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ABSTRACT

This paper 1is concerned with the problem of grouping elements given asymmetric
relationships between them. Two criteria for distinguishing between arrange-
ments are developed: the distortion, based on the eigenvalues of the inter-
action matrix, and the composition, based on the amount of information lost
by combining groups. Our goal is to locate those arrangements in the space

of the two criteria that lie close to the Pareto—-optimal points. A heuristic

search procedure is proposed, which first allocates each element to a separate

group and then proceeds by combining groups until the final group containing
all the elements is reached. The method is applied to i1llustrative examples

and compared to some other approaches.

KEY WORDS & PHRASES: clustering, asymmetric 1nteraction matrix, distortion,
eigenvalues, linear assignment, composition, entropy, agglomerative procedure,

heuristic search, Pareto-optimal points.
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1. INTRODUCTION

The problem of grouping a set of elements accordinglto some measure of their
similarity has been approached from several directions. It is unlikely that
a single method will ever be accepted as the best, since the use made of the
results of the grouping is so varied. At most we can expect a collection of
gooa methods for various applications. This paper is concerned with develop-
ing a method for grouping elements given asymmetric relationships between
them.

We know of no technique that can cope with this problem without first
destroying the asymmetric information by some averaging procedure [ Sokal &
Sneath, 1963; Gower, 1967; Jardine & Sibson, 1971; Anderberg, 1973; Everitt,
1974; Duran & Odell, 1975; Hartigan, 1975]. Even in Hubert's [1973] attempt
to deal with asymmetric matrices first three symmetric matrices are produced,
in which for each corresponding pair of entries both values are made equal
to either their minimum or their maximum or their arithmetic mean, and then
Johnson's [1973] hierarchical clustering techniques are applied to the three
matrices.

The problem of finding suitable groupings of elements with asvmmetric
relationships arises i1n several contexts. The aggregation problem in Leontief
input-output analysis is one example; the detection of highly interactive
groups of individuals is another. In general the problem may arise when the
elements are variables and the relationships represent the effect of the vari-
ables upon each other, or when the elements are entities and the relationships
represent the frequencies of asymmetric events in which two entities are in-
volved. The problem has many other interpretations; e.g., the relationships
could represent ratings of people by each other, but the solution developed
below was created with the above interpretations in mind.

There are two main aspects of the problem: the selection of criterxia for
choosing suitable groupings and the choice of a method for searching among
the possible groupings. To develop an interpretable clustering procedure it is
important to distinguish between these two aspects. As noted by Gower [1967],
the failure to formulate this distinction has led to the proliferation of a

large number of methods without the possibility of adeguate comparison be-

tween them.



Criteria for choosing between possible groupings can be related either
to properties of the individual groups or to the complete arrangement. Var-
ious linkage methods | Gower, 1967] have a criterion based on a measure for
each separate group, resulting in a simple search procedure. But inevitably,
a second criterion is required by which entire arrangements can be compared.
Most methods thus employ two criteria, even if one of them is not stated ex-
plicitly. In the linkage methods the explicit criterion, e.g. the minimum
average similarity of elements in a group, is used by the analyst to deter-
mine a suitable number of groups - his implicit criterion. It would be prefer-
able to make both criteria explicit. The goal for the search procedure 1is
then to locate those arrangements in the space of the two criteria that lie
close to the Pareto-optimal points, i.e. the points for which one can only
achieve improvement with respect to one criterion at the expense of the other.
This will usually lead to a collection of good arrangements rather than to a
single "best" arrangement. If a single solution is required, then some fur-
ther a‘ssumption will be needed, such as a weighting function.

The evaluation of the criteria for all possible arrangements is prohib-
itive even for quite small numbers of elements, since the number of possible
arrangements grows exponentially in the number of elements. Thus, some sort
of heuristic search procedure is required. In many methods search is based
on the form of the criteria for selection [Gower, 1967], and sometimes a
simple search method is used without reference to a well-defined criterion
of choice in order to yield a rough analysis of the data [King, 1967J]. Some
search methods have been designed to generate a suitably structured set of
solutions; for example, biologists analysing various species to determine
their phenetic grouping require a solution in the form of a dendogram Ot
taxonomic tree.

