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Web Similarity

Andrew R. Cohen and Paul M.B. Vitányi

Abstract

Normalized web distance (NWD) is a similarity or normalized semantic distance based on the

World Wide Web or any other large electronic database, for instance Wikipedia, and a search engine

that returns reliable aggregate page counts. For sets of search terms the NWD gives a similarity on a

scale from 0 (identical) to 1 (completely different). The NWD approximates the similarity according to

all (upper semi)computable properties. We develop the theory and give applications. The derivation of

the NWD method is based on Kolmogorov complexity.

Index Terms— Normalized web distance, pattern recognition, data mining, similarity, classification,

Kolmogorov complexity,

I. INTRODUCTION

Commonly objects are computer files that carry all their properties in themselves. However,

there are also objects that are given by name, such as ‘red,’ ‘three,’ ‘Einstein,’ or ‘chair.’ Such

objects acquire their meaning from the common knowledge of mankind. We can give objects

either as the object itself or as the name of that object, such as the literal text of the work

“Macbeth by Shakespeare” or the name “Macbeth by Shakespeare.” We focus on the name case

using the background information provided by the World Wide Web, or another data base such

as Wikipedia, and a search engine that produces reliable aggregate page counts. The frequencies

involved enable us to compute a distance for each set of names. The normalized form of this

distance expresses similarity, that is, the search engine discovers the “meaning” names have

in common. Insofar as the meaning of names on the data base as discovered by this process

approximates the meaning of those names in human society, the above distance expresses the
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common semantics of the names. The term “name” is used here synonymously with “word”

“search term” or “query.” The normalized distance above is called the normalized web distance

(NWD). We apply it in classification.

Example I.1. Although Google gives notoriously unreliable counts it serves well enough for

an example. On our scale of similarity, if NWD(X) = 0 then the search terms in the set X

are identical, and if NWD(X) = 1 then the search terms in X are as different as can be. On

19 August 2014 searching for “Shakespeare” gave 124,000,000 hits; searching for “Macbeth”

gave 22,400,000 hits; searching for “Hamlet” gave 51,300,000 hits; searching for “Shakespeare

Macbeth” gave 7,730,000 hits; searching for “Shakespeare Hamlet” gave 18,500,000 hits; and

searching for “Shakespeare Macbeth Hamlet” gave 663,000 hits. The number of web pages

returned by Google was estimated by searching for “the” as 25,270,000,000. By (II.3) we

have NWD({Shakespeare,Macbeth}) ≈ 0.395, NWD({Shakespeare,Hamlet}) ≈ 0.306

and NWD({Shakespeare,Macbeth,Hamlet}) ≈ 0.372. We conclude that Shakespeare and

Hamlet have a lot in common, Shakespeare and Macbeth have a lot in common, and the

commonality of Shakespeare, Hamlet, and Macbeth is intermediate between the two. ♦

To develop the theory behind the NWD we consider the information in individual objects.

These objects are finite and expressed as finite binary strings. The classic notion of Kolmogorov

complexity [8] is an objective measure for the information in a single object, and information

distance measures the information between a pair of objects [1]. There arises the question of

the shared information between many objects instead of just a pair of objects.

A. Related Work

The similarity or relative semantics between pairs of search terms was defined in [5] and

demonstrated in practice by using the World Wide Web as database and Google as search

engine. The proposed normalized Google distance (NGD) works for any search engine that

gives an aggregate page count for search terms. See for example [2], [7], [21], [20], [3] and the

many references to [5] in Google scholar.

In [11] the notion is introduced of the information required to go from any object in a finite

multiset (a set where a member can occur more than once) of objects to any other object in the set.

Let X denote a finite multiset of n finite binary strings defined by {x1, . . . , xn}, the constituting
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elements ordered length-increasing lexicographic. The information distance in X is defined by

Emax(X) = min{|p| : U(xi, p, j) = xj for all xi, xj ∈ X}. For instance, with X = {x, y} the

quantity Emax(X) is the least number of bits in a program to transform x to y and y to x. In

[18] the mathematical theory is developed further and the difficulty of normalization is shown.

B. Results

The NWD is a similarity (a common semantics) between all search terms in a set. (We use

set rather than multiset since a set is more appropriate in the context of search terms.) It can

be thought of as a diameter of the set. For sets of cardinality two this diameter reduces to

a distance between the two elements of the set. The NWD can be used for the classification

of an unseen item into one of several classes (sets of names or phrases). This is simpler and

computationally much easier that constructing the classes from the pairwise distances. In the

latter solution inevitably information gets lost.

The basic concepts like the web events, web distribution, and web code are given in Section II.

We determine the length of a single shortest binary program to compute from any web event of

a single member in a set to the web event associated with the whole set (Theorem II.5). The

mentioned length is an absolute information distance associated with the set. It is incomputable

(Lemma II.4). However, for different sets it can be large while a set has similar members and

small when a (different) set has dissimilar members. Therefore we normalize on a scale from 0 to

1 to express the information distance or similarity between members of the set. We approximate

the incomputable normalized version with the computable NWD (Definition II.6). In Section III

we present properties of the NWD such as the range from 0 to 1 (Lemma III.1), whether and how

it changes under adding members (Lemma III.2), and that it does not satisfy the triangle inequality

and hence is not metric (Lemma III.5). Theorem III.7 and Corollary III.8 show that the NWD

approximates the common similarity of the queries in a set of search terms (that is, a common

semantics). We subsequently apply the NWD to various data sets based on search results from

Amazon, Wikipedia and the National Center for Biotechnology Information (NCBI) website from

the U.S. National Institutes of Health in Section IV. We treat strings and self-delimiting strings

in Appendix A, computability notions in Appendix B, Kolmogorov complexity in Appendix C,

and metric of sets in Appendix D. The proofs are deferred to Appendix E.
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II. WEB DISTRIBUTION AND WEB CODE

We give a derivation that holds for idealized search engines that return reliable aggregate page

counts from their data bases (here called the web consisting of web pages). Subsequently we

apply the idealized theory to real problems using real search engines on real data bases.

A. Web Event

The set of singleton search terms is denoted by S, a set of search terms is X = {x1, . . . , xn}

with xi ∈ S for 1 ≤ i ≤ n < ∞, and X denotes the set of such X . Let the set of web pages

indexed (possible of being returned) by the search engine be Ω.

