
stichting

mathematisch

centrum

AFDELING INFORMATICA IW 170/81 JULI
(DEPARTMENT OF COMPUTER SCIENCE)

J.W. DE BAKKER, J.W. KLOP & J.-J.CH. MEYER

CORRECTNESS OF PROGRAMS WITH FUNCTION PROCEDURES

Preprint

~
MC

kruislaan 413 1098 SJ amsterdam

l!BUOTHEEK MATHEMAT!SCH CENTRUM
AMSTERDAM

Ptunted a:t th,2- Ma:thema,Uc.ai. Cen.tJr.e., 413 Klll.U6laa.n, Am6tvuiam.

The Ma:thema.ti.c.al. Cen.tlr.e , 6ounded .the 11-th 06 FebJuuVr.y 1946, ~ a non
pll.06,U wti:tu:tlon a-i..ming at the. pll.omotion 06 pUJr.e ma:thema,ti,e1, and m
appUc.a,ti,on6. It ~ Jpon6oll.ed by the Ne:theJita.nd6 GoveJr.nment fuough :the
Ne:thell.land6 01r.ganJ,za,tlon 6oll. the Advanc.ement Oo PUJr.e RueMc.h (Z.W.O.).

1980 Mathematics subject classification: 68BIO, 68COI, 68COS

ACM Computer Reviews Categories: 5.24, 4.22

Correctness of programs with function procedures*)

(extended abstract)

by

. **)
J.W. de Bakker, J.W. Klop & J.-J.Ch. Meyer

ABSTRACT

The corrc:!ctness of programs with progranuner-declared functions is in

vestigated. We:! use the framework of the typed lambda calculus with explicit

declaration o:E (possibly recursive) functions. Its expressions occur in the

statements of a simple language with assignment, composition and condition

als. A denotational and an operational semantics for this language are pro

vided, and thc:!ir equivalence is proved. Next, a proof system for partial

correctness is presented, and its soundness is shown. Completeness is then

established for the case that only call-by-value is allowed. Allowing call

by-name as well, completeness is shown only for the case that the type struc

ture is restricted, and at t;he cost of extending the language of the proof

system. The completeness problem for the general case remains open. In the

technical considerations, an important role is played by a reduction system

which essentially allows us to reduce expression evaluation to systematic

execution of auxiliary assignments. Termination of this reduction system is

shown using Tait's computability technique. Complete proofs will appear in

the full version of the paper.

KEY WORDS & PHRASES: typed lambda calculus, recursive procedures, caU-by

value, call-by-name, denotational semantics, operation

al semantics, Hoare's logic, soundness and completeness

*) This report will be submitted for publication elsewhere.

**) Department of Computer Science, Free University, De Boelelaan 1081,
1007 MC Alnsterdam.

1 • INTRODUCTION

We present a study of partial correctness of programs with progranuner-declared func

tions. Typically, if "fac" is declared as the factorial function, we want to be able

to derive formulae such as {x=3} y := fac'(x) {y=6} • For this purpose, we. use a func

tional language with an interesting.structure, viz. the typed lambda calculus to

gether with explicit declaration of (possibly recursive) functions - rather than us

ing the fixed point combinator - and then consider a simple imperative language the

expressions of which are taken from this functional language. The reader who is not

familiar with the typed lambda calculus may think of function procedures as appearing

in ALGOL 68, provided only finite (not recursively declared) modes are used.

Section 2 first introduces the syntax of our language(s). As to the functional

language, besides constants and variables it contains application, two forms of ab

straction, viz. with call-by-value and call-by-name parameters, and conditional ex

pressions. The imperative language has assignment, composition and conditional state

ments. A program consists of a statement accompanied by a list of function declara

tions. The assignment statement constitutes our main tool in applying a formalism in

the style of Hoare to an analysis of correctness of programs with function procedures.

A central theme of the paper is the reduction of expression evaluation to execution

of a sequence of assignment statements, thus allowing the application of the well

known par.tial correctness formalism for imperative languages. Some further features

of our language are: function evaluation has no side-effects, the bodies of function

declarations may contain global variables, and the static scope rule is applied. Sec

tion 2 also provides a denotational semantics for the language, with a few variations

on the usual roles of environments and states, and applying the familiar least fixed

point technique to deal with recursion.

Section 3 presents an important technical idea. A system of simplification rules

is given for the statements of our language allowing the reduction of each statement

to an equivalent simple one. These rules embody the above-mentioned imperative treat

ment of expression evaluation, and play a crucial role both in the definition of the

operational semantics to be given in Section 4, and in the proof systems to be studied

in Sections 5 to 7. The proof that the reduction always terminates is non-trivial.

Details are given in the Appendix; the proof relies on the introduction of a norm for

each expression. The existence of this norm is proved using an auxiliary reduction

system. Reduction in this auxiliary system always terminates as is shown using the

"computability" technique of Tait [22]. In Section 4 we define an operational seman

tics for our language and prove its equivalence with the denotational one.

In Section 5 the notion of partial correctness formula is introduced, and a

sound proof system for partial correctness is proposed. The techniques used in the

soundness proof rely partly on the equivalence result of Section 4, partly follow the

lines of De Bakker [4]. In Section 6 we show that a slight modification of the proof

system is complete for a language with only call-by-value abstraction. This is shown

2

by appropriate use of the technique of Gorelick [II], described also e.g. in Apt [J]

and De Bakker [4]. Section 7 discusses completeness when call-by-value and call-by

name are combined, but only for the case that all arguments of functions are of ground

type (no functions with functions as arguments). We present a complete proof system

for this-case, albeit at the cost of extending the language of the proof system with

an auxiliary type of assignment, allowing the undefined constant in assertions, and

adding to the proof system a number of proof rules exploiting the auxiliary assign

ment. The completeness problem for the general case (functions with functions as argu

ments) remains open. In the Appendix we give some details on the proof of termination

of the simplification system of Section 3.

Partial correctness of programs with function procedures has not yet been inves

tigated extensively in the literature. Clint & Hoare [8] (see also Ashcroft, Clint &

Hoare [2], O'Donnell [19]) propose a rule which involves the appearance of calls of

progrannner-declared functions within assertions. The proof system· we shall propose

avoids this. A generijl reference for the (typed) lambda calculus is Barendregt [5].

