
Average-Case Analysis via Incompressibility

Ming Li*

City University of Hong Kong and University of Waterloo

Paul Vitanyi**

CWI and University of Amsterdam

Abstract. We will demonstrate how to use Kolmogorov complexity to
do the average-case analysis via some examples. These examples include:
longest common subsequence problem and shortest common superse
quence problem [9, 11], problems in computational geometry [14), aver
age case analysis of Heapsort [19, 17], average nni-distance between two
binary rooted leave-labeled trees [23), compact routing in computer net
works [3), average-case analysis of an adder algorithm [4]. The property
is that the average-case complex:ity of any algorithm whatsoever equals
its worst-case complexity if the inputs are distributed according to the
Universal Distribution [16).

1 Introduction

Kolmogorov complexity has been very successfully applied to obtain lower bounds
solving many long-standing open questions. See [17]. A much less well-known fact
is that Kolmogorov complexity is also a powerful tool for average-case analysis
of algorithms. The purpose of this expository paper is to explain such ideas
via several elegant examples. We do not intend to comprehensively survey such
results.

Often, it is very difficult to analyze the average-case complexity of an algo
rithm. This is because, unlike the worse-case analysis, the average-case analysis
has to average over all instances of the input. In average-case analysis, the in
compressibility method has an advantage over a probabilistic approach. In the
latter approach, one deals with expectations or variances over some ensemble of
objects. Using Kolmogorov complexity, we can reason about an incompressible
individual object. Because it is incompressible it has all statistical properties

*Supported in part by the NSERC Operating Grant OGP0046506, ITRC, a CGAT
grant, and the Steacie Fellowship. Current address: Department of Computer Science,
City University of Hong Kong, Kowloon, Hong Kong. On sabbatical leave from:
Department of Computer Science, University of Waterloo, Waterloo, Ont. N2L 3Gl,
Canada. E-mail: mli@cs.cityu.edu.hk

**Partially supported by the European Union through NeuroCOLT ESPRIT Working
Group Nr. 8556, and by NWO through NFI Project ALADDIN under Contract num
ber NF 62-376. Address: CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.
Email: paulv@cwi.nl

39

with certainty, rather than having them hold with some {high) probability as in
a probabilistic analysis. This fact greatly simplifies the resulting analysis.

We briefly review the definition of Kolmogorov complexity. For a complete
treatment of this subject, see [17]. Fix a universal Turing machine U with binary
input alphabet. The machine U takes two inputs p and y. U interprets p as a
program and simulates p on input y. The Kolmogorov complexity of a binary
string x, given y, is defined as

C(xjy) = min{l(p) : U(p, y) = x },

where l(p) denotes the length (number of bits) of p. (If k is a number then jkj
denotes the absolute value of k. If A is a set then d(A) denotes the cardinality of
A, that is, the number of elements in it.) Thus C(xjy) is the minimum number
of bits in a description from which x can be effectively reconstructed, given y.
Let C(x) = C(xjt), where t denotes the null string.

By a simple counting argument, the following claim can be easily proved.

Claiin 1 For each n and c < n, any y, there are at least 2n - 2n-c strings of
length n with the property

C(xjn, y) 2: n - c. (1)

We call a string c-random if it satisfies C(xjn, y) 2: n - c. An undirected
graph G on n nodes can be encoded by n(n - 1)/2 bits, each bit indicating
whether a certain edge is present. We say a graph G of n nodes is c-random if
C(Gjn) 2: n(n - 1)/2 - c, here we use G to denote its own encoding, and c can
be generalized to a function of n.

We avoid the question of in which cases of average-case analysis one can
apply Kolmogorov complexity. To this question, the authors would like to know
the answer as well. We instead give a few successful applications, some without
detailed proofs and some with detailed proofs.

2 Shortest Common Supersequences and Longest
Common Subsequences

Kolmogorov complexity was used to analyze the average-case complexity of some
simple Longest Common Subsequence (LCS) and Shortest Common Superse
quence (SCS) algorithms in [9] and [11]. Given n sequences, an LCS is the longest
sequence s such that s is a subsequence of each of these n sequences; an SCS is
the shortest sequence S such that each of these n sequences is a subsequence of
s.