Definition II.1. We define the web event e(X) ⊆ Ω by the set of web pages returned by the

search engine doing a search for X such that each web page in the set contains occurrences of

all elements from X .

If x, y ∈ S and e(x) = e(y) then x ∼ y and the equivalence class [x] = {y ∈ S : y ∼ x}.

Unless otherwise stated, we consider all singleton search terms that define the same web event

as the same term. Hence we deal actually with equivalence classes [x] rather than x. However,

for ease of notation we write x in the sequel and consider this to mean [x].

If X = {x1, . . . , xn}, then e(X) = e(x1)
⋂
· · ·
⋂
e(xn) and the frequency f(X) = |e(X)|.

The web event e(X) embodies all direct context in which all elements from X simultaneously

occur in these web pages. Therefore web events capture in the outlined sense all background

knowledge about this combination of search terms on the web.

B. The Web Code

It is natural to consider code words for events. We base those code words on the probability

of the event. Consider the set

Tw,s = {(w, s) : w ∈ Ω, s ∈ S, s occurs in w}.

Then α =
∑

w∈Ω, s∈S |Tw,s|/|Ω| is the average number of search terms per web page in Ω. Define

the probability g(X) of X as g(X) = f(X)/N with N = α|Ω|. This probability may change

over time, but let us imagine that the probability holds in the sense of an instantaneous snapshot.
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A probability mass function on a known set allows us to define the associated prefix-code

word length (information content) equal to unique decodable code word length [9], [13]. Such

a prefix code is a code such that no code word is a proper prefix of any other code word. By

the ubiquitous Kraft inequality [9], if l1, l2, . . . is a sequence of positive integers satisfying∑
i

2−li ≤ 1, (II.1)

then there is a set of prefix-code words of length l1, l2, . . . . Conversely, if there is a set of

prefix-code words of length l1, l2, . . . then these lengths satisfy the above displayed equation. By

the fact that the probabilities of a discrete set sum to at most 1, every web event e(X) having

probability g(X) can be encoded in a prefix-code word.

Definition II.2. The length G(X) of the web code word for X ∈ X is

G(X) = log 1/g(X), (II.2)

or ∞ for g(X) = 0. The case |X| = 1 gives the length of the web code word for singleton

search terms. The logarithms are throughout base 2.

The web code is a prefix code. The code word associated with X and therefore with the web

event e(X) can be viewed as a compressed version of the set of web pages constituting e(X).

That is, the search engine compresses the set of web pages that contain all elements from X

into a code word of length G(X).

Definition II.3. Let p ∈ {0, 1}∗ and X ∈ X \ S. The information EGmax(X) to compute

event e(X) from event e(x) for any x ∈ X is defined by EGmax(X) = minp{|p| : for all x ∈

X we have U(e(x), p) = e(X)}.

In this way EGmax(X) corresponds to the length of a single shortest self-delimiting program to

compute output e(X) from an input e(x) for all x ∈ X . We use the notion of prefix Kolmogorov

complexity K as in Appendix C.

Lemma II.4. The function EGmax is upper semicomputable but not computable.

Theorem II.5. EGmax(X) = maxx∈X{K(e(X)|e(x))} up to an additive logarithmic term
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O(log maxx∈X{K(e(X)|e(x))}) which we ignore in the sequel.

To obtain the NWD we must normalize EGmax. Let us give some intuition first. Suppose

X, Y ∈ X \S. If the web events e(x)’s are more or less the same for all x ∈ X then we consider

the members of X very similar to each other. If the web events e(y)’s are very different for

different y ∈ Y then we consider the members of Y to be very different from one another.

Yet for certain X and Y depending on the cardinalities and the size of the web events of the

members we can have EGmax(X) = EGmax(Y ). That is to say, the similarity is dependent on

size. Therefore, to express similarity of the elements in a set X we need to normalize EGmax(X)

using the cardinality of X and the events of its members. Expressing the normalized values on

a scale of 0 to 1 allows us to express the degree in which all elements of a set are alike. Then

we can compare truly different sets.

Use the symmetry of information law (A.1) to rewrite EGmax(X) according to Theorem II.5

as K(e(X)) − minx∈X{K(e(x))} up to a logarithmic additive term which we ignore. Since

G(X) is computable prefix code for e(X), while K(e(X)) is the shortest computable prefix

code for e(X), it follows that K(e(X)) ≤ G(X). Similarly K(e(x)) ≤ G(x) for x ∈ X . The

search engine G returns frequency f(X) on query X (respectively frequency f(x) on query

x). These frequencies are readily converted into G(X) (respectively G(x)) using (II.2). Replace

K(e(X)) by G(X) and minx∈X{K(e(x))} by minx∈X{G(x)} in EGmax(X). Subsequently use

as normalizing term maxx∈X{G(x)}(|X| − 1). This yields the following.

Definition II.6. The normalized web distance (NWD) of X ∈ X with G(X) <∞ (equivalently

f(X) > 0)) is

NWD(X) =
G(X)−minx∈X{G(x)}
maxx∈X{G(x)}(|X| − 1)

(II.3)

=
maxx∈X{log f(x)} − log f(X)

(logN −minx∈X{log f(x)})(|X| − 1)
,

otherwise NWD(X) is undefined.

The second equality in (II.3), expressing the NWD in terms of frequencies, is seen as

follows. We use (II.2). The numerator is rewritten by G(X) = log 1/g(X) = log(N/f(X)) =

logN − log f(X) and minx∈X{G(x)} = minx∈X{log 1/g(x)} = logN − maxx∈X{log f(x)}.
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The denominator is rewritten as maxx∈X{G(x)}(|X| − 1) = maxx∈X{log 1/g(x)}(|X| − 1) =

(logN −minx∈X{log f(x)})(|X| − 1).

Remark II.7. By assumption f(X) > 0 which, since it has integer values, means f(X) ≥ 1.

The case f(X) = 0 means that there is an x ∈ X such that e(x)
⋂
e(X \ {x}) = ∅. That is,

query x is independent of the set of queries X \ {x}, that is, x has nothing in common with

X \ {x} since there is no common web page. Hence the NWD is undefined. The other extreme

is that e(x) = e(y) (x ∼ y) for all x, y ∈ X . In this case the NWD(X) = 0. ♦

III. THEORY

Let X = {x, y} ∈ X . We can rewrite [5, Section 3.4 formula (6)] for the NGD distance

between x and y as NWD(X) up to a constant. Hence the NGD and NWD coincide for pairs

up to a constant. For arbitrary sets the following holds.

