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ABSTRACT 

This paper is concerned with the problem of grouping elements given asyr11rnetric 

relationships between them. Two criteria for distinguishing between arrange­

ments are developed: the distortion, based on the eigenvalues of the inter­

action matrix, and the composition, based on the amount of information lost 

by combining groups. Our goal is to locate those arrangements in the space 

of the two criteria that lie close to the Pareto-optimal points. A heuristic 

search procedure is proposed, which first allocates each element to a separate 

group and then proceeds by combining groups until the final group containing 

all the elements is reached. The method is applied to illustrative examples 

and compared to some other approaches. 

KEY WORDS & PHRASES: clustering, asynunetric interaction matrix, distortion, 

eigenvalues, linear assignment, composition, entropy, agglomerative procedure, 
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1. INTRODUCTION 

• 

The problem of grouping a set of elements according to some measure of their 

similarity has been approached from several directions. It is unlikely that 

a single method will ever be accepted as the best, since the use made of the 

results of the grouping is so varied. At most we can expect a collection of 

good methods for various applications. This paper is concerned with develop­

ing a method for grouping elements given asy1nmetric relationships between 

them. 

We know of no technique that can cope with this problem without first 

destroying the as ... - .... etric inforrnation by some averaging procedure [Sokal & 

Sneath, 1963; Gower, 1967; Jardine & Sibson, 1971; Anderberg, 1973; Everitt, 

1974; Duran & Odell, 1975; Hartigan, 1975]. Even in Hubert's [1973] attempt 

to deal with as1'rmnetric matrices first three sy1ru11etric matrices are produced, 

in which for each corresponding pair of entries both values are made equal 

to either their minimura or their maximrun or their arithmetic mean, and then 

Johnson's [1973] hierarchical clustering techniques are applied to the three 

matrices. 

The problem of finding suitable groupings of elements with asy1r11netric 

relationships arises in several contexts. The aggregation problem in Leontief 

input-output analysis is one exa1nple; the. detection of highly interactive 

groups of individuals is another. In general the problem may arise when the 

elements are variables and the relationships represent the effect of the vari­

ables upon each other, or when the elements are entities and the relationships 

represent the frequencies of asy1mnetric events in which two entities are in­

volved. The problem has many other interpretations; e.g., the relationships 

could represent ratings of people by each other, but the solution developed 

below was created with the above interpretations in mind. 

There are two main aspects of the problem: the selection of criteria for 

choosing suitable groupings and the choice of a method for searching among 

the possible groupings. To develop an interpretable clustering procedure it is 

important to distinguish between these two aspects. As noted by Gower [1967], 

the failure to formulate this distinction has led to the proliferation of a 

large number of methods without the possibility of adequate comparison be­

tween them. 
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criteria for choosing between possible groupings can be related either 

to properties of the individual groups or to the complete arrangement. Var­

ious linkage methods [Gower, 1967] have a criterion'based on a measure for 

each separate group, resulting in a simple search procedure. But inevitably, 

a second criterion is required by which entire arrangements can be compared. 

Most methods thus employ two criteria, even if one of them is not stated~ex­

plicitly. In the linkage methods the explicit criterion, e.g. the minimum 

average similarity of elements in a group, is used by the analyst to deter­

mine a suitable n1imber of groups - his implicit criterion. It would be prefer­

able to make both criteria explicit. The goal for the search procedure is 

then to locate those arrangements in the space of the two criteria that lie 

close to the Pareco-optima.1 points, i.e. the points for which one can only 

achieve improvement with respect to one criterion at the expense of the other. 

This will usually lead to a collection of good arrangements rather than to a 

single ''best'' arrangement. If a single solution is required, then some fur­

ther assumption will be needed, such as a weighting function. 

The evaluation of the criteria for all possible arrangements is prohib­

itive even for quite small n1J1nbers of elements, since the number of possible 

arrangements grows exponentially in the nuxnber of elements. Thus, some sort 

of heuristic search procedure is required. In many methods search is based 

on the forn1 of the criteria for selection [Gower, 1967], and sometimes a 

simple search method is used without reference to a well-defined criterion 

of choice in order to yield a rough analysis of the data [King, 1967]. Some 

search methods have been designed to generate a suitably structured set of 

solutions; for example, biologists analysing various species to determine 

their phenetic grouping require a solution in the form of a dendogram or 

taxonomic tree. 

In the rest of this paper we will first develop two criteria for dis­

tinguishing between arrangements: a measure of distorcion based on the eigen­

values_ of the matrix of interactions and a measure of composition based on 

the an1ount of infor111ation lost by combining groups. We then look at the 

search problem and suggest an agglomerative procedure that, in fact, yields 

solutions similar to a dendogram. Finally we look at how the proposed method 

perforxns on an exarnple, as compared to some other approaches • 



• 

2. PROBLEM DEFINITION 

Ass11r11e that we have a set E of n elements e
1

, .•• ,en ·and an nxn-matrix 

A cluscering corresponds to a partition of E into N subsets F
1

, .•• ,FN: 

E 
N 

Ut=l F2 , F!lnFm (i,m 1 , .... , N; fl f:. m) • 
• 

Let f 1 be the cardinality of F1 , and assurne the elements to be reindexed 

such a way that 

{ e. I j -
J 

( fl 1, ... ,N) . 

