
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE}

J.A. BERGSTRA & J.W. KLOP

~
MC

IW 175/81 OKTOBER

A FORMALIZED PROOF SYSTEM FOR TOTAL CORRECTNESS OF WHILE PROGRAMS

Preprint

kruislaan 413 1098 SJ amsterdam

PJunte.d a.t -the. Mme.ma-tic.al. Ce.n.bte., 413 KJU..U,6la.a.n, Am6-tvuiam.

The. Ma.the.ma.Uc.al Ce.n.bte. , 6ounded -the. 11--th 06 Fe.bJu..uVty 1946, ,l6 a. n.on
p1to 6U -ln.6;ti;tu;ti,o n almlng a.t -the. pMmoUo n o 6 pU!te. ma.the.ma.tlc.6 a.nd ,£;t,6
a.ppUc.a.tlon6. 1-t ,l6 -6pon.601te.d by -the. Ne.:the.Jtla.n.d6 Gove.Jtnme.nt -thltough -the.
Ne.:theJLla.nct~ 01tga.n-lza.t-lon 601t -the. Adva.nc.e.me.nt o 6 PUite. Ru e.a.Jtc.h (Z .W. 0.) •

1980 Mathematics suoject classification: 03D45, 03D80, 68B15, 03D35,
03D75, 68B10

ACM-Computing Reviews-category: 4.34, 5.24

A formalized proof system for total correctness of while programs*)

by

J.A. Bergstra**l & J.W. Klop

ABSTRACT

We introduce datatype specifications based on schemes, a slight gener

alization of first order specifications. For a schematic specification

o:~JE), Hoare's Logic HL(E,IB) for partial correctness is defined as usual

and on top of it a proof system (E, lE) I- p + S + for termination assertions

is defined. The system is first order in nature, but we prove it sound and

complete w.r.t. a second order semantics. We provide a translation of a

standard proof system HLT(A) for total correctness on a structure A into

our format.

KEY WORDS & PHRASES: scheme, total correctness, first ord.er proof system,

prototype proof

*) This report will be submitted for publication elsewhere~

**) Department of Computer Science, University of Leiden, Wassenaarseweg 80,
Postbus 9512, 2300 RA LEIDEN, The Netherlands

0. INTRODUCTION

In this note we will present a formalized proof system for total cor

rectness of while-programs. Its merits should be first of all that it acts

as a first order praofsystem (although we can, at this moment, only prove a

soundness result w.r.t. a second order.semantics which allows fewer models

for a specification than the usual first order semantics would do). The

advantage of having a formalized proof system (E, JE) I- p ➔ Sf for program

termination which is just as• first order as Hoare' s logic HL(E, JE) I- {p}S{q}

for partial correctness is both the possibility of mechanisation and the

effect of giving a firm basis for a logical (proof theoretic) investigation

of the system.

An essential point is that we want to base our proof system on a spec

ification (E,JE) rather than on a structure A, which is done by most authors.

For Hoare's Logic there is no strict need either to consider HL(A) for a

fixed datastructure A, and the more general case of HL(E,E) is clearly of

substantial importance.

In various fairly standard approaches to total correctness, such as

in HAREL [6] and [7] for deterministic sequential processes and in APT &

OLDEROG [1] and GRUMEERG et al. [5] for fair parallel computation the es

sence of using a fixed domain A is in the assumption that certain parts of

A, as a many-sorted algebra, are well-ordered. This gives rise to quite

natural proof rules like the system HLT(A) that we explain in section 1.1

in order to compare it with our system.

Instead we will develop a device called schemes which constitutes a

slight generalization of the first order predicate logic. For a specifica

tion with schemes we write (E,JE) (whereas (E,E) denotes a specification

with E s L (E)). Using schemes we can work in quite a flexible way with sig

nature extensions, a method that proved to be useful and to be of first

order character in BERGSTRA & KLOP [2]. Thus we obtain a proof system for

termination assertions (E, 1E) I- p ➔ S ,!, on top of a logic for partial cor

rectness, in the same way as in BERGSTRA & KLOP [2] proof systems for pro

gram inclusion are obtained from a partial correctness logic.

We will now sum up the main notations and results.