In the rest of this paper we will first develop two criteria for dis-
tinguishing between arrangements: a measure of distortion based on the eigen-
values of the matrix of interactions and a measure of composition based on
the amount of information lost by combining groups. We then look at the
seaxrch problem and suggest an agglomerative procedure that, in fact, vields

solutions similar to a dendogram. Finally we look at how the proposed method

performs on an example, as compared to some other approaches.



2. PROBLEM DEFINITION

Assume that we have a set E of n elements el,...,en and an nXn-matrix

P = (pjk) (j,k) =1,...,n), where pjk measures the effect that ej has on e, -
A clustering corresponds to a partition of E into N subsets Fl,...,EN:

g=1 For anEm =@ (&,m=1,...,N; 2 # m).

Let fg be the cardinality of F and assume the elements to be reindexed in

Q;,
such a way that

. f } (2 =1,...,N).

By * Leeeendyy £y

To determine the quality of a particular clustering, we shall make use of

fﬁxfgmmatrices Qz representing the interaction within ng

£+ 1,...,22 £) (&

h=1 Th Lre-- N),

|

Qg = (pjk) (3,k =

combined to form the completely decomposed nXn-matrix Q:

0 Q - .

Q= 1]. . . . .
T L0
o .l G Oy |

2.1. The measure of distortion

If a system is adequately represented by some interaction matrix, such as P,
then the behaviour of that system through time often depends on powers of P.
For example, if the elements correspond to individuals and Pjx represents
the probability of the diffusion of a message from person ] to person k in

a unit time period, theniPt 1s the transformation to be applied to an orig-
inal knowledge vector to establish the probability distribution of knowledge
after t time periods. Another common example is when the elements are vari-—

ables in a closed system and P represents the set of linear difference equa-

tions that connects these variables. Then the value of these variables at



: C
some time t is given by an n-dimensional vector x(t) = Px(t-1) = P x(0),
where x(0) represents the initial values of the variables. This suggests
that a suitable criterion for choosing between different arrangements 1s to

t : .
make the difference between Pt and the Q associated with the arrangement as

small as possible for all t.

The validity of this approach when considering the behaviour in time of
nearly decomposable systems has been demonstrated by Simon and Ando (1961 1.
They show that it is sufficient in the short run to consider the behaviour
of each subsystem separately, and that each subsystem can be treated as a
single composite variable when studying the behaviour of the entire system
in the long run. A more intuitive approach to this question has been put
forward by Simon [1969].

Assume for the moment that the eigenvalues of P and Q are all distinct,

so that there exist nonsingular nXn-matrices Y and Z such that

Y~1PY = [\ = (kjﬁjk) for 4,k = 1,2,...,10,
~1 | -
Z QZ = M = (ujéjk) for 3,k = 1,2,...,n,
where éjk = 1 if 7 = k and (Sjk = 0 otherwise, and )\j and uj are the eigen-

values of P and Q respectively. Y and Z2 are only defined modulo column per-

mutations and scalar multiplications of each column. Now

pt = (vay 5t - YAtyﬂlf

t -1.t t_-1
Q

(ZMZ ) =2ZM Z .

Since Y and Z depend on A and M respectively, this in turn suggests as a
suitable criterion for deciding between arrangements the total squared dif-
ference between corresponding eigenvalues of P and Q.

What are to be taken as the corresponding eigenvalues in the two cases?
With small deviations between A and M it will be clear by inspection which
elgenvalues of Q are distortions of the eigenvalues of P. However, when Q is
a poor approximation of P, this correspondence will not be clear. We propose

to find a pairing of the )\j with the Hy that yields the minimum wvalue A of

the sum of squares of their differences, i.e., a pairing that minimizes

I I 2



subject to

n

ijl xjk =1 (k = 1,...,n),
n :

zkﬁl Xjk = 1 (3 =1,...,n),

Xjke ‘[O,l} (j,k ,1’4-.;;1'1);

Aj is paired with My if Xjk = 1 in the optimal solution. This is a linear
assignment problem, for which several efficient algorithms are available
[Wagner, 1975, p.183; Lawler, 1976, p.129; Dorhout, 1977].

