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A formalized proof system for total correctness of while programs*) 

by 

J.A. Bergstra**l & J.W. Klop 

ABSTRACT 

We introduce datatype specifications based on schemes, a slight gener

alization of first order specifications. For a schematic specification 

o:~JE), Hoare's Logic HL(E,IB) for partial correctness is defined as usual 

and on top of it a proof system (E, lE ) I- p + S + for termination assertions 

is defined. The system is first order in nature, but we prove it sound and 

complete w.r.t. a second order semantics. We provide a translation of a 

standard proof system HLT(A) for total correctness on a structure A into 

our format. 
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0. INTRODUCTION 

In this note we will present a formalized proof system for total cor

rectness of while-programs. Its merits should be first of all that it acts 

as a first order praofsystem (although we can, at this moment, only prove a 

soundness result w.r.t. a second order.semantics which allows fewer models 

for a specification than the usual first order semantics would do). The 

advantage of having a formalized proof system (E, JE ) I- p ➔ Sf for program 

termination which is just as• first order as Hoare' s logic HL(E, JE) I- {p}S{q} 

for partial correctness is both the possibility of mechanisation and the 

effect of giving a firm basis for a logical (proof theoretic) investigation 

of the system. 

An essential point is that we want to base our proof system on a spec

ification (E,JE) rather than on a structure A, which is done by most authors. 

For Hoare's Logic there is no strict need either to consider HL(A) for a 

fixed datastructure A, and the more general case of HL(E,E) is clearly of 

substantial importance. 

In various fairly standard approaches to total correctness, such as 

in HAREL [6] and [7] for deterministic sequential processes and in APT & 

OLDEROG [1] and GRUMEERG et al. [5] for fair parallel computation the es

sence of using a fixed domain A is in the assumption that certain parts of 

A, as a many-sorted algebra, are well-ordered. This gives rise to quite 

natural proof rules like the system HLT(A) that we explain in section 1.1 

in order to compare it with our system. 

Instead we will develop a device called schemes which constitutes a 

slight generalization of the first order predicate logic. For a specifica

tion with schemes we write (E,JE) (whereas (E,E) denotes a specification 

with E s L (E)). Using schemes we can work in quite a flexible way with sig

nature extensions, a method that proved to be useful and to be of first 

order character in BERGSTRA & KLOP [2]. Thus we obtain a proof system for 

termination assertions (E, 1E) I- p ➔ S ,!, on top of a logic for partial cor

rectness, in the same way as in BERGSTRA & KLOP [2] proof systems for pro

gram inclusion are obtained from a partial correctness logic. 

We will now sum up the main notations and results. 
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For a specification O:: ,JE) with JE a set of schemes, the logic of par

tial cor:rectniess HL(r,JE) brings nothing new. A proof system (r,JE) l-p ➔ s+ 

is then defined such that soundness can be shown for a semantics I= in 
s 

Lennna 5. 

As a relation of (r, JE), p and S, I- is recursively enumerable, thus 

deserving its denotation as a proof system. 

Given a fixed A let ]EA be the set of all schemes~ over rA that are 

true in A in the sense of F. There is the following completeness result: 
s 

THEOREM (9.2) o::A,1EA) 1- P ➔ s + <==> A 1= P ➔ s + . 

In order to compare our system with a usual formalism using well-ordered 

sets we take the notation [p] S [q] for total correctness (i.e. [p] S [q] -

{p} S {q} & p ➔ S + ) and define a system HLT(A) 1- [p] S [q] for datastruc

tures A with a fixed well-ordering s on it. Then we define a canonical 

specification (rA,JEA) of such A and prove the following result: 

THEOREM (1 I. 1) HLT(A) I"'" [p] S [q] ~ HL(rA,JEA) I- {p} S {q} and 

(rA,JEA) l-p·+S+. 

This result says that the proposed formalism can be used to represent meth

ods using well-ordered sets. 