To determine the quality of a particular clustering, we shall make use of 

fixf 2-matrices Q2 representing the interaction within F
2

: 

(j ,k - ( fl 1 , ... , N) , 

• 

combined to form the completely decomposed nxn-matrix Q: 

Ql 0 • • • • 0 

0 Q2 • • 
• • 

• • Q • • • • • • 
• • • 
• • • 0 • • • 

2.1. The measure of distortion 

3 

• in 

If a system is adequately represented by some interaction matrix, such as P, 

then the behaviot1r of that system through time often depends on powers of P. 

For exarnple, if the elements correspond to individuals and Pjk represents 

the probability of the diffusion of a message from person j to person kin 

inal knowledge vector to establish the probability distribution of knowledge 

after t time periods. Another con1c11on exarnple is when the elements are vari­

ables in a closed system and P represents the set of linear difference equa­

tions that connects these variables. Then the value of these variables at 
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some time tis given by an n-dimensional vector 
t 

x(t) = Px(t-1) = P x(O), 

where x(O) represents the initial values of the variables. This suggests 

that a suitable criterion for choosing between different arrangements is to 

make the difference between Pt and the 

small as possible for all t. 

The validity of this approach when considering the behaviour in time of 

nearly decomposable systems has been demonstrated by Simon and Ando [1961]. 

They show that it is sufficient in the short run to consider the behaviour 

of each subsystem separately, and that each subsystem can be treated as a 

single composite variable when studying the behaviour of the entire system 

in the long run. A more intuitive approach to this question has been put 

forward by Simon [1969]. 

Assume for the moment that the eigenvalues of P and Qare all distinct, 

so that there exist nonsingular nxn-matrices Y and Z such that 

y-lpy A= (A.o.k) for j,k - 1,2, ••• ,n, 
J J 

M = (11 o ) for J·,k = 1,2, ••• ,n, 
I-" • • k 

J J 

= 1 if j = k and 8.k = 0 otherwise, and A. and 
J J 

values of P and Q respectively. Y and Z are only defined 

mutations and scalar multiplications of each column. Now 

= (YAY-l)t 

= (ZMZ-1)t 

t -1 = YA Y , 
t -1 = ZM Z • 

µ. are 
J 

modulo 

the eigen­

colurnn per-

Since Y and Z depend on A and M respectively, this in turn suggests as a 

suitable criterion for deciding between arrangements the total squared dif­

ference between corresponding eigenvalues of P and Q. 

What are to be taken as the corresponding eigenvalues in the two cases? 

With small deviations between A and M it will be clear by inspection which 

eigenvalues of Qare distortions of the eigenvalues of P. However, when Q is 

a poor approximation of P, this correspondence will not be clear. We propose 

to find a pairing of the:\. 
J 

with the µk that yields the minimwn value l1 of 

the sum of squares of their differences, i.e., a pairing that minimizes 

• 
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subject to 

"""'Il 

j-1 xjk 1 (k 1, ••• ,n), • 

n 
k-1 xjk 1 (j 1, .•• ,n) , 

=. 1, ••• ,n) ; 

A . 
J 

= 1 in the optimal solution. This is a linear 

assign1ncnt; problem, for which several efficient algorithms are available 

[Wagner, 1975, p.183; Lawler, 1976, p.129; Dorhout, 1977]. 

Decomposing the eigenvalues into real and imaginary parts: 

(j 1, ••• ,n), 

we can rewrite the cost coefficient as 

2 

Substitution of this expression in the objective function yields 

n n 
j=1 J '-'j-1 

When the eigenvalues of either P or Qare all real, it is not necessary to 

use a general linear assignment subroutine, since the problem can be solved 

in a much simpler way. The objective function attains its minimiim value b 

when the real parts A~ andµ' are both arranged in descending order of mag-
] k 

nitude and the eigenvalues in the corresponding rank order are paired (cf. 

5 

[Lawler, 1976, p.211]). That this procedure indeed yields an optimum pairing 

can be proved by considering the situation in which 

If X .. 
JJ 

of the 

µ II 
k o. 

1, the contribution of 

objective function is given by 

A . I 

J 
µ, 

J 
and µk to the variable part 
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In the rearranged expression, the first term denotes the contribution if 

Since the second term is nonpositive, it follows that the 

latter pairing is no better than the former one. 

We will need to make comparisons between~ values for different group­

ings. Moreover it is desirable to have some measure of the distortion between 

matrices of different size. We therefore choose to normalize~ so that the 

distortion is zero when all the elements are combined in one group of size 

n, and that it is unity when there are n groups each containing one element. 

In the former case we have O = P, so thatµ. - A. (j = 1, ••• ,n) and = O; 
- J J 

in the latter case we have Qi= (pit), µi = p£i andµ~= 0 (2 = 1, ••• ,n), so 
* * that~=~ where~ denotes the value of the objective function when the A~ 

J 
and the 

tortion Dis now defined to be 

2.2. The measure of comf.X)sition 

The measure of distortion is by itself not a sufficient criterion for choosing 

suitable arrangements: the arrangement with minimum distortion is a single 

group containing all the elements. Therefore we also need some measure of 

composition in an arrangement. 

This measure will be dependent only upon the format of the grouping, as 

defined by the number of groups and their cardinalities, and not upon the par­

ticular arrangement within the for:rnat. Although the nurnher of groups is a simple 

and often-used criterion, we will not use it. To see why, consider an arrangement 

with two groups. It seems probable that D will be smaller if the groups contain 

1 and n-1 elements than if they each contain about half the elements. Yet, in 

some intuitive sense, the latter format gives us more information. 

