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1On Empirical Entropy
Paul M.B. Vitányi

Abstract

We propose a compression-based version of the empirical entropy of a finite string over a finite

alphabet. Whereas previously one considers the naked entropy of (possibly higher order) Markov

processes, we consider the sum of the description of the random variable involved plus the entropy

it induces. We assume only that the distribution involved iscomputable. To test the new notion we

compare the Normalized Information Distance (the similarity metric) with a related measure based on

Mutual Information in Shannon’s framework. This way the similarities and differences of the last two

concepts are exposed.

Index Terms— Empirical entropy, Kolmogorov complexity, normalized information distance, simi-

larity metric, mutual information distance

I. INTRODUCTION

In the basic set-up of Shannon [20] a message is a finite stringover a finite alphabet. One is interested

in the expected number of bits to transmit a message from a sender to a receiver, when both the sender

and the receiver consider the same ensemble of messages (theset of possible messages provided with a

probability for each message). The expected number of bits is known as the entropy of the ensemble of

messages. This ensemble is also known as the source.

The empirical entropy of a single message is taken to be the entropy of a source that produced it as a

typical element. (The notion of “typicality” is defined differently by different authors and we take here the

intuitive meaning.) Traditionally, this source is a (possibly higher order) Markov process. This leads to

the definition in Example 2.4. Here we want to liberate the notion so that it encompasses all computable

random variables with finitely many outcomes consisting of finite strings over a finite alphabet. Moreover,
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since we are given only a single message, but not the ensemblefrom which it is an element, the new

empirical entropy should provide both this ensemble and theentropy it induces. If we are given just

the entropy but not the ensemble involved, then a receiver cannot in general reconstruct the message.

Moreover, we are given a single message which has a particular length, sayn. Therefore, given the

family of random variables we draw upon, we can select one of them and compute the probability of

every message of lengthn. For fixedn, this results in a Bernoulli variable that has|Σ|n outcomes.

We are thus led to a notion of empirical entropy that consistsof a description of the Bernoulli variable

involved plus the related entropy of the message induced. Since we assume the original probability mass

function to be computable, the Bernoulli variable is computable and its effective description length can

be expressed by its Kolmogorov complexity.

Normalized Information Distance (explained below) between two finite objects is often confused with

a similar distance between two random variables. The last distance is expressed in terms of probabilistic

mutual information. We use our new notion to explain the differences between the former distance between

two individual objects and the latter distance between two random variables. This difference parallels

that between the Kolmogorov complexity of a single finite object and the entropy of a random variable.

The former quantifies the information in a finite object, while the latter gives us the expected number

of bits to communicate any outcome of a random variable knownto both the sender and the receiver.

Computability notions are reviewed in Appendix A, and Kolmogorov complexity in Appendix B.

A. preliminaries

We write string to mean a finite string over a finite alphabetΣ. Other finite objects can be encoded

into strings in natural ways. The set of strings is denoted byΣ∗. We usually takeΣ = {0, 1}. The length

of a stringx is the number of letters inΣ in it denoted as|x|. The emptystring ǫ has length|ǫ| = 0.

Identify the natural numbersN (including 0) and{0, 1}∗ according to the correspondence

(0, ǫ), (1, 0), (2, 1), (3, 00), (4, 01), . . . . (I.1)

Then,|010| = 3. The emphasis here is on binary sequences only for convenience; observations in every

finite alphabet can be so encoded in a way that is ‘theory neutral.’ For example, if a finite alphabetΣ

has cardinality2k, then every elementi ∈ Σ can be encoded byσ(i) which is a block of bits of length

k. With this encoding everyx ∈ Σ∗ satisfies that the Kolmogorov complexityK(x) = K(σ(x)) (see

Appendix B for basic definitions and results on Kolmogorov complexity) up to an additive constant that
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is independent ofx.

II. T HE NEW EMPIRICAL ENTROPY

Let X be a random variable with outcomes in a finite alphabetX. Shannon’s entropy [20] is

H(X) =
∑

x∈X

P (X = x) log 1/P (X = x).