Some final remarks should be made. First of all it would be nice to 

have a logic for total correctness which is of a first order nature and 

which is sound and complete for a semantics of specifications and programs 

which is of first order nature as well. For partial correctness the corre

sponding problem was solved in BERGSTRA & TUCKER [4]. There a so called 

axiomatic semantics for while-programs is given such that HL is sound and 

complete for it in a most general and first order way. It is not clear to 

us whether or not a similar result can be obtained for total correctness. 

Anyhow, if we consider simultaneously first order semantics for specifica

tions and the operational semantics (which is not first order) for programs,. 

a proof system I"' for (r ,E) I" p ➔ S + is either not sound or very incomplete. 

This follows innnediately from the Compactness Theorem. 

Secondly it should be noticed that in principle it is possible to 

produce a sophisticated proof theory of (r,JE) I- p ➔ s+. Indeed, for one 
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structure A_ already many different and plausible specifications ([;JE.) can 
l. 

be found which have different proof theoretic properties. Of course a sim-

ilar line of investigation is possible for methods using well-ordered sets, 

but that will require replacing the well-ordering by a better one from time 

to time. Essentially this involves a modification of the datastructure which 

seems less attractive from a theoretical point of view. 

1. SCHEMES 

A scheme will be a generalization of an assertion. Next to 

predicate-logical symbols a scheme may also contain symbols~~-
1. 

function syntactically as n-ary relation symbols (although their 

is quite different); then will mostly be omitted. Formally: 

the usual 

The ~1?-
1. 

semantics 

DEFINITION 1.1. The set Seh([) of schemes over the signature[, with typical 

variable qi, is inductively defined by: 

n n 
qi::= Pi (t 1, ••• ,tn), t 1 = t 2 , ~i (t 1, •.. ,tn) (all n,i) I 

qil V qi2 , qi] A qi2 , 7qi, Vxqi, 3xqi. 

Here the P1?- are n-ary predicate symbols from E, t. E Tell..([) (the set of 
l. l. 

E-terms) and the ~1?- are scheme variables. The latter are not part of[, but 
l. 

will be considered to be standardly included in the language (as lo8ical 

symbols), just like the ordinary variables x,y, •••• Note that 

A.6-0([) s Seh([), where A.6-0([) is the set of assertions over[. 

EXAMPLE l. 2. (i) The induction scheme IND = [HO) A Vx(Hx)-+ ~ (Sx)) J-+ VxHx). 

(ii) ~l ➔ (~ 2 -+ ~1), a scheme with 0-ary scheme variableE 

NOTATION 1.3. If qi is a scheme containing precisely ti · SLueme variables 

~1, ••• ,~n' we write qi - qi(~ 1, ••• ,~n). 



4 

2. SUBSTITUTION IN SCHEMES 

The intended meaning of the scheme variables is that one may substitute 

assertions for them~ For technical reasons it is convenient to allow even 

substitution of schemes for the scheme variables. 

DEFINITION 2.1. Let ~,f E S~h. Then ~[f/$(x1, ••• ,xn)J is the result of 

replacing each occurrence of the form $(t 1, ••• ,t) (t. E Telt) in~, by 
n l. 

f[t 1, ••• ,tn/x1, ••• ,xn]. ('O~dinary' substitution [t/;] in a scheme is de-

fined just as for assertions.) 

EXAMPLE 2.2. (i) Let~= IND and f = x+y = y+x. Then IND[f/$(x)J = f[O/x] 

A 'v'x(f[x/x] ➔ f[Sx/x]) ➔ 'v'xf[x/x] •= O+y = y+O A 'v'x(x+y = y+x ➔ Sx+y = y+Sx) 

➔ 'v'x x+y = y+x. 

(ii) Let~ - $1 ➔ ($2 ➔ $ 1 ). Then ~[$(x)/$ 1l[$(x)/$2] - $(x) ➔ ($(x) ➔ $(x)). 