The usual measure of entropy provides a good indication of the ainount of 

composition achieved by a particular format. It has been used as such 

etric matrices. In general the entropy of a partition E -

is defined by 

1 
n 

in the 
N 

U£=1 Fi 

• 
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To get a measure of composition we wish the maximt1m composition to be unity 

and to occur when all the elements are combined in one group of size n. Since 

in that case the entropy is equal to log n, the measure of composition C is 

defined to be 
• 

C 
1 

n log n 

..... N. 
£=l f.Q, log f.Q,. 

Note that the minim111n composition is zero and is attained when there are n 

groups each containing one element. 

In s1J1r1rnary, we now have two criteria for each arrangement: the measure of 

distortion D and the measure of composition C. For the arrangement in which 

all the elements are lumped together in a single group, we have D - 0 and 

C 

D 

1. For the arrangement in which there are n single-element groups, we have 

1 and C O. Somewhere between these two extremes there are arrangements 

which are good in the sense that they are both low in distortion and compo­

sition. Our problem will be to find arrangements that are close to the Pareto­

optimal ones, as defined in Section 1. The choice of which of these good ar­

rangements is the best will not be of concern to us and is left to the indi­

vidual analyst. 

• 
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3. SEARCH FOR PARETO-OPTIMAL SOLUTIONS 

Even for quite a small number of elements complete enumeration of all the pos­

sible arrangements is not feasible. The number of different arrangements for 

n elements into N groups is given by the so-called Stirling number of the sec­

ond kind [Liu, 1968, pp.38-39, p.101; Wells, 1971, p.157, p.235]: 

S(n,N) = S(n-1,N-1) + NS(n-1,N) 
1 N 

N ! '-' fl= 

The total number 

it is already of 

of arrangements increases 
. 12 

the order 4•10 [Fortier 

exponentially with n. For n 

& Solomon, 1966]. 

19 

Jensen [ 1969] developed a dyna.1nic programming approach, which refrains 

this method he managed from considering certain unsuitable arrangements. By 
19 

to reduce the number of calculations from about 10 to 10 12 for f. a· in ing ar-

rangements of 25 elements into 10 groups. But even such a method is prohibitive 

for situations with more than 25 elements with present computing equipment. 

Fortier and Solomon [1966] proposed a sampling approach with a criterion 

similar to Tryon's [1939] B coefficient. They were not able to find such a 

good solution as the one provided by Tryon's search method. 

We thus find ourselves forced by computational considerations to employ 

a heuristic search procedure. Such heuristics, applied in cluster analysis, 

can often be characterized as being either 

- subdivisive: divide the set of elements into two groups and then consider 

each group separately, or 

- agglomerative: allocate each element to a separate group and then proceed 

by combining groups. 

Although the subdivisive method is sometimes considered superior [Gower, 1967, 

p.635], it is not practicable as the nt1mber of arrangements to be considered 

arrangements to be considered at the first step is n(n-1)/2, and the total 

nu111ber of arrangements that will be considered is 

n 
N=2 N(N-1)/2 - 3 

- O(n ), 

which is within the realms of possibility. The agglomerative method is the 

basis of the search procedure that we will employ • 

, 

' 
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The method chosen is a simple hierarchical scheme. The initial arrangement 

is that in which there are n groups each containing one element. At each step 

the current arrangement is taken as starting point. All possible arrangements 

that can be formed by combining two groups of the current one are considered. 

For each of these new arrangements the distortion and the composition are 

calculated. The lines in the composition-distortion space joining the current 

arrangement to each of the new ones are compared, and the line having the most 

negative slope is selected to determine the next current arrangement. The re­

sult is a hierarchy or dendogram in which the elements are brought together 

into groups and groups into larger groups until finally one group of size n 

is formed. The procedure is illustrated in Section 3.3. 

This search heuristic does not guarantee that a Pareto-optimal solution 

will be found. By backing up in the search procedure and selecting one of the 

rejected arrangements as an alternative, better arrangements might be gener­

ated. We have chosen, however, not to embed our approach into a branch-and­

bound scheme, since the computational requirements of such a scheme would 

probably be excessive. 

3. 2. Programrning considerations 
• 

In calculating the distortion for an arrangement the eigenvalues for this 

arrangement need to be available. The matrix Q is completely decomposed and 

the eigenvalues of each of the diagonal submatrices Qt (i 1, .•• ,N) can be 

calculated separately. As a possible new arrangement differs from the current 

one only in that two groups are being combined into one, it is only the eigen­

values for this new group that are needed; the remaining ones are available 

from previous calculations. If both groups that are being brought together 

had already been formed before the previous step, then they will have been 

brought together in an earlier phase as a possible but rejected grouping; 

the eigenvalues for the new group will have already been calculated and can 

be retrieved from memory. However, if one of the two groups being combined 

is the group that was formed at the previous step, then the eigenvalues for 

the new group will have to be calculated. Thus, in reducing the ntirr1her of 

• 
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groups from N to N-1, with N < n, eigenvalues will have to be calculated only 

for the possible new groups formed by combining the single group just formed 
• 

with each of the other N-1 ones. 

At the very first step of the search procedure, the eigenvalues of 

n(n-1)/2 2x2-submatrices will need to be calculated, which is a trivial task. 

A call for an algorithm. for finding eigenvalues is only required from then 

on, i.e. (n-1) (n-2)/2 times. The subroutine used for this purpose is fairly 

fast and renders this approach computationally feasible up ton 100. 