There are three items involved in the new empirical entropy of datax:

• A class of random variables like the set of Bernoulli processes, or the set of higher order Markov

processes; from each element of this class we construct a Bernoulli variableX with |Σ|n outcomes

of lengthn;

• a selection of a random variable from this Bernoulli class such thatx is a typical outcome, and

• a description of this random variable plus its entropy.

This is reminiscent of universal coding essentially due to Kolmogorov [11], and of two-part MDL due

to Rissanen [19]. In its simplest form the former, assuming aBernoulli process, codes a stringx of

length n over a finite alphabetΣ as follows: A string containing a description ofn, |Σ| and n/ni

(1 ≤ i ≤ |Σ|), and the index ofx in the set constrained by these items. The coding should be such that

the individual substrings can be parsed, except the description of the index which we put last. This takes

additive terms that are logarithmic in the length of the items except the last one. The universal code

takesO(|Σ| log n) +
(

n
n/n1···n/n|Σ|

)

bits. The two-part MDL complexity of a string [19], is the minimum

of the self-information of that string with respect to a source and the number of bits needed to represent

that source. The source is not required to be Markovian and the two-part MDL takes into account its

complexity. However, the methods of encoding are arbitrary.

An n-length outcomex = x1, x2, . . . , xn overΣ is the outcome of a stochastic processX1,X2, . . . ,Xn

characterized by a joint probability mass functionPr({X1,X2, . . . ,Xn) = (x1, x2, . . . , xn)}. For

technical reasons we replace the listX1,X2, . . . ,Xn by a single Bernoulli random variableX with

outcomes inX = Σn. Here, the random variablesXi may be independent copies of a single random

variable as is the case wen the source stochastic process is aBernoulli variable. But the source stochastic

process may be a higher order Markov chain making some or allXis dependent (this depends on whether

the order of the Markov chain is greater thenn). For certain stochastic processes allXis are dependent

for everyn: the stochastic process assigns a probability to every outcome inΣ∗.
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Definition 2.1: Let n be an integer,Σ a finite alphabet,x ∈ Σn be a string,X a family of computable

processes, each processΞ ∈ X producing (possibly by repetition) a sequence of (possiblydependent)

random variablesX = X1,X2, . . . ,Xn, with Pr(X = x) is computable andH(X) < ∞. Theempirical

entropyof x with respect toX is given by

H(x|X ) = min
Ξ∈X

{K(X) +H(X) : |H(X) − log 1/Pr(X = x)| is minimal}.

This means that the expected binary length of encoding an outcome ofX is as close as possible to

log 1/Pr(X = x). In the two-part description the complexity part describesX, and the entropy part is

the ignorance about the datax in the setΣn givenX.

Remark 2.2:By assumptionn is fixed. By Theorem 3 in [20], i.e. the asymptotic equidistribution

property, for ergodic Markov sources the following is the case. LetH be the per symbol entropy of the

source. For example, if the sourceΞ is Bernoulli withPr(Ξ = si) = p(si) (si ∈ Σ for 1 ≤ i ≤ |Σ|), then

H =
∑|Σ|

i=1 p(s1) log 1/p(si). Let X be the induced Bernoulli variable with|Σ|n outcomes consisting of

sequences of lengthn overΣ. Then, for everyǫ, δ > 0 there is ann0 such that the sequences of length

n ≥ n0 are divided into two classes: one set with total probabilityless thanǫ and one set such that for

everyy in this set holds|H − 1
n log 1/Pr(X = y)| < δ. Note thatH(X) = nH. Thus, for large enough

n we are almost certain to have|H(X)− log 1/Pr(X = x)| = o(n).

Set ǫ = δ for convenience. We call the set ofy’s such that|H(X) − log 1/Pr(X = y)| = ǫn, with

ǫ > 0 and somen0 depending onǫ andn ≥ n0, the ǫ-typical outcomes ofX. The cardinality of the set

S ⊆ Σn of suchy’s satisfies

(1− ǫ)|Σ|H(X)−ǫn ≤ |S| ≤ |Σ|H(X)+ǫn.

See [7] Theorem 3.1.2. ♦
Lemma 2.3:Assume Definition 2.1. Then,K(X) ≤ K(x,X ) +O(1).