3. SEMANTICS OF SCHEMES 

DEFINITION 3. 1. (i) ·Let ~ E Sc.h(r.) and let ~ = <fl("$). Then ~ t E = 

{~[p/lJ I p E A6.6(E)}. (E.g., IND ~ EPA is the set of all induction axioms 

over the signature of Peano's Arithmetic.) 

(ii) Let A E Alg. Then A I=~ abbreviates A I= ~ ~ EA. (E.g. we have N I= IND 

for the standard model of PA.) 

(iii) A I=- ~~VA' ?:.A: A' I=~- Here A' ?:. A means: A' is an expansion of 
s 

A (i.e. A plus added 'structure'). In words:~ is schematically true in A. 

(E.g. NI= IND. As a constrast, consider a nonstandard model~ of PA. 
s 

Then N* I= IND, but not N* I= IND.) 
s 

(iv) If E £ Sc.h(E), we call (E, "E) a saheme speaifiaation. (Cf. an ordinary 

specification (E,E) where E £ A6.6(E).) (E.g. (EPA'lP,U,.),i.e. Peano plus the 

scheme IND.) 

(v) Let E' ?:. L Then (E,"E )E, = (E' ,E ~ E'). Here "Et E' = {~[p/$] I 
p E M.6(E), ~("$) E "E }. (So, by attaching E' as subscript the scheme spec

ification is transformed to an ordinary specification.) 
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(vi) Let A E Alg(I). Then A t= (I,E) abbreviates A t= (I,E )I. 

(vii) Let A E Alg(I). Then: A t= (I,lE) ~ A t= ~, V~ E E. 
s s 

(viii) Alg/I,lE) = {A E Alg(I) I A Fs (I,E )}. (E.g. Algs(IPA'JPA) = {N}.) 

(ix) Alg (I, 1E) F ~ ~ VA E Alg (I, E ) A I= ~. Instead of the LHS we will 
s s s s 

also write simply (I,JE) F ~-
s 

4. DERIVABILITY OF SCHEMES 

DEFINITION 4. 1. (I, IE) 1- ~ is defined as the usual derivability of an 
n 

assertion from a specification (to this end the~- are treated as n-ary 
l. 

predicate symbols) plus the substitution rule: 

for all ~1, ~2 E Sch(I) and all scheme variables~-

PROPOSITION 4.2. (I;lE) r p ~ (I,E )I I- p, for aU p E A.6-6 (I). 

PROOF. (4=) trivial; (.,.) induction on the length of the proof of (I, lE) I- p. 

(This amounts to commutativity of substitution and derivability in the 

usual sense. ) D 

The next proposition characterizes derivability of schemes in terms 

of first order derivability. 

PROPOSITION 4.3. (I,lE) f-- ~~VI' ~ I: (I' ,Eu O})I, = (I' ,JE )I,. 

(Here"=" means that both specifications derive the same assertions.) 

PROOF. (=>) Let (I, E ) I- ~ and suppose (I' , E u {~})I, I- p for p E A.6-6 (I'). 

By Proposition 4. 2 also (I', 1E u { ~}) I- p. Because (I, 1E) I- ~, and therefore 

also (I' ,JE) I-~, this yields (I' ,JE) I- p. Again by Proposition 4.2 we have 

(I' , 1E ) I' I- p • 

(4=) Let~= ~(~ 1, .•• ,~n). Introduce 'ordinary' relation symbols P 1, .•• ,Pn 

with arities respectively equal to those of ~1 , .•• ,~n' Let I'= Iu {P 1, ..• ,Pn}. 

From the assumption (I', 1E u {~})I, = (I', E ) I, it follows in particular: 
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O::',lE)E, (=(E',lE ~ E')) rq>(P 1, ••• ,Pn). Hence (E',E') I-HP1, ••• ,Pn) for 

some finite E ' £ lE t E ' • 

Now replace in the proof of (E' ,E') I- g>(P 1, ••• ,P ) everywhere P. by ~. n i i 

(i = 1, ... ,n); result: (E',E'(t/P]) I- g>(~l'••·,~n). Because in this last 

proof no P. occurs, even (E ,E' [$/P]) I- H~ 1, ••• , ~ ) • Finally the result 
i . n 

++ + 
follows: (I,lE) I- (E,E'[~/P]) 1-g>O). 0 

We are now in the position to state and prove a soundness result. 

