Then we start contracting the underlined 7,r-redexes. By property II, 

this process will not create new underlined ,r-redexes. Also this 7,r-part of 

the development stops eventually. 

The equivalence follows because all developments of the same lR are 

equivalent. (I.4.3.1). 

12.3.1. REMARK. For TRS's we do not need this proposition in the proof of 

Theorem 12.8. When bound varables are present, we do. 

12.4. EXAMPLE. (i) ,r (M,R) ~ Risa redex. Then properties I,II hold 

(I is Prop. 12.1 and II is vacuously true.) 

D 

(ii) ,r (M,R) <=- R is an outennost redex in M. That property I holds can 

be seen as follows : consider the situation as in the hypothesis of 

Proposition 12.1 , where moreover RO,R2,R3 are outermost. Let Si be the 

redex contracted in MO Mi , i = 1,2 • Suppose R1 (as in the Proposition) 

is not outermost. This can only be the case in in M1 a redex Pis created 

which covers Ri • However, in M1 -> M3 redex R1 becomes outermost again, 

which can only be the case if Pis contracted. But this is not so since in 

Ml -> M3 residuals of s2 are contracted (and P is not a residual of s2 , 

being created). 

Property II is, easily verified;it follows by what in [13] is called the 

'outer' property, which holds for every regular TRS. 



(iii) TI (m,R) ~ R is the lefi;most rede~ of M. 

Without additional assumptions, property II does not hold. 

Example (of [9]) 
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E = {F(x,B) __. D, C __. C, A--. B} • Then the step F(C,A) ~ F(C,B) is a 

counterexample. 

12.5. DEFINITION. (i) Let R = MO __. M1 + ••• be a (finite or infinite) reduc­

tion. Let M. be some fixed term in R (j=O, I ,2, ••• ). Let L. c M. for all i ~ j 
J i- 1 

as far as M. is defined such that L. -•-·> L -•-•> •·· • Then this se-
i ' J k+l 

quence is called a trace (of descendants) in R. 

(ii) Let the L. as in (i) be redexes, and suppose TI is a predicate as in 
1 

Definition 12.2. Then the trace Lis a TI-trace iff Vi~j TI (M.,L.). 
1 1 

(iii) Let R be a reduction and TI be a predicate. Then R is TI-fair iff R con-

tains no infinite TI-traces. 

12.5.1. EXAMPLE. Let TI be as in Example 12.4 (i),(ii),(iii) respectively. 

Then TI-fair reductions are called in [13] : complete, resp. eventually outer­

most, resp. left;most reductions. 

12.6. PROPOSITION. Let TI be a predicate as in Definition 12.2 having proper­

ty I. Let V be an arbitrary reduction diagram as in the figure, where 

Ri .=. Mi (i=O,2,3) are redexes such that RO -•-•-+> R2 -•-•-+>R3 is a TI-trace. 

Then the unique trace RO -•-•-+>R -·-·-·-·-•-•-+>R leadinn via M is 1 3 ., 1' 
also a TI-trace. 

Ro- -·-·--➔RI 
I I 

I 

'i} ! 
I I 

'ii ~ 
R -·-·-·-·-·» R 

1 1 2 3w 
M2 - M3 

PROOF. Consider the completed reduction diagram V. Then the trace of des­

cendants RO - • - •-+> R2 - • - .+> R3 can be pushed upwards in stages, each stage 

one elementary diagram further. Result: a trace R0.-•-•+> R1---·-. R3 • 
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R R 
0.-----r-------r-----, 1 

V 

Moreover, since the initial trace was aw-trace the resulting trace is by 

property I also aw-trace. 0 

12.7. PROPOSITION. (w-traceability is invariant under equivalence of re­
ductions) 

Let w have property I. Let Rand R' be equivalent finite reductions from 

M0 to Mn • Let S .=. M0 , S '.=. Mn be redexes such that there is a w-·t;race 
S-•-•-+> S' via R. 

Then there is also such aw-trace via R', which is moreover unique. 

PROOF. 

R' 

M' 
1 

I 

M R 
1 

S '-•••••-•-•-• ... -•-•-•-•-•-•-•-•-•-•-•-•-•-•-S' 
----------------------------~ 

M 
n 

M1· - M 0 M 
k n n 



By Proposition 12.6, the 1T-trace from S to S' via M as displayed in the 
n 
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figure, can be pushed down to an-trace via~. Since the right and bottom 

side of V(R,R') consist of trivial steps, the result follows. D 

12.8. THEOREM. (O'DONNELL [13]) Let n be a predicate satisfying properties 

I,II of Definition 12.2. Then the class of n-fai:r> reductions is cZosed 

unde:r> projections. 