2

For a specification O:: ,JE) with JE a set of schemes, the logic of par

tial cor:rectniess HL(r,JE) brings nothing new. A proof system (r,JE) l-p ➔ s+

is then defined such that soundness can be shown for a semantics I= in
s

Lennna 5.

As a relation of (r, JE), p and S, I- is recursively enumerable, thus

deserving its denotation as a proof system.

Given a fixed A let]EA be the set of all schemes~ over rA that are

true in A in the sense of F. There is the following completeness result:
s

THEOREM (9.2) o::A,1EA) 1- P ➔ s + <==> A 1= P ➔ s + .

In order to compare our system with a usual formalism using well-ordered

sets we take the notation [p] S [q] for total correctness (i.e. [p] S [q] -

{p} S {q} & p ➔ S +) and define a system HLT(A) 1- [p] S [q] for datastruc

tures A with a fixed well-ordering s on it. Then we define a canonical

specification (rA,JEA) of such A and prove the following result:

THEOREM (1 I. 1) HLT(A) I"'" [p] S [q] ~ HL(rA,JEA) I- {p} S {q} and

(rA,JEA) l-p·+S+.

This result says that the proposed formalism can be used to represent meth

ods using well-ordered sets.

Some final remarks should be made. First of all it would be nice to

have a logic for total correctness which is of a first order nature and

which is sound and complete for a semantics of specifications and programs

which is of first order nature as well. For partial correctness the corre

sponding problem was solved in BERGSTRA & TUCKER [4]. There a so called

axiomatic semantics for while-programs is given such that HL is sound and

complete for it in a most general and first order way. It is not clear to

us whether or not a similar result can be obtained for total correctness.

Anyhow, if we consider simultaneously first order semantics for specifica

tions and the operational semantics (which is not first order) for programs,.

a proof system I"' for (r ,E) I" p ➔ S + is either not sound or very incomplete.

This follows innnediately from the Compactness Theorem.

Secondly it should be noticed that in principle it is possible to

produce a sophisticated proof theory of (r,JE) I- p ➔ s+. Indeed, for one

3

structure A_ already many different and plausible specifications ([;JE.) can
l.

be found which have different proof theoretic properties. Of course a sim-

ilar line of investigation is possible for methods using well-ordered sets,

but that will require replacing the well-ordering by a better one from time

to time. Essentially this involves a modification of the datastructure which

seems less attractive from a theoretical point of view.

1. SCHEMES

A scheme will be a generalization of an assertion. Next to

predicate-logical symbols a scheme may also contain symbols~~-
1.

function syntactically as n-ary relation symbols (although their

is quite different); then will mostly be omitted. Formally:

the usual

The ~1?-
1.

semantics

DEFINITION 1.1. The set Seh([) of schemes over the signature[, with typical

variable qi, is inductively defined by:

n n
qi::= Pi (t 1, ••• ,tn), t 1 = t 2 , ~i (t 1, •.. ,tn) (all n,i) I

qil V qi2 , qi] A qi2 , 7qi, Vxqi, 3xqi.

Here the P1?- are n-ary predicate symbols from E, t. E Tell..([) (the set of
l. l.

E-terms) and the ~1?- are scheme variables. The latter are not part of[, but
l.

will be considered to be standardly included in the language (as lo8ical

symbols), just like the ordinary variables x,y, •••• Note that

A.6-0([) s Seh([), where A.6-0([) is the set of assertions over[.

EXAMPLE l. 2. (i) The induction scheme IND = [HO) A Vx(Hx)-+ ~ (Sx)) J-+ VxHx).

(ii) ~l ➔ (~ 2 -+ ~1), a scheme with 0-ary scheme variableE

NOTATION 1.3. If qi is a scheme containing precisely ti · SLueme variables

~1, ••• ,~n' we write qi - qi(~ 1, ••• ,~n).

4

2. SUBSTITUTION IN SCHEMES

The intended meaning of the scheme variables is that one may substitute

assertions for them~ For technical reasons it is convenient to allow even

substitution of schemes for the scheme variables.

DEFINITION 2.1. Let ~,f E S~h. Then ~[f/$(x1, ••• ,xn)J is the result of

replacing each occurrence of the form $(t 1, ••• ,t) (t. E Telt) in~, by
n l.

f[t 1, ••• ,tn/x1, ••• ,xn]. ('O~dinary' substitution [t/;] in a scheme is de-

fined just as for assertions.)