LEMMA 5. (E,lE) I- g> ... (E,lE) I= g>. . s 

PROOF. Assume (E,lE) 1- g> and consider a structure A with A I= (E,lE). We 
s 

show that A I= s g>. Therefore consider A' ~ A with A' I= (E, lE ) and E' = EA,. 

The following sequence of implications establishes A' F g>: 

(E, E ) I- H$) ... 

(E' ,lE) I- q>($) .,. 
+ 

(E' ,lE) I- g>(p) for all p € M.6(E') .,. 
+ (E' ,E)L, I- g>(p) II II II 

(E, lE ) LI I- g> (p) II II II 

II II .. 

II II 

(4.2) 

Of course A' I= (E, lE ) implies A' I= (E, lE) E, and consequently 

+ 
A' I= g>{p) for all p € A.6.6 (E') 

which is A' I= g>. 0 

REMARK 5.1. The corresponding completeness result fails. To see this let us 

consider the example (EPA'lPA). Completeness of I- w.r.t. 

for all g>, and especially for all p € A6.6(EPA): 

I= would entail 
s 



Now Algs O:PA' IP A) = {N} and we find 

PA I- p ~ N I= p . 
s 

which contradicts Godel's incompleteness theorem. 

DEFINITION 6. The schematic theory EA of a structure A is defined as the 

set of all schemes <I> E Seh(EA) such that A I= s <I>. 

LEMMA 6.1. The fo.ZZowing are equivalent: 

(i) (EA,lEA) !-<I> 

(ii) (EA,JEA) l=s <I> 

(iii) A I= <I>. 
s 
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PROOF. (i) => (ii) according to Lemma 5. (ii)=> (iii)=> (i) are evident from 
the definitions. 0 

DEFINITION 7. As is the maximal (full) expansion of A, i.e. As is a struc

ture (with presumabl~ an uncountable signature) which contains a name for 

each possible relation function or constant on it. 

The following property follows easily: 

PROPOSITION 7 .1. A I= <I>~ As I= <I>. 
s 

As will be used in the proof of Theorem 9.2. In sections 10 and 11 



8 

we will use the partial correctness logic HL(I,JE) for schematic specifica

tions: 

DEFINITION 7. 2. HL (I, 1E ) f- H} S {1/1} is Hoare' s logic over (I, JE ) . 

Syntactically one requires that S E WP(I) and qi , ljJ E Sc.h(L). Its axioms 

and rules are exactly the same as usually for HL, the only difference 

being that schemes may occur at the position of assertions in the original 

system. 

8. TERMINATION ASSERTIONS 

DEFINITION 8.1. (i) Let p E MJ(I) and SE WP(I). Then p ➔ S+ is a termina

tion assertion. 

(ii) (Semantics:) If A E Alg (L) then: A F p ➔ S + ~ S converges on every 

input : E A such that A I= p ci). 

The next definition is based on the concept of 'prototype proof' TI(S) 

as defined in BERGSTRA & KLOP [2]. This is roughly a scheme of which every 

ordinary proof of {p}S{q} is a substitution instance. To this end we view 

a proof of {p}S{q} as an 'interpolated statement', i.e. a statement in which 

assertions ma.y occur; see Example 8.5 of a TI(S). For the precise details we 

refer to BERGSTRA & KLOP [2]. 

DEFIN·ITION 8.2. Let S E WP(I). Then qi ~iµ abbreviates the scheme 

V(/A\ K({qi}TI(S){iµ})), where TI(S) is the prototype proof of S, K denotes the 

set of consequences used in {q>}TI(S){iµ}, and V denotes the universal closure. 