Lemma III.1. Let X ∈ X \ S. Then NWD(X) ∈ [0, 1].

We determine bounds on how the NWD may change under addition of members to its

argument. These bounds are necessary loose since the added members may be similar to existing

ones or very different. In Lemma III.2 below we shall distinguish two cases for the relation

between the minimum frequencies of members of X and Y with X ⊂ Y and the overall

frequencies of X and Y . In the first case

f(y1)f(X)

f(x1)f(Y )
≥
(
f(x0)

f(y0)

)(|X|−1)NWD(X)

, (III.1)

where x0 = arg minx∈X{log f(x)}, y0 = arg miny∈Y {log f(y)}, x1 = arg maxx∈X{log f(x)},

and y1 = arg maxy∈Y {log f(y)}.

We give an example. Let |X| = 5, f(x0) = 1, 100, 000, f(y0) = 1, 000, 000, f(x1) = f(y1) =

2, 000, 000, f(X) = 500, f(Y ) = 100, and NWD(X) = 0.5. The righthand side of the inequality

(III.1) is 1.12 = 1.21 while the lefthand side is 5. In the second case inequality (III.1) does

not hold, that is, it holds with the ≥ sign replaced by the < sign. We give an example. Let

|X| = 5, f(x0) = 1, 100, 000, f(y0) = 1, 000, 000, f(x1) = f(y1) = 2, 000, 000, f(X) = 110,

f(Y ) = 100, and NWD(X) = 0.5. The righthand side of the inequality (III.1) with ≥ replaced

by < is 1.12 = 1.21 while the lefthand side is 1.1.
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Lemma III.2. Let X,Z ⊆ Y , X, Y, Z ∈ X \ S, and minz∈Z{f(z)} = miny∈Y {f(y)}.

(i) If f(y) ≥ minx∈X{f(x)} for all y ∈ Y then (|X| − 1)NWD(X) ≤ (|Y | − 1)NWD(Y ).

(ii) Let f(y) < minx∈X{f(x)} for some y ∈ Y . If (III.1) holds then (|X| − 1)NWD(X) ≤

(|Y | − 1)NWD(Y ). If (III.1) does not hold then (|X| − 1)NWD(X) > (|Y | − 1)NWD(Y ) ≥

(|Z| − 1)NWD(Z).

Example III.3. Consider the Shakespeare–Macbeth–Hamlet Example I.1. Let

X = {Shakespeare,Macbeth}, Y = {Shakespeare,Macbeth,Hamlet}, and

Z = {Shakespeare,Hamlet}. Then inequality (III.1) for X versus Y gives

(124, 000, 000× 7, 730, 000/(124, 000, 000× 663, 000) ≥ (22, 400, 000/22, 400, 000)0.395 (that is

11.659 ≥ 1), and for Z versus Y gives 18, 500, 000/663, 000 ≥ (51, 300, 000/22, 400, 000)0.306

(that is 27.903 ≥ 1.289). In the first case Lemma III.2 item (i) is applicable since the frequency

minima of X and Y are the same. (In this case inequality (III.1) is not needed.) Therefore

NWD(X)(|X| − 1)/(|Y | − 1) ≤ NWD(Y ) which works out as 0.395/2 ≤ 0.372. In the

second case Lemma III.2 item (ii) is applicable since the frequency minima of Z and Y are not

the same. Since inequality (III.1) holds this gives NWD(Z)(|Z| − 1)/(|Y | − 1) ≤ NWD(Y )

which works out as 0.306/2 ≤ 0.372. ♦

Remark III.4. To interpret Lemma III.2 we give the following intuition. Under addition of a

member to a set there are two opposing tendencies on the NWD concerned. First, the range of

the NWD stays fixed at a unit and (II.3) shows that addition of a member tends to decrease the

NWD, that is, it moves closer to 0. Second, the common similarity of queries in a given set

as measured by the NWD is based on the number of properties all members of a set have in

common. By adding a member to the set clearly the number of common properties does not

increase and generally decreases. This diminishing tends to cause the NWD to increase—move

closer to 1. The first effect is visible when (|X| − 1)NWD(X) > (|Y | − 1)NWD(Y ), which

happens in the case of Lemma III.2 item (ii) for the case when the frequencies do not satisfy

(A.2). The second effect is visible when (|X| − 1)NWD(X) ≤ (|Y | − 1)NWD(Y ), which

happens in Lemma III.2 item (i), and item (ii) with the frequencies satisfying (A.2). (Note

that to keep NWD(X) ∈ [0, 1] for all X we have the factor (|X| − 1) in the denominator of

NWD(X). Without this factor the resulting function of X has range [0, |X| − 1] and in the

inequalities in this remark and in the NWD formula (II.3) and all the previous theory properties
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the factors |X| − 1 and |Y | − 1 are replaced by 1.) ♦

For every set X we have that the NWD(X) is invariant under permutation of X: it is

symmetric. The NWD is also positive definite as in Appendix D (where equal members should

be interpreted as saying that the set has only one member). However the NWD does not satisfy

the triangle inequality and hence is not a metric. This is natural for a common similarity or

semantics: The members of a set XY can be less similar (have greater NWD) then the similarity

of the members of XZ plus the similarity of the members of ZY for some set Z.

Lemma III.5. The NWD violates the triangle inequality.

It remains to formally prove that the NWD expresses in the similarity of the search terms in

the set. We define the notion of a distance on these sets using the web as side-information. We

consider only distances that are upper semicomputable, that is, the distance can be computably

approximated from above (Appendix B). A priori we allow asymmetric distances, but we exclude

degenerate distances such as d(X) = 1/2 for all X ∈ X containing a fixed element x. That is,

for every d we want only finitely many sets X 3 x such that d(X) ≤ d. Exactly how fast we

want the number of sets we admit to go to ∞ is not important; it is only a matter of scaling.

Definition III.6. A web distance function (quantifying the common properties or common

features) d : X → R+ is admissible if d(X) is (i) a nonnegative total real function and is

0 iff X ∈ S; (ii) it is upper semicomputable from the e(x)’s with x ∈ X and e(X); and (iii) it

satisfies the density requirement: for every x ∈ S∑
X3x, |X|≥2

2−d(X) ≤ 1.