In molecular biology, a longest common subsequence (of some DNA se
quences) is commonly used as a measure of similarity in the comparison of
biological sequences. In text editing, the "diff" command in UNIX system de
pends on the computation of LCS as well. Applications of SCS include data
compression and planning [9].

40

In [11], it is proved that LCS and SCS can't be reasonably approximated in
the worst case unless NP=P. However, practical cases are usually much easier.
It is meaningful to do average case analysis of LCS and SCS algorithms.

The following theorem ([11]) gives the average case complexity of a trivial
algorithm for LCS. We choose n independent Kolmogorov random sequences,
and analyze an algorithm on these fixed sequences. Then, because most sets of
sequences are independently random, this gives the average case complexity over
all sets of sequences. If Sis a set of sequences, let LCS{S) denote the length of
the LCS of S. The proof of the following theorem is long, it can be found in [11]
or [17].

Theorem2. Given a set S of n (or p(n)) sequences of length n, the following
algorithm Long-Run finds an LCS of length LCS(S) - O(LCS(S)~+•) for any
€ > 0, on the average.

Algorithm Long-Run. Find maximum m such that am is a common subse
quence of all input sequences, for some a EE. Output am as the approximation
ofLCS.

As a related problem, the expected LCS length of two sequences has been
open for many years and there still is a large gap between the current best
upper and lower bounds [6]. Arratia and Steele conjecture that the tight bound
is 1 ~Ji; [22]. The following corollary gives a new simple proof of the upper bound
in [6].

Corollary3. Expected length of the LCS of two random binary sequences of
length n is upper bounded by 0.867n.

Proof. Let x and y be Kolmogorov random binary strings of length n, z an LCS
of x and y. Suppose lzl = en for some c $ l. We can encode x (and y) using z
as above. I.e., x is represented as a binary string x' of length n in which each 1
means an occurrence of a bit of z in x and 0 means otherwise, from left to right.
From z and x' (or y') a simple algorithm outputs x (or y).

Since x' contains en l 'sand (1 -c)n O's, there are totally n!/(cn)!((l - c)n)!
different x'. So an x' requires logn!/(cn)!((l-c)n)! bits to encode. By Stirling's
formula, we have

lognl/(cn)!((l - c)n)! ~ n log n - en log en - (1 - c)n log(l - c)n

=-en loge - (1 - c)n log(l - c).

Since x and y are random, en - 2cn log c - 2(1 - c)n log(1 - c) ~ 2n. Solving
c - 2 - clogc - (1 - c)log(l - c) = 0, we get c ~ 0.867. 0

Now we consider the SCS problem. If S is a set of sequences, let SCS(S)
denote the length of the SCS of S.

Theorem4. For any set S containing n (or p(n)) sequences of length n, the
following algorithm MaJ°ority-Merge produces a common supersequence of length
SCS(S) + O(SCS(S)6), on the average, where o = 1/../2 ~ 0.707.

41

Algorithm Majority-Merge

l. Input: n sequences, each of length n. Initial supersequence: s := null string;
2. Let a be the majority among the leftmost letters of the remaining sequences.

Set s := sa and delete the front a from these sequences. Repeat this step
until no sequences are left. Output s.

The idea of proving this theorem is as follows. Fix a Kolmogorov random
string x of length n2 over E and cut x into n equal length pieces x 1, ..• , Xn.

This gives us n independent Kolmogorov random sequences. Consider the input
set S = {x1, ... , xn}. Since Majority-Merge produces a common supersequence
oflength (k + 1)n/2+0(fa) on set S [9], it is sufficient to show that SCS(S) ~
(k + 1) n /2 - 0(n°). This is achieved as follows: Take an SCS s of S and consider
the procedure A that produces s on set S by scanning the input sequences from
left to right and merging common letters (in the order that the letters appear in
s). We can prove that on the average A can merge at most 2n/(k + 1) + O(n°)
letters in a step on input S, where 6 = ../2/2 ~ 0.707, otherwise we can compress
x by at least n 2' 0 letters, where<= 6 - 0.5 ~ 0.207. Since totally the sequences
X1, ..• , Xn contain n2 letters, the length of the SCS is at least (k + 1)n/2 -0(n°).