Decomposing the eigenvalues into real and imaginary parts:

A, = A" + A"i L. = '+ g 1 = 1, ... ,
. 3 . r U] UJ U] (j ’ , 1)

we can rewrite the cost coefficient of Xjk as

2 ¥ ! 2 " " 2
| ()\,“uk) + (AY—u")
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Substitution of this expression in the objective function yields

I 1 2 — 1) 2 2 I Il ", n
Ej“‘-—-‘"l k=1 I A 'muk xjk o Xj“-‘f-'l ( l )\]' +luj,! ) - 22jm12km1 ()\.511]'{+)\j11k)xjk.

When the eigenvalues of either P or Q are all real, it is not necessary to
use a general linear assignment subroutine, since the problem can be solved
in a much simpler way. The objective function attains its minimum value A
when the real parts A; and.ui are both arranged in descending order of mag-
nitude and the eigenvalues in the corresponding rank order are paired (cf.

[Lawler, 1976, p.211]). That this procedure indeed yields an optimum pairing

can be proved by considering the situation in which

IV
=
|

¥ ' ' | S
A.. ;-}- lk' 1—1. uk’"" OQ

J J

If xjj = xkk = 1, the contribution of Aj' Ak’ uj and uk

of the objective function is given by

to the wvariable part

— 14,1 ', — - + r__) ! ') .
2(Ajuj+xkuk) 2(ljuk+lkuj) Z(Kj Ak)(uk uj)



In the rearranged expression, the first term denotes the contribution if
Xjk = xkj = 1. Since the second term is nonpositive, it follows that the
latter pairing is no better than the former one.

We will need to make comparisons between A values for different group-
ings. Moreover it is desirable to have some measure of the distortion between
matrices of different size. We therefore choose to normalize A so that the

distortion is zero when all the elements are combined in one group of size

n, and that it is unity when there are n groups each containing one element.

In the former case we have QO = P, so that Uj = )\j (i = 1,...,n) and A = 0O;

1 — ' —— " — —_—

in the lat*ter case *we have QQ, (pﬁﬁ) ) Poog and Ho 0 (2 l1,eee,n), SO
that A = A where A denotes the value of the objective function when the )\3

and the pMJ are paired in descending order of magnitude. The measure of dis-—

tortion D is now defined to be

D = A/AT.

2.2. The measure of composition

The measure of distortion is by itself not a sufficient criterion for choosing
suitable arrangements: the arrangement with minimum distortion is a single

group containing all the elements. Therefore we also need some measure of

composition in an arrangement.

This measure will be dependent only upon the format of the grouping, as
defined by the number of groups and their cardinalities, and not upon the par-
ticular arrangement within the format. Although the number of groups 1s a simple

and often-used criterion, we will not use it. To see why, consider an arrangement
with two groups. It seems probable that D will be smaller if the groups contain
1 and n-1 elements than if they each contain about half the elements. Yet, in

some intuitive sense, the latter format gives us more information.

The usual measure of entropy provides a good indication of the amount of

composition achieved by a particular format. It has been used as such in the

case of symmetric matrices. In general the entropy of a partition E = UN F

=1 2
1s defined by

1

N
- szl fg log fg'



To get a measure of composition we wish the maximum composition to be unity

and to occur when all the elements are combined in one group of size n. Since

1n that case the entropy is equal to log n, the measure of composition C is

defined to be

1 N
C = n log n Eﬁml fz tog fR'

Note that the minimum composition is zero and is attained when there are n

groups each containing one element.