We give the gist of what we are about to prove. Let X = {x1, x2, . . . , xn}. A feature of a query

is a property of the web event of that query. For example, the frequency in the web event of web

pages containing an occurrence of the word “red.” We can compute this frequency for each e(xi)

(1 ≤ i ≤ n). The minimum of those frequencies is the maximum of the number of web pages

containing the word “red” which surely is contained in each web event e(x1), . . . , e(xn). One

can identify this maximum with the inverse of a distance in X . There are many such distances

in X . The shorter a web distance is, the more dominant is the feature it represents. We show
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that the minimum admissible distance is EGmax(X). It is the least admissible web distance

and represents the shortest of all admissible web distances in members of X . Hence the closer

the numerator of NWD(X) is to EGmax(X) the better it represents the dominant feature all

members of X have in common.

Theorem III.7. Let X ∈ X . The function G(X)−minx∈X{G(x)} is a computable upper bound

on EGmax(X). The closer it is to EGmax(X), the better it approximates the shortest admissible

distance in X . The normalized form of EGmax(X) is NWD(X).

The normalized least admissible distance in a set is the least admissible distance between its

members which we call the common admissible similarity. Therefore we have:

Corollary III.8. The function NWD(X) is the common admissible similarity among all search

terms in X . This admissible similarity can be viewed as semantics that all search terms in X

have in common.

IV. APPLICATIONS

The application of the approach presented here requires the ability to query a database for the

number of occurrences and co-occurrences of the elements in the set that we wish to analyze.

One challenge is to find a database that has sufficient breadth as to contain a meaningful numbers

of co-occurrences for related terms. As discussed previously, an example of one such database is

the World Wide Web, with the page counts returned by Google search queries used as an estimate

of co-occurrence frequency. There are two issues with using Google search page counts. The first

issue is that Google limits the number of programmatic searches in a single day to a maximum

of 100 queries, and charges for queries in excess of 100 at a rate of up to $50 per thousand. The

second issue with using Google web search page counts is that the numbers are not exact, but

are generated using an approximate algorithm that Google has not disclosed. For the questions

considered previously [5] we found that these approximate measures were sufficient at that time

to generate useful answers, especially in the absence of any a priori domain knowledge. It is

possible to implement internet based searches without using search engine API’s, and therefore

not subject to daily limit. This can be accomplished by parsing the HTML returned by the search

engine directly. The issue with google page counts in this study being approximate counts based
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on a non-public algorithm was more concerning as changes in the approximation algorithm

can influence page count results in a way that may not reflect true changes to the underlying

distributions. Since any internet search that returns a results count can be used in computing the

NWD, we adopt the approach of using web sites that return exact rather than approximate page

counts for a given query.

Here we describe a comparison of the NWD using the set formulation based on web-site

search result counts with the pairwise NWD formulation. The examples are based on search

results from Amazon, Wikipedia and the National Center for Biotechnology Information (NCBI)

website from the U.S. National Institutes of Health. The NCBI website exposes all of the NIH

databases searchable from a single web portal. We consider example classification questions

that involve partitioning a set of words into underlying categories. For the NCBI applications

we compare various diseases using the loci identified by large genome wide association studies

(GWAS). For the NWD set classification, we determine whether to assign element x to class A

or class B by computing NWD(Ax)−NWD(A) and NWD(Bx)−NWD(B) and assigning

element x to whichever class achieves the minimum.

For the pairwise formulation, we use the gap spectral clustering unsupervised approach

developed in [4]. Gap spectral clustering uses the gap statistic as first proposed in [17] to

estimate the number of clusters in a data set from an arbitrary clustering algorithm. In [4], it

was shown that the gap statistic in conjunction with a spectral clustering [15] of the distance

matrix obtained from pairwise NWD measurements is an estimate of randomness deficiency for

clustering models. Randomness deficiency is a measure of the meaningful information that a

model, here a clustering algorithm, captures in a particular set of data [12]. The approach is to

select the number of clusters that minimizes the randomness deficiency as approximated by the

gap value. In practice, this is achieved by picking the first number of clusters where the gap

value achieves a maximum as described in [4].

The gap value is computed by comparing the intra-cluster dispersions of the pairwise NWD

distance matrix to that of uniformly distributed randomly generated data on the same range. For

each value of k, the number of clusters in the data, we apply a spectral clustering algorithm to

partition the data, assigning each element in the data to one of k clusters. Next, we compute
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Dr, the sum of the distances between elements in each cluster Cr,

Dr =
∑
i,j∈Cr

di,j.

The average intra-cluster dispersion is calculated,

Wk =
k∑

r=1

1

2nr

Dr,

where nr is the number of points in cluster Cr. The gap statistic is then computed as the

difference between the averages of the intra-cluster distances of our data and the intra-cluster

distances of B randomly generated uniformly distributed data sets of the same dimension as our

data,

Gap(k) =
1

B

B∑
b=1

log(Wkb)− log(Wk),

where Wkb is the average intra-cluster dispersion obtained by running our clustering algorithm

on each of the B randomly generated uniformly-distributed datasets. Following [4] we set B to

100. We compute the standard deviation of the gap value sk from σk, the standard deviation of

the B uniformly distributed randomly generated data, adjusted to account for simulation error,

as

sk = σk
√

1 + 1/B.

Finally, we choose the smallest value of k for which

Gap(k) ≥ Gap(k + 1)− sk+1.

