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The Coding Theorem of L.A. Levin connects unconditional prefix Kolmogorov complexity
with the universal semiprobability mass function. There are conditional versions referred to
in several publications but as yet there exist no written proofs. Under the classic definition
of conditional probability, there is no conditional version of the Coding Theorem. We give
the appropriate definitions and provide complete proofs of the conditional version of the
Coding Theorem.
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1. Introduction

From the beginning of information theory we know that every probability mass function corresponds to a binary code.
The code length equals roughly the logarithm of the inverse probability [11].1 The binary code is a prefix code (no code
element is a proper prefix of any other code element) and therefore uniquely decodable in one pass over the encoded
message.

A semiprobability mass function is a function p : {0,1}∗ → R+ (the nonnegative real numbers) such that
∑

x p(x) � 1.
(Note that {0,1}∗ is identified with the natural numbers according to the correspondence in Section 2.) L.A. Levin [7]
proved that there is a greatest (up to a constant multiplicative factor) lower semicomputable semiprobability mass function.
Denote such a function by m. He furthermore proved that log 1/m(x) = K (x) + O (1) where K (x) is the prefix Kolmogorov
complexity (the least upper semicomputable prefix code length). This is called the Coding Theorem (2). It is a central result
in Kolmogorov complexity theory (a.k.a. algorithmic information theory). A conditional version of the Coding Theorem as
referred to in [2,8,9,3,10] requires a function as follows:

Definition 1. Let x, y be finite binary strings. A function m(x|y) is a universal conditional lower semicomputable semiprobability
mass function if it is (i) lower semicomputable; (ii) satisfies

∑
x m(x|y)� 1 for every y; (iii) if p(x|y) is a function satisfying

(i) and (ii) then there is a constant c such that cm(x|y) � p(x|y) for all x and y.

There is no written complete proof of the conditional version of the Coding Theorem. Our aim is to provide such a
proof and write it out in detail rather than rely on “clearly” or “obviously.” One wants to be certain that applications of the
conditional version of the Coding Theorem are well founded.

The necessary notions and concepts are given in appendices: Appendix A introduces prefix codes, Appendix B introduces
Kolmogorov complexity, Appendix C introduces complexity notions, and Appendix D tells about the use of O (1).
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1.1. Related work

We can enumerate all lower semicomputable semiprobability mass functions with one argument. The arguments are
elements of {0,1}∗ or natural numbers, Section 2. The enumeration list is denoted

P = P1, P2, . . . .

There is another interpretation possible. Let prefix Turing machine Ti be the ith element in the standard enumeration of
prefix Turing machines T1, T2, . . . . Then Q i(x) = ∑

2−|p| where p is a program for Ti such that Ti(p) = x. This Q i(x) is the
probability that prefix Turing machine Ti outputs x when the program on its input tape is supplied by flips of a fair coin.
We can thus form the list

Q = Q 1, Q 2, . . . .

Both lists P and Q enumerate the same functions and there are computable isomorphisms between the two [9,
Lemma 4.3.4].

Definition 2. If U is the reference universal prefix Turing machine, then the corresponding distribution in the Q -list is Q U .

L.A. Levin [7] proved that

m(x) =
∑

j

α j P j(x), (1)

with
∑

j α j � 1, α j > 0, and α j lower semicomputable, is a universal lower semicomputable semiprobability mass function.
That is, obviously m is lower semicomputable and

∑
x m(x) � 1. It is called a universal lower semicomputable semiproba-

bility mass function since (i) it is itself a lower semicomputable semiprobability mass function and (ii) it multiplicatively
(with factor α j) dominates every lower semicomputable semiprobability mass function P j .

Moreover, in [7] the Coding Theorem was proven

− log m(x) = − log Q U (x) = K (x), (2)

where equality holds up to a constant additive term.

1.2. Results

We give a review of the classical definition of conditional probability versus the one used in the case of semicomputable
probability. In Section 3 we show that the conditional version of (2) does not hold for the classic definition of conditional
probability (Theorem 2). In Section 4 we consider Definition 1 of the conditional version of joint semicomputable semiprob-
ability mass functions as used in [2,8,9,3,10]. For this definition the conditional version of (2) holds. We write all proofs out
in complete detail.