PROOF. 

R , 

11 

~ 

s 

7,r 

R' ,.._1, ____ ._ 

NO 

r· 

11 Bl !Pt 
~+I 711 '"°! _______ -__ -_-_-__ -__ =-t_ ~Qt 

711----------;! i 

1T 

r·-----·-----· i 
: Pk+l 

Bk+l I 

----------1iQ r·-----------· ;, k+l 

iPk 
I 

I 
i 
I 

i 
i 
i 
i 
j_ -·-

Let R = M0 -+ M1 -r ••. and S .=. M0 be a redex. Let RI {S} be a projection 

of R. Suppose R is n-fair. 

Let ~ -r> ~ -r>Nk be a rearrangement of M0 -+->~ I {S} into a n-part 

followed by a 71T-part, according to Proposition 12.3. Since the rearranged 

reduction is equivalent with the original one, the lower side of 

V(~ +> Ak -+> Nk , ~ -+ ~+I) (the 'curved' reduction Nk -+> Nk+l in the 

figure) is equivalent to the original ('straight') reduction Nk -+> Nk+l • 

By Proposition 12.7, the trace~ -•-•➔>~+I via the curved reduction 

Nk -r> Nk+ 1 is also n-fair. 

Next we rearrange ~+I -+> ~k+l , given as ~-+>~I~-+ ~+I, into a 

7r-part followed by a 71T - part. Iteration of this procedure leads to the 

'staircase' ~ - ~k+l - Pk+l - ~k+Z - •••• This staircase reaches Rafter 
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finitely many steps, for otherwise R wouid contain an infinite trace of des­

cendants of S with property 1r , in contradiction with the 1r-fairness of R~ 

Now suppose that R' is not 1r-fair. Say R' contains an infinite 

1r-trace ~• .•.. •~+l, ... starting in Nk . 

By property II for 1r, we find a 1r-ancestor Pk.::.~ of the 1r-redex 

~.::.Nk. (I.e. 1r(~,Pk) holds.) 

By Proposition 12.6 the 1r-trace Pk-·-•+>~ -·-·P'-1:-'-l can be pushed up 

to go via Bk+l; result a 1r-trace Pk-•-•➔> ~ -•-•+>IL k+ 1 -""k+ 1 • 

Then Qk+ll can be traced upward to Pk+l in ~+l' while retaining proper­

ty ,rand the history repeats itself. After finitely many steps we have found 

an ancestor PE of Rl such that 1r(Ml,Pl). Continuing to apply Proposition 

12.6, the remainder of the infinite 1r-trace Rf -•-.+>Rl+l -•-•➔> •.. is 

transferred to an infinite ,r-trace Pl -•-•➔> Pl+l -•-•+> through R. Hence 

R is not 1r-fair, contradicting our assumption. D 

12.9. PROPOSITION. Let R = MO - ... be a reduction containing infinitely 

many steps in which an outermost redex is contracted. Let S.::. M0 be a redex. 

Then R I { S } is again infinite. 

PROOF. (The proof for TRS's with bound varables (CRS's) is considerably 

more complicated than that for ordinary TRS's. Therefore we separate the 

proofs, even though the first proof entails the second one.) 

I. For TRS' s. 

s 

M' 
0 

M' 
l 

M' £ M: 
-<..+l 
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Let R be as in the proposition and suppose R' = RI { S} is the empty reduc­

tion after some ~ • Consider l ~ k. If R.e_ , the redex contracted in 

M.e_ ~ M.e_+ 1 , is outermost, then the reduction Mk ->Ml+1 can only be empty 

if R.e_ is one of the residuals of S contracted in R.e_. 

In that case R.e..+ 1 has one step less than R.e_. 

Otherwise, R.e_ is properly contained in some residual of S contracted 

in R.e_. (Here the proof for the case with bound variables would break down.) 

Hence, since R contains infinitely many outermost steps, after some q,R is 
q 

empty. So R' coincides after M with Rand is therefore also infinite. 01 q 

II. For CRS's. (See again the figure above.) 

(The complication is now due to the fact that the residuals S.of S which 
l. 

are contracted in the development R, n ~ 1, may be nested. Therefore R , 
n n 

even when it is a proper subredex in one of the S. con tr acted in R , may 
l. n 

contain some residuals S. and so may multiply them. Hence R 1 could have 
J . n+ 

more steps than R • 
n 

The idea of the following proof is that this does not matter: if R 
n 

a proper subredex of an S., and R 
l. n 

is not itself a residual of S, then 

M' ~M' n n+1 can only be empty because R 
n 

is ePased by R • That means that 
n 

is 

R and the n S. contained by R are in 
J n 

a "dark spot" of M where it does not n 
matter what happens.) 