We now describe results from a number of sample applications. For all of these applications,

we use a single implementation based on co-occurrence counts. For each search engine that we

used, including Amazon, Wikipedia and NCBI a custom MATLAB script was developed to parse

the search count results. We used the page counts returned using the built in search from each

website for the frequencies, and following the approach in [5] choose N as the frequency for the

search term ’the’. The results described were not sensitive to the choice of search term used to

establish N , for example identical classification results were obtained using the counts returned

by the search term ’N’ as the normalizing factor. Following each classification result below, we
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include in parenthesis the 95% confidence interval for the result, computed as described in [19]

The first three classification questions we considered used the wikipedia search engine. These

questions include classifying colors vs. animals, classifying colors vs. shapes and classifying

presidential candidates by political party for the US 2008 U.S. presidential election. For colors

vs animals and shapes, gap spectral clustering found two groups in the data and classified

all of the elements 100% correctly. The NWD set formulation classified the terms perfectly

(0.82,1.0). For the presidential candidate classification by party, the pairwise NWD formulation

performed poorly, classifying 58% correctly (0.32,0.8), while the multiset formulation obtained

100% correct classification (0.76,1.0). Table I shows the data used for each question, together

with the pairwise and set accuracy, the number of groups obtained by gap spectral clustering

and the total number of website queries required for each method.

search engine: wikipedia
Multisets 
Correct

Pairwise 
Correct

Groups found 
by gap spectral

Number of 
queries 

(pairwise)

 Number of 
queries 

(multisets)

{red, orange, yellow, green, blue, indigo}

{lion, tiger, bear, monkey, zebra, 
elephant, aardvark, lamb, fox, ape, dog}

{red, orange, yellow, green, blue, indigo, 
violet, purple, cyan, white}
{square,circle,rectangle,ellipse,triangle, 
rhombus}

{Barack Obama, Hillary Clinton, John 
Edwards, Joe Biden, Chris Dodd, Mike 
Gravel} 
{John McCain, Mitt Romney, Mike 
Huckabee, Ron Paul, Fred Thompson, 
Alan Keyes}

100% 100% 2 136 394

100% 58% 2 66 198

100% 100% 2 105 342

TABLE I
CLASSIFICATION RESULTS USING WIKIPEDIA.

The next classification question considered used page counts returned by the Amazon website

search engine to classify book titles by author. Table II summarizes the sets of novels associated

with each author, and the classification results for each author as a confusion matrix. The Multiset

NWD (top) misclassified one of the Tolstoy novels (’War and Peace’) to Stephen King, but
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Shakespeare = {Macbeth, The Tempest, Othello, King Lear, Hamlet, The Merchant of Venice, A Midsummer Nights 
Dream, Much Ado About Nothing, Taming of the Shrew, Twelfth Night}   

King = {Carrie, Salems Lot, The Shining, The Stand, The Dead Zone, Firestarter, Cujo}    

Twain = {Adventures of Huckleberry Finn, A Connecticut Yankee in King Arthurs Court, Life on the Mississippi, 
Puddnhead Wilson}  

Hemingway = {The Old Man and The Sea, The Sun Also Rises, For Whom the Bell Tolls, A Farewell To Arms} 

Tolstoy = {Anna Karenina, War and Peace, The Death of Ivan Ilyich}  

Multiset NWD

Shakespeare King Twain Hemingway Tolstoy

Shakespeare 10 0 0 0 0

King 0 7 0 0 1

Twain 0 0 4 0 0

Hemingway 0 0 0 4 0

Tolstoy 0 0 0 0 2

Correct: 96%

Pairwise NWD

Shakespeare King Twain Hemingway Tolstoy

Shakespeare 10 0 0 1 1

King 0 6 0 0 0

Twain 0 0 4 0 0

Hemingway 0 1 0 3 3

Tolstoy 0 0 0 0 0

Correct: 79%

Predicted 
Class

True Class

True Class

Predicted 
Class

 

TABLE II
CLASSIFYING NOVELS BY AUTHOR USING AMAZON

correctly classified all other novels correctly, 96% accurate (0.83,0.99). The pairwise NWD

performed significantly more poorly, achieving only 79% accuracy (0.6,0.9).

The final application considered is to quantify similarities among diseases based on the results

of genome wide association studies (GWAS). These studies scan the genomes from a large

population of individuals to identify genetic variations occurring at fixed locations, or loci that

can be associated with the given disease. Here we use the the NIH NCBI database to search for

similarities among diseases, comparing loci identified by recent GWAS results for each disease.

The diseases included Alzheimers [22], Parkinsons [27], Amyotrophic lateral sclerosis (ALS)

[23], Schizophrenia [28], Leukemia [24], Obesity [26], and Neuroblastoma [25]. The top of

Table III lists the loci used for each disease. The middle panel of Table III shows at each
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location (i, j) of the distance matrix the NWD computed for the combined counts for the loci of

disease i concatenated with disease j. The diagonal elements (i, i) show the NWD for the loci

of disease i. The bottom panel of Table III shows the NWD for each element with the diagonal

subtracted, (i, j) − (i, i). This is equivalent to the NWD(Ax) − NWD(A) value used in the

previous classification problems. The two minimum values in the bottom panel, showing the

relationships between Parkinsons and Obesity, as well as between Schizophrenia and Leukemia

were surprising. The hypothesis was that neurological disorders such as Parkinsons, ALS and

Alzheimers, would be more similar to each other. After these findings we found that there actually

have been recent findings of strong relationships between both Schizophrenia and Leukemia [29]

as well as between Parkinsons and Obesity [30], relationships that have also been identified by

clinical evidence not relating to GWAS approaches.
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Schizophrenia = {'rs1702294', 'rs11191419', 'rs2007044', 'rs4129585', 'rs35518360'} 

Leukemia = {'rs17483466', 'rs13397985', 'rs757978', 'rs2456449', 'rs735665', 'rs783540', 'rs305061', 'rs391525', 
'rs1036935', 'rs11083846'} 

Alzheimers={'rs4420638', 'rs7561528', 'rs17817600', 'rs3748140', 'rs12808148', 'rs6856768', 'rs11738335', 
'rs1357692'}; 

Obesity={'rs10926984', 'rs12145833', 'rs2783963', 'rs11127485', 'rs17150703', 'rs13278851'}; 

Neuroblastoma = {'rs6939340', 'rs4712653', 'rs9295536', 'rs3790171', 'rs7272481'}; 

Parkinsons={'rs356219', 'rs10847864', 'rs2942168', 'rs11724635'} 

ALS = {'rs2303565', 'rs1344642', 'rs2814707', 'rs3849942', 'rs2453556',  'rs1971791',  'rs8056742'}; 