In summary, we now have two criteria for each arrangement: the measure of
distortion D and the measure of composition C. For the arrangement in which
all the elements are lumped together in a single group, we have D = 0 and

C = 1. For the arrangement in which there are n single-element groups, we have

D =1 and C

|

O. Somewhere between these two extremes there are arrangements
which are good in the sense that they are both low in distortion and compo-
sition. Our problem will be to find arrangements that are close to the Pareto-
optimal ones, as defined in Section 1. The choice of which of these good ar-

rangements 1s the best will not be of concern to us and is left to the indi-

vidual analyst,



3. SEARCH FOR PARETO-OPTIMAL SOLUTIONS

Even for quite a small number of elements complete ehumeration of all the pos-

sible arrangements is not feasible. The number of different arrangements for
n elements into N groups 1is given by the so-called Stirling number of the sec-

ond kind [Liu, 1968, pp.38-39, p.101; Wells, 1971, p.157, p.235]:

1 ¢N £ (N I
S(n,N) = S(n-1,N-1) + NS(n-1,N) = = ) _(-1) () (N-2) .
Nu Q""‘""O Q&
The total number of arrangements increases exponentially with n. For n = 19

it 1s already of the order f-ii»lO12 [Fortier & Solomon, 1966 ].

Jensen [1969] developed a dynamic programming approach, which refrains
from considering certain unsuitable arrangements. By this method he managed
to reduce the number of calculations from about 1019 to 1012 for finding ar-
rangements of 25 elements into 10 groups. But even such a method is prohibitive
for situations with more than 25 elements with present computing equipment.

Fortier and Solomon [1966] proposed a sampling approach with a criterion
similar to Tryon's [1939] B coefficient. They were not able to find such a
good solution as the one provided by Tryon's search method.

We thus find ourselves forced by computational considerations to employ
a heuristic search procedure. Such heuristics, applied in cluster analysis,
can often be characterized as being either

- subdivisive: divide the set of elements into two groups and then consider

each group separately, or

- agglomerative: allocate each element to a separate group and then proceed
by combining groups.

Although the subdivisive method is sometimes considered superior [Gower, 1967,

p.635], it is not practicable as the number of arrangements to be considered
. , -

at the first step is already 2 1. For the agglomerative method the number of

arrangements to be considered at the first step is n(n-1)/2, and the total

number of arrangements that will be considered is

ngZ N(N-1)/2 = n(nzml)/6 = O(n3),

which is within the realms of possibility. The agglomerative method is the

basis of the search procedure that we will employ.



3.1. The search procedure

The method chosen is a simple hierarchical scheme. The initial arrangement

1s that in which there are n groups each containing one element. At each step
the current arrangement is taken as starting point. All possible arrangements
that can be formed by combining two groups of the current one are considered.
For each of these new arrangements the distortion and the composition are
calculated. The lines in the composition-distortion space joining the current
arrangement to each of the new ones are compared, and the line having the most
negative slope is selected to determine the next current arrangement, The re-
sult is a hierarchy or dendogram in which the elements are brought together
into groups and groups into larger groups until finally one group of size n
is formed. The procedure is illustrated in Section 3. 3.

This search heuristic does not guarantee that a Pareto-optimal solution
will be found. By backing up in the search procedure and selecting one of the
rejectéd arrangements as an alternative, better arrangements might be gener-
ated. We have chosen, however, not to embed our approach into a branch-—-and-

bound scheme, since the computational requirements of such a scheme would

probably be excessive,.

3.2. Programming considerations

In calculating the distortion for an arrangement the eigenvalues for this
arrangement need to be available. The matrix Q is completely decomposed and
the eigenvalues of each of the diagonal submatrices Qg (L =1,...,N) can be
calculated separately. As a possible new arrangement differs from the current
one only in that two groups are being combined into one, it is only the eigen-
values for this new group that are needed; the remaining ones are available
from previous calculations. If both groups that are being brought together
had already been formed before the previous step, then they will have been
brought together in an earlier phase as a possible but rejected grouping;

the eigenvalues for the new group will have already been calculated and can
be retrieved from memory. However, if one of the two groups being combined

1s the group that was formed at the previous step, then the eigenvalues for

the new group will have to be calculated. Thus, in reducing the number of
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groups from N to N-1, with N < n, eigenvalues will have to be calculated only

for the possible new groups formed by combining the single group just formed
with each of the other N-1 ones. |

At the very first step of the search procedure, the eigenvalues of
n(n-1)/2 2x2-submatrices will need to be calculated, which is a trivial task.