EXAMPLE 2.2. (i) Let~= IND and f = x+y = y+x. Then IND[f/$(x)J = f[O/x]

A 'v'x(f[x/x] ➔ f[Sx/x]) ➔ 'v'xf[x/x] •= O+y = y+O A 'v'x(x+y = y+x ➔ Sx+y = y+Sx)

➔ 'v'x x+y = y+x.

(ii) Let~ - $1 ➔ ($2 ➔ $ 1). Then ~[$(x)/$ 1l[$(x)/$2] - $(x) ➔ ($(x) ➔ $(x)).

3. SEMANTICS OF SCHEMES

DEFINITION 3. 1. (i) ·Let ~ E Sc.h(r.) and let ~ = <fl("$). Then ~ t E =

{~[p/lJ I p E A6.6(E)}. (E.g., IND ~ EPA is the set of all induction axioms

over the signature of Peano's Arithmetic.)

(ii) Let A E Alg. Then A I=~ abbreviates A I= ~ ~ EA. (E.g. we have N I= IND

for the standard model of PA.)

(iii) A I=- ~~VA' ?:.A: A' I=~- Here A' ?:. A means: A' is an expansion of
s

A (i.e. A plus added 'structure'). In words:~ is schematically true in A.

(E.g. NI= IND. As a constrast, consider a nonstandard model~ of PA.
s

Then N* I= IND, but not N* I= IND.)
s

(iv) If E £ Sc.h(E), we call (E, "E) a saheme speaifiaation. (Cf. an ordinary

specification (E,E) where E £ A6.6(E).) (E.g. (EPA'lP,U,.),i.e. Peano plus the

scheme IND.)

(v) Let E' ?:. L Then (E,"E)E, = (E' ,E ~ E'). Here "Et E' = {~[p/$] I
p E M.6(E), ~("$) E "E }. (So, by attaching E' as subscript the scheme spec

ification is transformed to an ordinary specification.)

5

(vi) Let A E Alg(I). Then A t= (I,E) abbreviates A t= (I,E)I.

(vii) Let A E Alg(I). Then: A t= (I,lE) ~ A t= ~, V~ E E.
s s

(viii) Alg/I,lE) = {A E Alg(I) I A Fs (I,E)}. (E.g. Algs(IPA'JPA) = {N}.)

(ix) Alg (I, 1E) F ~ ~ VA E Alg (I, E) A I= ~. Instead of the LHS we will
s s s s

also write simply (I,JE) F ~-
s

4. DERIVABILITY OF SCHEMES

DEFINITION 4. 1. (I, IE) 1- ~ is defined as the usual derivability of an
n

assertion from a specification (to this end the~- are treated as n-ary
l.

predicate symbols) plus the substitution rule:

for all ~1, ~2 E Sch(I) and all scheme variables~-

PROPOSITION 4.2. (I;lE) r p ~ (I,E)I I- p, for aU p E A.6-6 (I).

PROOF. (4=) trivial; (.,.) induction on the length of the proof of (I, lE) I- p.

(This amounts to commutativity of substitution and derivability in the

usual sense.) D

The next proposition characterizes derivability of schemes in terms

of first order derivability.

PROPOSITION 4.3. (I,lE) f-- ~~VI' ~ I: (I' ,Eu O})I, = (I' ,JE)I,.

(Here"=" means that both specifications derive the same assertions.)

PROOF. (=>) Let (I, E) I- ~ and suppose (I' , E u {~})I, I- p for p E A.6-6 (I').

By Proposition 4. 2 also (I', 1E u { ~}) I- p. Because (I, 1E) I- ~, and therefore

also (I' ,JE) I-~, this yields (I' ,JE) I- p. Again by Proposition 4.2 we have

(I' , 1E) I' I- p •

(4=) Let~= ~(~ 1, .•• ,~n). Introduce 'ordinary' relation symbols P 1, .•• ,Pn

with arities respectively equal to those of ~1 , .•• ,~n' Let I'= Iu {P 1, ..• ,Pn}.