2. Preliminaries

Let x, y, z ∈N , where N denotes the natural numbers and we identify N and {0,1}∗ according to the correspondence

(0, ε), (1,0), (2,1), (3,00), (4,01), . . . .

Here ε denotes the empty word. A string x is an element of {0,1}∗ . The length |x| of x is the number of bits in x, not to be
confused with the absolute value of a number. Thus, |010| = 3 and |ε| = 0, while |−3| = |3| = 3.

The emphasis is on binary sequences only for convenience; observations in any alphabet can be so encoded in a way
that is ‘theory neutral.’ We use the natural numbers and the finite binary strings interchangeably.

3. Conditional probability

Let P be a probability mass function on sample space N , that is,
∑

P (x) = 1 where the summation is over N . Suppose
we consider x ∈N and event B ⊆N has occurred with P (B) > 0. According to Kolmogorov in [4] a new probability P (x|B)

has arisen satisfying:

1) x /∈ B: P (x|B) = 0;
2) x ∈ B: P (x|B) = P (x)/P (B);
3)

∑
x∈B P (x|B) = 1.
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Let m be as defined in (1) with the sample space N . Then
∑

m(x) � 1 and m is a semiprobability.

Definition 3. Define m′(x|B) = m(x)/m(B) and m(B) = ∑
x∈B m(x).

Then, for m′(x|B) items 1) through 3) above hold.

Theorem 1. Let B ⊆N . There exist x and B such that − log m′(x|B) �= K (x|B) + O (1).

Proof. Since we use a special case of the event B in Theorem 2, the proof follows from that theorem. �
3.1. Lower semicomputable joint semiprobability mass functions

We show there is also no equivalent of the Coding Theorem for the conditional version of m′ based on lower semi-
computable joint semiprobability mass functions. The sample space is N × N . The conditional event B above can be
instantiated by B = {(z, y): z ∈ N } ⊆ N × N . We use a standard pairing function 〈·,·〉 to map N × N onto N . For ex-
ample, 〈i, j〉 = 1

2 (i + j)(i + j + 1) + j.

Definition 4. Let x, y ∈ N and f (〈x, y〉) be a lower semicomputable function on a single argument such that we have∑
〈x,y〉 f (〈x, y〉) � 1. We use these functions f to define the lower semicomputable joint semiprobability mass functions

P (x, y) = f (〈x, y〉).

By the proof of the later Theorem 3, Stage 1, one can effectively enumerate the family of lower semicomputable joint
semiprobability mass functions by

P = P1, P2, . . . .

(Not to be confused with the P ’s and P-list of Section 1.1.) We can now define the lower semicomputable joint universal
probability by

m(x, y) =
∑

j

α j P j(x, y), (3)

with
∑

j α j � 1, α j > 0 and lower semicomputable. Classically, for a joint probability mass function P (x, y) with x, y ∈ N
one defines the conditional version [1] by P (x|y) = P (x, y)/

∑
z P (z, y). The equivalent form for m is

Definition 5.

m′(x|y) = m(x, y)∑
z m(z, y)

.

Here m′(x|y) is a special case of m′(x|B) of Definition 3 if we set B = {(z, y): z ∈N }. Further,

m′(x|y) = m(x, y)∑
z m(z, y)

=
∑

j α j P j(x, y)
∑

z

∑
j α j P j(z, y)

=
∑

j α j P j(x, y)
∑

j α j
∑

z P j(z, y)

is the quotient of two lower semicomputable functions. It may not be semicomputable (not proved here). We show that
there is no conditional Coding Theorem for m′(x|y).

Theorem 2. Let x, y ∈ {0,1}∗ . For every positive integer n there is a y with |y| = n such that − log m′(x|y)� K (x|y) + Ω(log n).