Similar considerations surround the assignment algorithm used to pair 

the eigenvalues of the original matrix P with those of the proposed new ma­

trix Q. For each of 

ment problem has to be solved. In each of these problems, the eigenvalues of 

Pare the same, and the eigenvalues of a new matrix Q differ from those of 

the current one only as far as the new group is concerned. It follows that 

the optimal solution to the current assignment problem usually provides a 

good initial solution to the new assignment problem. Thus, we should use a 

highly efficient assignment algorithm that benefits from a good initial solu­

tion. The method developed by Dorhout [1977] turned out to be suitable for 

this purpose. 

3. 3. A nu1nerical exa1nple 

To illustrate the search procedure, we consider the 4x4-matrix used for 

similar purposes by Simon and Ando [1961] and reproduced in Fig. 1~ 

The initial arrangement has four groups each containing one of the ele­

ments a,b,c,d. All pairwise combinations of elements are now considered. Only 

two of these alter the eigenvalues of the initial arrangement, given by the 

main diagonal of the original matrix. These are the combinations a with b 

and c with d, which reduce the distortion from 1 to 0.87 and 0.26 respective-
. ' 

ly; in both cases the composition is increased from Oto 0.25. The slope of 

the lines joining the initial arrangement to these two possible new arrange­

ments in the composition-distortion space is -0.53 and -2.95 respectively 

(cf. Fig. 2). As the latter slope is the smaller one, c and dare combined 

into group 2 and the second arrangement results. Next, there are three pos­

sible combinations: a with b, a with group 2, and b with group 2. Since only 

' 
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Figure 1 Data and results for the 4x4-example. 

the fo1mer reduces the distortion, it is selected as group 3 to form the 

third arrangement. Finally, there is only one combination, namely of groups 

2 and 3, which gives the completely integrated original matrix with no dis­

tortion. 

The results of this search are given in Fig. 1, together with a dendo­

grarn. illustrating the distortion reduction. In the dendograr11, the procedure 

has reordered the elements so that elements in one group are always adjacent, 

with earlier formed groups preceding later for1ned ones. The horizontal axis 

' 
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Figure 2 All arrangements for the 4x4-example. 

gives the distortion on a logarithmic scale in such a way that the penulti­

mate, but not necessarily the final, arrangement can be plotted. The hori­

zontal lines represent the groups. When two groups are combined, the corres­

ponding lines are joined by a vertical line, and the new group is represented 

by a new horizontal line. The number of the new group appears in the corner 

between the vertical line and the new horizontal line. 

In this case it is an easy task to obtain a complete listing of all pos­

sible arrangements. For each arrangement, the composition is trivial to cal­

culate, and since the eigenvalues of the original matrix are all real, the 

distortion can be calculated in the simple way outlined in Section 2.1. The 
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positions of all the arrangements in the composition-distortion space are 

shown in Fig. 2. A digit in this graph denotes the n1Jtr1ber of arrangements 

with the indicated distortion (± 0.01) and composition (± 0.005). The line 

in the graph joins the arrangements generated by our heuristic procedure. 

Note that these are- exactly the Pareto-optimal points • 

13 
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4. AN APPLICATION TO A SMALL MATRIX 

To compare our asyrm11etric clustering procedure to some other approaches, we 

consider the sxB citation matrix used for illustrative purposes by Coombs, 

Dawes and Tversky [1970]. In this case, the elements are eight journals of 

the American Psycholog,ical Association. Each entry in the matrix gives the 

nurr~er of citations to the column journal occurring in the row journal in the 

year 1964. The matrix is reproduced in Fig. 3. 

' 

4.1. Results for our search procedure 

It is instructive to follow the decisions made during the search. Those ar­

rangements that are selected or close to being selected are given in Fig. 3, 

together with the eigenvalues of the selected arrangements. 

After setting up the initial arrangement with one journal in each group, 
' 

the procedure looks for the second arrangement. Three pairings are close ri-

vals for the first agglomeration, all involving JExP, namely with JCPP, with 

JASP or with AJP in that order of preference. It.is not surprising to find 

these three pairs being principal candidates: the two interaction entries 

for each pair are high. 

However, not all the pairs with two. high entries (e.g., JASP with JCP) 

come in for serious consideration. The reason is seen by comparing the eigen­

values of the original matrix, given in Fig. 3, with those for the initial 

arrangement, given by the self citations on the main diagonal of the original 

matrix. The major differences between correspondi1lg pairs of eigenvalues oc­

cur for the largest and third largest pair. These are partially caused by the 

self citations of JExP and JASP, and indicate why this pair comes in for seri­

ous consideration. However, this pair is not chosen and instead JExP is com­

bined with JCPP, which has the second largest number of self citations. This 

combination reduces the eigenvalue corresponding to JCPP to below that of 

JASP and brings it close to the third largest of the original eigenvalues, 

while JASP comes close to the second largest one, thus killing two birds with 

one stone. The pair with the highest interaction entries in the original 

matrix, JExP with AJP, does not get combined, because the self citation of 

AJP, being the fifth largest, is close to the fifth largest of the resulting 

• 
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eigenvalues and so there is not much to be gained from their combination. It 

appears that self citations have some influence. If one finds that this fea­

ture is undesirable, then the main diagonal entries·should be set to zero, 

as is frequently done is cluster analysis methods. 

Having combine.d JExP with JCPP, the procedure looks for the third ar­

rangement. Both JASP and AJP, the contenders for joining JExP as group 2, 
• 

are considered for being joined to group 2 but rejected in favour of combin­

ing JASP with JCP to f o:r1n group 3. AJP has to wait until the fourth step to 

be joined to group 2 to form group 4. At the fifth step groups 3 and 4 come 

together to form group 5, with no contenders. For the remaining three jour­

nals, JAP, Pka and JEdP, there is little cross citation but still sufficient 

for their combination in the sixth and seventh step of the search. Finally, 

in the eighth step the two groups of journals are brought together. 