From the assumption (I', 1E u {~})I, = (I', E) I, it follows in particular:

6

O::',lE)E, (=(E',lE ~ E')) rq>(P 1, ••• ,Pn). Hence (E',E') I-HP1, ••• ,Pn) for

some finite E ' £ lE t E ' •

Now replace in the proof of (E' ,E') I- g>(P 1, ••• ,P) everywhere P. by ~. n i i

(i = 1, ... ,n); result: (E',E'(t/P]) I- g>(~l'••·,~n). Because in this last

proof no P. occurs, even (E ,E' [$/P]) I- H~ 1, ••• , ~) • Finally the result
i . n

++ +
follows: (I,lE) I- (E,E'[~/P]) 1-g>O). 0

We are now in the position to state and prove a soundness result.

LEMMA 5. (E,lE) I- g> ... (E,lE) I= g>. . s

PROOF. Assume (E,lE) 1- g> and consider a structure A with A I= (E,lE). We
s

show that A I= s g>. Therefore consider A' ~ A with A' I= (E, lE) and E' = EA,.

The following sequence of implications establishes A' F g>:

(E, E) I- H$) ...

(E' ,lE) I- q>($) .,.
+

(E' ,lE) I- g>(p) for all p € M.6(E') .,.
+ (E' ,E)L, I- g>(p) II II II

(E, lE) LI I- g> (p) II II II

II II ..

II II

(4.2)

Of course A' I= (E, lE) implies A' I= (E, lE) E, and consequently

+
A' I= g>{p) for all p € A.6.6 (E')

which is A' I= g>. 0

REMARK 5.1. The corresponding completeness result fails. To see this let us

consider the example (EPA'lPA). Completeness of I- w.r.t.

for all g>, and especially for all p € A6.6(EPA):

I= would entail
s

Now Algs O:PA' IP A) = {N} and we find

PA I- p ~ N I= p .
s

which contradicts Godel's incompleteness theorem.

DEFINITION 6. The schematic theory EA of a structure A is defined as the

set of all schemes <I> E Seh(EA) such that A I= s <I>.

LEMMA 6.1. The fo.ZZowing are equivalent:

(i) (EA,lEA) !-<I>

(ii) (EA,JEA) l=s <I>

(iii) A I= <I>.
s

7

PROOF. (i) => (ii) according to Lemma 5. (ii)=> (iii)=> (i) are evident from
the definitions. 0

DEFINITION 7. As is the maximal (full) expansion of A, i.e. As is a struc

ture (with presumabl~ an uncountable signature) which contains a name for

each possible relation function or constant on it.

The following property follows easily:

PROPOSITION 7 .1. A I= <I>~ As I= <I>.
s

As will be used in the proof of Theorem 9.2. In sections 10 and 11

8

we will use the partial correctness logic HL(I,JE) for schematic specifica

tions:

DEFINITION 7. 2. HL (I, 1E) f- H} S {1/1} is Hoare' s logic over (I, JE) .

Syntactically one requires that S E WP(I) and qi , ljJ E Sc.h(L). Its axioms

and rules are exactly the same as usually for HL, the only difference

being that schemes may occur at the position of assertions in the original

system.

8. TERMINATION ASSERTIONS

DEFINITION 8.1. (i) Let p E MJ(I) and SE WP(I). Then p ➔ S+ is a termina

tion assertion.

(ii) (Semantics:) If A E Alg (L) then: A F p ➔ S + ~ S converges on every

input : E A such that A I= p ci).

The next definition is based on the concept of 'prototype proof' TI(S)

as defined in BERGSTRA & KLOP [2]. This is roughly a scheme of which every

ordinary proof of {p}S{q} is a substitution instance. To this end we view

a proof of {p}S{q} as an 'interpolated statement', i.e. a statement in which

assertions ma.y occur; see Example 8.5 of a TI(S). For the precise details we

refer to BERGSTRA & KLOP [2].

DEFIN·ITION 8.2. Let S E WP(I). Then qi ~iµ abbreviates the scheme

V(/A\ K({qi}TI(S){iµ})), where TI(S) is the prototype proof of S, K denotes the

set of consequences used in {q>}TI(S){iµ}, and V denotes the universal closure.

Here qi,1/J are scheme variables different from those in TI(S). (As in BERGSTRA

& KLOP [2] and in Example 8.5, we will denote the scheme variables in TI(S)

by r 1 , r 2,. . . •)

Now we have the following proposition; the proof is routine and there~

fore omitted.