Proof. By (3) and the Coding Theorem we have − log m(x, y) = K (〈x, y〉) + O (1). Clearly, K (〈x, y〉) = K (x, y) + O (1). The
marginal universal probability m2(y) is given by m2(y) = ∑

z m(z, y) � m(ε, y). Thus, with the last equality due to the
Coding Theorem: − log m2(y) � − log m(ε, y) = K (〈ε, y〉) + O (1) = K (y) + O (1). Since m′(x|y) = m(x, y)/m2(y) by Def-
inition 5, we have − log m′(x|y) = − log m(x, y) + log m2(y) � − log m(x, y) + log m(〈ε, y〉) = K (x, y) − K (y) + O (1) =
K (x|y, K (y)) + O (1). Here the first inequality follows from the relation between m2(y) and m(〈ε, y〉), while the last equal-
ity follows from K (x, y) = K (y) + K (x|y, K (y)) + O (1) by the symmetry of information (8). In [2] it is shown that for every
x and n there is a y with |y| = n such that K (x|y, K (y)) = K (x|y) + Ω(log n). �
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4. Lower semicomputable conditional semiprobability

We consider lower semicomputable conditional semiprobabilities directly in order to obtain a conditional semiprobability
that satisfies Definition 1.

Theorem 3. There is a universal conditional lower semicomputable semiprobability mass function. We denote the reference such
function by m(x|y).

Proof. We prove the theorem in two stages. In Stage 1 we show that the two-argument lower semicomputable functions
which sum over the first argument to at most 1 can be effectively enumerated as

P1, P2, . . . .

This enumeration contains all and only lower semicomputable conditional semiprobability mass functions. In Stage 2 we
show that P0 as defined below multiplicatively dominates all P j :

P0(x|y) =
∑

j

α j P j(x|y),

with the α j ’s satisfying certain requirements. Stage 1 consists of two parts. In the first part, we start from a standard
enumeration of partial recursive functions, and transform them to enumerate all lower semicomputable two-argument
functions; and in the second part we effectively change the lower semicomputable two-argument functions to functions
that sum to at most 1 over the first argument. Such a change leaves the functions that were already conditional lower
semicomputable semiprobability mass functions unchanged.

Stage 1 Start with a standard enumeration of all and only partial recursive functions f1, f2, . . . . The partial recursive
functions have a single natural number as argument and a single natural number as value. Using a standard pairing function
〈·,·〉 on the natural numbers (for example as defined in Section 3) twice, we change the single argument into three natural
numbers, and, using the same pairing function, change the value into 〈p,q〉 (p,q ∈ N ) which denotes the rational number
p/q. The result is an effective enumeration φ′

1, φ
′
2, . . . of three-argument rational-valued partial recursive functions. That

is, for every index j we interpret f j(〈 〈x, y〉,k〉) = 〈p,q〉 as φ′
j(x, y,k) = p/q. Without loss of generality, each such φ′

j is
modified to a partial recursive function φ j satisfying the following properties:

For all x, y,k, j ∈ N , if φ j(x, y,k) < ∞, then φ j(x, y,1), φ j(x, y,2), . . . , φ j(x, y,k − 1) < ∞ and φ j(x, y,h + 1) �
φ j(x, y,h) (1 � h < k). This can be achieved by dovetailing the computation of φ′

j(x, y,1), φ′
j(x, y,2), . . . and assigning

computed values in enumeration order of halting, while respecting φ j(x, y,h + 1) � φ j(x, y,h), to φ j(x, y,1), φ j(x, y,2), . . . .
We define the ψ-functions by limk→∞ φ j(x, y,k) = ψ j(x, y). (If φ j(x, y,h) is undefined for h > k0 then

limk→∞ φ j(x, y,k) = φ j(x, y,k0). Note that possibly ψ j(x, y) equals infinity.) The resulting ψ-list consists by construction of
all and only lower semicomputable two-argument real-valued functions. The two arguments are natural numbers and the
real value is the limit of a sequence of rational numbers.

Each function φ j is used to construct a function P j that sums to at most 1 over the first argument. In the algorithm
below, the local variable array P j contains the current approximation to the values of P j at each stage of the computation.
This is doable because the nonzero part of the approximation is always finite. The dovetailing in Step 0 means that at stage t
we execute Step 1 through Step 3 with j + k j = t (for all j > 0 and k j � 0).