The semantics of the typed lambda calculus has been thoroughly investigated e.g. by

Plotkin [20] and -extended with nondeterminacy, by Hennessy & Ashcroft [12,13]. How

ever, correctness issues in our sense are not addressed in these papers. (LCF [10] is

a logical system for function procedures, but not the one of partial correctness.) The

operational semantics of Section 4 follows the general pattern as proposed by Cook [9]

and further analyzed by De Bruin [6]. The partial correctness formalism was introduced

by Hoare [13]; many details on further developments can be found in e.g. Apt [I] or

De Bakker [4]. Completeness is always taken in the sense of Cook's .relative complete

ness [9]. Related work on (in)c~mpleteness of partial correctness for procedures is

described in Clarke [7]; a survey paper on this topic is Langmaack & Olderog [17].

Acknowledgements. We are grateful for a number of helpful discussions with K.R. Apt,

H.P. Barendregt, A. de Bruin, E.M. Clarke, H. Langmaack and E.R. Olderog. Arie de Bruin

has in partic~lar clarified some problems we had with the definition of the denota

tional semantics, and Ed Clarke did the same for:•the (in) completeness problem.

2. SYNTAX AND DENOTATIONAL SEMANTICS

Notation. For any set M, the phrase "let (me:)M be such that

and simultaneously introduces mas typical element of M.

"defines M by ••• ,

We first present the syntax of our language. It uses a typed lambda calculus with

programmer-declared functions allowing (explicit) recursion, embedded into a simple

imperative language.

The set (Te:) Type. is defined by T : := wl (T 1-+ T2). A type T is either ground

(T=w), functional (T / w, this abbreviates that T =Tl-+ T2 for some types T1, T2),

or arbitrary. Type (w-+(w-+ ••. -+(w-+w) ••)) is usually abbreviated to wn+w, n ~ 0.

3

The set (cE) Con-6 is that of the constants, which are always of the type wn + w, n;,: O.

We use the letters x, y, z, u for variables of ground type, f,g for variables of func

tional type, and v, w for variables of arbitrary type. For later use, we assume the

respective sets of variables to be well-ordered. In the intended meaning, (function)

constants are given initially (as part of some given signature, if one prefers) and

assigned values - by some interpretation - in a set Vn + V, V the set of ground
w w w.

values. For example, takirrn Vw as the set of integers, "+" might be the interpreta-

tion of a constant of type w2 + w. Function variables are to be progrannner-declared

("fac" above is an example). Note that, contrary to the situation for constants, their

arguments may themselves be functions (type ((w+w) ➔ w) is an example).

The set of expressions is defined as follows: First we give the syntax for the

untyped expressions (s,tE) Uexp. After that, we present the typing rules which deter

mine the subset Exp consisting of all expressions which can be typed according to

these rules. From that moment on, s,t always stand for typed expressions.

(We take this syntax in the sense that wherever an arbitrary variable v may appear,

also x, ... or f, ..• ma1 appear). The following formulae suggest the typing rules (sT

is to be read here as: sis of type T): (i) cT, where T = wn + w, n;:: 0 (ii) xw, vT

for any T), fT for T # w (iii) (s~J+T 2(s; 1))T2 (iv) <val xw: sT>w+T (v) <name vTI:

5 TZ>TJ+T2 (vi) (if b then s1 else s2 fi)T.

Examples J

I. Expressions which cannot be typed:

x(y), v(v), c(x)(f), <val x:s>(f)

2. Expressions which can be typed:

f(y), c(x)(y), <val x:c>(y), <val x: <name f: f(x)>>(c)(g), if b then c 0 else

c 1(x)(f(c2(x))) fi

For simplicity's sake, we only treat call-by-value parameters of ground type in

our language (whereas call-by-name parameters are arbitrary). When confusion is un

likely, we simply uses instead of sT

As further syntactic categories we introduce (bE) Bexp (boolean expressions),

(SE) Sta,t (statements), (DE) Vec.l (declarations), (PE) PIWg (programs), and (eE) Sexp

(simple expressions) as follows:

b : := true Is~= s~l7b lb 1 => b 2

s : := x:=s I SI ;S2 I if b then s 1 else. s 2 fi

TJ TI Tn Tn
;,: 0 D : := fl 4'= ti ' .•. , f 4'= t

'
n n n

p : := <D:S>

e : := xlc(e 1) ••• (en), n ;,: 0

4

Some further terminology ~nd explanation about syntax is provided in the

Remarks

I. "=" will denote syntactic identity

2. <D:S> is usually written as <DIS>

3. An example of a program (for sui~ably chosen constants) is

<f., <val x: if x=O then y else X*f(x-1) fi I y:=I; z:=f(2)> -- -- --- --- . -
4. A variable vT is bound in a program either by abstraction or (for T f:. w) by appear

ing on the left-hand side of a function declaration. Vall. is the set of all vari
T

ables of type T. var (s) denotes the set of all free ground variables of s.
w

x E var (s) will sometimes be abbreviated to x Es. Similar notations such as
w

var (D,S), var (s), f Es, etc. should be clear. A program P = <DIS> is called
W T

cZosed whenever var (P) =~for T f:. w.
T

5. In a closed program <DIS>, the only free variables are of ground type. In pro-

gramming terminology, these are the gZobaZs of the program. They appear either

in the body of function declarations (int., where D = <f ... t.>.) or in S (e.g.,
J 1 1 1

in x := <val u: c(u)(y)>(z), the globals are x, y, z).

6. Substitution oft for v ins is denoted by s[t/v]. The usual precautions to avoid

clashes between free and bound variables apply.
-+ -+ -+

Ann-tuple (s 1) ... (sn), n ~ 0, is often abbreviated to sl:n or to s. sZ:n denotes

(s 2).~.(sn); also, a notation such as (y:=s)-+ is short for y 1:=s 1 ; •.. ;yn:=sn'

7.

n ~ O.

8. SimpZe expressions e (are always of ground type and) have no function calls or

abstraction; they are theretore essentially simpler than arbitrary expressions,

and play a certain "atomic" role in the subsequent considerations.

In the semantics we introduce domains (<f,Te) VT, for each T, as follows: let v0

be some arbitrary set, and let (ae)V = v0 u {~} be the fZat cpo of ground values w w
over v0 (i.e., a 1 ~ a 2 iff a 1 = ~w or a 1 = a 2). Let VTJ-+Tz = [VT 1 -+VT 2J, i.e., all

continuous functions VTJ-+ VT 2, and let ~T denote the least element of VT (i.e., for
Tl

T = Tl -+ T2, ~T = >-<ti ·~T 2). Let (Se)W = {ff,tt} u {7v} be the flat cpo of truth-vaZues.