The result of this search are presented diagrarmnatically in the form of 

a dendogram in Fig. 3 (cf. Section 3.3). The citation matrix reordered into 
' 

the sa111e order as used in the dendograrn is also given in Fig. 3. 

• 

With eight elements to be grouped it is still possible to obtain a complete 

listing of all possible arrangements. The remarks made in the final paragraph 

of Section 3.3 apply here as well. The result is shown in Fig. 4; an asterisk 

denotes that there are ten or more arrangements falling within the indicated 

composition-distortion area. The arrangements with distortion at most 0.02 

have been given again at the bottom of the graph, where the distortion scale 

is multiplied by ten; this is repeated for the arrangements with distortion 

at most 0.002. 

As can be seen most of the arrangements are of no interest at all. More­

over the solution found by our procedure includes only Pareto-optimal points. 

Two arrangements lie very close to this lower bound. The first one is JCPP, 

JExP and AJP in one·group and the other journals in separate groups. This 

arrangement has D 0.0926 and C 0.1981, and was considered but rejected 

at the third step. In fact, JCPP and JExP are joined by AJP at the fourth 

step. The second arrangement very close to the line is JAP and JEdP in one 

gro~p and the other journals in a second group. This has D 0.0003 and 

• 
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INTERACTION MATRIX 
ff###########~#### 

AJP J4SP JAP JCPP JCP JEOP 
AJP 119.0000 a.0000 4.000J 21.0000 o.o 1.0000 JASP 32.0000 51(,.0000 16.~0~~ 11.cooo 73.0000 9.0000 JAP 2.0000 s.0000 84.000C; 1.0000 1.0000 8 • OD,00 JCPP 35.0000 8.0JO':. 

,. ' 533.0000 c.o 1.0000 V• IJ 
JCP 6.0000 116.COOO 11.00:0 1.0000 225.tJOOO 1.0000 

JEOP 4.0000 9.0000 1.00.;ei o.o 3.~ooo 52.::,00'.) 
JEXP 125.0000 19.COOO 6.000) 10.0000 o.o o.o 

PKA 2.0000 5.CJOO 5.00CO v.O 13. ~o~o 2.ooco 

ORIGINAL EIGENV•LUES • 

R: 0.6898E 03 0.5291E C3 
1: o.o o.o C.4606E 03 

o.o ~.l984E ~3 0.9635E o.o o.o 'J2 ;;.6b94E o.o 02 0.5579!: o.o 
SUM OF SQUARES OF DIFFEKE~ES SETWEEN 
i lGE~VALUES ANO "AIN OIAGCNAL OF MATRIX 

S DENOMINATOR FOR DISTORTION = O.l447E 05 

SEARCH FOR NEXT PAIR OF G~OUPS TJ COMBINE 
..... #####-If:# ###t###f #####t# i;# #* ,. f 1'. ## ### iJ. 

COMBINING GIVES SLOPE CHOSEN 
AJP JEXP -• 3775E: 1.,l 

JASP JEXP -.4944E 01 
JCPP JEXP -.9780E 01 GKOUP 2 

JASP JCP -.8381E 00 GROUP 3 
AJP GRuUP 2 -. 8034E; 00 

JASP GROUP 2 -.2o83E 00 

AJP GROUP 2 -. 8 'J34E oc GROUP 4 
GROUP 2 GROUP 3 -. 32C9 E OG 

GROUP 3 GROUP 4 -. l066E 00 GROUP 5 

JAP JEOP -. 8765 E-02 
JAP PKA -.9990E-t2 GROUP b 
PKA GROUP 5 -. l 798 E-02 

JEDP GROUP 5 -.4055 t-03 
JEOP GROUP 6 -. 2 552E-C•2 GROUP 7 

GROUP 5 GROUP 1 -.6592 E-03 GROUP 8 

SEQUENCE Of ARRAN$MENTS 
••••••••• ,. #### l##t ####.# 

GROUP FORMED FROM COMP. DISTOr<TlON 

l .::,. 0 O.lCO;)E 01 
2 JCPP JEXP o. 0833 0.185~E OC 
3 JASP JCP c.1001 v.ll51E OC 
4 AJP GROUP 2 ,. 2815 0. 22 91E-C1l 
5 GROUP 3 GR.OUP 4 c. 4837 O.l335E-02 
0 JAP PKA c. Sb 71 O.S027E-03 
7 JEOP GROUP b (.6sA9 0.2C97E-03 
8 GROUP 5 GROUP 7 1.00 0 0.2955E-08 

EljENVALUES OF .ARRAr«:iMENTS 
•• ##-#################### ## 

1 2 3 4 R: 0.586 OE 03 **10 • 657 l E 03 0.6571E 034t•.).f>749E: 
1: o.o o.o :.o ~.o 
R: 0.5330E J.3• 0.5100E 0 3**0 • 5 3 71 E 03 0.5371E 

Ii o.o o.o o.o '. 0 .... o.s1ooe l3 •0.4619E 03 0.4619E 03**C.4659E 
l; o.o o.o o.o .:. • 0 

0.2250E .;l o.22sae o,ia•o.l979E 03 C.l979E 
I; o.o o.o o.o r. O 

0 ■ 1190E 03 O.ll90E 03 O ■ ll90E 03**C.9 720E 
1: o.o o.l ---o 

s 6 
03*ilt0 .689lE 03 o.o891E 03 o.o • o.o 
0 3* *O. 5 2 86E J3 0.5286E 03 o.o 0.0 
03**0.4bObE 03 0.4bObE 03 o.o o.o 
C3*•0.1975E 03 O.l975E 03 a.o o.o 
02**0 .972CE 02 u.9720E 02 o.o .. a 