Step 0: for t := 1,2, . . . dovetail with j + k j := t for all j > 0 and k j � 0.
Step 1: if j = t (k j = 0) then P j(x|y) := 0 for all x, y ∈N .
Step 2: if 0 < j < t (k j = t − j) then compute φ j(1,1,k j), . . . , φ j(k j,k j,k j). {If any φ j(x, y,k j), 1 � x, y � k j , is undefined,

then the existing values of P j do not change.}
Step 3: if for some y (1 � y � k j ) we have φ j(1, y,k j) + · · · + φ j(k j, y,k j) > 1 then the existing values of P j do not change

else for x, y := 1, . . . ,k j set P j(x|y) := φ j(x, y,k j) {Step 3 is a test of whether the new assignment of P j-values
satisfies the lower semicomputable conditional semiprobability mass function requirements}.

If for some x, y,k ∈N the value φ j(x, y,k −1) < ∞ and φ j(x, y,k) = ∞ in Step 2, then the last assigned values of P j do not
change any more even though the computation goes on forever. Now P j is computable. If ψ j in the ψ-list already satisfied∑

x ψ j(x, y) � 1, then the test in Step 3 is always passed and P j(x|y) = ψ j(x, y), for all x, y, j ∈N .
Executing this procedure on all functions in the list φ1, φ2, . . . yields an effective enumeration P1, P2, . . . of all and only

lower semicomputable conditional semiprobability mass functions. “All” lower semicomputable conditional semiprobability
mass functions occurred already in the ψ-list one or more times and the algorithm leaves them unchanged. The algorithm
takes care that

∑

x

P j(x|y) � 1

for all indexes j. Hence we have “only” lower semicomputable conditional semiprobability mass functions in the P -list.
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Stage 2 Define the function P0 as

P0(x|y) =
∑

j�1

α j P j(x|y),

with α j chosen such that
∑

j α j � 1, α j > 0 and lower semicomputable for all j. To fix thoughts we can set α j = 2− j . Then
P0 is a conditional semiprobability mass function since

∑

x

P0(x|y) =
∑

j�1

α j

∑

x

P j(x|y) �
∑

j�1

α j � 1.

The function P0(·|·) is also lower semicomputable, since P j(x|y) is lower semicomputable in x, y, j. The coefficients α j
are by definition lower semicomputable for all j. Finally, P0 multiplicatively dominates each P j since for all x, y ∈ N we
have P0(x|y)� α j P j(x|y) while α j > 0. Therefore, P0 is a universal lower semicomputable conditional semiprobability mass
function according to Definition 1.

We can choose the α j ’s in the definition of P0 in the proof above

α j = 2−K ( j).

Then
∑

j α j � 1 by the ubiquitous Kraft inequality [6] (satisfied by the prefix complexity K ), α j > 0 and it is lower semi-
computable. We define m(x|y) by

m(x|y) =
∑

j�1

2−K ( j) P j(x|y).

We call m(x|y) the reference universal lower semicomputable conditional semiprobability mass function. �
Corollary 1. If P (x|y) is a lower semicomputable conditional semiprobability mass function, then 2K (P )m(x|y) � P (x|y), for all x, y.
That is, m(x|y) multiplicatively dominates every lower semicomputable conditional semiprobability mass function P (x|y).

4.1. A priori probability

Let P1, P2, . . . be the effective enumeration of all lower semicomputable conditional semiprobability mass functions con-
structed in Theorem 3. There is another way to effectively enumerate all lower semicomputable conditional semiprobability
mass functions similar to the unconditional Q-list in Section 1.1. Let the input to a prefix machine T (with the string y on
its auxiliary tape) be provided by an infinitely long sequence of fair coin flips. The probability of generating an initial input
segment p is 2−|p| . If T (p, y) < ∞, that is, T ’s computation on p with y on its auxiliary tape terminates, then the machine
T with y on its auxiliary tape, being a prefix machine, will read exactly p and no further.

Let T1, T2, . . . be the standard enumeration of prefix machines in [9]. For each prefix machine T , define

Q T (x|y) =
∑

T (p,y)=x

2−|p|. (4)

In other words, Q T (x|y) is the probability that T with y on its auxiliary tape computes output x if its input is provided by
fair coin flips. This means that for every string y we have that Q T satisfies

∑

x∈N
Q T (x|y) � 1.

We can approximate Q T (·|y) for every string y as follows. (The algorithm uses the local variable Q (x) to store the current
approximation to Q T (x|y).)