Therefore, algorithm Majority-Merge produces a common supersequence of
length SCS(S) + O(SCS(S)0). This is also its average-case performance since
almost all inputs are random. The complete proof can be found in [11].

3 Heapsort

Heapsort is a widely used sorting algorithm. It is the first algorithm that sorts
n numbers in-place with running time guaranteed to be of order n log n. Here
'in-place' means it does not require extra nontrivial memory space. The method
was first discovered by J.W.J. Williams [24] and subsequently improved by R.W.
Floyd [8].

The Heapsort algorithm works in two steps. First it converts the input into a
heap. Then it sorts the input by repeatedly deleting the root (smallest element)
and restoring the heap. It is well-known that we can build a heap from an array
of n integers in O(n) time. The second stage runs inn rounds to empty the heap.
Each round takes between 0(1) and 2 log n steps for restoring the heap, but the
precise bound was unknown.

To restore a (min-)heap after the root key is deleted, the Williams' original
algorithm takes the rightmost element from the bottom of the heap, puts it in
the root, then it pushes this element down (swap it with the larger child) the
heap, making two comparison each step, until this element is smaller than both
of its children. This process takes 2 logn steps in the worst case.

Floyd's algorithm compares the two children of the root, promotes the larger,
and keeps on doing this until reaching the bottom, and then it fills the empty
spot with the rightmost element in the bottom, and pushes this element back
up the tree until it is greater than its father (precisely at the same position as
in Williams' algorithm). The worst case of Floyd's algorithm is also 2 log n.

42

Despite Heapsort's prominence and serious efforts, the average case of Heap
sort was open for 30 years. People tried to give probabilistic analysis of these two
algorithms, but after 1 round of update, the probabilistic distribution changes.

Only recently Schaffer and Sedgewick [21] succeeded in giving a precise analysis
of its average case performance. I. Munro [19] suggested a remarkably simple

solution using incompressibility. The idea is as follows. Fix a random heap H of
Kolmogorov complexity approximately n logn. For each of the n heap-restoring
rounds, record the position where the last element finally resides in H. This

position can be recorded by a 0-1 sequence encoding a path from the root to the

position, with 0 indicating left branch and 1 indicating right. Each sequence is
of length up to log n. It is easy to see that one can reconstruct H from these n

sequences. Thus, the average length of these sequences must be approximately
log n (because Kolmogorov complexity of H is at least n log n). Since most heaps
are random, averaging, we conclude that Floyd's algorithm runs in log n steps

on average, and Williams' algorithm uses 2 log n steps on average.

4 N ni Distance

In computational biology, evolutionary trees are represented by unrooted un
ordered binary trees with uniquely labeled leaves and unlabeled internal nodes.

Measuring the distance between such trees is useful in biology. A nearest neigh

bor interchange (nni) operation swaps two subtrees that are separated by an
internal edge (u,v), as shown in Figure I. See [15] for relevant references.

Fig. 1. The two possible nni operations on an internal edge (u, v).

For example, in Figure 2 it takes 2 nni moves to convert (i) to (ii).
K. Culik II and D. Wood [7], improved by [15], proved that n log n + O(n)

nni moves are sufficient to transform a tree of n leaves to any other tree with
the same set of leaves. But the question is, is this the best upper bound? D.
Sleator, R. Tarjan, and W. Thurston [23] proved an il(nlogn) lower bound for

most pairs of trees, essentially using the incompressibility method. (Note, they
proved their results for a more general graph transformation system.)

The idea behind the proof is simple. Consider T1 and T2 such that C(T1 IT2) 2:
n logn. If we can encode each nni move with 0(1) bits, then there must be at

least D(n log n) nni moves since otherwise C(T1 IT2) < n log n. It is the encoding
process that is hard and we refer the reader to [23].