V• 

JEXP Pt<..A 
85.000C 2.caco 

119.0C'JC 4.".)0C.: 
16.~vov 1c.cocc. 

l2b.OCOC 1.00cc 
12.:::COL 1.~~cc. 
27.CCQO 5 ~ ,r 0 

• \... V ~ 

586.GOuC 15.COuG 
13.C.CO., 58. tOC·C 

<~2 0.5~1CE j2 ... -•. \., 

7 8 
C.6S91E .J3**v.689&E c.;3 
0 .o 'J ,, •v 
0.5286E t;3•*0.5291E "'3 c.c • • 

i. • !.J 

C.46C6E J3**0. 46.: 6E i.:, ~ c.o 0. '1 
v.l975E ·13**0 .19s 32 (3 
c.o C •..) 
G.972CE G.2**C .963 Sf' w2 c.o o.c o.g R: 0.8400E Ol J. 400E 02 0.84vOE 02 (;.840CE 02 v.8400E 02**C.8580E 02* *C.. 8 762E c.z••0.869'4c '2 I; o.o o.o o.o u.O o.o r;.c c.c c.o 0.5800E ,02 0.5800E 02 o.saooE 02 0.5800E 02 o.saooe 02**0.5620E 02**C.5b4CE C2*•0.5579E ~2 

l; o.o o.~ o.o o.o o.o o.o o.o o.o o.s2ooe 02 O. 200E 02 0.5200E oz 0.5200E 02 0.5200E v2 0.5200E 02•~.4998E 02**0.501CE C2 11 o.o o.o o.o o.o o.o o.o v.c o.o 

IORDEREO INTjRACTION MATRIX 
.########## ############## 

JEXP JCPP AJP JCP JASP JAP PKA JE;)P 
7 0.0000 125.0000 O.J 19.0000 6.00J:l 15.000(.; • • JEXP 586.0000 .., .... 

JCPP 126.0000 533.0000 35.000,J o.o a.0000 o.o 1.000(, 1.cccc 
4.0000 2.00cc l ,... 0,.... AJP 85.0000 21.0000 119.0000 o.o a.0000 • 1./ ........ 

JCP 12.0000 1.0000 6.0000 225.000C 116.0000 11.0000 7.0(,J{. 1.cocc 
119.0000 l l. uOOO 32.CCG:. 73. 000<.. 5 LO. )')')O 1.6.00CO 4 • 0-000 9.000C JASP 

J4P 16.0000 1.0000 2.0000 1.0000 s.ooao 84.?000 1:;.oooc. o.tocc 
PKA 13.0000 (.;. 0 2.ooco 13.0000 s.0000 5.vCGC ~8.~CJC: 2.i:o.::c 

JEOP 21.oooc 0.0 4.0000 3.0000 9.0000 7. OOu·) s.ococ 52.1:0CO 

DENDOGRAM 
##11#11 ¥111111 

DISTORT ION 
-1 -2 -3 

l l 1 ... 
98 7 l:> 5 4 3 111 6 5 4 2 987 6 5 4 3 2 98 7 6 5 .... ... _, 

I I I I I I I I I I I I I I I I l I I 111 I I I I 
JEXP 

I : 1:2 r ⇒ JCPP 
AJP 
JCP • J:a JASP , 
JAP 

Ib PKA 
JEOP 

,,ii I I lit\ L ! ! It!~!! I 1i1\ ! ! ! 6 4 4 
-l -2 -3 

l 10 10 10 

• 
, 

Figure 3 Data and results for the Sx8-e:xainple. 
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DIST 

****I * * * * * * * * * *4 * * 6 1 
I ', * * * * * * * * *5 * * * I 4 l * * * * * * *3 * * 8 1 3 4 1 
I 
I • 

• 900 I 
I 
I 
I 
I 1 6 

, 
3 * b b * 7 6 2 0 

.8001 
I 
I l 3 3 3 4 3 9 3 3 4 l 
I • 

I 
.7001 

I l * * * * * * * *3 • * 1 1 
I l s 7 4 * 9 * *l * * 5 3 4 l 
I 1 1 l 1 
I 

.600 I ::> 4 4 4 1 -I l * 4 * * * * * * *3 * * * 1 5 7 2 
I 1 1 2 3 8 21 3 * 3 l 1 
I 
I 

.5001 
I 
I 
I 
I 

.4001 l 6 3 3 4 
I 

9 3 1 3 3 1 

I l * 2 * * * * 1 * 2 3 3 
I l 5 3 2 2 1 l l l 
I 

.3001 
I 
I 
I 

' .200 I 
I * 4 * * * * * * *4. * * l 3 3 l 

' 2 6 17 1616 2 12 26 22 1 
I 14 * ** 3* ** **** **49* *6 96 113 4 1 
I l 2 2 l 1 2 

.1001 b 7 3 * 9 9 * * * 5 3 4 l 
I l 99 54 ** 77** 6*6*9 ** ** 742163 63 2 
I l 6 3 3 't I Z 1 3 2 