Here qi,1/J are scheme variables different from those in TI(S). (As in BERGSTRA 

& KLOP [2] and in Example 8.5, we will denote the scheme variables in TI(S) 

by r 1 , r 2,. . . • ) 

Now we have the following proposition; the proof is routine and there~ 

fore omitted. 

Sl;S2 SI S2 
PROPOSITION 8. 3. (i) qi ~~~ iµ f- qi ~~ r /\ r .............., ljJ for some r. 

( 1• 1•) $ $ ,I, I- ,f, ,f, $ ,I, ,I, <1>1~ iµl /\ <Pz.............., "'2 'i'J /\ 'i'2 ~ "'I /\ "'2" 
s s (iii) HL(I:,JE) f- {qi}S{iµ} ~ (I,JE) f-<P ~~iµ for some proof scheme <P ~~iµ. 
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(In fact we must write¢(~),~(~) etc. instead of¢,~ where~ is a list of 

the relevant variables.) 

The next definition is crucial. 

DEFINITION 8.4. Let p-+ S+be a termination assertion. Then tl.>(p-+S+) is 

the corresponding termination scheme, defined by: 

➔ s ➔ ➔ _ ({p A ¢(x)} ~~{false})-+ 7 3x(p A ¢(x)). 

➔ 
Here xis a list of the free variables 1.n p and the variables in S. 

EXAMPLE 8.5. Let S = while x f:. 0 do x:= P(x) od, in the signature of PA; 

Pis the predecessor function. 

Now 1r(S) = 
{ro(x)} 

{ r 1 (x)} 

while x f:. 0 do 

od 

{ r 1 (x) A x f:. 0} 

{r2 (Px)} 

x:= P(x) 

{r2 (x)} 

{r 1 (x)} 

{r 1(x) Ax= O} 

{r3 (x)}. 

Let us determine the termination scheme <i>(true -+ S +). 

K({true A ¢(x)} 1r(S){false}) = 

{ true A ¢(x)-+ r 0 (x), 

r 0 (x)-+ r 1(x), 

r 1(x) Ax f:. 0-+ r 2 (Px), 

r 2 (x) ➔ r 1 (x), 

r 1(x) Ax= 0 ➔ r 3 (x), 

r 3 (x) ➔ false}. 



Now <I>,(true + S +) = o + 7 3x <j>(x), where o is the universal closure of the 

conjunction of the six implications above. 

Note that <I> = <I>(true + S + ) is none other than IND, to be precise: 

O:PA' lP A) I- <I> +-+ IND. Here <I> + IND follows by the substitution qi (x) = 
r 0 (x) = r 1 (x) = r 2 (x) in <I> and by deriving from o that 

7 <j>(O) A Vx(7(j)(x) + 7 <l>(Sx)) (where S denotes the successor function). 

NOTATION 8.6. We will write often O:,lE) I- p + S+ instead of 

o:: ' ]E ) I- <I>(p + s ,j, ) • 

9. Before formulating the main theorem we need the following proposition, 

whose routine proof is omitted. 

PROPOSITION 9. I . As I= <I>(p -+ S ,1, ) - As I= p + S ,1, . 

THEO/IBM 9.2. The foZZmling are equivalent: 

(i) o::A,lEA) f- <I>(p + s+) 

(ii) A I= <I> (p + s ,1, ) 
s 

(iii) A I= p + s + • 

PROOF. (i)-.. (ii) by Lemma 6.1. (ii)-.. (iii): 

A I= <I>(p + S ,I, ) -.. (by Proposition 7. I) 
s 

As I= <I>(p + S ,I, ) - (by Proposition 9. I) 

As I= p+S,1, - (trivially) 

A I= p + s,1,. □ 

IO. O::PA'lPA), AN EXAMPLE IN DETAIL 

Let N be the structure (w,+,.,S,P,O) and let JPA be a suitable version 

of Peano's arithmetic on N with a scheme for induction as indicated in the 

example in 8.5. 