We will keep track of the residuals of Sin R by underlining their 

headsymbol. So each R (n~O) is a development of the underlined redexes in M. 
n n 

Let k be as before, in I. In the terms M.e_(l~k) we will distinguish (or 

rather, obscure) some subterms by surrounding them by a box, as follows. 

Boxes may be nested, e.g. as in 

We will call a subterm in a box 'obscU!'ed'. 

Basis step. In ~- 1 none of the subterms is obscured. 

Induction step. Suppose for M.e_ we have defined the obscured subterms. Then: 

(i) the quasi-descendants (see def.in 1.4.1.1) in M.e_+ 1 of those oscured 

subterms will be again obscured, and 

(ii) if R.e_ is a proper subredex of an underlined redex, and R.e_ is itself not 
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underlined, then Rl is obscured. 

Furthermore, a reduction step in R is called obscured if it takes place in­

side a box. 

CLAIM 1. There are only finitely many non-obscured steps in R. 

PROOF OF CLAIM 1. Consider the reduction~+ ~+l + ••• plus boxes and un­

derlining. Replace every outermost box in this reduction by the new symbol □. 

Result:~. (So now the obscured subterms are really obscure.) Then some 

of the steps in R0 become empty, namely those in which an obscured redex 

was contracted. In fact only finitely many steps in Ro will be non-trivial. 

This is evident from the Finite Developments Theorem 1.4.3; for,~ is noth­

ing else than a development of underlined redexes in which sometimes sub­

terms are replaced by D. (Note that redexes not covered by an underlined 

redex cannot be contracted since otherwise the projection of such a contrac­

tion would not be empty.) This ends the proof-of claim 1. 

CLAIM 2. Every obscured underlined redex in R is properly contained in a 

not obscured underlined redex. 

PROOF OF CLAIM 2. Suppose not. Let M for some p ~ k be a term in R con­
p 

taining an underlined, obscured redex which is not covered by a non-obscured 

underlined redex. Choose S. to be maximal so. Note that S. is a maximal 
1 1 

underlined redex. 

Now let M0 be the first term in R where the ancestor of S. (call it S!) 
,c.. 1 1 

was obscured. So Si~ Rl, and R_e. is not underlined. We will devise a devel-

opment Rk of the underlined redexes in Ml such that R1. C:! Rt and Si is not 

contracted in Rk, as follows. 

In Rl we contract only (in an arbitrary way) underlined redexes which 

are not contained by Rl. By the Finite Developments Theorem 1.4.3, this 

. * * "d 1 procedure must stop eventually, say in Ml. In Ml there can be no res1 ua 

of 1\:. For, if there was, this residual would not be covered by an under­

lined redex; and hence Ml -r>Mi+l would not be empty. (In fact, the reduc­

tion Mk~ Mi+l (see figure), defined as Ml --+ Ml+l I Rk would not be 

empty; since Rl Q:! Rk we have Mk. -> Mt+l C:! Ml~ Ml+I and an empty 

reduction cannot be equivalent to a non-empty one.) Therefore 1\: must be 



47 

erased in ~ • But then Si , properly contained by R,e_ , must also be erased. 

Hence Rl ends in fact in Ml, i.e. ~=Ml. Since all complete developments 

are equivalent (1.4.3.1), Rk Q,! R,e_. 

~ 

~ 

R' 
.e.. 

M,e_+ 1 

R 
p 

M 
p 

M' 
p 

R' 
p 

Now RP = R,e_ I M,e_ -+--> Mp ; and putting R; = Rl I M,e_ -+--> Mp we have, by R,e_ Q,! Rk , 
the equivalence R Q,! R' • Because Rt does not contract S! by the Parallel 

p p ,(.. l. 

Moves lenuna 1~4-1, R' does not contain steps in which S. is contracted. But p l. 

clearly, since S. 
l. 

was a maximal underlined redex, every complete development 

of the underlined redexes in M must contract S .• Contradiction. This proves 
p l. 

claim 2. 

Now let q be such that all steps in R beyond M are obscured (by claim 
q 

such q exists). 

CLAIM 3. In every step M . --+ M . 1 (j~O) the contracted redex R +· is 
q+J q+J+ q J 

not an outermost redex. 

PROOF OF CLAIM 3. Since all steps beyond M are obscured, R • is in a box. 
q q+J 

If R +· is an underlined redex, it 
q J . 

is not outermost by claim 2. 