Alzheimers Parkinsons ALS Schizophrenia Leukemia Obesity Neuroblastoma

Alzheimers 1.29E-02 2.43E-02 1.38E-02 1.55E-02 1.23E-02 1.49E-02 1.61E-02

Parkinsons 2.43E-02 1.80E-02 1.83E-02 1.58E-02 1.68E-02 1.53E-02 2.23E-02

ALS 1.38E-02 1.83E-02 9.76E-03 1.19E-02 1.46E-02 9.96E-03 1.75E-02

Schizophrenia 1.55E-02 1.58E-02 1.19E-02 1.38E-02 1.13E-02 1.60E-02 1.93E-02

Leukemia 1.23E-02 1.68E-02 1.46E-02 1.13E-02 7.54E-03 1.15E-02 1.61E-02

Obesity 1.49E-02 1.53E-02 9.96E-03 1.60E-02 1.15E-02 1.23E-02 1.51E-02

Neuroblastoma 1.61E-02 2.23E-02 1.75E-02 1.93E-02 1.61E-02 1.51E-02 1.51E-02

Alzheimers Parkinsons ALS Schizophrenia Leukemia Obesity Neuroblastoma

Alzheimers 0 1.14E-02 9.20E-04 2.64E-03 -6.08E-04 1.98E-03 3.22E-03

Parkinsons 6.26E-03 0 2.77E-04 -2.28E-03 -1.28E-03 -2.76E-03 4.26E-03

ALS 4.04E-03 8.57E-03 0 2.11E-03 4.87E-03 2.00E-04 7.75E-03

Schizophrenia 1.75E-03 2.01E-03 -1.90E-03 0 -2.44E-03 2.20E-03 5.56E-03

Leukemia 4.73E-03 9.23E-03 7.09E-03 3.78E-03 0 3.99E-03 8.53E-03

Obesity 2.57E-03 3.01E-03 -2.33E-03 3.69E-03 -7.58E-04 0 2.78E-03

Neuroblastoma 1.01E-03 7.23E-03 2.43E-03 4.25E-03 9.92E-04 -1.04E-05 0

NWD(i,j)

NWD(i,j)-NWD(i,i)

 

TABLE III
GWAS LOCI USED AS INPUT TO NWD FOR QUANTIFYING DISEASE SIMILARITY USING THE NIH NCBI WEBSITE.

V. CONCLUSION

Consider queries to a search engine using a data base divided in chunks called web pages. On

each query the search engine returns a set of web pages. We propose a method, the normalized

web distance (NWD) for sets of queries that quantifies in a single number between 0 and 1 the

way in which the queries in the set are similar: 0 means all queries in the set are the same (the

set has cardinality one) and 1 means all queries in the set are maximally dissimilar to each other.
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The similarity among queries uses the frequency counts of web pages returned for each query

and the set of queries. The method can be applied using any big data base and a search engine

that returns reliable aggregate page counts. Since this method uses names for object, and not the

objects themselves, we can view the common similarity of the names as a common semantics

between those names (words or phrases). The common similarity between a finite nonempty set

of queries can be viewed as a distance or diameter of this set. We show that this distance ranges

in between 0 and 1, how it changes under adding members to the set, that it does not satisfy

the triangle property, and that the NWD formally and provably expresses common similarity

(common semantics).

To test the efficacy of the new method for classification we experimented with small data

sets of queries based on search results from Wikipedia, Amazon, and the National Center

for Biotechnology Information (NCBI) website from the U.S. National Institutes of Health. In

particular we compared classification using pairwise NWDs with classification using set NWD.

The last mentioned performed consistently equal or better, sometimes much better.

APPENDIX

A. Strings and the Self-Delimiting Property

We write string to mean a finite binary string, and ε denotes the empty string. (If the string is

over a larger finite alphabet we recode it into binary.) The length of a string x (the number of bits

in it) is denoted by |x|. Thus, |ε| = 0. The self-delimiting code for x of length n is x̄ = 1|x|0x

of length 2n+ 1, or even shorter x′ = 1x̄0x of length n+ 2 log n+ 1 (see [12] for still shorter

self-delimiting codes). Self-delimiting code words encode where they end. The advantage is that

if many strings of varying lengths are encoded self-delimitingly using the same code, then their

concatenation can be parsed in their constituent code words in one pass going from left to right.

Self delimiting codes are computable prefix codes. A prefix code has the property that no code

word is a proper prefix of any other code word. The code-word set is called prefix-free.

We identify strings with natural numbers by associating each string with its

index in the length-increasing lexicographic ordering according to the scheme

(ε, 0), (0, 1), (1, 2), (00, 3), (01, 4), (10, 5), (11, 6), . . . . In this way the Kolmogorov complexity

can be about finite binary strings or natural numbers.
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B. Computability Notions

A pair of integers such as (p, q) can be interpreted as the rational p/q. We assume the notion

of a function with rational arguments and values. A function f(x) with x rational is upper

semicomputable if it is defined by a rational-valued total computable function φ(x, k) with x a

rational number and k a nonnegative integer such that φ(x, k + 1) ≤ φ(x, k) for every k and

limk→∞ φ(x, k) = f(x). This means that f can be computed from above (see [12], p. 35). A

function f is lower semicomputable if −f is semicomputable from above. If a function is both

upper semicomputable and lower semicomputable then it is computable.

C. Kolmogorov Complexity

The Kolmogorov complexity is the information in a single finite object [8]. Informally, the

Kolmogorov complexity of a finite binary string is the length of the shortest string from which

the original can be lossless reconstructed by an effective general-purpose computer such as a

particular universal Turing machine. Hence it constitutes a lower bound on how far a lossless

compression program can compress. For technical reasons we choose Turing machines with a

separate read-only input tape that is scanned from left to right without backing up, a separate

work tape on which the computation takes place, an auxiliary tape inscribed with the auxiliary

information, and a separate output tape. All tapes are divided into squares and are semi-infinite.

Initially, the input tape contains a semi-infinite binary string with one bit per square starting

at the leftmost square, and all heads scan the leftmost squares on their tapes. Upon halting,

the initial segment p of the input that has been scanned is called the input program and the

contents of the output tape is called the output. By construction, the set of halting programs is

prefix free (Appendix A), and this type of Turing machine is called a prefix Turing machine. A

standard enumeration of prefix Turing machines T1, T2, . . . contains a universal machine U such

that U(i, p, y) = Ti(p, y) for all indexes i, programs p, and auxiliary strings y. (Such universal

machines are called “optimal” in contrast with universal machines like U ′ with U ′(i, pp, y) =

Ti(p, y) for all i, p, y, and U ′(i, q, y) = 1 for q 6= pp for some p.) We call U the reference

universal prefix Turing machine. This leads to the definition of prefix Kolmogorov complexity.