Let LO= VMw-+ v0 , and let (cre)L = LO u {~L} be the flat cpo of states. Let (nTe)~=

L -+s VT, -+s denoting strict functions, be the cpo ordered by n~ r;_ n; iff n~(cr) r;_ n;(cr)

for all cr. Let (ne)N = U N, and let Vall.= U Vall.. Environments£ are functions: T T T . T
Vall.-+ N which are used primarily to assign meanings either to the variables appearing

as parameters in. abstraction, or to declared function variables. (Note that E:(f) e N

in general depends on the state since the meaning off may be changed by assignment

to some global variable, such as "y:=I" in the example of remark 3 above.) For techni

cal reasons, it is convenient to address aii ground variables through£, This is

achieved by the following definitions:

I. £ is called no:r>maZ in x iff £(x) = >.cr•cr(x) (i.e., £(x)(cr) = cr(x): normally, the

value of a variable is obtained by applying the state to it)

5

2. Eis said to store x iff E(x) = Ao•a, for some a (i.e., E(x)(o) = a: a is the

value -·which may be 1 - stored for the formal parameter x (see Def. 2.1) and is
w

independent of the state)

3. The set Env of environments is defined as

Env = {E E Va.Jt+N I E(Va.Jt). c N , and Vx[E is normal in x or E stores x]}.
'[- '[

4. Eis called normal iff E(x) = Acr•o(x) for all x.

We note that, for E normal'in x, E(x)(o)(= o(x)) f 100 is always satisfied for of lI'

whereas, if E stores x, we may have that E(x)(o)

Two further pieces of notation are needed:

I. We shall use Xa•cj>w+T (a) as notation for the strict function defined by Aa • if
W+T() , a= 1 then 1 else cj> a f1 w-- '[-- -

2. For a f 100 and of lI' o{a/x} denotes the state such that

fa, ifx=y
o{a/x} (y) = 1

lo(y), ifxiy
Similarly for E{n/v} etc.

In the denotational semantics we first fix an interpretation J for all c:

J: Con.6 + (V + (V + .•. + (V + V) •••)). Note that the meaning of a constant is
W S W S S WSW

always a strict function. As valuation functions for the various syntactic classes we

introduce

V: Exp + (Env + o: +
s

V))

W: Bexp + (Env + o: + W)) s
M: Sta,t + (Env + (I +

s
I))

N: P!t09 + (Env + (I +
s I))

J
(E for Sexp is given later). They are defined 1n

DEFINITION 2.1. (denotational semantics)

a. V(s')(E)(1I) = 1,, and for of lz:,
V(v) (E) (o) E(v) (o)

b.

V(c)(E)(o) J(c)

V(s 1 (s 2))(E)(o) = V(s 1)(E)(o)(V(s 2)(E)(o))

V(<val x:s>)(E)(o) = ~a•V(s)(E{Ao•a/x})(o)

V(<name v:s>)(E)(o) = Acj>•V(s)(E{A;•cj>/v})(o)

V(if b then s 1 else s 2 fi) (E) (o) =

if W(b)(E)(o) then V(s 1)(E)(o) else V(s 2)(E)(o) fi

W(b)(E)(lI) = -V' and, for of lI'

flw' if V(s 1)(E)(o) = 100 or V(s 2)(E)(o)

Lv(s 1)(E)(o) = V(s 2)(E)(o), otherwise

(other clauses are simple and omitted)

l
w

c. M(x:=s)(E)(o) = if V(s)(E)(o) = 100 then 1z: else o{V(s)(E)(o)/x} fi

M(s 1 ;s 2)(E)(o) = M(s 2)(E)(M(s 1)(E)(o))

6

M(if b then_ s 1 else s 2 fi) (£) (er)

if W(b) (£) (er) then M(s 1)(£) (er) else M(s 2) (£) (er) fi

d. N(«f.~t.>. j S>)(E)(cr) = M(S)(dri./f.}.)(er), where <ri 1, •.. ,rin> 1. 1.1. 1. 1.1.
and H. = Ari 1• • ••• •Ari' . V (t .) (d ri ! / f. }.) , j = I , ••• , n.

J n J 1. 1. 1.

Rema,rks.

I. Note that the assignment 1.s strict in the value of its right-hand side. Call-by

value abstraction is strict as well; this observation forms the starting point

for the simplification of the next section.

2. It can be shown that V(s ')(£)(er) E V •
'[

3. µ[H 1, ••. ,Hn] in clause d denotes the simultaneous least fixed point of the opera-

tors H1, ••• ,Hn; its existence follows from the continuity of each of the Hj, j =

I , ••• , n.

3. SIMPLIFICATION

We first observe that an analysis of the structure of the expressions sw yields

that each assignment x := sw is one of the following forms.

I. X .- e
➔

(n2 l) , simple 2. X := cs I :n not all s. 1.
-➔

(n2 I), 3. X .- fs I :n
4. X := <val x' :s >!

0 I :n
(n2 I) ,

➔
(n2 I), 5. X .- <name v:s >s

-- 0 l:n J ➔
6. X .- if b then s' else S II fi sl :n (n20). - -
Moreover, we recall that, in 2, all the si are of ground type, and in 4 s 1 1.s of

ground type.

We next define the notion of a simple statement T by:

T ::= x:=e j x:=ft j T 1 ;T 2 f if e 1=e 2 then T 1 else T2 fi

(Essentially, in a simple statement we have eliminated abstraction outside the argu

ments of function variables.) We now present a system of reduction rules allowing us

to reduce each statement to an equivalent (but for the values of certain auxiliary

variables) simple statement. Let us call the reduction system RS 1• It has the rules

I.

2.

3.

4.

5.

➔ ➔ ➔
x:=cs "-➔ (y::=s) ; x:=cy, not all s. simple

1.
➔ ➔

x:=<val x':s0>s "-➔ y:=s; x:=s0[y/x'Js 2 :n
➔

x:=<name v:s 0>s

x:=if b thens'

"-➔ x:=s0[s 1/vJ!2 :n

else s" fi ! "-➔ if b then x:=s•t else x:=s 11t fi

6 .. if 7b then S I else s 2 fi "-➔ if b then s 2 else S I fi

7. if b 1 => b 2 _!:hen s 1 else s 2 fi "-➔

if b I then if b 2 then S I else s2 fi else S I fi

8. if s 1=s 2 then s 1 else s2 fi ---+

y 1 :=s 1; y;:=s 2 ; if y 1=y2 then s1 else. s2 fi, not alls. simple
1

7

In rule I all (ground) arguments of a function constant are evaluated and stored in

auxiliary variables. x:=cy is an assignment with a simple right-hand side, and the s.
1

are to be subjected to further reduc.tion. Rule 2 expresses call-by-value through

assignment. Rule 3 deals wit~ call-by-name through substitution (it is the rule of

S- conversion of the lambda calculus). Rules 4 to 8 are self-explanatory. In subse

quent applications of RS 1, we shall employ it in the context of a declaration D. We

shall then impose upon they. the constraints that, in each of the rules I, 2, and 8
1

we have:

(i) ally. are different and do not appear free on the left-hand side of the rule.
1

(ii) none of they. appears free in D.
1

THEOREM 3. I •

a. The reduction system RS 1 always terminates transforming each statement S to some

simple T.

b. In case restrictions (i), (ii) on the choice of they. are imposed, Tis equiva-
1

lent to S, but for the values of the auxiliary variables.