Step 1: Fix y ∈ {0,1}∗ . Initialize Q (x) := 0 for all x.
Step 2: Dovetail the running of all programs on T with auxiliary y so that in stage k, step k − j of program j is executed.

Every time the computation of some program p halts with output x, increment Q (x) := Q (x) + 2−|p| .

The algorithm approximates the displayed sum in (4) by the contents of Q (x). Since Q (x) is nondecreasing, this shows that
Q T is lower semicomputable. Starting from a standard enumeration of prefix machines T1, T2, . . . , this construction gives
for every y ∈ {0,1}∗ an enumeration of only lower semicomputable conditional probability mass functions

Q 1(·|y), Q 2(·|y), . . . .

To merge the enumerations for different y we use dovetailing over the index j of Q j(·|y) and y. The P-list of Theorem 3
contains all elements enumerated by this Q -enumeration. In [9, Lemma 4.3.4] the reverse is shown.
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Definition 6. The universal conditional a priori semiprobability on the positive integers (finite binary strings) is defined as

Q U (x|y) =
∑

U (p,y)=x

2−|p|,

where U is the reference prefix machine.

Remark 1. To beat a dead horse again: the use of prefix Turing machines in the present discussion rather than plain Turing
machines is necessary. By Kraft’s inequality the series

∑
p 2−|p| converges (to � 1) if the summation is taken over all halting

programs p of any fixed prefix machine with a fixed auxiliary input y. In contrast, if the summation is taken over all halting
programs p of a plain Turing machine, then the series

∑
p 2−|p| might diverge.

4.2. The conditional Coding Theorem

Theorem 4. There is a constant c such that for every x and y,

log
1

m(x|y)
= log

1

Q U (x|y)
= K (x|y),

with equality up to an additive constant c.

Proof. Since 2−K (x|y) represents the contribution to Q U (x|y) by a shortest program for x given the auxiliary y, we have
2−K (x|y) � Q U (x|y), for all x, y. Using the algorithm in Section 4.1 we know that Q U (x|y) is lower semicomputable. By
the universality of m(x|y) in the class of lower semicomputable conditional semiprobability mass functions, Q U (x|y) =
O (m(x|y)).

It remains to show that m(x|y) = O (2−K (x|y)). This is equivalent to proving that K (x|y)� log 1/m(x|y)+ O (1), as follows.
Exhibit a prefix code E encoding each source word x, given y, as a code word E(x|y) satisfying

∣∣E(x|y)
∣∣ � log

1

m(x|y)
+ O (1),

together with a decoding prefix machine T such that T (E(x|y), y) = x. Then,

KT (x|y) �
∣∣E(x|y)

∣∣,
and by the Invariance Theorem (6)

K (x|y) � KT (x|y) + cT ,

with cT a nonnegative constant that may depend on T but not on x, y. Note that T is fixed by the above construction. On
the way to constructing E as required, we recall a construction related to that [11] for the Shannon–Fano code:

Lemma 1. Let x ∈ {0,1}∗ and p be a function such that
∑

x p(x) � 1. There is a binary prefix code e such that the code words satisfy
|e(x)|� log 1/p(x) + 2.

Proof. Let [0,1) be the half-open real unit interval, corresponding to the sample space S = {0,1}∞ . Each element ω of S
corresponds to a real number 0.ω. Recall that x is a finite binary string. The half-open interval [0.x,0.x+2−|x|) corresponding
to the cylinder (set) of reals Γx = {0.ω : ω = x . . . ∈ S} is called a binary interval. We cut off disjoint, consecutive, adjacent
(not necessarily binary) intervals Ix of length p(x) from the left end of [0,1), x = 1,2, . . . . Let ix be the length of the
longest binary interval contained in Ix . Set e(x) equal to the binary word corresponding to the leftmost such interval. Then
|e(x)| = log 1/ix . It is easy to see that Ix is covered by at most four binary intervals of length at most ix , from which the
lemma follows. �

We use this construction to find a prefix machine T such that KT (x|y)� log 1/m(x|y)+c. That m(x|y) is not computable
but only lower semicomputable results in c = 3. Since m(x|y) is lower semicomputable and total, there is a recursive
function φ(x, y, t) with φ(x, y, t)� m(x|y) and φ(x, y, t + 1) � φ(x, y, t), for all t . Moreover, limt→∞ φ(x, y, t) = m(x|y). Let
ψ(x, y, t) be the greatest recursive lower bound of the following special form on φ(x, y, t) defined by

ψ(x, y, t) := {
2−k: 2−k � φ(x, y, t) < 2 · 2−k and φ(x, y, j) < 2−k for all j < t

}
,

and ψ(x, y, t) := 0 otherwise. Let ψ enumerate its range without repetition. Then, for every y we have
∑

ψ(x, y, t) =
∑∑

ψ(x, y, t) �
∑

2m(x|y) � 2.
x,t x t x
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The series
∑

t ψ(x, y, t) can converge to precisely 2m(x|y) only in case there is a positive integer k such that m(x|y) =
2−k .

In a manner similar to the proof of Lemma 1 for every y we chop off consecutive, adjacent, disjoint half-open intervals
Ix,y,t of length ψ(x, y, t)/2, in enumeration order of a dovetailed computation of all ψ(x, y, t), starting from the left-hand
side of [0,1). We have already shown that this is possible. It is easy to see that we can construct a prefix machine T
as follows: Let e ∈ {0,1}∗ be such that Γe is the leftmost largest binary interval of Ix,y,t . Then T (e, y) = x. Otherwise,
T (e, y) = ∞ (T does not halt).

By construction of ψ , for each pair x, y there is a t such that ψ(x, y, t) > m(x|y)/2. Each interval Ix,y,t has length
ψ(x, y, t)/2. Each I-interval contains a binary interval Γe of length at least one-half of that of I (because the length of I
is of the form 2−k , it contains a binary interval of length 2−k−1). Therefore, 2−|e| � m(x|y)/8. We choose E(x|y) = e. This
implies KT (x|y)� log 1/m(x|y) + 3, which was what we had to prove. �
Corollary 2. The above result plus Corollary 1 give: Let P be a lower semicomputable conditional semiprobability mass function. There
is a constant cP = K (P ) + O (1) such that K (x|y)� log 1/P (x|y) + cP .

5. Conclusion

The conditional version of the Coding Theorem of L.A. Levin, Theorem 4, requires a lower semicomputable conditional
semiprobability that multiplicatively dominates all other lower semicomputable conditional semiprobabilities as in Theo-
rem 3. The conventional form of the conditional (adapted to probabilities summing to at most 1) applied to the distribution
(1) satisfying the original Coding Theorem (2) is false. This is shown by Theorems 1 and 2.
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Appendix A. Self-delimiting code

A binary string y is a proper prefix of a binary string x if we can write x = yz with z �= ε . A set {x, y, . . .} ⊆ {0,1}∗ is
prefix-free if for any pair of distinct elements in the set neither is a proper prefix of the other. A prefix-free set is also called
a prefix code and its elements are called code words.

Appendix B. Kolmogorov complexity

For precise definitions, notation, and results see the text [9]. Kolmogorov complexity was introduced in [5] and the prefix
Kolmogorov complexity we use in [7]. One realizes this complexity by considering a special type of Turing machine with
a one-way input tape, one or more (a finite number) of two-way separate work tapes, and a one-way output tape. Such
Turing machines are called prefix Turing machines. If a machine T halts with output x after having scanned all of p on the
input tape, but not further, then T (p) = x and we call p a program for T . It is easy to see that {p: T (p) = x, x ∈ {0,1}∗} is
a prefix code.

Let T1, T2, . . . be a standard enumeration of all prefix Turing machines with a binary input tape, for example the lexico-
graphic length-increasing ordered prefix Turing machine descriptions [9]. Let φ1, φ2, . . . be the enumeration of corresponding
prefix functions that are computed by the respective prefix Turing machines (Ti computes φi). These functions are the partial
recursive functions or computable functions (of effectively prefix-free encoded arguments). We denote the function computed
by a Turing machine Ti with p as input and y as conditional information by φi(p, y). One of the main achievements of the
theory of computation is that the enumeration T1, T2, . . . contains a machine, say Tu , that is computationally universal and
optimal in that it can simulate the computation of every machine in the enumeration when provided with its program and
index in the sense that it computes a function φu such that φu(〈i, p〉, y) = φi(p, y) for all i, p, y. We fix one such machine,
denote it by U and designate it as the reference universal prefix Turing machine.