' 1 1 1 1 
I 3 3 3 9 6 3 3 , 4 J 1 
I 
I 3 .3 2 9 l 3 2 

.0201 l 1 2 2 l 
I 
I 
I 
I 

.0101 
I 
I 
I 
I 3 3 1 3 1 
I 
I 

.0021 
I 
I l l 
I 
I 2 

.0011 l l 
I 
I 1 
I l 2 
I l 
I 
0 • 1 

. 
~ .4 .s .6 • 1 .9 1.u • ,c;. • .:> .u 

-
Figure 4 All arrangements for the 8x8-example . 
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c = o.7296, and was never considered. It is slightly inferior to the arrange­

ment found at the seventh step in which JAP and Pka are joined by JEdP. So 
• 

in this instance the solution found by our heuristic is the optimurn one, al-

though there is no guarantee that this will always be the case. 

scalin9 me:t,hods 
' 

Multidimensional scaling methods start by constructing a so-called I scale 

for each element j, i.e. an ordering of all elements k according to non-

to create configurations of points, corresponding to the elements, in metric 

spaces of descending dimension, such that for each element j the ordering of 

the elements as defined by their distances to j is close to the I scale. 

Coombs, Dawes and Tversky [1970] have analysed the sxs citation matrix 

using three multidimensional scaling methods. In an attempt to remove effects 

due to the total number of citations appearing in each journal, they subtract­

ed row and column means from each entry. When locating the journals in two­

dimensional Euclidean space, the three methods produced similar results. The 

solution obtained by the Guttman-Lingoes method is shown in Fig. 5. 

How does this configuration compare to the dendogram given by our search 

procedure? For the multidimensional scaling method the most closely related 

journals are JAP, Pka and JEdP. In our procedure these journals only come 

together at the end of the search; they are related but not closely related. 

On the other hand, with us the most closely related journals are JExP with 

JCPP and JCP with JASP; together with ASP they form a group distinct from JAP, 

Pka and JEdP. For Coombs et al. JExP is close to JCPP and JCP to JASP, but 

not quite as close as JAP, Pka and JEdP; this group is closely related to 

AJP and JCP, and JExP, JCPP and JASP are outliers. The two representations 

of the data lead to very different interpretations! 

Why it is that the Guttman-Lingoes method (and the other multidimensional 

scaling methods) bring together JAP, Pka and JEdP as a close group whereas 

our procedure, while bringing them together, only does so late indicating a 

weak interaction? The reason for their proximity with respect to multidimen-

'.ional scaling methods is their small size, so that the n1.11nber of citations 

rom any jour11al to these journal is also small. So already without the 

• 
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'Figure 5 Guttman-Lingoes configuration for the 8x8-example. 
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subtraction of row and column means, the I scale for each journal would have 

listed them at the end. Subtracting row means does not change the I scales, 

but subtracting column means makes the situation worse. As there are few 

citations to JAP, Pka and JEdP, their colt1,nn means are small ( 16.63, 12. 75 

and 10.00 respectively); none of their cross citations exceeds their respec­

tive means so that subtracting column means results in small negative entries. 

For other journals with higher column means the original small entries become 

large and negative. From the point of view of each of the five large journals, 

the three small journals will appear about equally distant. From the point of 

view of each of the three small journals, the five large journals will have 

large negative entries and the other two small journals will have small neg­

ative entries. Thus small journals are bound to come together, and subtract­

ing row and column means does not remove the ''bulk effects'' caused by dif­

ferences in journal size as was intended. 

With our procedure no attempt is made to re1nove bulk effects, nor should 

it be. As the off-diagonal entries for JAP, Pka and JEdP are all small, their 

inclusion in a group rigthly has little effect on the eigenvalues. Once the 

five large journals have been combined it is not necessary that the three 

little journals will come together. That they do so is due to their cross 

citations; moreover that Pka joins the other two small journals rather than 

the five large ones is a marginal decision (see Section 4.2) • 

• 

• 
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Johnson's hierarchical clusterin2 techniques 
■ I z. • I 2 Is ■ 4 4 l J A 1 11 I I d t L ~ Z F; ¥ 41 I I l I 4 

, 

Two well-known hierarchical clustering techniques for sy1r11netric matrices have 

been developed by Johnson [1967]. Initially, each element is in a separate 

group, and the similarity between two groups is given by the (symmetric) 

interaction between the corresponding elements. At each step, both methods 

combine the two groups with maximum similarity into a new group. The methods 

set the similarity between the new group and each of the remaining old groups 

to either the maximum (the single linkage method) or the minimu111 (the complete 

linkage method) of the similarities between the two groups being combined and 

the old group. 

These methods can be applied to an as 7TYlffetric matrix provided that it is 

rnade s .-uetric, an approach taken by Hubert [1973]. He uses three different 

schemes for determining the j and k with in-

teractions 

(a) sjk --
(b) sjk --
(c) sjk --

When the single linkage method • is applied to the Bxs citation matrix, after 

mretrized by any of the above schemes, then the result is a it has beens 

string, i.e., two journals are combined and the remaining journa1s are added 

to this group one by one. The results of applying the complete 1inkage method 

depend on the scheme chosen for symmetrizing the matrix. However, schemes (a) 

and (c) give the sa1ne clustering and scheme (b) is very similar. The solution 

based on scheme (c) is presented in the form of a dendogram in Fig. 6. This 

is similar to the solution by our search procedure in that groups 3 and 4 are 

the sa,ne. Instead of their being combined to form group 5, the three remain­

ing ''little'' journals are added to group 3. While these journals are certain­

ly cited more often by the journals in group 3 than by those in group 4, they 

themselves cite JExP, which is in group 4, most frequently. 

The main disadvantage of applying Johnson's methods lies, however, • in 
the arbitrariness of the scheme needed to sy1rimetrize the original matrix • 

• 
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Figure 6 Complete linkage method for the 8x8-example. 