Sl;S2 SI S2
PROPOSITION 8. 3. (i) qi ~~~ iµ f- qi ~~ r /\ r, ljJ for some r.

(1• 1•) $ $,I, I- ,f, ,f, $,I, ,I, <1>1~ iµl /\ <Pz.............., "'2 'i'J /\ 'i'2 ~ "'I /\ "'2"
s s (iii) HL(I:,JE) f- {qi}S{iµ} ~ (I,JE) f-<P ~~iµ for some proof scheme <P ~~iµ.

9

(In fact we must write¢(~),~(~) etc. instead of¢,~ where~ is a list of

the relevant variables.)

The next definition is crucial.

DEFINITION 8.4. Let p-+ S+be a termination assertion. Then tl.>(p-+S+) is

the corresponding termination scheme, defined by:

➔ s ➔ ➔ _ ({p A ¢(x)} ~~{false})-+ 7 3x(p A ¢(x)).

➔
Here xis a list of the free variables 1.n p and the variables in S.

EXAMPLE 8.5. Let S = while x f:. 0 do x:= P(x) od, in the signature of PA;

Pis the predecessor function.

Now 1r(S) =
{ro(x)}

{ r 1 (x)}

while x f:. 0 do

od

{ r 1 (x) A x f:. 0}

{r2 (Px)}

x:= P(x)

{r2 (x)}

{r 1 (x)}

{r 1(x) Ax= O}

{r3 (x)}.

Let us determine the termination scheme <i>(true -+ S +).

K({true A ¢(x)} 1r(S){false}) =

{ true A ¢(x)-+ r 0 (x),

r 0 (x)-+ r 1(x),

r 1(x) Ax f:. 0-+ r 2 (Px),

r 2 (x) ➔ r 1 (x),

r 1(x) Ax= 0 ➔ r 3 (x),

r 3 (x) ➔ false}.

Now <I>,(true + S +) = o + 7 3x <j>(x), where o is the universal closure of the

conjunction of the six implications above.

Note that <I> = <I>(true + S +) is none other than IND, to be precise:

O:PA' lP A) I- <I> +-+ IND. Here <I> + IND follows by the substitution qi (x) =
r 0 (x) = r 1 (x) = r 2 (x) in <I> and by deriving from o that

7 <j>(O) A Vx(7(j)(x) + 7 <l>(Sx)) (where S denotes the successor function).

NOTATION 8.6. We will write often O:,lE) I- p + S+ instead of

o:: ']E) I- <I>(p + s ,j,) •

9. Before formulating the main theorem we need the following proposition,

whose routine proof is omitted.

PROPOSITION 9. I . As I= <I>(p -+ S ,1,) - As I= p + S ,1, .

THEO/IBM 9.2. The foZZmling are equivalent:

(i) o::A,lEA) f- <I>(p + s+)

(ii) A I= <I> (p + s ,1,)
s

(iii) A I= p + s + •

PROOF. (i)-.. (ii) by Lemma 6.1. (ii)-.. (iii):

A I= <I>(p + S ,I,) -.. (by Proposition 7. I)
s

As I= <I>(p + S ,I,) - (by Proposition 9. I)

As I= p+S,1, - (trivially)

A I= p + s,1,. □

IO. O::PA'lPA), AN EXAMPLE IN DETAIL

Let N be the structure (w,+,.,S,P,O) and let JPA be a suitable version

of Peano's arithmetic on N with a scheme for induction as indicated in the

example in 8.5.

We will list here some properties of the partial and total correctness

logics based on O:, lP A) = O::PA, lP .IA)•

As a matter of fact O:,JPJA.) f- p + S ,I, is incomplete for total correct

ness on N. This is easily seen from the fact that the set of programs S

with O::, lP A) f- true -+ S ,I, is r0 whereas on the other hand N I= true + S +
1

1 1

is a complete TI~ predicate of programs S. The example 8.5 shows, however,

that (I,JPA) proves the termination of nontrivial programs.