A call for an algorithm for finding eigenvalues is only required from then

(n-1) (n-2)/2 times. The subroutine used for this purpose is fairly
= 100.

on, l1.e.
fast and renders this approcach computationally feasible up to n

Similar considerations surround the assignment algorithm used to pailr

the eigenvalues of the original matrix P with those of the proposed new ma-

trix Q. For each of the O(n3) arrangements that will be considered, an assign-

ment problem has to be solved. In each of these problems, the eigenvalues of
P are the same, and the eigenvalues of a new matrix Q differ from those of
the current one only as far as the new group is concerned. It follows that
the optimal solution to the current assignment problem usually provides a
good initial solution to the new assignment problem. Thus, we should use a

highly efficient assignment algorithm that benefits from a good initial solu-

tion. The method developed by Dorhout [1977J] turned out to be suitable for

this purpose.

3.3. A numerical example

To illustrate the search procedure, we consider the 4X4-matrix used for
Similar purposes by Simon and Ando [1961] and reproduced in Fig. 1.

The initial arrangement has four groups each containing one of the ele-
ments a,b,c,d. All pairwise combinations of elements are now considered. Only
two of these alter the eigenvalues of the initial arrangement, given by the
main diagonal of the original matrix. These are the combinations a with b

and ¢ with d, which reduce the distortion from 1 to 0.87 ang 0.26 respective-

ments in the composition-distortion space is -0.53 and -2.95 respectively
(cf. Fig. 2). As the latter slope 1is the smaller one, ¢ and d are combined
into group 2 and the second arrangement results. Next, there are three pos-

sible combinations: a with b, a with group 2, and b with group 2. Since only
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Figure 1 Data and results for the 4x4-example.

the former reduces the distortion, it is selected as group 3 to form the
third arrangement. Finally, there is only one combination, namely of groups

2 and 3, which gives the completely integrated original matrix with no dis-—

tortion.

The results of this search are given in Fig. 1, together with a dendo-
gram lllustrating the distortion reduction. In the dendogram, the procedure
has reordered the elements so that elements 1n one group are always adjacent,

with earlier formed groups preceding later formed ones. The horizontal axis
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Figure 2 All arrangements for the 4x4-example.

gives the distortion on a logarithmic scale in such a way that the penulti-
mate, but not necessarily the final, arrangement can be plotted. The hori-
zontal lines represent the groups. When two groups are combined, the corres-—
ponding lines are joined by a vertical line, and the new group is represented

by a new horizontal line. The number of the new group appears in the corner
between the vertical line and the new horizontal line.
In this case it is an easy task to obtain a complete listing of all pos-

sible arrangements. For each arrangement, the ccjmposition 1s trivial to cal-

culate, and since the eigenvalues of the original matrix are all real, the

distortion can be calculated in the simple way outlined in Section 2.1. The
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positions of all the arrangements in the composition—-distortion space are
shown in Fig. 2. A digit in this graph denotes the number of arrangements
with the indicated distortion (* 0.01) and composition (* 0.005). The line
in the graph joins the arrangements generated by our heuristic procedure.

Note that these are exactly the Pareto—optimal points.
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4. AN APPLICATION TO A SMALL MATRIX

To compare our asymmetric clustering procedure to some other approaches, we
consider the 8x8 citation matrix used for illustrative purposes Dby Coombs,
Dawes and Tversky [1970]. In this case, the elements are eight journals of
the American Psychological Association. Each entry in the matrix gives the
number of citations to the column journal occurring in the row journal in the

vear 1964. The matrix is reproduced in Fig. 3.

4.1. Results for our search procedure

together with the eigenvalues of the selected arrangements.

After setting up the initial arrangement with one journal in each group,
the pi:ocedure looks for the second arrangement. Three pairings are close ri-
vals for the first agglomeration, all involving JExP, namely with JCPP, with
JASP or with AJP in that order of preference. It.1s not surprising to find
these three pairs being principal candidates: the two interaction entries
for each pair are high.