Proof. An outline of the proof of part a can be found in the Appendix. The problem

is nontrivial since induction on the syntactic complexity of s (in x:=s) does not

work directly (because of rule 3), and a suitable means for bringing the type struc

ture into the picture has to be found. The proof of part bis implicit in the con

siderations of Section 4. D 1

4. OPERATIONAL SEMANTICS AND THE EQUIVALENCE THEOREM

In the operational semantics we start from the evaluation of simple expressions

through the valuation function E: Sexp + (L O+vO) defined by E(x)(CT) = CT(x),

E(c(e 1) •.. (en))(CT) = J(c)(E(e 1)(CT)) .•. (E(en)(CT)). Next, following the approach of Cook

[9], we define a (partial) function C: P~og + t (L+L 00
), where L00 = L* u Lw, the set par

of all finite or infinite sequences of states. In the definition we use 11- 11 for conca-

tenation of sequences (on the right-hand side of an infinite sequence it has no effect)

and K: L00 + L for the function yielding the last element of a sequence if it exists

and iL otherwise. For pa sequence in L00
, if p = <CT 1, .•• ,CTn> EL , then p{a/y} denotes

<CT 1, •.. ,CT 1, CT {a/y}>, and if p E Lw then p{a/y} = p.
n- n

We now give the rules for C(<DJS>). For brevity, we rather write CD(S):

DEFINITION 4. I. (computation sequences)

I. CD(S)(iL) = <iL>, and, for CT I iL,

2a. CD(x:=e)(CT) = <CT{E(e)(CT)/x}>

b. CD(x:=f!)(CT) = <CT>-CD(x:=t!)(CT), if f ~ t occurs in D (otherwise CD(x:=f!)(CT) is

undefined)

8

if E(e 1)(a)

if E(e 1)(a)

E(e 2) (a)

'f E(e2) (a)

3. CD(S)(a) = <a>-CD(S')(a){a(yi)/yi}i, for each rule S .-...+ S' of the system RS 1,

where y 1,. , .• ,Yn, n ;::: 0~ are the auxiliary variables introduced in that rule (for

uniqueness,, we assume that the first y. satisfying restrictions (i), (ii) are
1.

chosen).

Remark. In clause 3, the auxiliary variables - after having served their purpose as

temporary storage - are reset to their original values by the modification
n

{a (y.) /y.}. I • 1. 1. 1.=

LEMMA 4.2. The system of equations for CD given in Definition 4. I has a unique solu

tion.

Proof. The proof combines the techniques as described in De Bruin [6] with some ideas

from the termination proof for RS 1. D

DEFINITION 4.3. The operational semantics 0: P~og ➔ (I➔ I) 1.s defined by part s
O(<DIS>)

Again, we shall often write OD(S) for O(<DIS>). The denotational and operational se

mantics for closed programs coincide. In order to prove this, some auxiliary notions

and results are necessary, some of which also play a part in subsequent sections. (For

some background concerning the potion "does not use" see De Bakker [4].)

LEMMA 4.4. (first substitution lemma)

a. V(s[t/f]) (E) V(s)(E{V(t)(E)/f})

b. V(s[t/v]) (E)).a• V(s) (d>-;;•V(t) (E) (a) /v}) (a)

Remark. Note that using v instead off in part a would (for v of ground type) not De

well-formed because of the definition of Env.

DEFINITION 4.5.

a. A function n does not use x iff for all a, a 'f L , n(a{a/x}) n(a)
w

b. E does not use x iff E(f) does not use x for all f.

LEMMA 4.6. Let D = <f.<=t.>.' and let n- be as in Def. 2. I. 1. 1. 1. 1.
a.

If X '
D, s and E does not use x then V(s)(dn./f.}.) does not use 1. 1. 1.

b. Let <D]s> be closed. If X 'D, s then V(s)(dn./f.}.) does not use 1. 1. 1.

x.

x.

Remark. By way of explanation of clause b we observe that a function which 1.s the

meaning of an expression uses a variable only if it occurs in the expression directly

or indirectly (i.e., as a global of a function procedure called in the expression).

LEMMA 4.7. (second substitution lemma)

a. V(s[y/x])(E)(cr{a/y}) = V(s)(E{A;•a/x})(cr), provided that y i var (s)\{x}, Eis
w

noY'ITlal in x, y and E does not use y.

9

b. V(s[t/x])(E)(cr) = V(s)(E)(cr{V(t)(E)(cr)/x}) provided that£ is normal in x and E

does not use x.

We now exhibit a series of 'facts leading to the equivalence theorem. We always assume

that D = <f.<=t.> .• 1. 1. 1.

LEMMA 4.8. For <DIS> closed and£ normal, OD(S) S ND(S)(E).

Proof. Induction on the length of the computation sequence used (by CD(S)) to deter

mine OD(S).

The reverse inclusion takes more effort and is proved in a number of steps. Assume

again that <DIS> is closed and£ normal. We introduce some auxiliary syntax. For each

T, let QT be the nowhere defined expression (i.e., V(QT)(E)(cr) = l. , and
T+ (j) [j] T

CD(x:=Q s)(cr) = <l.L>). With respect to D we define S and S , j = 0,1, ... :

Notation. s<O) = s, s(j+I) = s(j)[t./f.J., s[j] = s(j)[Q/f.J., j 0,1, Let Ek=
k O 1 11 k 11

dn./f.}., k 0,1, ... , where n. = 1., n~+l V(t.)(dn./f.}.), j l, ... ,n. For n. as
i 1. 1. 1 J J 1. 1. i i

in Def. 2.1, by continuity we have that n• = LJ n~, i = 1, ..• ,n.
i k i

Step

I. ND(S)(E) = M(s)(dn./f.}.) i i i
(def. 2. 1)

(continuity)

(lennna 4.4)

2. M(S)(E{n./f.}.) = LJ M(S)(E)
i i i[] k W

3. M(S)(Ek) = M(S k)(E)

4. M(S[k]) (£) S OD(S[k])

· · · · f [k] . d d . h A d. d h This uses induction on the norm o S as intro uce 1.n t e ppen 1.x, an t e

requirement that£ be normal. Note that, since <DIS> is closed, S[k] does not con-

tain free function variables (for TI w, var (S) c {f 1, ••• ,f }; hence,
T - Il

var (S[k]) = 0).
T

5. If OD(S[k])(cr) = cr' I l.I' then OD(S(k))(cr) = cr'

This is a familiar argument, cf. the "genericity" result of Barendregt [SJ. E.g.,

if x:=s[Q/f] = x:= ..• s-2 ••• , for input cr yields output cr' I l.L, then Q is not en

countered during execution of s (it never appears in the head position), and exe

cution of x:= .•• Q ••• may just as well be replaced by execution of x:=s = x:= .•• f •••

6. OD(S(k)) = OD(S).

This is the fixed point property of (recursively declared) function procedures.