. In [14], we applied similar proof techniques to computational geometry study
mg the average number of edge-flips required to transform a triangulation to a

Delaunay triangulation and related problems.

Cat

Horse

Seal

Reptilian Ancestor

(i)

Goose

43

Reptilian Ancestor

(ii)

Fig. 2. The nni distance between (i) and (ii) is 2

5 Compact Routing in Computer Networks

In very large networks like the global telephone network or the internet the mass
of messages being routed creates major bottlenecks degrading performance. In
this section, we are interested in determining the optimal space to represent rout
ing schemes in communication networks on the average for all static networks.
We follow [3).

A universal routing strategy for static communication networks will, for every
network, generate a routing scheme for that particular network. Such a routing
scheme comprises a local routing function for every node in this network. The
routing function of node u returns for every destination v :f:. u an edge incident
to u on a path from u to v. This way, a routing scheme describes a path, called
a route, between every pair of nodes u, v in the network.

It is easy to see that we can do shortest path routing by entering a routing
table in each node u which for each destination node v indicates to what adjacent
node w a message to v should be routed first. If u has degree d, it requires a
table of at most n log d bits, and the overall number of bits in all local routing
tables never exceeds n2 log n.

Several factors may influence the cost of representing a routing scheme for a
particular network. We use a basic model and refer the readers to [3] for other
variations. Here, we consider point to point communication networks on n nodes
described by an undirected labeled graph G = (V, E), where V = {l, ... , n}.
Assume that the nodes know the identities of their neighbors. This information
is for free.

44

Theorem 5. For shortest path routing in O(log n)-mndom gmphs local routing
functions can be stored in 6n bits per node. Hence the complete routing scheme
is represented by 6n2 bits.

Proof. The next two lemmas can be proved easily by Kolmogorov complexity,
we leave the proofs to the readers.

Lemma6. All o(n)-mndom labeled graphs have diameter 2.

Lemma 7. Let c be a fixed constant. If G is a clogn-random labeled graph, then
from each node i all other nodes are either directly connected to i or are directly
connected to one of the least (c+3)logn nodes directly adjacent to i.

Let G be an O(log n)-random graph on n nodes. By Lemma 7 we know that
from each node u we can shortest path route to each node v through the least
O(logn) directly adjacent nodes of u. By Lemma 6, G has diameter 2. Once the
message reached node v its destination is either node v or a direct neighbor of
node v (which is known in node v by assumption). Therefore, routing functions
of size O(nloglogn) can be used to do shortest path routing. We can do better
than this.

Let Ao ~ V be the set of nodes in G which are not directly connected to u.
Let v1, ... , Vm be the O(logn) least nodes directly adjacent to node u, Lemma 7,
through which we can shortest path route to all nodes in A0 • For t = 1, 2 ... , l
define At = {w E Ao - LJ!:~ A, : (vt, w) E E}. Let mo = d(Ao) and define
mt+1 = mt - d(At+1). Let l be the first t such that mt < n/ loglogn. Then
we claim that Vt is connected by an edge in E to at least 1/3 of the nodes not
connected by edges in E to nodes u, v1, ... , Vt-1 ·

Claim 8 d(At) > mt-1/3 for 1 ::; t ::; l.

Proof. Suppose, by way of contradiction, that there exists a least t < l such that
ld(At) - mt-i/21;:::: mt-i/6. Then we can describe G, given n, as f;llows.

- This discussion in 0(1) bits.
- Nodes u, Vt in 2 log n bits, padded with O's if need be.
- The presence or absence of edges incident with nodes u, vi, ... , Vt-l in r =

n - 1 + · · · + n - (t - 1) bits. This gives us the characteristic sequences of
Ao, ... , At-1 in V, where a characteristic sequence of A in V is a string of
d(V) bits with, for each v E V, the vth bit equals 1 if v EA and the vth bit
is 0 otherwise.