However, not all the pairs with two high entries (e.g., JASP with JCP)
come in for serious consideration. The reason is seen by comparing the eigen-
values of the original matrix, given in Fig. 3, with those for the initial
arrangement, given by the self citations on the main diagonal of the original
matrix. The major differences between correspondi:.g palrs of eigenvalues oc-
cur for the largest and third largest pair. These are partially caused by the

self citations of JExXP and JASP, and indicate why this pair comes in for seri-

ous consideration. However, this pair is not chosen and instead JExXP 1s com-
bined with JCPP, which has the second largest number of self citations. This
combination reduces the eigenvalue corresponding to JCPP to below that of
JASP and brings it close to the third largest of the original eigenvalues,
while JASP comes close to the second largest one, thus killing two birds with
one stone., The pai:r; with the highest interaction entries in the original
matrix, JExXP with AJP, does not get combined, because the self citation of

AJP, being the fifth largest, is close to the fifth largest of the resulting
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elgenvalues and so there is not much to be gained from their combination. It
appears that self citations have some influence. If one finds that this fea-
ture 1s undesirable, then the main diagonal entries ' should be set to zero,
as 1s frequently done is cluster analysis methods.

Having combined JExP with JCPP, the procedure looks for the third ar-
rangement, Both JASP and AJP, the contenders for joining JExXP as group 2,
are considered for beiﬁg joined to group 2 but rejected in favour of combin-
ing JASP with JCP to form group 3. AJP has to wait until the fourth step to
be joined to group 2 to form group 4. At the fifth step groups 3 and 4 come
together to form group 5, with no contenders. For the remaining three jour-
nals, JAP, Pka and JEdP, there is little cross citation but still sufficient
for their combination in the sixth and seventh step of the search. Finally,
in the eighth step the two groups of journals are brought together.

The result of this search are presented diagrammatically in the form of
a dendogram in Fig. 3 (cf. Section 3.3). The citation matrix reordered into

the same order as used in the dendogram is also given in Fig. 3.
4.2, Comparison with the complete listing

With eight elements to be grouped it is still possible to obtain a complete
listing of all possible arrangements. The remarks made in the final paragraph
of Section 3.3 apply here as well. The result is shown in Fig. 4; an asterisk
denotes that there are ten or more arrangements falling within the indicated
composition~distortion area. The arrangements with distortion at most 0.02
have been given again at the bottom of the graph, where the distortion scale
i1s multiplied by ten; this is repeated for the arrangements with distortion
at most 0.002.

As can be seen most of the arrangements are of no interest at all. More-
over the solution found by our procedure includes only Pareto—-optimal points.
Two arrangements lie very close to this lower bound. The first one is JCPP,
JExXP and AJP in one group and the other journals in separate groups. This

0.1981, and was considered but rejected

arrangement has D = 0.0926 and C
at the third step. In fact, JCPP and JEXP are joined by AJP at the fourth

step. The second arrangement very close to the line is JAP and JEdP in one

group and the other journals in a second group. This has D = 0,0003 and
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C = 0.7296, and was never considered. It 1is slightly inferior to the arrange-
ment found at the seventh step in which JAP and Pka are joined by JEdP. So
in this instance the solution found by our heuristic is the optimum one, al-

though there is no guarantee that this will always be the case.
4.3. Comparison to multidimensional scaling methods

Multidimensional scaling methods start by constructing a so-called I scale

for each element j, i.e. an ordering of all elements k according to non-

increasing row entries pjk’ They then proceed, usually in an iterative way,

to create configurations of points, corresponding to the elements, in metric

spaces of descending dimension, such that for each element j the ordering of

the elements as defined by their distances to j is close to the I scale.
Coombs, Dawes and Tversky [1970] have analysed the 8x%8 citation matrix

using three multidimensional scaling methods. In an attempt to remove effects

due to the total number of citations appearing in each journal, they subtract-

ed row and column means from each entry. When locating the journals in two-

dimensional Euclidean space, the three methods produced similar results. The

solution obtained by the Guttman-Lingoes method is shown in Fig. 5.
How does this configuration compare to the dendogram given by our search
procedure? For the multidimensional scaling method the most closely related

journals are JAP, Pka and JEdP. In our procedure these journals only come

Why it is that the Guttman-Lingoes method (and the other multidimensional
scaling methods) bring together JAP, Pka and JEdP as a close group whereas
our procedure, while bringing them together, only does so late indicating a
weak interaction? The reason for their proximity with respect to multidime
‘lonal scaling methods is their small size, so that the number of citations

rom any journal to these journal is also small. So already without the
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Figure 5 Guttman-Lingoes configuration for the 8x8-~-example.