Proof: The family X consists of computable random variables, that is, in essence of computable

probability mass functions. The family of all lower semicomputable semiprobability mass functions can

be effectively enumerated, possibly with repetitions, Theorem 4.3.1 in [17]. The latter family contains

all computable probability mass functions, hence it containsX. Thus, if we knowx,X we can compute

theX ∈ X of Definition 2.1 by going through this list.

Example 2.4:Assume Definition 2.1. Letni be the number of occurrences of theith character ofΣ in

x. If w is a string thenxw is the string obtained by concatenating the characters immediately following
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occurrences ofw in x. The cardinality|xw| is the number of occurrences ofw in x unlessw occurs as

a suffix ofx in which case it is 1 less. In [12], [18], [8] thekth order empirical entropy ofx is defined

by

Hk(x) =







1
n

∑|Σ|
i=1 ni log

n
ni

for k = 0,

1
n

∑

|w|=k |xw|H0(xw) for k > 0.
(II.1)

The kth order empirical entropy ofx can be reconstructed fromx once we knowk. The kth order

empirical entropy ofx results from the probability induced by akth order Markov sourceΞ ∈ X . (A

Bernoulli process is a0th order Markov source.)

Let X to be the family ofkth order Markov sources (a specifick ≥ 0), provided the transition

probabilities are computable. Such a family is subsumed under Definition 2.1. Letx be a string over

Σ which is typically produced by such a Markov source of orderk. The empirical entropyH(x|X ) of

x is K(X) + nHk(x). HereX is the random variable associated with thekth order empirical entropy

computed fromx. Note that the empirical entropyHk(x) stops being a reasonable complexity metric for

almost all strings roughly when|Σ|k surpassesn, [8]. ♦
Example 2.5:Let x = (10)n/2 for evenn (that is,n/2 copies of the pattern ”10”). Let X1 be the

family of binary Bernoulli processes. The empirical entropy H(x|X1) is reached for i.i.d. sequence

X = X1,X2, . . . ,Xn ∈ X1, eachXi being a copy of the same random variableY with outcomes in

{0, 1} with P (Y = 1) = 1
2 . Then,H(x|X1) = K(X) + nH(Y ). ThenX can be computed from the

information concerningn in O(log n) bits, the particularΞ ∈ X used inO(1) bits, and a program of

O(1) bits to computeX from this information. In this wayK(X) = O(log n). Moreover,H(Y ) = 1, so

thatH(x|X1) = n+O(log n).

Let X2 be the family of first order Markov processes with2 transitions each and with output alphabet

{0, 1} for each state. The empirical entropyH(x|X2) is reached for then-bit output of a deterministic

“parity” Markov process. That is,X = X1,X2, . . . ,Xn and everyXi gives the output at timei of the

Markov process with 2 statess0 ands1 defined as follows. The transit probabilities arep(s0 → s1) = 1

andp(s1 → s0) = 1, while the output in states0 is 0 and in states1 is 1. The start state iss0. In this way,

P (X = (10)n/2) = 1 while H(X) = 0. Then,H(x|X2) = K(X) + H(X). HereK(X) = O(log n),

since we require a description ofn, the 2-state Merkov process involved, and a program to compute X

from this information. Since the outcome is deterministic,H(X) = 0, so thatH(x|X2) = O(log n). ♦
Example 2.6:Consider the firstn bits of π = 3.1415 . . . . Let X1 be the family of Bernoulli processes.

Empirically, it has been established that the frequency of1’s in the binary expansion ofπ is n/2±O(
√
n),
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that is, the binary expaqnsion ofπ is a typical pseudorandom sequence. Hence,H(x|X1) = K(X) +

nH(X) where X = X1,X2, . . . ,Xn ∈ X1 and theXi’s are n i.i.d. distributed copies ofY . Here

Y is a Bernoulli process withP (Y = 1) = 1
2 . Then K(X) = O(log n) and H(Y ) = 1, so that

H(x|X1) = n+O(log n).