Definition 7. The conditional prefix Kolmogorov complexity of x given y (as auxiliary information) with respect to prefix Turing
machine Ti is

Ki(x|y) = min
{|p|: φi(p, y) = x

}
. (5)

The conditional prefix Kolmogorov complexity K (x|y) is defined as the conditional Kolmogorov complexity KU (x|y) with re-
spect to the reference prefix Turing machine U . The unconditional version is set to K (x) = K (x|ε).

By the definition we have that {K (x): x ∈ N } is a prefix-free set, and for every fixed y ∈ N the set {K (x|y): x ∈ N } is
prefix-free. The prefix Kolmogorov complexity K (x|y) satisfies the following so-called Invariance Theorem:
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K (x|y) � Ki(x|y) + ci (6)

for all i, x, y, where ci depends only on Ti (asymptotically, the reference machine is not worse than any other machine).
Intuitively, K (x|y) represents the minimal number of bits required to compute x from input y (provided the set of programs
is prefix-free). As formulated in [3], “The functions K (·) and K (·|·), though defined in terms of a particular machine model,
are machine-independent up to an additive constant and acquire an asymptotically universal and absolute character through
Church’s thesis, and from the ability of universal machines to simulate one another and execute any effective process.”

A prominent property of the prefix-freeness of {K (x): x ∈ N } is that we can interpret 2−K (x) as a semiprobability mass
function. By the fundamental Kraft’s inequality [6] (see for example [1,9]) we know that if l1, l2, . . . are the code-word
lengths of a prefix code, then

∑
x 2−lx � 1. Hence,

∑

x

2−K (x) � 1. (7)

This leads to the notion of universal semiprobability mass function m(x) = 2−K (x) which we may view as a rigorous form
of Occam’s razor. Namely, the probability m(x) is great if x is simple (K (x) is small such as K (x) = O (log |x|)) and m(x) is
small if x is complex (K (x) is large such as K (x) � |x|).

The remarkable symmetry of information property was proven in [12] for the plain complexity version in less precise form,
and more precisely in [2] for the prefix complexity version below. Denote K (x, y) = K (〈x, y〉). Then,

K (x, y) = K (x) + K
(

y|x, K (x)
) + O (1) (8)

= K (y) + K
(
x|y, K (y)

) + O (1).

By [2], for every y,n ∈N there are x ∈N with |x| = n such that K (y|x, K (x)) = K (y|x) + Ω(log n).

Appendix C. Computability notions

A pair of nonnegative integers, such as (p,q) can be interpreted as the rational p/q. We assume the notion of a com-
putable function with rational arguments and values. A function f (x) with x rational is semicomputable from below if it is
defined by a rational-valued total computable function φ(x,k) with x a rational number and k a nonnegative integer such
that φ(x,k + 1) � φ(x,k) for every k and limk→∞ φ(x,k) = f (x). This means that f (with possibly real values) can be com-
puted in the limit from below (see [9, p. 35]). A function f is semicomputable from above if − f is semicomputable from
below. If a function is both semicomputable from below and semicomputable from above then it is computable.

We now consider a subclass of the lower semicomputable functions. A function f : N → R+ is a semiprobability mass
function if

∑
x f (x) � 1 and it is a probability mass function if

∑
x f (x) = 1. Using a standard pairing function as in Section 3

we can define lower semicomputable functions over two arguments by setting f (〈x, y〉) = f (x, y). Such a function f is a
conditional semiprobability mass function if

∑
x f (x, y)� 1.

Appendix D. Precision

It is customary in this area to use “additive constant c” or equivalently “additive O (1) term” to mean a constant, ac-
counting for the length of a fixed binary program, independent from every variable or parameter in the expression in which
it occurs. In this paper we use the prefix complexity variant of Kolmogorov complexity. Prefix complexity of a string exceeds
the plain complexity of that string by at most an additive term that is logarithmic in the length of that string.
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