The partial correctness logic HL(E,JP&.) possesses some interesting

properties as well. Of course it is sound and incomplete w.r.t the seman

tics N F {p}S{q}. More interesting is a proof theoretic property which

was developed in BERGSTRA & TUCKER [3] for HL(E,PA) that can be nicely

generalized to (E,JPA\). For (E,PA) the result is as follows: this ordinary

specification admits a strongest postcondition calculus: for each p E L(E),

SE WP(E), there is an assertion SP(p,S) such that for all ES L(E):

HL(E,PA) I- {p}S{SP(p,S)} and

HL(E,PA+ E) f- {p}S{q} <=>

PA + E f- SP(p,S) ➔ q.

For the finite schematic specification (E, JP /A) one obtains a result which

is much more general.

THEOREM IO.I. For each schematic variable cp there ~s a scheme SP(p,S) such

that

HL (E , JP DI.) I- { cp } S { SP (cp , S) }

and moreover for all p,S

s
IP IA + cp ~~ 1jJ I- SP (cp , S) -+ 1jJ

which irronediately implies that for aU JE :

HL(E,FtA + JE) f- {cp}S{ijJ} <=> JPA+ JE I- SP(cp,S) ➔ iµ.

11 • RELATIONS WITH A STANDARD PROOF METHOD

Let A be a data structure containing a binary relation'< which is in

fact a well ordering of A with smallest element o E IA I. For A we have a

system of proving total correctness HLT(A) and a canonical specification

(EA,JE ;) . After detailed definitions we prove the following result which

12

indicates that HLT(A) can be formalized via (EA,JEA) and its total and

partial correctness logic.

THEOREM 11 • 1 • If

and

The system HLT(A) is nothing new, versions of it appeared in [l], [5],

[6] and [7] and various other places. The intended meaning of [p]S[q] is:

{p}S{q} & p + S + .

DEFINITION 11.2. HLT(A) has the following rules:

(i)

(ii)

(iii)

(iv)

(v)

[p[t/x]] X := t [p]

[p]S 1[q] [q]S 2[r]

[p]S 1 ;SzCrJ

[p A b]S 1 [q] [p A7b]SzCq]

[p] if b then Si else s2 fi ~q]

[p']S[q'J Al= q' +q

[p]S[q]

[I(a) A b]S[3S < a I(S)] Ae 1(0) + ::lb

[I0] while b do S od [IO A 7b]

where 10 = ~a I(a) and a,S i VAR(S).

11. 3. (EA,]E ;) consists of EA, the theory of A in M!:, (EA), and the scheme

JE < of induction along < :

VS[(Va(a < S ➔ ~(a))) ➔ ~(S)] ➔ Va ~(a).

11.4. We can now prove the theorem. The first part concerns partial correct

ness. This is a straightforward induction on program depth, except in the

13

case of the while rule. We will consider this case.

Suppose that

has been deduced from

[I(a.) A b]S0[38 < a I(B)J, A I= I(O) + 7b

with 10 = 3a. I(a.).

From the induction hypothesis we find (in HL (EA, JE A)):

I- {I(a.) A b} s0 {38 < a I(B)}

using the rule of consequence then

and with existential generalization on the precondition

then with the while rule

I 1 .5. The second part of the proof involves showing (EA,JEA) f- p +Sf. We

abbreviate (EA,]EA) to (E,]E) in this part of the proof. Of course we use

induction on the structure of the proof of [p]S[q]. With X we denote the

variables occurring free in p, S, q.

Suppose that [p]S[q] was obtained by applying the rule of consequence

to [p']S[q' J, then by the induction hypothesis (E, lE) f- p' + S + ; an easy

logical calculation then shows (E,]E) f- p + S + because]E f- p + p' •

For the case S - x := t we explain the argument in detail.

14

(}::,:JE) r VX(p A</>+ false) ::i 7 3X p A</>

because this is a tautology. Then

(}::,,:JE) r (VX(p A <I>+ r[t/x]) A Vx(r +false))+ 7 3X p A</>,

thus
X •- t o::, :IE) I- [p A <I>,,-=,.::...,-4 false] ➔ 7 3X p A <I>

(E, :IE) r </>(p ➔ S +)
(E, JE) I- p ➔ S + •

The argument in case [p]S[q] was obtained from an application of

the conditional rule 11.2 (iii) is entirely straightforward and is therefore

omitted.