4.5. Comparison with a travelling salesman approach 
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• 

We know of only one other clustering technique that can handle asy111metric 

data without syrnrnetrizing them. This method, originally proposed by McCormick, 

Schweitzer and White [1972] is not a hierarchical one and produces only one 

solution, which is not a clustering in our ~ense of the word. The objective 

of their approach is to permute the rows and collJrnns of the interaction ma­

trix so that high entries are brought together and a visually pleasing pat­

tern emerges. The resulting clusters of high entries need not occur around 

the main diagonal, as in our search procedure. 

As a criterion that has to be maximized over all row and col1Jmn per­

mutations, McCormick et al. chose the sum of all products of horizontally or 

vertically adjacent entries in the matrix. Thus, 

(j = 1, ••• ,n), their measure of effectiveness Eis defined to be 

E -
m n-1 

-j=l k=1 ajkaj,k+1 + 
n ,..,m-1 

~k=l~j=1 ajkaj+l,k. 

Maximizing E has been shown to be equivalent to solving two travelling 

saies1na.n problems [Lenstra, 1974]. This is a standard combinatorial optimi­

zation problem, for which various algorithms have been developed; see, e.g., 

[Christofides, 1975, p.236; Lenstra, 1977, p.63]. If the matrix is square 

(i.e., m - n) and we restrict our attention to identical row and column per-

mutations, as in the case of our example, then only one 

problem has to be solved [Lenstra & Rinnooy Kan, 1975]. 

Applying this approach to the 8x8-example, we have 

as the n111nber of significant digits of 

if 1 ~ shown in Fig. 7. 

travelling salesman 

E increases from 238 

• 

. .. , 
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for the original matrix to 301 for the per111uted rnatrix. Inspection reveals 

that the clusters of high entries correspond to the principal submatrices 

formed by our search procedure. ' 

The reordered interaction matrix given in Fig. 3 has E 269. However, 

the underlying reordering is quite arbitrary. Our dendogram could, for ex­

a,nple, have been drawn on an ordering with E - 296, na1·nely the one obtained 

by interchanging JCPP and AJP in the optimal perinutation shown in Fig. 7 (b). 

AJP 
JASP 

JAP 
JCPP 

JCP 
JEdP 
JExP 

Pka 

3 

2 

1 

2 

1 

1 

3 

1 

1 

3 

1 

1 

3 

1 

2 

1 

1 2 

2 2 

2 1 

0 3 

2 1 

1 0 

1 2 

1 0 

0 1 2 1 

2 1 3 1 

1 1 2 2 

0 1 3 1 

3 1 2 1 

1 2 2 1 

0 0 3 2 

2 1 2 2 

(a) Interaction matrix; E = 238. 
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JAP 
Pka 

JEdP 

3 

2 

2 

2 

1 

1 

0 
0 

2 

3 

3 

2 

1 

1 
1 
1 

3 1 

2 1 

3 2 

3 3 

2 3 

2 1 
2 1 
2 1 

0 0 1 1 

0 1 1 1 

0 1 2 0 

2 2 1 1 

3 2 1 1 

1 2 2 1 

2 1 2 1 
1 1 1 2 

• 

(b) Permuted interaction matrix; E - 301. 

Figure 7 Travelling salesman problem for the 8x8-example . 
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5. CONCLUDING REMARKS 

We have discussed the application of various methods to the sxs citation 
,, 

matrix to give a feel for how our method works and compares with others. 

Our method has also been applied to larger problems. 

23 

The search procedure is coded in FORTRAN IV and has been run on an IBM 
' 

370/158. Solution of one of the 16x16 consonant confusion matrices from Miller 

and Nicely [1955] required 8 seconds, and solution of a 37x37-matrix of in­

formation transfers between workers in an R&D laboratory from Whitley, Bitz 

and McAlpine [1975] required 110 seconds. However, a 96x96-matrix could not 

be solved within 40 minutes. We suspect that a SOxSO-matrix is about the 

largest that can be handled by the present version of the program within 

reasonable time. 

Possibilities for improving the efficiency exist within the search 

scheme described in Section 3. First, the eigenvalues for each new matrix 

are calculated from scratch using a standard subroutine. However, since the 

eigenvalues of the principal submatrices are known, they could be used as 

starting values for a tailor-made subroutine. Secondly, data manipulation 

for each arrangement is presently 

each linear assignment problem is solved completely. Instead, with Dorhout's 

[1977] algorithm it is possible to stop the computations as soon as a given 
' 

lower bound is reached, which may lead to early elimination of the arrange­

ment considered. We plan to make some improvements along these lines. 

arrangements 

leads to a time-cons1J1ning search procedure. A revision of the heuristic 

would be required to handle problems with more than 100 elements • 
• 

Based on these preliminary experiences, how does our approach compare 

with similar methods? It is closest in aim to Johnson's [1967] well-known 

hierarchical clustering schemes for s nm~~etric matrices. Their advantage is 

clarity and computational simplicity; their disadvantage is that a decision 

must be made on how to syr11n1etrize an asym1netric matrix [Hubert, 1973]. The 

multidimensional scaling methods provide a picture of the elements in a space 

from which a clustering can be deduced, but they put elements close together 

because their interaction totals are small rather than because they are high­

ly interactive. The travelling salesman approach provides only a reordering 

• 
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of the matrix rather than a clustering. Since it is suitable for large prob­

lems, it might be used to yield a starting point for our method to confine 

the-agglomeration to elements and groups that are adjacent in the resulting 

perrnutation. 
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