- A self-delimiting description of the characteristic sequence of At in Ao -
u::~ A., using Chernoff's bound, in at most mt-l - {1/6) 2mt_ 1 loge+
O(logmt-1) bits.

- The description E(G) with all bits corresponding to the presence or absence
of edges between Vt and the nodes in Ao-U~:~ A, deleted, saving mt-l bits.
Furthermore, we delete also all bits corresponding to presence or absence of
edges incident with u, v1, ... , Vt- l saving a further r bits.

45

This description of G uses at most

n(n - 1)/2 + O(logn) + mi- 1 - (1/6) 2mt_ 1 loge - mt-l

bits, which contradicts the O(log n)-randomness of G because mi-l > n/ log log n.

Recall that l is the least integer such that m1 < n/loglogn. We construct
the local routing function F(u) as follows.

A table of intermediate routing node entries for all the nodes in Ao in in
creasing order. For each node w in LJ~=l A, we enter in the wth position
in the table the unary representation of the least intermediate node v, with
(u, v), (v, w) E E, followed by a 0. For the nodes that are not in LJ~=l A,
we enter a 0 in their position in the table indicating that an entry for this
node can be found in the second table. By Claim 8, the size of this table is
bounded by:

I oo

n + 2:(1/3)(2/3)'- 1sn '.Sn+ L(l/3)(2/3)'-1sn '.S 4n
s=l •=1

A table with explicitly binary coded intermediate nodes on a shortest path
for the ordered set of the remaining destination nodes. Those nodes had a
0 entry in the first table and there are at most m1 < n/ log log n of them,

namely the nodes in Ao - LJ~=l A,. Each entry consists of the code of length
log log n + 0 (1) for the position in increasing order of a node out of v1 , ... , Vm

with m = O(logn) by Lemma 7. Hence this second table requires at most
2n bits.

The routing algorithm is as follows. The direct neighbors of u are known in node
u and are routed without routing table. If we route from start node u to target
node w which is not directly adjacent to u, then we do the following. If node w

has an entry in the first table then route over the edge coded in unary, otherwise
find an entry for node w in the second table.

Altogether, we have d(F(u)) '.S 6n. Slightly more precise counting and choos
ing l such that m 1 is the first such quantity< n/logn shows d(F(u)) '.S 3n.

A matching lower bound of D(n2) can also be proved.

Theore1119. For shortest path routing in o(n)-random graphs each local routing

function must be stored in at least n/2 - o(n) bits per node. Hence the complete

routing scheme requires at least n 2 /2 - o(n 2) bits to be stored.

The results on Kolmogorov random graphs above have the following corollar
ies. Consider the subset of (3 log n)-random graphs within the class of O(log n)
random graphs on n nodes. They constitute a fraction of at least (I - l / n3)

of the class of all graphs on n nodes. The trivial upper bound on the minimal
total number of bits for all routing functions together is 0 (n 2 log n) for shortest
path routing on all graphs on n nodes. Simple computation of the average of the

46

total number of bits used to store the routing scheme over all graphs on n nodes
shows that both Theorem 5 and Theorem 9, hold for the average case.

The average case consists of the average cost, taken over all labeled graphs of
n nodes, of representing a routing scheme for graphs over n nodes. For a graph
G, let T(G) be the number of bits used to store its routing scheme. The average
total number of bits to store the routing scheme for routing over labeled graphs
on n nodes is 2: T(G) /2n(n-I)/2 with the sum taken over all graphs G on nodes
{ 1 , 2, ... , n}. That is, the uniform average over all the labeled graphs on n nodes.

6 Addition in log2 n Steps on Average

Half a century ago, Burks, Goldstine, and von Neumann obtained a log2 n ex
pected upper bound on the 'longest carry sequence' for adding two n-bit binary
numbers [2]. In computer architecture design, efficient design of adders directly
affects the length of CPU clock cycle. The following algorithm (and its analysis
using [2]) for adding two n-bit binary numbers x and y is known to the computer
designers and can be found in standard computer arithmetic design books such
as [10].

l. S := x $ y (add bit-wise ignoring carries); C :=carry sequence;
2. while C :j::. 0 do

S := SEB C;
C := new carry sequence.

