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Abstract. We will demonstrate how to use Kolmogorov complexity to 
do the average-case analysis via some examples. These examples include: 
longest common subsequence problem and shortest common superse
quence problem [9, 11], problems in computational geometry [14), aver
age case analysis of Heapsort [19, 17], average nni-distance between two 
binary rooted leave-labeled trees [23), compact routing in computer net
works [3), average-case analysis of an adder algorithm [4]. The property 
is that the average-case complex:ity of any algorithm whatsoever equals 
its worst-case complexity if the inputs are distributed according to the 
Universal Distribution [16). 

1 Introduction 

Kolmogorov complexity has been very successfully applied to obtain lower bounds 
solving many long-standing open questions. See [17]. A much less well-known fact 
is that Kolmogorov complexity is also a powerful tool for average-case analysis 
of algorithms. The purpose of this expository paper is to explain such ideas 
via several elegant examples. We do not intend to comprehensively survey such 
results. 

Often, it is very difficult to analyze the average-case complexity of an algo
rithm. This is because, unlike the worse-case analysis, the average-case analysis 
has to average over all instances of the input. In average-case analysis, the in
compressibility method has an advantage over a probabilistic approach. In the 
latter approach, one deals with expectations or variances over some ensemble of 
objects. Using Kolmogorov complexity, we can reason about an incompressible 
individual object. Because it is incompressible it has all statistical properties 
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with certainty, rather than having them hold with some {high) probability as in 
a probabilistic analysis. This fact greatly simplifies the resulting analysis. 

We briefly review the definition of Kolmogorov complexity. For a complete 
treatment of this subject, see [17]. Fix a universal Turing machine U with binary 
input alphabet. The machine U takes two inputs p and y. U interprets p as a 
program and simulates p on input y. The Kolmogorov complexity of a binary 
string x, given y, is defined as 

C(xjy) = min{l(p) : U(p, y) = x }, 

where l(p) denotes the length (number of bits) of p. (If k is a number then jkj 
denotes the absolute value of k. If A is a set then d(A) denotes the cardinality of 
A, that is, the number of elements in it.) Thus C(xjy) is the minimum number 
of bits in a description from which x can be effectively reconstructed, given y. 
Let C(x) = C(xjt), where t denotes the null string. 

By a simple counting argument, the following claim can be easily proved. 

Claiin 1 For each n and c < n, any y, there are at least 2n - 2n-c strings of 
length n with the property 

C(xjn, y) 2: n - c. (1) 

We call a string c-random if it satisfies C(xjn, y) 2: n - c. An undirected 
graph G on n nodes can be encoded by n(n - 1)/2 bits, each bit indicating 
whether a certain edge is present. We say a graph G of n nodes is c-random if 
C(Gjn) 2: n(n - 1)/2 - c, here we use G to denote its own encoding, and c can 
be generalized to a function of n. 

We avoid the question of in which cases of average-case analysis one can 
apply Kolmogorov complexity. To this question, the authors would like to know 
the answer as well. We instead give a few successful applications, some without 
detailed proofs and some with detailed proofs. 

2 Shortest Common Supersequences and Longest 
Common Subsequences 

Kolmogorov complexity was used to analyze the average-case complexity of some 
simple Longest Common Subsequence (LCS) and Shortest Common Superse
quence (SCS) algorithms in [9] and [11]. Given n sequences, an LCS is the longest 
sequence s such that s is a subsequence of each of these n sequences; an SCS is 
the shortest sequence S such that each of these n sequences is a subsequence of 
s. 

In molecular biology, a longest common subsequence (of some DNA se
quences) is commonly used as a measure of similarity in the comparison of 
biological sequences. In text editing, the "diff" command in UNIX system de
pends on the computation of LCS as well. Applications of SCS include data 
compression and planning [9]. 
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In [11], it is proved that LCS and SCS can't be reasonably approximated in 
the worst case unless NP=P. However, practical cases are usually much easier. 
It is meaningful to do average case analysis of LCS and SCS algorithms. 

The following theorem ([11]) gives the average case complexity of a trivial 
algorithm for LCS. We choose n independent Kolmogorov random sequences, 
and analyze an algorithm on these fixed sequences. Then, because most sets of 
sequences are independently random, this gives the average case complexity over 
all sets of sequences. If Sis a set of sequences, let LCS{S) denote the length of 
the LCS of S. The proof of the following theorem is long, it can be found in [11] 
or [17]. 

Theorem2. Given a set S of n (or p(n)) sequences of length n, the following 
algorithm Long-Run finds an LCS of length LCS(S) - O(LCS(S)~+•) for any 
€ > 0, on the average. 

Algorithm Long-Run. Find maximum m such that am is a common subse
quence of all input sequences, for some a EE. Output am as the approximation 
ofLCS. 

As a related problem, the expected LCS length of two sequences has been 
open for many years and there still is a large gap between the current best 
upper and lower bounds [6]. Arratia and Steele conjecture that the tight bound 
is 1 ~Ji; [22]. The following corollary gives a new simple proof of the upper bound 
in [6]. 

Corollary3. Expected length of the LCS of two random binary sequences of 
length n is upper bounded by 0.867n. 

Proof. Let x and y be Kolmogorov random binary strings of length n, z an LCS 
of x and y. Suppose lzl = en for some c $ l. We can encode x (and y) using z 
as above. I.e., x is represented as a binary string x' of length n in which each 1 
means an occurrence of a bit of z in x and 0 means otherwise, from left to right. 
From z and x' (or y') a simple algorithm outputs x (or y). 