Let X2 be the family of computable random variables with as outcomes binary strings of length

n. We know that there is a small program, say of about10, 000 bits, incorporating an approximation

algorithm that generates the successive bits ofπ forever. Telling it to stop aftern bits, we can generate the

computable Bernoulli variableX ∈ X2 assigning probability 1 tox and probability 0 to any other binary

string of lengthn. Assumen = 1, 000, 000, 000. Then, we haveK(X) ≤ log 1, 000, 000, 000+c ≈ 30+c

where thec additive term is the number of bits of the program to computeπ and a program required

to turn the logarithmic description of1, 000, 000, 000 and the program to computeπ into the random

variableX. Finally, H(X) = 0. Therefore,H(x|X2) ≤ 10, 030 + c. ♦
Example 2.7:Consider printed English, say just lower case and space signs, ignoring the other signs.

The entropy of representative examples of printed English has been estimated experimentally by Shannon

[21] based on human subjects guesses of successive characters in a text. His estimate is between 0.6

and 1.3 bits per character (bpc), and [22] obtained an estimate of 1.46 bpc for PPM based models,

which we will use in this example. PPM (prediction by partialmatching) is an adaptive statistical data

compression technique. It is based on context modeling and prediction and uses a set of previous symbols

in the uncompressed symbol stream to predict the next symbolin the stream, rather like a mechanical

version of Shannon’s method. Consider a text ofn characters over the alphabet used by [22], and let

X be the class of PPM based models withn output characters over the used alphabet. Since the PPM

machine can be described inO(1) bits (its program is finite) and the lengthn in O(log n) bits, we have

K(X) = O(log n). Hence,H(x|X ) ≤ K(X) + 1.46n = 1.46n +O(log n). ♦
In these examples we see that the empirical entropy is higherwhen the family of random variables

considered is simpler. For simple random variables the knowledge in the Kolmogorov complexity part is

neglible. The empirical entropy with respect to a complex family of random variables can be lower than

that with respect to a family of simple random variables by transforming the ignorance in the entropy

part into knowledge in the Kolmogorov complexity part. We use this observation to consider the widest

family of computable probability mass functions.

Lemma 2.8:Let X be the family of computable random variablesX with H(X) < ∞, andx ∈ Σ∗

with |Σ| < ∞. Then,H(x|X ) = K(x) +O(1).
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Proof: First, letpx be a shortest prefix program which computesx. Hence|px| = K(x). By adding

O(1) bits to it we have a programpp which computes a probability mass functionp with p(x) = 1 and

p(y) = 0 for y 6= x (x, y ∈ Σ∗). Hence|pp| ≤ K(x) +O(1).

Second, letqp be a shortest prefix program which computes a probability mass functionp with p(x) = 1

and p(y) = 0 for y 6= x (x, y ∈ Σ∗). Thus, |qp| ≤ |pp|. Adding O(1) bits to qp we have a programqx

which computesx. Then,K(x) ≤ |qp|+O(1).

Altogether,|qp| = K(x) +O(1).

For the sequel of this paper, we need to extend the notion of empirical entropy to joint probability

mass functions.

Definition 2.9: Let n be an integer,Σ a finite alphabet,x, y ∈ Σn be strings,Z be the family of

computable joint probability mass functions,Z ∈ Z and (x, y) an outcome ofZ. Let the probability

mass functionp(x, y) = P (Z = (x, y)) have a finite joint entropyH(Z) < ∞. The empirical entropy

of (x, y) with respect toZ is

H(x, y|Z) = min
Z∈Z

{K(Z) +H(Z) : |H(Z)− log 1/p(x, y)| is minimal}.

Lemma 2.10:Let Z be the family of computable joint probability mass functionsZ with H(Z) < ∞,

andx, y ∈ Σ∗ with |Σ| < ∞. Then,H(x, y|Z) = K(x, y) +O(1).

Proof: Similar to that of Lemma 2.8.

III. N ORMALIZED INFORMATION DISTANCE

The classical notion of Kolmogorov complexity [11] is an objective measure for the information in a

singleobject, and information distance measures the informationbetween apair of objects [2]. This last

notion has spawned research in the theoretical direction, see the many Google Scholar citations to the

above reference. Research in the practical direction has focused on the normalized information distance

(NID), also called “the similarity metric,” which arises bynormalizing the information distance in a

proper manner. (The NID is defined by (III.2) below.)