Let's call this 'no-carry adder' algorithm. The expected log2 n carry sequence
length upper bound of [2] implies that this algorithm runs in 1 + log2 n expected
rounds (step 2). It turns out that this algorithm is the most efficient addition
algorithm in the expected case currently known. Of course, it takes n steps in
the worst case. This algorithm, in the average case, is exponentially faster than
the trivial linear time 'ripple-carry adder' and it is two time faster than the
well-known 'carry-lookahead adder'.

In the ripple-carry adder, the carry ripples from right to left, bit by bit, and
hence it takes D(n) steps to compute the summation of two n-bit numbers.

The carry-lookahead adder is based on a divide and conquer algorithm which
adds two n-bit numbers in l + 2 log2 n steps. It is used in nearly all modern com
puters. For details about both adders, see any standard computer architecture
textbook such as [10, 5].

The results in [2], [l], and [20] imply that the no-carry adder has expected
tix:ne of at most 1 + log2 n. But these proofs are all nontrivial probabilistic anal
ysis.

[4] has given an almost trivial and elementary proof of the same fact using
Kolmogorov complexity. We present their proof here.

Theorelll 10. The no-carry adder has the average running time of at most 1 +
log2 n.

47

Proof. For any binary string input x and y such that l(x) = l(y) = n, if the
no-carry adder uses t rounds (i.e., excuting Step 2 fort times), then x and y can
be written as

x = x'bulx", y = y'buiy",

where l(u) = t - 1, l(x') = l(y'), bis 0 or I, and u is the complement of u. Now
we can describe x using y, n, q and the concatentation of the following binary
strings:

- the position of u in y (in exactly log2 n bits by padding),
- x'x".

Here the program q contains information telling U how to compose x from the
given information. Since the above two strings have total length n-t- l +log2 n,
the value t can be deduced from n and input length. So t + l bits of x are
saved at the cost of extra log2 n bits. See [4] for more careful discussion. Thus
C(xln, y, q) ~ n - t - 1 + log2 n. Therefore, for any string x of length n with
C(xln, y, q) = n - i, the algorithm must stop in at most log2 n + i - I steps on
input x and y.

Since there are only 2n-i programs of length n - i. there are at most 2n-i

strings x of length n with Kolmogorov complexity C(xln, y, q) = n - i. Let p;
denote the probability that C(xln,y,q) = n - i for l(x) = n. Then Pi:::; 2; and
:Z:: p; = l. Thus the average running time for each y is bounded above by

n

I: p; (i - 1 + log n) :::; l + log 11

i:2-logn

Since this holds for every y, this is also the average running time of the algorithm.

7 Average-Case Complexity Equals Worst-Case
Complexity Under Universal Distributions

Consider a Turing machine such that the set of programs for which it halts is
prefix-free, that is, no such program is the proper prefix of another such program.
Such self-delimiting Turing machines compute all partial recursive functions and
contain an appropriate universal machine U'. Similar to before we can define
Kolmogorov complexity with respect to U' which is now induced by a set of
prefix-free programs. The resulting prefix complexity /{ (x) is slightly larger than
C(x), that is, C(x) $ K(x) ~ C(x) + 2 logC(x).

The universal distribution m defined by m(x) = 2-K(x) is one of the foremost
notions in all of the the theory of Kolmogorov complexity. In [17] we give many
remarkable properties and applications for this fundamental notion. It multi
plicatively dominates all enumerable distributions (and therefore also all com
putable ones). Therefore, a priori it maximizes ignorance by assigning maximal
probability to all objects. In [16, 17] we showed that the average-case computa
tional complexity of any algorithm whatsoever under the universal distribution

48

turns out to be of the same order of magnitude as the worst-case complexity.
This holds both for time complexity and for space complexity.