A special case is that OD(x:=s[t/f]) = OD (x:=s), for f <=tin D.

Combining steps 1 to 6 we obtain that ND(S)(E) ~ OD(S); together with Lennna 4.8 this

yields

THEOREM 4.9. F'or <DIS> closed and£ normal, N0 (S)(E)

5, CORRECTNESS AND A SOUND PROOF SYSTEM

We are interested in proving facts such as

I= <f~<val x: if x=O then 1 else x*f(x-1) fi I {x=3}y:=f(x){y=6}>.

Note that in this example a postcondition y = f(3), though trivially true, would not

be particularly helpful. In order to avoid this phenomenon (assertions with unevaluat

ed function calls), we restrict ourselves to assertions with only sirrrple expressions

(no function calls, and no abstraction either). The class (p,q,rE) M.611 is defined by

p ::= true le 1=e 2 17plp 1~p 2 J3x[p]

The valuation T: M.6n-+ (Z-+s{tt,ff}) is defined by T(p)(.iz) = ff, and, for a f,. .Lz,
T(e 1=e 2)(cr) = (E(e 1)(cr) = E(e 2)(cr)), ... (the other clauses are obvious). A correctness

forrrrula is a construct of the form <DIF 1=>F 2>, where F 1, F2 are conjunctions of asser

tions and triples {p}S{q}. An example is the rule of consequence <DI (p~p 1) A {p 1 }S{tt 1} A

A(q 1~q)=>{p}S{q}>. <D!F> abbreviates <Dltrue => F>. Correctness formulae contain D to

provide declarations for the (functions called in the) S appearing in them. The"=>"

formalism leads to a system in the style of Gentzen's "sequent calculus" (rather than

Gentzen's natural deduction) to deal with recursion. Further explanation of this can

be found e.g. in Apt [I] or De Bakker [4]. For the definition of validity we first

provide a valuation F, assigning meaning to {p}S{q} in the usual manner:

F({p}S{q})(E)(a) = 'v'a'[T(p)(a) A a'= M(S)(E)(a) "a' f,. .Lz => T(q)(a')].

In case we want to stress that F depends on J (the interpretation of the constants),

we write FJ' We then put I=; <DJF 1=>F 2> iff for all normal£ such that£ uses no (ground)

variables not in D.

'v'a f,. .i[F;(F 1)(£{n./f.}.)(a)J => 'v'a f,. .L[F;(F 2)(£{n./f.}.)(a)J,
1. 1. 1. 1. 1. 1.

where then- are as in Def. 2.1.
1.

The restrictions on £ firstly imply that all free ground variables of D, F1, F2 are

treated as normal variables (£(x)(a) = a(x), for all x); moreover, for all f, £(f)

uses only variables in D. For f declared in D, this is to be expected; for f unde

clared (a situation stemming from the proof rule for recursion) it has to be postu

lated for reasons explained in Chapter 5 of De Bakker [4].

Usually, J is understood, and we simply write I= instead of l=J' For simplicity's

sake, in the remainder of the paper we always assume D = f ~ t to consist of the de

claration of only one function procedure.

The proof system for partial correctness has three groups of rules. Group I has

the obvious rules for"=>" such as, e.g.,transitivityof "=>" or the fact that "<DIF=>F 1>

and <D]F=>F2> imply that <DJF=>F 1AF 2>. Group II is the central one. It has two subgroups,

one providing a rule for each simple statement, one based on the simplification rules:

II a.I. <D]{p[e/x]}x:=e{p}> (assignment)

<Dl{p}x:=g~{q}~p}x:=t[g/f]~{q}> ➔ 2. --'------~----'--'-'--___;_.'-'---='--=-.:......:'-- with g ,/. D,s.
<DI {p}x:=ft{q}>

3. <DI {p}S 1 {q}" {q}s 2{r} ~ {p}S 1 ;s 2{r}>

4. <Dl{p/l,(e 1=e 2)}s 1{q} A {pA(e/e 2)}S 2 {q}

~p} if e 1=e 2 then s 1 else s 2 fi {q}>

b. <DI { p} S' { q} ~ { p} S { q} >

(recursion)

(composition)

(conditionals)

(simplification)

1 1

where S "'-+ S' is one of the rules of the system RS 1, and the choice of the
➔• • ➔

auxiliary y is further restricted by (iii) none of they occurs free in p

or q.

III In the third group, we find a number of auxiliary rules. Besides the already men

tioned rule of consequence, it consists of

<DI { p} s { q I } /\ { p} s { q 2} ~ { p} s { q I ; q 2} >

<Dl{p}x:=s{p}>, provided that x ,/. p

<DI {p}x:=s{q} ~ {p[z/y]}x:=s{q}>

provided that y ~ z or y ,/. D,s,q

<DI {p}x:=s{q} ~ {p[y/x]}y:=s[y/x]{q[y/x]}>

provided that x ~ y or x ,/. D, y ,/. q

<Dl{p}x:=s{q}~{p[e/y]}x:=s[e/y]{q[e/y]}>

provided y t x, y ,/. D, x ,/. e.

(conjunction)

(invariance)

(substitution, I)

(substitution, II)

(substitution, III)

Remark. Note that, in Ila. 1, <Dl{p[s/x]}x:=s{p}> would not work since, 1n general,

p[s/x] is not a well-formed assertion.

THEOREM 5.1. The proof system is sound.

Proof. For the rules of group I this is obvious. For Ila, the assignment axiom follows

from T(p[e/x])(cr) = T(p)(cr{E(e)(cr)/x}), together with V(e)(E)(cr) = E(e)(cr), for E nor

mal. The recursion rule is a form of Scott's induction (see, e.g., [4]). The composi

tion and conditionals rules are clear. As to group Ilb, if S =t- S' 1s in RS 1, then, by

the definition of 00 , we have that OD(S) = 00 (S'), but for the values of y; hence,

for all normal E, ND(S)(E) = N0 (S')(E) (but for ...) and, since they do not occur 1n

p, q, the desired result follows. The rules of group III are partly easy, partly re

quire somewhat tedious manipulations with the substitution lemmas of Section 4 (for

related - though not identical - techniques we refer again to De Bakker [4]).