Formally, the conditional prefix Kolmogorov complexity K(x|y) is the length of the shortest

input z such that the reference universal prefix Turing machine U on input z with auxiliary

information y outputs x. The unconditional Kolmogorov complexity K(x) is defined by K(x|ε)
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where ε is the empty string. In these definitions both x and y can consist of strings into which

finite sets of finite binary strings are encoded. Theory and applications are given in the textbook

[12].

For a finite set of strings we assume that the strings are length-increasing lexicographic ordered.

This allows us to assign a unique Kolmogorov complexity to a set. The conditional prefix

Kolmogorov complexity K(X|x) of a set X given an element x is the length of a shortest

program p for the reference universal Turing machine that with input x outputs the set X .

The prefix Kolmogorov complexity K(X) of a set X is defined by K(X|ε). One can also

put set in the conditional such as K(x|X) or K(X|Y ). We will use the straightforward laws

K(·|X, x) = K(·|X) and K(X|x) = K(X ′|x) up to an additive constant term, for x ∈ X and

X ′ equals the set X with the element x deleted.

We use the following notions from the theory of Kolmogorov complexity. The symmetry of

information property [6] for strings x, y is

K(x, y) = K(x) +K(y|x) = K(y) +K(x|y), (A.1)

with equalities up to an additive term O(log(K(x, y))).

D. Metricity

A distance function d on X is defined by d : X → R+ where R+ is the set of nonnegative

real numbers. If X, Y, Z ∈ X , then Z = XY if Z is the set consisting of the elements of the

sets X and Y ordered length-increasing lexicographic. A distance function d is a metric if

1) Positive definiteness: d(X) = 0 if all elements of X are equal and d(X) > 0 otherwise.

(For sets equality of all members means |X| = 1.)

2) Symmetry: d(X) is invariant under all permutations of X .

3) Triangle inequality: d(XY ) ≤ d(XZ) + d(ZY ).

E. Proofs

Proof: of Lemma II.4.

We can run all programs dovetailed fashion and at each time instant select a shortest

program that with inputs e(x) for all x ∈ X has terminated with the same output e(X).
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The lengths of these shortest programs gets shorter and shorter, and in for growing time

eventually reaches EGmax(X) (but we do not know the time for which it does). Therefore

EGmax(X) is upper semicomputable. It is not computable since for X = {x, y} we have

EGmax(X) = max{K(e(x)|e(y)), K(e(y)|e(x))}+O(1), the information distance between e(x)

and e(y) which is known to be incomputable [1].

Proof: of Theorem II.5.

(≤) We use a modification of the proof of [11, Theorem 2]. According to Definition II.1 x = y

iff e(x) = e(y). Let X = {x1, . . . , xn} and k = maxx∈X{K(e(X)|e(x)}. A set of cardinality n

in S is for the purposes of this proof represented by an n-vector of which the entries consist

of the lexicographic length-increasing sorted members of the set. For each 1 ≤ i ≤ n let Yi

be the set of computably enumerated n-vectors Y = (y1, . . . , yn) with entries in S such that

K(e(Y )|e(yi)) ≤ k for each 1 ≤ i ≤ n. Define the set V =
⋃n

i=1 Yi. This V is the set of vertices

of a graph G = (V,E). The set of edges E is defined by: two vertices u = (u1, . . . , un) and

v = (v1, . . . , vn) are connected by an edge iff there is 1 ≤ j ≤ n such that uj = vj . There are

at most 2k self-delimiting programs of length at most k computing from input e(uj) to different

e(v)’s with uj in vertex v as jth entry. Hence there can be at most 2k vertices v with uj as jth

entry. Therefore, for every u ∈ V and 1 ≤ j ≤ n there are at most 2k vertices v ∈ V such

that vj = uj . The vertex-degree of graph G is therefore bounded by n2k. Each graph can be

vertex-colored by a number of colors equal to the maximal vertex-degree. This divides the set of

vertices V into disjoint color classes V = V1

⋃
· · ·
⋃
VD with D ≤ n2k. To compute e(X) from

e(x) with x ∈ X we only need the color class of which e(X) is a member and the position of x

in n-vector X . Namely, by construction every vertex with the same element in the jth position

is connected by an edge. Therefore there is at most a single vertex with x in the jth position in a

color class. Let x be the jth entry of n-vector X . It suffices to have a program of length at most

log(n2k) +O(log nk) = k +O(log nk) bits to compute e(X) from e(x). From n and k we can

generate G and given log(n2k) bits we can identify the color class Vd of e(X). Using another

log n bits we define the position of x in the n-vector X . To make such a program self-delimiting

add a logarithmic term. In total k +O(log k) suffices since O(log k) = O(log n+ log nk).

(≥) That EGmax(X) ≥ maxx∈X{K(e(X)|e(x)} follows trivially from the definitions.

Proof: of Lemma III.1.

(≥ 0) Since f(X) ≤ f(x) for all x ∈ X the numerator of the right-hand side of (II.3) is
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nonnegative. Since the denominator is also nonnegative we have NWD(X) ≥ 0. Example of

the lower bound: if maxx∈X{log f(x)} = log f(X), then NWD(X) = 0.

(≤ 1) Intuitively the upper bound on g(X) is reached if the web events e(x) for x ∈ X are

mutually almost disjoint. We say ”almost” since if
⋂

x∈X e(x) = ∅ then NWD(X) is undefined.

Case 1 Let the web events e(x) satisfy |
⋂

x∈X e(x)| = 1. Then g(X) =
∏

x∈X(g(x)−1/N) +

1/N . By (II.2) therefore
∑

x∈X G(x)−G(X) = ε for some very small positive ε.

Subcase 1.a Let |e(x)| = |e(y)| for all x, y ∈ X . Then G(X) − minx∈X{G(x)} =

(X − 1) maxx∈X{G(x)} − ε. By (II.3) we have NWD(X) = 1 − ε′ where ε′ = ε/((X −

1) maxx∈X{G(x)}).

Subcase 1.b Let |e(x)| 6= |e(y)| for some x, y ∈ X . Then G(X) − minx∈X{G(x)} < (X −

1) maxx∈X{G(x)}. By (II.3) we have NWD(X) < 1− ε′.