The harder cases of composition and iteration remain and we treat com

position first.

Let S = s1;s2 • Assume HLT(A) r [p]S[q]. Choose an assertion u with

We show that (2.:, :IE) r p

O::,]E) , 7 3X p A <I> from p
S1 some r: p A <I> ~~,--+ r and

Because of HL (E,]E)
s

a proof scheme p ,..,;:14 r,

+ s+. It is sufficient to derive, working in
s s A <I> ~false. So assume p A <I> """"+ false. Then for

S2
r ~false.

r {p}S 1{u} (part (i) of this theorem) one obtains
s

combining this one with p A <I>~ u one obtains

using Proposition 8.3 p A <I>
Sz

tains r Au ~false.

S1 S2
~'-'+ r A u; from r ~ false one immediately ob-

Now using the induction hypothesis on s2 we know that (}::,]E) r <P(r + s2+)

thus (E,:JE) r (r A <I> ~false) + 73Xr X </>, Substituting u for <I> and apply

ing modus ponens we obtain 73Xr A u. After applying the
SJ on p A <I> ~ r A u, VX(r Au) + false we find p

hypothesis on S 1 then immediately yields 7 3X p

s
/\<I>~

/\ <I> •

rule of consequence

false. The induction

Finally assume that S = while b do s0 od and HLT(A) 1-[p]S[q]. We may

assume that p and q have forms I 0 and I 0 A 7b, with I 0 = 3a I(a), and

that

15

and A F I(O)-+ 7b. We shall derive (1:,E) r IO-+ Sf. This is:
s .

(E, E) r (IO A cf> '""""'+ false) -+ 7 3X IO A cf>. Working within (E,]E) we assume

I A cf> ~false
0

So for the formal invariant I* in ~(S):

*
IO A cf> -+ I

* So
I* (i) I Ab~

* A 7b-+ false. I

* Assume for a contradiction that 3 X I 0 A <I>, then 3 X I and even 3a. 3 X

* * I(a.) A I. Now choose a. minimal such that 3X I(a.) A I. Because of part

(1) on

[I(a.) Ab] s0[3S < a. I(S)] (ii)

we find a proof scheme

So
I (a.) A b ~ 3 8 < a. I (8)

combining this proof with (i) we obtain

* So * I A I(a.) Ab ~38 < a. I(S) A I.

Because of the minimality of a. this gives

s
1* A I(a.) Ab ~false (iii).

The induction hypothesis on sO then yields

16

so we can·use the scheme

I (c.) A b A cf> false+ 73X I(a) Ab A cp.

Applying this with cp = 1* on (iii) we obtain using modus ponens

* 73X I A I(a) A b.

Because of 1* A 7b + false this implies 73X (I* A I(a)). Now we have as

sumed 3 X (I* A I(a)) and this gives the desired contradiction. D

REFERENCES

[1] APT, K.R. & E.R. OLDEROG, Proof l'Ules dealing with fairness, Bericht

Nr. 8104, March 1981, Institut fiir Informatik und Praktische

Mathematik, Christian Albrechtsuniversitat Kiel.

[2] BERGSTRA, J.A. & J.W. KLOP, Proving program inclusion using Hoare's

logia, Mathematical Centre, Department of Computer Science,

Research Report IW 176 , Amsterdam 1981.

[3] BERGSTRA J.A. & J.V. TUCKER, Hoare's Logia and Peano's Arithmetic,

Mathematical Centre, Department of Computer Science, Research

Report IW 160, Amsterdam 1981.

[4] BERGSTRA, J.A. & J.V. TUCKER, The a:x;iomatia semantics of while

praograms using Hoare's Logia, manuscript May 1981, definitive

version in preparation.

[5] GRUMBERG, 0., N. FRANCEZ, J.A. MAKOWSKY & W.P. DE ROEVER, A Proof

Rule for fair TePmination of Guarded Commands, Report RUU-CS-

81-2, Vakgroep Informatica Utrecht.

[6] HAREL, D., First Order Dynamic Logia, Springrr Lecture Notes in Comp.

Sc. 68, 1979.

[7] HAREL, D., Proving the aorTeatness of regular detePministia programs:

a unifying survey using dynamic logia, T.c.s. 12(1) 61-83.

1 0