If we approximate the Kolmogorov complexity through real-world compressors [16], [6], [4], then we

obtain the normalized compression distance (NCD) from the NID. This is a parameter-free, feature-free,

and alignment-free similarity measure that has had great impact in applications. (Only the compressor

used can be viewed as a parameter or feature.) The NCD was preceded by a related nonoptimal distance

[15]. In [10] another variant of the NCD has been tested on allmajor time-sequence databases used in
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all major data-mining conferences against all other major methods used. The compression method turned

out to be competitive in general and superior in heterogeneous data clustering and anomaly detection.

There have been many applications in pattern recognition, phylogeny, clustering, and classification,

ranging from hurricane forecasting and music to to genomicsand analysis of network traffic, see the

many papers referencing [16], [6], [4] in Google Scholar. In[16] it is shown that the NID, and in [4] that

the NCD subject to mild conditions on the used compressor, are metrics up to negligible discrepancies

in the metric (in)equalities and that they are always between 0 and 1. The computability status of the

NID has been resolved in [23]. The NCD is computable by definition.

The information distanceD(x, y) between stringsx andy is defined as

D(x, y) = min
p

{|p| : U(p, x) = y ∧ U(p, y) = x},

whereU is the reference universal Turing machine above. Like the Kolmogorov complexityK, the

distance functionD is upper semicomputable. Define

E(x, y) = max{K(x|y),K(y|x)}.

In [2] it is shown that the functionE is upper semicomputable,D(x, y) = E(x, y)+O(logE(x, y)), the

functionE is a metric (more precisely, that it satisfies the metric (in)equalities up to a constant), and that

E is minimal (up to a constant) among all upper semicomputabledistance functionsD′ satisfying the

mild normalization conditions
∑

y:y 6=x 2
−D′(x,y) ≤ 1 and

∑

x:x 6=y 2
−D′(x,y) ≤ 1. (Here and elsewhere in

this paper “log” denotes the binary logarithm.) Thenormalized information distance(NID) e is defined

by

e(x, y) =
E(x, y)

max{K(x),K(y)} . (III.1)

It is straightforward that0 ≤ e(x, y) ≤ 1 up to some minor discrepancies for allx, y ∈ {0, 1}∗. Rewriting

e using (A.1) yields

e(x, y) =
K(x, y)−min{K(x),K(y)}

max{K(x),K(y)} , (III.2)

up to some lower order terms that we ignore.

Lemma 3.1:Let x be a string,X , Z be the families of random variables with computable probability

mass functions and computable joint probability mass functions, respectively. Moreover, forX ∈ X and

Z ∈ Z we haveH(X),H(Z) < ∞. Then, we can substitute the Kolmogorov complexities in (III.2) by

the corresponding empirical entropies as in (III.3).
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Proof: By Lemma’s 2.8 and 2.10 we know the following. ForX is the family of computable

probability mass functions,H(x|X ) = K(x), H(y|X ) = K(y). ForZ is the family of computable joint

probability mass functions,H(x, y|Z) = K(x, y). Hence,

e(x, y) =
H(x, y|Z)−min{H(x|X ),H(y|X )}

max{H(x|X ),H(y|X )} , (III.3)

ignoring lower order terms.

Remark 3.2:In Lemma 3.1 we can replace the computable random variables by the restriction to

computable random variables that have a singleton support,that is, probability mass functionsp with

p(x) = 1 for somex and p(y) = 0 for all y 6= x. Alternatively, we can replace it by the family of

computable Markov processes. To see this, for everyx of lengthn there is a computable Markov process

M of ordern− 1 that outputsx deterministically andK(x) = K(M) +O(1).