For many algorithms the average-case running time under some distribu
tions on the inputs is less than the worst-case running time. For instance, using
(nonrandomized) Quicksort on a list of n items to be sorted gives under the uni
form distribution on the inputs an average running time of O(n logn) while the
worst-case running time is D(n2). The worst-case running time of Quicksort is
typically reached if the list is already sorted or almost sorted, that is, exactly in
cases where we actually should not have to do much work at all. Since in practice
the lists to be sorted occurring in computer computations are often sorted or
almost sorted, programmers often prefer other sorting algorithms which might
run faster with almost sorted lists. Without loss of generality we identify inputs
oflength n with the natural numbers corresponding with binary strings of length
n.

Definition 11. Consider a discrete sample space N with probability density
function P. Let t(x) be the running time of algorithm A on problem instance
x. Define the worst-case time complexity of A as T(n) = max{t(x) : l(x) = n}.
Define the ?-average time complexity of A

T(nlP) = Ei(x)=n P(x)t(x).
Ei(x)=n P(x)

We compare the average time complexity for Quicksort under the Uniform Distri
bution L(x) and under the Universal distribution m(x). Define L(x) = 2- 21 (xJ- 1 ,

such that the conditional probability L(xll(x) = n) = 2-n. We encode the list
of elements to be sorted as nonnegative integers in some standard way.

For Quicksort, T(nlL) = E>(nlogn). We may expect the same complexity
under m, that is, T(nlm) = D(nlogn). But Theorem 12 will tell us much more,
namely, T(nim) = D(n2). Let us give some insight why this is the case.

With the low average time complexity under the Uniform Distribution, there
can only be o((logn)2n /n) strings x of length n with t(x) = D(n2). Therefore,
given n, each such string can be described by its sequence number in this small
set, and hence for each such x we find K (x In) :::; n - log n + 3 log log n. (Since n
is known, we can find each n - k by coding k self-delimiting in 2 log k bits. The
inequality follows by setting k 2:: log n - log log n.)

Therefore, no really random x, with K(xln) ;:=:: n, can achieve the worst-case
run time D(n2). Only strings x which are nonrandom, with J{(xln) < n, among
which are the sorted or almost sorted lists, and lists exhibiting other regulari
ties, can have il(n2) running time. Such lists x have relatively low Kolmogorov
complexity I<(x) since they are regular (can be shortly described), and therefore
m(x) = 2-K(x) is very high. Therefore, the contribution of these strings to the
average running time is weighted very heavily.

Theorem 12 m-A verage Complexity. Let A be an algorithm with inputs i11
N. Let the inputs to A be distributed according to the universal distribution ui.
Then, the avemge case time complexity is of the same order of magnitude as the
corresponding worst-case time complexity.

49

Proof. We define a probability distribution P(x) on the inputs that assigns high
probability to the inputs for which the worst-case complexity is reached, and
zero probability for other cases.

Let A be the algorithm involved. Let T(n) be the worst-case time complexity
of A. Clearly, T(n) is recursive (for instance by running A on all x's of length
n). Define the probability distribution P(x) by

Step 1 For each n = 0, 1, ... , set an := I:i(r)=n m(x).

Step 2 If l(x) = n and x is lexicographically least with t(x) = T(n) then
P(x) :=an else P(x) := 0.

It is easy to see that an is enumerable since m(x) is enumerable. Therefore, P(x)
is enumerable. Below we use a fact from [17], Theorem 4.1 and the following
Example 4;5, that cpm(x) 2: P(x), where cp = I<(P) + 0(1) is a constant
depending on P but not on x. We have defined P(x) such that I:xE.Af P(x) 2:
I:xE.N" m(x), and P(x) is an enumerable probability distribution. The average
case time complexity T(nlm) with respect to them distribution on the inputs,
is now obtained by

T(nlm) = L m(x)t(x)
l(x)=n 2=1(x)=n m(x)

>]_ L P(x) T(n)
- Cp l(x)=n I:i(x)=n m(x)

I ~ P(x) 1
= - L.J I: () T(n) = -T(n).

Cp !() p X Cp
l(x)=n x =n

The inequality T(n) 2: T(nlm) holds vacuously.