6. COMPLETENESS FOR CALL-BY-VALUE

We consider the language as introduced in Section 2, but restricted by omitting

the clauses::=, ...]<name v:s>I, .. , i.e., we now only allow call-by-value abstraction,
T n and accordingly restrict the type of all expressions s to -r = w ➔ w, n ~ 0. The

proof system of the previous section - with a few small modifications - can then be

shown to be c011rplete without too much effort. We first remark that when call-by-value

12

is the only abstraction mechanisms all functions V(s)(£)(a) are strict (i.e.,
T + V(s)(£)(cr)(a) = ~ as soon as any of the a. equals~), provided £(g)(cr) is strict

T 1. W

for all free g. We omit the easy proof of this. We now consider the proof system of

Section 5, modified as follows:

J. We first replace reduction system RS 1 by RScbv:

(i) remove the rule dealing wfrh call-by-name

(ii) add a rule
+ + + + +

x:=fs "-'+ (y:=s) ; x:=fy, not alls simple, where they satisfy the restric-

tions (i), (ii) and (iii) mentioned before.

After a corresponding adaptation of the notion of simple statement:

it can be shown that, with the use of RS b , each statement (with only call-by
e V

value) can be reduced to an equivalent (but for the values of they) simple state-

ment (see the Appendix).

2. Rule IIa.2 (recursion) is simplified to

➔ ➔

<Dl{p}x:=ge{q}=>{p}x:=t[g/f]e{q}>
+

<Dl{p}x:=fe{q}>
g ,/. D

Also, rules IIb now refer to the reduction system RS b .
C V

Before we can state the completeness theorem, we have to introduce the usual ex

pressibility notion: The interpretation J is expressive with respect to the languages

P~og and M~n, provided that for each closed program P = <DIS>, each p, and each nor

mal£ the following holds:

I. There exists an assertion q (the weakest precondition wp(P,p)) such that, for

all a,

T(q)(a) = v'a'[a'=N(P)(£)(a)Aa'hi::=>T(p)(a')]

2. There exists an assertion r (the strongest postcondition sp(p,P)) such that, for

all a,

T (r) (a) = 3a' [T (p) (a') 11 a=N (P) (£) (a') J

(By a remark of Olderog, it is actually sufficient to postulate either I or 2.)

The following lemma on sp will be needed below:

LEMMA 6.1. For all a

a. T(sp(p,<Dlx:=s>)[y/x])(cr) = T(sp(p[y/x],<D]y:=s[y/x]>)(cr),

provided that x = y or xi D, y ,/. p,D,s.

b. T(sp(p,<D]x:=s>)[e/y])(cr) = T(sp(p[e/y],<D]x:=s[e/y]>)(cr),

provided that y ix, y i D, xi e.

Now let us extend the proof system described above with all formulae <Dip> such

that]=J <D]p> (i.e., all J-valid assertions are taken as axioms), and let 1-1 denote

provability in this extended system. We then have

13

THEOREM 6.2. (completeness theorem for call-by-value) For each closed <D\S>, and ex

pressive J, if i=1<D\{p}S{q}> then 1-;<D\{p}S{q}>.

The proof uses the notion of most general formula of Gorelick [11]. Let D:::f<=t,
➔ •

let u,u0 ,ul:n be different· d . 1 . (➔) df. groun variab es not appearing in D, and let r u,u0 ,u =
➔

sp (u=u0 ,<D\u:=fu>).
df. + +

Next, let F0 = {u=u0}u:=gu{r(u,u0 ,u)} for some arbitrary g. We

first assert the

LEMMA 6.3. If\=, <D\ {p}S{q}>, and g arbitrary, then \-<D\F0~{p}S[g/f]{q}>.

Proof. Assume J=, <DJ {p}S{q}>.

a. By Section 3 and the definition of the proof system there exists some simple T

such that I= <D\{p}T{q}> and\- <D\{p}T[g/f]{q} ~ {p}S[g/f]{q}>.

b. We now prove that (*): for all simple T, if\= <DJ{p}T{q}> then I- <DJF0 ~

{p}T[g/f]{q}>. Together with part a, this will establish the desired result. The
➔

proof of (*) is by induction the complexity of T. If Tis not of the form x:=fe,

the result is easy. Otherwise, we follow the argument as described in [I ,4]. D

We now finish the proof of the completeness theorem as follows: By the definition
➔ ➔ ➔

of r(u,u0 ,u) we have 1= <DJ {u=u0}u:=fu{r(u,u0 ,u)}>. Hence, by the fixed point property,
➔ ➔ ➔ J= <DJ {u=u0}u:=tu{r(u,u0 ,u)}>. By the lemma, we obtain that\- <D\F0 ~ {u=u0}u:=t[g/f]u

{r(u,u0 ,t)}>, and, taking gt f, the recursion rule yields that (**): \- <D\F0>. By the

lemma, assuming I= <D1{p}S{q}>, and taking g = f, we also obtain I- <DJF0 ~ {p}S{q}>.

Together with (**) this yields the desired result\- <D\{p}S{q}>.

7. THE COMPLETENESS PROBLEM FOR GENERAL ABSTRACTION

We h&ve not been able to find a completeness proof for general abstraction (see

also the remarks at the end of this section). However, if we allow both forms of ab

straction but restrict all types to wn ➔ w (n 2: 0), then we do have a complete system,

albeit at the cost of an extension of the language of the proof system (i.e., not of

the original programming language). The extension is twofold:

I. We introduce an auxiliary assignment statement x +- s, which may be viewed as "non

strict assignment". We allow the modification o{a/x} for any a EV (contrary to
w

the previous situation where a#~ was required), and put M(x+-s)(s)(o) =
w

o{V(s)(s)(o)/x}. Note that even if evaluation of s does not terminate, a "normal"

state (# ~) is delivered (albeit that its value in x equals~). Only if xis
w w

used subsequently, nontermination of sis observable. Thus, a natural operational

semantics of this type of assignment seems not feasible. 11+-11 will be used below

to deal with call-by-name (non-strict abstraction), and

value (strict abstraction).

". -" .- to deal with call-by-

2. The class of simple expressions is extended withe::= ... \Qw; also, for the asser

tion p = (e#~w) we introduce the notation e+. The valuation Eis now extended to

14

E: Se.xp + O::+sV) (instead of Se.xp + o:0+v0), as before). Possible evalua•tions now

are E(x)(cr{i /x}) = i, and E(y)(cr{i./x}) = cr(y) for x t y. w w w
The proof system is modified in the following way:

n
I. Statements Sare as be~ore (but with alls of type w ➔ w).