subtraction of row and column means, the I scale for each journal would have
listed them at the end. Subtracting row means does not change the I scales,
but subtracting column means makes the situation worse. As there are few
citatidns to JAP, Pka and JEdP, their column means are small (16.63, 12.75

and 10.00 respectively); none of their cross citations exceeds their respec-
tive means so that subtracting column means results in small negative entries.
For other journals with higher column means the original small entries become
large and negative. From the point of view of each of the five large journals,
the three small journals will appear about equally distant. From the point of
view of each of the three small journals, the five large journals will have
large negative entries and the other two small journals will have small neg-
ative entries. Thus small journals are bound to come together, and subtract-
ing row and column means does not remove the "bulk effects" caused by dif-
ferences in journal size as was 1ntended.

With our procedure no attempt is made to remove bulk effects, nor should
it be. As the off-diagonal entries for JAP, Pka and JEAP are all small, their
inclusion in a group rigthly has little effect on the eigenvalues. Once the
five large journals have been combined it is not necessary that the three
little journals will come together. That they do so is due to their cross
citations; moreover that Pka joins the other two small journals rather than

the five large ones is a marginal decision (see Section 4.2).
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4.4. Comparison with Johnson's hierarchical clustering techniques

Two well-known hierarchical clustering techniques for symmetric matrices have
been developed by Johnson [1967]. Initially, each element is in a separate
group, and the similarity between two groups is given by the (symmetric)
interaction between the corresponding elements. At each step, both methods
combine the two groups with maximum similarity into a new group. The methods
set the similarity between the new group and each of the remaining old groups
to either the maximum (the single linkage method) or the minimum (the complete

linkage method) of the similarities between the two groups being combined and

the old group.
These methods can be applied to an asymmetric matrix provided that it is
made symmetric, an approach taken by Hubert [19737]. He uses three different

schemes for determining the similarity s., between elements J and k with in-

ik
teractions pjk and pkj :
(a) Sjk = mln{pjk,pkjj;
(b) Sj‘k = max{pjk,pkj};

(c) Sjk = (pjk+pkj)/2.

When the single linkage method is applied to the 8x8 citation matrix, after
i1t has been symmetrized by any of the above schemes, then the result is a
string, i.e., two journals are combined and the remaining journals are added
to this group one by one. The results of applying the complete linkage method
depend on the scheme chosen for symmetrizing the matrix. However, schemes (a)
and (c) give the same clustering and scheme (b) is very similar. The solution

based on scheme (c) is presented in the form of a dendogram in Fig. 6. This

The main disadvantage of applying Johnson's methods lies, however, in

the arbitrariness of the scheme needed to symmetrize the original matrix.
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F'igure 6 Complete linkage method for the 8x8-example.
4.5, Comparison with a travelling salesman approach

We know of only one other clustering technigue that can handle asymmetric
data without symmetrizing them. This method, originally proposed by McCormick,
Schweitzer and White [1972] is not a hierarchical one and produces only one
solution, which is not a clustering in our o-ense of the word. The objective
of their approach is to permute the rows and columns of the interaction ma-
trix so that high entries are brought together and a visually pleasing pat-
tern emerges. The resulting clusters of high entries need not occur around
the main diagonal, as in our search procedure.

As a criterion that has to be maximized over all row and column per-
mutations, McCormick et al. chose the sum of all products of horizontally or
vertically adjacent entries in the matrix? Thus, for an mXn-matrix A = (aik)
(= 1,eee,m; k =1,...,n), their measure of effectiveness E is defined to be

m n-—1 1 m-1
B = Dyoilemt 25k%5, k01 T le=1li=1 25x%5e1 k0

Maximizing E has been shown to be eguivalent to solving two travelling
salesman problems [Lenstra, 1974j. This is a standard combinatorial optimi-
zation problem, for which wvarious algorithms have bean developed; see, e.g.,
[Christofides, 1975, p.236; Lenstra, 1977, p.63]. If the matrix is square
(i.e., m = n) and we restrict our attention to identical row and column per-
mutations, as in the case of our example, then only one travelling salesman
problem has to be solved [Lenstra & Rinnooy Kan, 1975].