If R +· is not underlined and is an outermost redex, a contraction of 
q J 

Rq+j results in a non-empty projection M~+j --+> M~+j+ 1 , contrary to the 

assumption for R'. This proves claim 3. 
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Claim 3 contradicts the hypothesis of the proposition for R. Hence our 

assumption that R' is finite, is false. 011 

The following Corollary is due to O'DONNELL [13] for TRS's. ("Typer* 

or 111* 11 refers to "type I or III + bound variables", see Introduction.) 
n n · 

12.10. COROLLARY. For every type r* or nr* rewriting system: (i). Define 
n 

1T(M,R) by 'R is an outermost redex of M'. Then the class of 7r-fair reduc-

tions is terminating. 

(ii) ?araUel outermost reductions are terminating. 

PROOF. (i) Suppose M0 has normal form N. Let R = M0 ---+ M1 -)- • • • be an in­

finite 7r-fair ('eventually outermost' in [13]) reduction. Obviously R con­

tains infinitely many outermost steps. Hence R' (see figure) is infinite by 

Proposition 12.9; and 7r-fair by Theorem 12.8 . But continuing in this fash­

ion we find that R(k) = R / M0 ---+> N must be finite, contradicting the fact 

that N is a normal form. 

MO Ml R 
, 

M' 
R' 

/ 

I 

M' 
R" 

2 
/ 

~ =NL-------------

(ii) Innnediately by (i), since evidently a parallel outermost reduction is 

7r-fair. D 
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Leftmost reductions. 

For leftmost reductions, in which each time the leftmost redex (that is, the 

redex whose head symbol is leftmost) is contracted, the analogous corollary 

fails. 

Example. (from [9]) : 

Let Ebe a TRS having as rule schemes: 

F(x,B)-+ D, A-+ B , C-+ C. 

Then F(C,A)-+ F(C,A)-+ ... (each step a contraction of redex C) is a coun­

terexamp lie. 

However, if Eis a 'left-normal' system, one can prove that (~ventually) 

leftmost reductions are normalizing. This was done in [II] via a standard-

ization m1ethod; the proof we will give below is more perspicuous and is, 

for TRS':s, given in [13] . We will again derive the result for TRS's 

where bound variables may be present, in fact for type r* or ru* systems. 
n 

I 2. 11. DEFINITION. (i) Let E be a regular CRS, and let r be a rule in E ; 

r = H -+ H'. Then r is left-normal if in Hall operator symbols (including 

the O-ary operators, i.e. the constants) precede the variables. E.g. the 

rule F(x,B) ➔ D above is not left-normal; the rule F(B,x) ➔ Dis left-nor­

mal. 

(ii) E is left-normal iff all its rules are left-normal. 

(iii) If r: is a typer* or 111* system, Eis left-normal iff E is. n u 

12. 12. COROLLARY. Let E be of type r*or ur* and left-normal. Then for E-
n 

reductions: 

(i) event;uaUy leftmost reductions are terminating 

(ii) the Z'.eftmost reduction is terminating. 

PROOF. Let TI (M,R) be: R is the leftmost redex in M. Then property I and II 

(Definition 12.2) are easily verified for TI (for II we need the left-norma­

lity ). Hence by Theorem 12.8, TI-fair reductions (i.e. eventually leftmost 
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reductions) are closed under projections; Furthermore, Proposition 12.9 is 

valid for 'leftmost' instead of 'outermost' because the leftmost redex is 

outermost. Hence the result follows. 

12.13. EXAMPLE. (i) For A-calculus+ 'recursor' R having the rule schemes 

D 

R x yO ➔ x , R xy (Sz) --+ xz (R xyz) we have termination of parallel outer­

most reductions - but not of the leftmost reduction strategy. 

(ii) For A-calculus + alternative recursor R', such that R 'O xy --+ x , 
I t 

R(Sz) xy --+ xz (R xyz) also the leftmost reduction strategy is ter-

minating. 

(iii) For the system in (i) one can obtain a slightly better result than 

termination of parallel outer most reductions, by introducing 

O'Donnell's 'dominance ordering', an extension of the subterm ordering 

(..'.:::_), which would in this case cause the redexes in the third argument 

of R to be priviliged above those in the first two arguments. 

12.14. EXAMPLE. If Eis the type. III reduction system corresponding to 
n 

BOUNDED-STACK (see Example 2.l(i)) then Eis left-normal. Hence the results 

above yield that both parallel outermost reduction and the leftmost reduc­

tion and the leftmost reduction, terminate whenever possible. (In this case 

that is trivial since all reductions terminate, as one easily proves.) 
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