2. Intermediate statements Rare defined by

R ::= x:=elx+dlR1;R2 1 if e 1=e 2 then R1 else R2 fi

Here dis auxiliary construct defined by

d : := elf;I (R;d)

3. Simple statements Tare now defined by

T ::= x:=elx+elx+f;IT 1 ;T2 1 if e 1=e 2 then T1 else T2 fi

Moreover, we introduce two reduction systems RS 2 and RS 3 :

RS 2 has rules to simplify S to R:

x:=s "'-+ y+s; x:=y
➔ ➔ ➔

x+cs "'-+ x+ ((y:=s) ;cy)
➔ ➔ ➔

x+fs "'-+ x+ ((y+s) ;fy)
➔

"'-+ x+ (y:=s I;
➔ x+ <val x':s 0>s s o[y / x ' J s 2 : n)

➔
"'-+ x + (y+s I ; so[y/x']12:n) X + <name x' :s0>s

snot simple
➔

not alls simple
➔

not alls simple

if b thens' else s" fi
➔

"'-+ if b then x+s'°t else x+s"'t fi x+ s

(rules 5, 6, 7 of RS 1)

if s 1=s 2 then s 1 else s2 fi "'-+ yI+sI; y2+s 2 ; if y 1=y2 then SI else s2 fi

➔
(As before, they are assumed to be fresh and not in D.)

RS 3 has rules to simplify R to J:
x + (y+d;d') "'-+ y+d; x+d'

x + (y:=e;d') "'-+ if ei then y+e; x+d' else x+Q fi

x + ((RI ;R2) ;d) "'-+ x+ (R1; (R2 ;d))

x + (if eI=e2 then RI else R2 fi; d) "'-+

if eI=e2 then x+ (R 1;d) else x+ (R2;d) fi

1 ➔ • not a 1 s simple

Remark. The complications in the systems RS 2, RS 3 are caused by the following pheno

menon: The simplification rule

y:=s · x+s [y/x'];
I' 0 2 :n

is not sound, since the right-hand side might (for nonterminating sI) transform cr to

i~ whereas the left-hand side would yield cr{iw/x}. This implies that the assignment

y:=s 1 has to be executed only if xis evaluated, and this motivates the introduction

of the intermediated which are first accumulated and then essentially dealt with

through the "ei" test in rule RS 3 , #2.

LEMMA 7.1. Reduction systems RS 2 and RS 3 always terminate, and yield for each San

equivalent (but for the auxiliary variables) intermediate R, and for each Ran equi

valent T.

15

The new proof system now has the following rules:

I' As I (in Section 5).

II' a. <Dl{p[e/x]}x+e{p}>

<DI {e-1- ::i p[e/x]}x:=e{p}>
-+ -+

<Dl{p}x+ge{q}.,. {p}x+t[g/f]e{q}>

<DI {p}x+f~{q}>
• g f. D

Composition and conditionals as before

b. _ All rules from RS 2 and RS 3 are turned into proof rules (in the same manner

as was done for RS 1 in Section 5).

III' Obtained from III by replacing everywhere":=" by"+".

An interpretation J is called expressive with respect to P~og and A6~n• in the usual

way, but observe that A6~n• now contains assertions involving simple expressions in

cluding n.

THEOREM 7 .2. (soundness and completeness). Let I-; be defined as before.

a. For all J, 1-1 <Dl{p}S{q}>.,. I=; <Dl{p}S{q}>

b. For expressive J, I=; <D]{p}S{q}> .,.,_] <D]{p}S{q}>.

Proof. Similar to that of Theorem 6.2, using the first two rules of II'a to deal with

the two forms of assignment. D

Remark. We do not know whether a complete proof system exists for the case of arbi

trary types. By an argument as ysed in Clarke [7], if we could prove the undecidabil

ity of the halting problem for programs in our language interpreted over some finite

domain, then we could infer incompleteness. However, no such undecidability result is

available at present. (Neither do we know whether our language allows an application

of Lipton's theorem [18].) It seems rather likely that, as soon as we would extend

the language with function procedures with side-effects (essentially by extending the

syntax of expressions with the clauses::= •.•]S;s and extending RS 1 with the rule

x:=S;s-+ S;x:=s) then Clarke's simulation argument (using an idea of Jones and Muchnik

[15]) could indeed be used to obtain undecidability, thus yielding incompleteness.

APPENDIX TERMINATION OF THE REDUCTION SYSTEMS RS 1 , RS 2 , RS 3.

Ad RS 1 (see Section 3).

We will describe a proof that every statement can be simplified, using these rules

(which as always may be applied inside a 'context'), to a simple statement, defined

as in Section 3; in such a statement none of the simplification rules can be applied.

It is only shown that 'innermost' simplification always terminates; but in fact one

can show that all simplifications must terminate (even in a unique result). The proof

that innermost simplifications must terminate, is in two parts.

16

The first part is as follows: assign to every 'redex' statement R (i.e., a state

ment as in the LHS of the simplification rules) a norm {R} E]N such that the newly

created redex statements R' in the RHS of the rules have a smaller norm. (The norm of

redex statements occurring in s 1, s 2 (as displayed in the rules) does not change dur

ing the simplification step.) Then assign to an arbitrary statement S which one wants

to simplify, the norm {{S}} = <{R 1}; ... ,{Rn}>, the 'multi-set' of the norms of all

the occurrences of redex statements in S. Now it is easy to see that for an innermost

simplification step S "-'+ S' we have {{S}} ?-{{S'}}, where '',,-' is the well-ordering of

multisets of natural numbers. Hence every sequence of innermost simplification steps

terminates.

The second and more problematic part is to define {R}. This is done by defining

{x:=s} = II sll and {if b then s 1 else s2 fi} llbll, where II II: Exp u Be.xp ➔ :IN is a suit-

able complexity measure (norm) which is
➔ ➔

(I) ll<namev:s>sl:nll > lls[s 1/v]s 2 :nll;

(2) llif b thens' else s" fi tll > libll,

(3) ll7bll > llbll; llb 1::,b 2II > lib 111, llb 211,

to be defined yet. Obviously, we require e.g.:

➔ ➔
lls'sll, lls"sll;

to name some of the more important requirements. We will define II sll and II bll by means

of the auxiliary reduction system having as set of 'terms' Exp u Be.xp and as 'reduc

tion' rules:

(i) (A-reduction) <name v:s>(s 1) ~➔ s[s/vJ

<val x:s>(s 1) "-'+ s[s 1/x]

(ii) (parallel reduction) if b then s 1 else s 2 fi "-'+ s 1

if b then SJ else s2 fi "-'+ s2

(These rules may be applied ins{de a 'context'.)