Case 2 Let the web events e(x) satisfy |
⋂

x∈X e(x)| > 1. Then g(X) >
∏

x∈X(g(x) −

1/N) + 1/N yielding
∑

x∈X G(x)−G(X) < ε and therefore G(X)−minx∈X{G(x)} < (X −

1) maxx∈X{G(x)}. By (II.3) we have NWD(X) < 1− ε′.

Proof: of Lemma III.2.

(i) Since X ⊆ Y and because of the condition of item (i) we have miny∈Y {log f(y)} =

minx∈X{log f(x)}. From X ⊆ Y also follows maxy∈Y {log f(y)} ≥ maxx∈X{log f(x)}, and

log f(X) ≥ log f(Y ). Therefore the numerator of NWD(Y ) is at least as great as that of

NWD(X), and the denominator of NWD(Y ) equals (|Y |−1)/(|X|−1) times the denominator

of NWD(X).

(ii) We have minx∈Y log f(y) < minx∈X{log f(x)}. If NWD(X) = 1 then NWD(Y ) = 1

(in both cases there is no common similarity of the members of the set). Item (ii) follows

vacuously in this case. Therefore assume that NWD(X) < 1. Write NWD(X) = a/b with a

equal to the numerator of NWD(X) and b equal to the denominator. If c, d are real numbers

satisfying c/d ≥ a/b then bc ≥ ad. Therefore ab + bc ≥ ab + ad which rearranged yields

(a+ c)/(b+ d) ≥ a/b. If c/d < a/b then by similar reasoning (a+ c)/(b+ d) < a/b.

Assume (III.1) holds. We take the logarithms of both sides of (III.1) and rearrange it to

obtain log f(X)−maxx∈X{log f(x)} − log f(Y ) + maxy∈Y {log f(y)} ≥ (minx∈X{log f(x)} −

miny∈Y {log f(y)})(|X| − 1)NWD(X). Let the lefthand side of the inequality be c and the
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righthand side of the inequality be dNWD(X). Then

NWD(X) =
maxx∈X{log f(x)} − log f(X)

(logN −minx∈X{log f(x)})(|X| − 1)
(A.2)

≤ maxy∈Y {log f(y)} − log f(Y )

(logN −miny∈Y {log f(y)})(|X| − 1)
=
|Y | − 1

|X| − 1
NWD(Y ).

The inequality holds by the rewritten (III.1) and the a, b, c, d argument above since c/d ≥

NWD(X) = a/b.

Assume (III.1) does not hold, that is, it holds with the ≥ sign replaced by a < sign. We take log-

arithms of both sides of this last version and rewrite it to obtain log f(X)−maxx∈X{log f(x)}−

log f(Y ) + maxy∈Y {log f(y)} < (minx∈X{log f(x)} −miny∈Y {log f(y)})(|X| − 1)NWD(X).

Let the lefthand side of the inequality be c and the righthand side dNWD(X). Since

c/d < NWD(X) = a/b we have a/b > (a + c)/(b + d) by the a, b, c.d argument

above. Hence (A.2) holds with the ≤ sign switched to a > sign. It remains to prove that

NWD(Y ) ≥ NWD(Z)(|Z| − 1)/(|Y | − 1). This follows directly from item (i).

Proof: of Lemma III.5.

The following is a counterexample. Let X = {x1}, Y = {x2}, Z = {x3, x4},

maxx∈XY {log f(x)} = 10, maxx∈XZ{log f(x)} = 10, maxx∈ZY {log f(x)} = 5, log f(XY ) =

log f(XZ) = log f(ZY ) = 3, minx∈XY {log f(x)} = minx∈XZ{f(x)} = minx∈ZY {log f(x)} =

4, and logN = 35. This arrangement can be realized for queries x1, x2, x3, x4. (As usual

we assume that e(xi) 6= e(xj) for 1 ≤ i, j ≤ 4 and i 6= j.) Computation shows

NWD(XY ) > NWD(XZ) +NWD(ZY ) since 7/31 > 7/62 + 1/62.

Proof: of Theorem III.7.

We start with the following:

Claim A.1. EGmax(X) is an admissible web distance function and EGmax(X) ≤ D(X) for

every computable admissible web distance function D.

Proof: Clearly EGmax(X) satisfies items (i) and (ii) of Definition III.6. To show it is an

admissible web distance it remains to establish the density requirement (iii). For fixed x consider

the sets X 3 x and |X| ≥ 2. We have∑
X:X3x & |X|≥2

2−EGmax(X) ≤ 1,
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since for every x the set {EGmax(X) : X 3 x & EGmax(X) > 0} is the length set of a binary

prefix code and therefore the summation above satisfies the Kraft inequality [9] given by (II.1).

Hence EGmax is an admissible distance.

It remains to prove minorization. Let D be a computable admissible web distance, and the

function f defined by f(X, x) = 2−D(X) for x ∈ X and 0 otherwise. Since D is computable the

function f is computable. Given D, one can compute f and therefore K(f) ≤ K(D) + O(1).

Let m denote the universal distribution [12]. By [12, Theorem 4.3.2] cDm(X|x) ≥ f(X, x)

with cD = 2K(f) = 2K(D)+O(1), that is, cD is a positive constant depending on D only. By

[12, Theorem 4.3.4] we have − logm(X|x) = K(X|x) + O(1). Altogether, for every X ∈ X

and for every x ∈ X holds log 1/f(X, x) ≥ K(X|x) + log 1/cD + O(1). Hence D(X) ≥

EGmax(X) + log 1/cD +O(1).

By Lemma II.4 the function EGmax is upper semicomputable but not computable. The function

G(X) − minx∈X{G(x)} is a computable and an admissible function as in Definition III.6. By

Claim A.1 it is an upper bound on EGmax(X) and hence EGmax(X) < G(X)−minx∈X{G(x)}.

Every admissible property or feature that is common to all members of X is quantized

as an upper bound on EGmax(X). Thus, the closer G(X) − minx∈X{G(x)} approximates

EGmax(X), the better it approximates the common admissible properties among all search

terms in X . This G(X) − minx∈X{G(x)} is the numerator of NWD(X). The denominator

is maxx∈X{G(x)}(|X| − 1), a normalizing factor suited to the numerator of NWD(X). It is

chosen such that the quotient NWD(X) has a value in [0, 1] (Lemma III.1).
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