Clearly, if we replace the family of computable probabilitymass functions in the empirical entropies in

Lemma 3.1 by weaker subfamilies like the families based on computable Bernoulli functions, computable

Gaussians, or computable first order Markov processes, thenLemma 3.1 will not hold in general. ♦
Remark 3.3:The NCD is defined by

NCDZ(x, y) =
|Z(xy)| −min{|Z(x)|, |Z(y)|}

max{|Z(x)|, |Z(y)|} , (III.4)

whereZ(x) is the compressed version ofx when it is compressed by a lossless compressorZ. We

have substitutedxy for the pair(x, y) both for convenience and with ignorable consequences. Consider

a simple compressor that uses only Bernoulli variables, forexample a Huffman code compressor. The

compressed version of a string is preceded by a header containing information identifying the compressor

and the charcteristics used (the relative frequencies in this case) to compress the source string. In general

this is the case with every compressor. (In [3] the NCD based on compressors computing the static

Huffman code of a Bernoulli variable is shown to be the total Kullback-Leibler divergence to the mean.

We refrain from explaining these terms since are extraneousto our treatment.)

Thus,Z(x) is comprised of the header generated byZ for x. This header makes it possible to use

the uncompress feature, denoted here byZ−1 so thatZ−1Z(x) = x. The header describes a random

variableΞ based on the compressorZ. The family of random variables induced by the compressorZ

can be denoted byXZ .

In this way, we can define the Bernoulli variableX used to compressx. The empirical entropy

H(x|XZ) = K(X)+H(X). HereK(X) is uncomputable. We approximate it by the length of the header,
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say |α(X)|. The Bernoulli variableX has entropyH(X) and |Z(x)| = |α(X)| +H(X). Similarly for

y and (x, y). Therefore,

NCDZ(x, y) =
|α(XY )|+H(X,Y )−min{|α(X)| +H(X), |α(Y )|+H(Y )}

max{|α(X)| +H(X), |α(Y )|+H(Y )} , (III.5)

ignoring lower order terms, where|α(X)| ≥ K(X), |α(Y )| ≥ K(Y ), and|α(XY )| ≥ K(XY ).

♦

IV. M UTUAL INFORMATION

In [25], [1], [13], [9], [26], [14] the entropy and joint entropy of a pair of sequences is determined,

and this is directly equated with the Kolmogorov complexityof those sequences. The Shannon type

probabilistic version of (III.2) is

eH(X,Y ) =
H(X,Y )−min{H(X),H(Y )}

max{H(X),H(Y )}

= 1− max{H(X),H(Y )} −H(X,Y ) + min{H(X),H(Y )}
max{H(X),H(Y )}

= 1− I(X;Y )

max{H(X),H(Y )} ,

since themutual informationI(X;Y ) between random variablesX andY is

I(X;Y ) = H(X) +H(Y )−H(X,Y ),

and

max{H(X),H(Y )}+min{H(X),H(Y )} = H(X) +H(Y ).

In this way,eH(X,Y ) is 1 minus the mutual information between random variablesX andY per bit of

the maximal entropy. How do the cited references connect this distance between two random variables

to (III.2), the distance between two individual outcomesx andy?

Ostensibly one has to replace the entropy of random variables X and Y by the empirical entropy

according to Definition 2.1 deduced from stringsx and y. To obtain the required result (III.2) one has

to use familiesX , Y, Z of computable random variables such thatK(x) = H(x|X ), K(y) = H(y|Y),
andK(x, y) = H(x, y|Z). In our framework this is possible only ifX ,Y are appropriate families of

computable random variables, andZ is an appropriate family of computable joint random variables.

Outside our framework the widest notion of empirical entropy is (II.1) and there it is not possible at all.
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To obtain computable approximations using a real-world compressorZ for x and y as in (III.4) we

can take the empirical entropy based on compressorZ as in (III.4) and (III.5).

APPENDIX

A. Computability

In 1936 A.M. Turing [24] defined the hypothetical ‘Turing machine’ whose computations are intended

to give an operational and formal definition of the intuitivenotion of computability in the discrete domain.

These Turing machines compute integer functions, thecomputablefunctions. By using pairs of integers

for the arguments and values we can extend computable functions to functions with rational arguments

and/or values. The notion of computability can be further extended, see for example [17]: A function

f with rational arguments and real values isupper semicomputableif there is a computable function

φ(x, k) with x an rational number andk a nonnegative integer such thatφ(x, k + 1) ≤ φ(x, k) for

everyk andlimk→∞ φ(x, k) = f(x). This means thatf can be computably approximated from above. A

functionf is A functionf is lower semicomputableif −f is upper semicomputable. A function is called

semicomputableif it is either upper semicomputable or lower semicomputable or both. If a functionf

is both upper semicomputable and lower semicomputable, then f is computable. A countable setS is

computably (or recursively) enumerableif there is a Turing machineT that outputs all and only the

elements ofS in some order and does not halt. A countable setS is decidable (or recursive)if there is

a Turing machineT that decides for every candidatea whethera ∈ S and halts.