We will list here some properties of the partial and total correctness 

logics based on O:, lP A) = O::PA, lP .IA)• 

As a matter of fact O:,JPJA.) f- p + S ,I, is incomplete for total correct

ness on N. This is easily seen from the fact that the set of programs S 

with O::, lP A) f- true -+ S ,I, is r0 whereas on the other hand N I= true + S + 
1 
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is a complete TI~ predicate of programs S. The example 8.5 shows, however, 

that (I,JPA) proves the termination of nontrivial programs. 

The partial correctness logic HL(E,JP&.) possesses some interesting 

properties as well. Of course it is sound and incomplete w.r.t the seman

tics N F {p}S{q}. More interesting is a proof theoretic property which 

was developed in BERGSTRA & TUCKER [3] for HL(E,PA) that can be nicely 

generalized to (E,JPA\). For (E,PA) the result is as follows: this ordinary 

specification admits a strongest postcondition calculus: for each p E L(E), 

SE WP(E), there is an assertion SP(p,S) such that for all ES L(E): 

HL(E,PA) I- {p}S{SP(p,S)} and 

HL(E,PA+ E) f- {p}S{q} <=> 

PA + E f- SP(p,S) ➔ q. 

For the finite schematic specification (E, JP /A) one obtains a result which 

is much more general. 

THEOREM IO.I. For each schematic variable cp there ~s a scheme SP(p,S) such 

that 

HL ( E , JP DI.) I- { cp } S { SP ( cp , S) } 

and moreover for all p,S 

s 
IP IA + cp ~~ 1jJ I- SP ( cp , S) -+ 1jJ 

which irronediately implies that for aU JE : 

HL(E,FtA + JE) f- {cp}S{ijJ} <=> JPA+ JE I- SP(cp,S) ➔ iµ. 

11 • RELATIONS WITH A STANDARD PROOF METHOD 

Let A be a data structure containing a binary relation'< which is in 

fact a well ordering of A with smallest element o E IA I. For A we have a 

system of proving total correctness HLT(A) and a canonical specification 

(EA,JE ;) . After detailed definitions we prove the following result which 



12 

indicates that HLT(A) can be formalized via (EA,JEA) and its total and 

partial correctness logic. 

THEOREM 11 • 1 • If 

and 

The system HLT(A) is nothing new, versions of it appeared in [l], [5], 

[6] and [7] and various other places. The intended meaning of [p]S[q] is: 

{p}S{q} & p + S + . 

DEFINITION 11.2. HLT(A) has the following rules: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

[p[t/x]] X := t [p] 

[p]S 1[q] [q]S 2[r] 

[p]S 1 ;SzCrJ 

[p A b]S 1 [q] [ p A7b]SzCq] 

[p] if b then Si else s2 fi ~q] 

[p']S[q'J Al= q' +q 

[p]S[q] 

[I(a) A b]S[3S < a I(S)] Ae 1(0) + ::lb 

[I0 ] while b do S od [IO A 7b ] 

where 10 = ~a I(a) and a,S i VAR(S). 

11. 3. (EA, ]E ;) consists of EA, the theory of A in M!:, (EA), and the scheme 

JE < of induction along < : 

VS[(Va(a < S ➔ ~(a))) ➔ ~(S)] ➔ Va ~(a). 

11.4. We can now prove the theorem. The first part concerns partial correct

ness. This is a straightforward induction on program depth, except in the 
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case of the while rule. We will consider this case. 

Suppose that 

has been deduced from 

[I(a.) A b]S0[38 < a I(B)J, A I= I(O) + 7b 

with 10 = 3a. I(a.). 

From the induction hypothesis we find (in HL (EA, JE A)): 

I- {I(a.) A b} s0 {38 < a I(B)} 

using the rule of consequence then 

and with existential generalization on the precondition 

then with the while rule 

I 1 .5. The second part of the proof involves showing (EA,JEA) f- p +Sf. We 

abbreviate (EA, ]EA) to (E, ]E ) in this part of the proof. Of course we use 

induction on the structure of the proof of [p]S[q]. With X we denote the 

variables occurring free in p, S, q. 