The analogue of the theorem holds for other complexity measures (like space

complexity), by about the same proof. Further research has been done on related
measures that exhibit similar behaviour. See for example (18, 13, 12].

8 Acknowledgement

We thank our coauthors in papers [3, 4, 14]: R. Beige!, H. Buhrman, W. Gasarch,
J .H. Hoepman, T. Jiang, L. Zhang, B.H. Zhu for allowing us to include some of
the unpublished results.

References

1. B.E. Briley, Some new results on average worst case carry. IEEE Trans. Computers,

C-22:5(1973).
2. A.W. Burks, H.H. Goldstine, J. von Neumann, Preliminary discussion of the logi

cal design of an electronic computing instrument. Institute for Advanced Studies,

Report (1946). Reprinted in John von Neumann Collected Works, vol 5 (1961).

50

3. H. Buhrman, J.H. Hoepman, P.M.B. Vitanyi, Optimal routing tables, Proc. 15th
ACM Symp. Principles Distribut. Comput., ACM Press, 1996, 134-142.

4. R. Beigel, W. Gasarch, M. Li, and L. Zhang, Addition in log2 n steps on average:
a simple analysis, to appear in Theoretical Computer Science (Note).

5. T. Cormen, C. Leiserson, and R. Rivest, Introduction to algorithms. MIT Press,
1990.

6. V. Chvatal and D. Sankoff, Longest common subsequences of two random se
quences. J. Appl. Probab. 12(1975), 306-315.

7. K. Culik II, D. Wood, A note on some tree similarity measures, Inform. Process.
Lett., 15(1982), 39-42.

8. R.W. Floyd, Treesort 3: Algorithm 245, Comm. ACM, 7(1964), 701.
9. D. Foulser, M. Li, and Q. Yang, Theory and algorithms for plan merging. Artificial

Intelligence, 57(1992), 143-181.
10. K. Hwang, Computer arithmetic: principles, architecture, and design. Wiley, New

York, 1979.
11. T. Jiang and M. Li, On the approximation of shortest common supersequences and

longest common subsequences. SIAM J. Comput., 24:5(1995), 1122-1139.
12. A.K. Jagota and K.W. Regan, Testing Neural Net Algorithms on General Com

pressible Data, In Proceedings of the International Conference on Neural Informa
tion Processing, Hong Kong, 1996, Springer-Verlag.

13. K. Kobayashi, On malign input distributions for algorithms, IEICE Trans. Inform.
and Syst., E76-D:6(1993}, 634-640.

14. M. Li and B.H. Zhu, Applications of Kolmogorov complexity in computational
geometry, manuscript, City Univ. Hong Kong, 1997.

15. M. Li, J. Tromp, and L. Zhang, On the nearest neighbor interchange distance,
COCOON'96, Hong Kong, 1996. Final version to appear in J. Theoret. Biology,
1996.

16. M. Li and P. Vitanyj, Average case complexity equals worst-case complexity under
the Universal Distribution. Inform. Process. Lett., 42(1992), 145-149.

17. M. Li and P. Vitcinyi, An introduction to Kolmogorov complexity and its applica
tions. Springer-Verlag, New York, 1993. 2nd Edition, 1997.

18. P.B. Miltersen, The complexity of malign ensembles, SIAM J. Comput., 22:1(1993),
147-156.

19. I. Munro, Personal communication, 1993.
20. G. Schay, How to add fast-on average. American Mathematical Monthly, 102:8

{1995), 725-730.
21. R. Schaffer and R. Sedgewick, J. Algorithms, 15(1993), 76-100.
22. J.M. Steele, An Efron-Stein inequality for nonsymmetric statistics. Ann. Stat.

14(1986) 753-758.
23. D. Sleator, R. Tarjan, and W. Thurston, Short encodings of evolving structures,

SIAM J. Discr. Math., 5(1992), 428-450.
24. J.W.J. Williams, Algorithm 232: HEAPSORT, Comm. ACM, 7(1964), 347-348.