We claim that every reduction in this auxiliary reduction system terminates.

Now for a E Exp u Be.xp, we define: llall = Z.: ,]a'!, where--..+> is the transitive re-
a~➔>a

flexive closure of"-'+, and la' I is the length of symbols of a' (counting free vari-

ables less than other symbols, for a minor technical reason). The effect is that if

a--...+ a' then llall > lla'II, hence we obtain (I) and part of (2) above; and (3) and the

remaining part of (2) are obtained since if a is a proper subterm of a', then llall <

lla'II, as the definition of llall readily yields.

Of course, llall is only well-defined as a natural number if there are no infinite

reductions a ~·+ a' --...+ a" --...+ . . . , i.e., if our claim holds. To establish this strong

termination property (i.e. every reduction sequence in the auxiliary reduction system

terminates) constitutes the main problem. A proof of this property is given by the

elegant and powerful method of computdbility3 which is often used in logic (Proof

Theory) to obtain termination results. The method was developed by Tait [22], and in

dependently by some other authors; for more references and some applications, see

Troelstra [23].

The termination of RS b (see Section 6) follows by the same arguments as used
C V

for RS 1•

17

Ad RS 2 (see Section 7).

Call the LHS of a simplification rule of_ RS 2 an A-redex if it is an assignment x+s

or x:=s, and a B-redex if it is a conditional statement if b then s 1 else s2 fi. Note

that an A-redex may 'create' a B-redex, and vice versa.

We will measure the complexity of an A-redex by that of s, and of a B-redex by

that of the boolean b. So {x+s} = {x:=s} = Isl and {if b then s1 else s2 fi} = lbl

where 1 1 denotes the length in symbols.

Now if Sis a statement to be simplified by RS 2 , define {{S}} = <{Ri} I all occur

rences of redexes R. in S>. (Here<> denotes a multiset.) Then it is easy to see that
1

innep,nost simplifications let {{S}} decrease; hence they must terminate.

One can also show that all simplifications in RS 2 terminate, by recognizing RS 2

as a 'regular non-erasing' reduction system in the sense of Klop [16], for which

'weak' and 'strong' termination are equivalent. An alternative, more direct method

would be the construction of a more elaborate counting argument.

Ad RS3 (see Section 7).

Define ldll as the 'length' of a construct d such that association to the left

(w.r.t.;) counts heavier, and assign to x+d the norm {x+d} = ldlt• Termination of RS3
is now easy to prove.

REFERENCES

1. APT, K.R., Ten years of Hoare's logic, a survey, in Proc. s th Scandinavian Logic

Symposium (F.V. Jensen, B.H. Mayoh, K.K. M~ller, eds.), pp 1-44, Aalborg
J

University Press, 1979 (revised version to appear in ACM TOPLAS).

2. ASHCROFT, E.A., M. CLINT & C.A.R. HOARE, Remarks on program proving: jumps and

functions, Acta Informatica, i, p. ·317, 1976.

3. DE BAKKER, J.W., Least fixed points revisited, Theoretical Computer Science,±,,

pp. 155-181, 1976.

4. DE BAKKER, J.W., Mathematical Theory of Program Correctness, Prentice-Hall Inter

national, 1980.

5. BARENDREGT, H.P., The Lan0da Calculus, its Syntax and Semantics, North-Holland,

1981.

6. DE BRUlN, A., On the existence of Cook semantics, Report IW 163/81, Mathematisch

Centrum, 1981.

7. CLARKE, E.M., Programming language constructs for which it is impossible to obtain

good Hoare-like axiom systems, J. ACM,~. pp. 129-147, 1979.

8. CLINT, M. & C.A.R. HOARE, Program proving: jumps and functions, Acta Informatica,

!, pp. 214-224, 1972.

18

9. COOK, S.A., Soundness and completeness of an axiom system for program verifiaa

tion, SIAM J. on Comp.,]_, pp. 70-90, 1978.

10. GORDON, M., R. MILNER & C. WADSWORTH, Edinburgh LCF, Lecture Notes. in Computer

Science 78, Springer, 1979.

11. GORELICK, G.A., A complete axiomatic system for proving assertions about recursive

and non-recursive programs, Technical Report 75, Dept. of Comp. Science,

University of Toronto, 1975.

12. HENNESSY, M.C.B., The semantics of call-by-value and call-by-name in a nondeter

ministic environment, SIAM J. on Comp., -2_, pp. 67-84, 1980.

13, HENNESSY, M.C.B. & E.A. ASHCROFT, A mathematical semantics for a nondeterministic

typed lambda calculus, Theoretical Comp. Science,.!..!_, pp. 227-246, 1980.

14. HOARE, C.A.R., An axiomatic basis for computer programming, CACM,~. pp. 576-580,

1969.

15. JONES, N.D. & S.S. MUCHNIK, Even simple programs are hard to analyze, JACM, ~4,

pp. 338-350, 1977.

16. KLOP, J.W., Corribinatory Reduction Systems, Mathematical Centre Tracts 127, Mathe

matisch Centrum, 1980.

17. LANGMAACK, H. & E.R. OLDEROG. Present-day Hoare-Zike systems for programming

languages with procedures: power, limits, and most likely extensions, in

Proc. 7th Coll. Automata, Languages and Programming (J.W. de Bakker &

J. van Leeuwen, eds)1 Lecture Notes in Computer Scence 85, Soringer. 1980.

18. LIPTON, R.J., A necessary and sufficient condition for the existence of Hoare

logics, in Proc. IEEE Symposium Foundations of Computer Science, pp. 1-6,

1977.

19. O'DONNELL, M., A critique on the foundations of Hoare-style programming logics,

Technical Report, Purdue University, 1980.

20. PLOTKIN, G.D., LCF considered as a programming language, Theoretical Comp. Science,

1, pp. 223-256, 1977.

21. REYNOLDS, J.C., On the relation between direct and continuation semantics, in
nd Proc. 2 Coll. Automata, Languages and Programming (J. Loeckx, ed.), pp.

141-156, Lecture Notes in Computer Science 14, Springer, 1974.

22. TAIT, W.W., Intentional intP-r-pretation of functionals of finite type I, J. Sym

bolic Logic, 32, pp. 198-212, 1967.

23. TROELSTRA, A.S. et al., Metamathematical Investigation of Intuitionistic Arithme

tic and Analysis, Leet. Notes in Mathematics 344, Springer, 1973.