Suppose that [p]S[q] was obtained by applying the rule of consequence 

to [ p' ]S[q' J, then by the induction hypothesis (E, lE ) f- p' + S + ; an easy 

logical calculation then shows (E, ]E ) f- p + S + because ]E f- p + p' • 

For the case S - x := t we explain the argument in detail. 
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(}::,:JE) r VX(p A</>+ false) ::i 7 3X p A</> 

because this is a tautology. Then 

(}::,,:JE) r (VX(p A <I>+ r[t/x]) A Vx(r +false))+ 7 3X p A</>, 

thus 
X •- t o::, :IE ) I- [p A <I> ....,,-=,.::...,-4 false] ➔ 7 3X p A <I> 

(E, :IE ) r </>(p ➔ S + ) 
(E, JE ) I- p ➔ S + • 

The argument in case [p]S[q] was obtained from an application of 

the conditional rule 11.2 (iii) is entirely straightforward and is therefore 

omitted. 

The harder cases of composition and iteration remain and we treat com

position first. 

Let S = s1;s2 • Assume HLT(A) r [p]S[q]. Choose an assertion u with 

We show that (2.:, :IE ) r p 

O::, ]E ) , 7 3X p A <I> from p 
S1 some r: p A <I> ~~,--+ r and 

Because of HL (E, ]E ) 
s 

a proof scheme p ,..,;:14 r, 

+ s+. It is sufficient to derive, working in 
s s A <I> ~false. So assume p A <I> """"+ false. Then for 

S2 
r ~false. 

r {p}S 1{u} (part (i) of this theorem) one obtains 
s 

combining this one with p A <I>~ u one obtains 

using Proposition 8.3 p A <I> 
Sz 

tains r Au ~false. 

S1 S2 
~'-'+ r A u; from r ~ false one immediately ob-

Now using the induction hypothesis on s2 we know that (}::, ]E ) r <P(r + s2+) 

thus (E,:JE) r (r A <I> ~false) + 73Xr X </>, Substituting u for <I> and apply

ing modus ponens we obtain 73Xr A u. After applying the 
SJ on p A <I> ~ r A u, VX(r Au) + false we find p 

hypothesis on S 1 then immediately yields 7 3X p 

s 
/\<I>~ 

/\ <I> • 

rule of consequence 

false. The induction 

Finally assume that S = while b do s0 od and HLT(A) 1-[p]S[q]. We may 

assume that p and q have forms I 0 and I 0 A 7b, with I 0 = 3a I(a), and 

that 
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and A F I(O)-+ 7b. We shall derive (1:,E) r IO-+ Sf. This is: 
s . 

(E, E ) r (IO A cf> '""""'+ false) -+ 7 3X IO A cf>. Working within (E, ]E) we assume 

I A cf> ~false 
0 

So for the formal invariant I* in ~(S): 

* 
IO A cf> -+ I 

* So 
I* (i) I Ab~ 

* A 7b-+ false. I 

* Assume for a contradiction that 3 X I 0 A <I>, then 3 X I and even 3a. 3 X 

* * I(a.) A I. Now choose a. minimal such that 3X I(a.) A I. Because of part 

(1) on 

[I(a.) Ab] s0[3S < a. I(S)] (ii) 

we find a proof scheme 

So 
I (a.) A b .......... ~ 3 8 < a. I ( 8 ) 

combining this proof with (i) we obtain 

* So * I A I(a.) Ab ~38 < a. I(S) A I. 

Because of the minimality of a. this gives 

s 
1* A I(a.) Ab ~false (iii). 

The induction hypothesis on sO then yields 
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so we can·use the scheme 

I (c. ) A b A cf> false+ 73X I(a) Ab A cp. 

Applying this with cp = 1* on (iii) we obtain using modus ponens 

* 73X I A I(a) A b. 

Because of 1* A 7b + false this implies 73X (I* A I(a)). Now we have as

sumed 3 X (I* A I(a)) and this gives the desired contradiction. D 
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