Applying this approach to the 8x8-example, we have chosen to define ajk
Q,

(i.e., a = 0 if p = 1

: . . = a .
. jk Jk jk Jk
< 9, etc.). The results are shown in Fig. 7. E increases from 238

as the number of significant digits of p
1f 1 =
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for the original matrix to 301 for the permuted matrix. Inspection reveals
that the clusters of high entries correspond to the principal submatrices
formed by our search procedure.

The reordered interaction matrix given in Fig. 3 has E = 269. However,
the underlying reordering is quite arbitrary. Our dendogram could, for ex-

ample, have been drawn on an ordering with E = 2960, namely the one obtained

by interchanging JCPP and AJP in the optimal permutation shown in Fig. 7 (b).

AJP | 3 1 1 2 0 1 2 1
JASP { 2 3 2 2 2 1 3 1
JAP |1 1 2 11 1 2 2
JCPP | 2 1 0 3 0 1 3 1
JCP |1 3 2 1 3 1 2 1
JEdP | 1 1 1 0 1 2 2 1
JExP | 3 2 1 2 0 0 3 2
Pka 1 1 1 1 0 2 1 2 2

(a) Interaction matrix; E = 238.

JCPP
AJP
JEXP
JASP
JCP

JAP

Pka
JEdP

O O = = N N IV W
— o = = N W W N
N DN N0 N W W N W
b= = = W W N s
P = N = W N O O O
| = = NN N = = O
—_ N N = N b e
NP = R = O =

(b) Permuted interaction matrix: E = 301.

Figure 7 Travelling salesman problem for the 8x8-example.
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5. CONCLUDING REMARKS

We have discussed the application of wvarious methods to the 8X8 citation
matrix to give a feel for how our method works and compares with others.
Our method has also been applied to larger problems.

The search procedure is coded in FORTRAN IV and has been run on an IBM
370/158. Solution of one of the 16x16 consonant confusion matrices from Miller
and Nicely [1955] required 8 seconds, and solution of a 37x37-matrix of in-
formation transfers between workers in an R&D laboratory from Whitley, Bitz
and McAlpine [1975] required 110 seconds. However, a 96x96-matrix could not
be solved within 40 minutes. We suspect that a 50x50-matrix is about the
largest that can be handled by the present version of the program within
reasonable time.

Possibilities for improving the efficiency exist within the search
scheme described in Section 3. First, the eigenvalues for each new matrix
are calculated from scratch using a standard subroutine. However, since the
eigenvalues of the principal submatrices are known, they could be used as
starting values for a tailor-made subroutine. Secondly, data manipulation
for each arrangement is presently O(nz) . This may be reduced to O(n). Finally,
each linear assignment problem is solved completely. Instead, with Dorhout's
[1977] algorithm it is possible to stop the computations as soon as a given
lower bound is reached, which may lead to early elimination of the arrange-
ment considered. We plan to make some improvements along these lines.

Even with these improvements, the consideration of O(n3) arrangements
leads to a time-consuming search procedure. A revision of the heuristic
would be required to handle problems with more than 100 elements.

Based on these preliminary experiences, how does our approach compare
with similar methods? It is closest in aim to Johnson's [1967] well-known
hierarchical clustering schemes for symmetric matrices. Their advantage is
clarity and computational simplicity; their disadvantage is that a decision
must be made on how to symmetrize an asymmetric matrix [Hubert, 1973]. The
multidimensional scaling methods provide a picture of the elements in a space
from which a clustering can be deduced, but they put elements close together

because theilir interaction totals are small rather than because they are high-

ly interactive. The travelling salesman approach provides only a reordering
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of the matrix rather than a clustering. Since it is suitable for large prob-
lems, it might be used to yield a starting point for our method to confine

the agglomeration to elements and groups that are adjacent in the resulting

permutation.
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