Example A.1:An example of a computable function isf(n) defined as thenth prime number; an

example of a function that is upper semicomputable but not computable is the Kolmogorov complexity

functionK in Appendix B. An example of a recursive set is the set of primenumbers; an example of a

recursively enumerable set that is not recursive is{x ∈ N : K(x) < |x|}. ♦

B. Kolmogorov Complexity

Informally, the Kolmogorov complexity of a string is the length of the shortest string from which

the original string can be losslessly reconstructed by an effective general-purpose computer such as a

particular universal Turing machineU , [11] or the text [17]. Hence it constitutes a lower bound on how

far a lossless compression program can compress. In this paper we require that the set of programs of

U is prefix free (no program is a proper prefix of another program), that is, we deal with theprefix

Kolmogorov complexity. (But for the results in this paper it does not matter whetherwe use the plain
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Kolmogorov complexity or the prefix Kolmogorov complexity.) We callU the reference universal Turing

machine. Formally, theconditional prefix Kolmogorov complexityK(x|y) is the length of the shortest

inputz such that the reference universal Turing machineU on inputz with auxiliary informationy outputs

x. Theunconditional prefix Kolmogorov complexityK(x) is defined byK(x|ǫ). The functionsK(·) and

K(· | ·), though defined in terms of a particular machine model, are machine-independent up to an additive

constant and acquire an asymptotically universal and absolute character through Church’s thesis, see for

example [17], and from the ability of universal machines to simulate one another and execute any effective

process. The Kolmogorov complexity of an individual finite object was introduced by Kolmogorov [11]

as an absolute and objective quantification of the amount of information in it. The information theory

of Shannon [20], on the other hand, deals withaverageinformation to communicateobjects produced

by a random source. Since the former theory is much more precise, it is surprising that analogs of

theorems in information theory hold for Kolmogorov complexity, be it in somewhat weaker form. For

example, letX andY be random variables with a joint distribution. Then,H(X,Y ) ≤ H(X) +H(Y ),

whereH(X) is the entropy of the marginal distribution ofX. Similarly, let K(x, y) denoteK(〈x, y〉)
where〈·, ·〉 is a standard pairing function andx, y are binary strings. An example is〈x, y〉 defined by

y + (x + y + 1)(x + y)/2 wherex and y are viewed as natural numbers as in (I.1). Then we have

K(x, y) ≤ K(x) +K(y) + O(1). Indeed, there is a Turing machineTi that provided with〈p, q〉 as an

input computes〈U(p), U(q)〉 (whereU is the reference Turing machine). By construction ofTi, we have

Ki(x, y) ≤ K(x) +K(y), henceK(x, y) ≤ K(x) +K(y) +O(1).

Another interesting similarity is the following:I(X;Y ) = H(Y ) − H(Y | X) is the (probabilistic)

information in random variableX about random variableY . HereH(Y | X) is the conditional entropy

of Y given X. SinceI(X;Y ) = I(Y ;X) we call this symmetric quantity themutual (probabilistic)

information.

Definition A.2: The (algorithmic) information inx abouty is I(x : y) = K(y)−K(y | x), wherex, y

are finite objects like finite strings or finite sets of finite strings.

It is remarkable that also the algorithmic information in one finite object about another one is symmetric:

I(x : y) = I(y : x) up to an additive term logarithmic inK(x) +K(y). This follows immediately from

the symmetry of informationproperty due to A.N. Kolmogorov and L.A. Levin (they proved it for plain
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Kolmogorov complexity but in this form it holds equally for prefix Kolmogorov complexity):

K(x, y) = K(x) +K(y | x) +O(log(K(x) +K(y))) (A.1)

= K(y) +K(x | y) +O(log(K(x) +K(y))).
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