Since x' contains en l 'sand (1 -c)n O's, there are totally n!/(cn)!((l - c)n)! 
different x'. So an x' requires logn!/(cn)!((l-c)n)! bits to encode. By Stirling's 
formula, we have 

lognl/(cn)!((l - c)n)! ~ n log n - en log en - (1 - c)n log(l - c)n 

=-en loge - (1 - c)n log(l - c). 

Since x and y are random, en - 2cn log c - 2( 1 - c )n log( 1 - c) ~ 2n. Solving 
c - 2 - clogc - (1 - c)log(l - c) = 0, we get c ~ 0.867. 0 

Now we consider the SCS problem. If S is a set of sequences, let SCS(S) 
denote the length of the SCS of S. 

Theorem4. For any set S containing n (or p(n)) sequences of length n, the 
following algorithm MaJ°ority-Merge produces a common supersequence of length 
SCS(S) + O(SCS(S)6 ), on the average, where o = 1/../2 ~ 0.707. 
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Algorithm Majority-Merge 

l. Input: n sequences, each of length n. Initial supersequence: s := null string; 
2. Let a be the majority among the leftmost letters of the remaining sequences. 

Set s := sa and delete the front a from these sequences. Repeat this step 
until no sequences are left. Output s. 

The idea of proving this theorem is as follows. Fix a Kolmogorov random 
string x of length n2 over E and cut x into n equal length pieces x 1, ..• , Xn. 

This gives us n independent Kolmogorov random sequences. Consider the input 
set S = {x1, ... , xn}. Since Majority-Merge produces a common supersequence 
oflength ( k + 1)n/2+0( fa) on set S [9], it is sufficient to show that SCS( S) ~ 
( k + 1) n /2 - 0( n°). This is achieved as follows: Take an SCS s of S and consider 
the procedure A that produces s on set S by scanning the input sequences from 
left to right and merging common letters (in the order that the letters appear in 
s). We can prove that on the average A can merge at most 2n/(k + 1) + O(n°) 
letters in a step on input S, where 6 = ../2/2 ~ 0.707, otherwise we can compress 
x by at least n 2' 0 letters, where<= 6 - 0.5 ~ 0.207. Since totally the sequences 
X1, ..• , Xn contain n2 letters, the length of the SCS is at least ( k + 1 )n/2 -0( n°). 

Therefore, algorithm Majority-Merge produces a common supersequence of 
length SCS(S) + O(SCS(S)0). This is also its average-case performance since 
almost all inputs are random. The complete proof can be found in [11]. 

3 Heapsort 

Heapsort is a widely used sorting algorithm. It is the first algorithm that sorts 
n numbers in-place with running time guaranteed to be of order n log n. Here 
'in-place' means it does not require extra nontrivial memory space. The method 
was first discovered by J.W.J. Williams [24] and subsequently improved by R.W. 
Floyd [8]. 

The Heapsort algorithm works in two steps. First it converts the input into a 
heap. Then it sorts the input by repeatedly deleting the root (smallest element) 
and restoring the heap. It is well-known that we can build a heap from an array 
of n integers in O(n) time. The second stage runs inn rounds to empty the heap. 
Each round takes between 0( 1) and 2 log n steps for restoring the heap, but the 
precise bound was unknown. 

To restore a (min-)heap after the root key is deleted, the Williams' original 
algorithm takes the rightmost element from the bottom of the heap, puts it in 
the root, then it pushes this element down (swap it with the larger child) the 
heap, making two comparison each step, until this element is smaller than both 
of its children. This process takes 2 logn steps in the worst case. 

Floyd's algorithm compares the two children of the root, promotes the larger, 
and keeps on doing this until reaching the bottom, and then it fills the empty 
spot with the rightmost element in the bottom, and pushes this element back 
up the tree until it is greater than its father (precisely at the same position as 
in Williams' algorithm). The worst case of Floyd's algorithm is also 2 log n. 
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Despite Heapsort's prominence and serious efforts, the average case of Heap
sort was open for 30 years. People tried to give probabilistic analysis of these two 
algorithms, but after 1 round of update, the probabilistic distribution changes. 

Only recently Schaffer and Sedgewick [21] succeeded in giving a precise analysis 
of its average case performance. I. Munro [19] suggested a remarkably simple 

solution using incompressibility. The idea is as follows. Fix a random heap H of 
Kolmogorov complexity approximately n logn. For each of the n heap-restoring 
rounds, record the position where the last element finally resides in H. This 

position can be recorded by a 0-1 sequence encoding a path from the root to the 

position, with 0 indicating left branch and 1 indicating right. Each sequence is 
of length up to log n. It is easy to see that one can reconstruct H from these n 

sequences. Thus, the average length of these sequences must be approximately 
log n (because Kolmogorov complexity of H is at least n log n). Since most heaps 
are random, averaging, we conclude that Floyd's algorithm runs in log n steps 

on average, and Williams' algorithm uses 2 log n steps on average. 

4 N ni Distance 

In computational biology, evolutionary trees are represented by unrooted un
ordered binary trees with uniquely labeled leaves and unlabeled internal nodes. 

Measuring the distance between such trees is useful in biology. A nearest neigh

bor interchange ( nni) operation swaps two subtrees that are separated by an 
internal edge (u,v), as shown in Figure I. See [15] for relevant references. 

Fig. 1. The two possible nni operations on an internal edge ( u, v). 

For example, in Figure 2 it takes 2 nni moves to convert (i) to (ii). 
K. Culik II and D. Wood [7], improved by [15], proved that n log n + O(n) 

nni moves are sufficient to transform a tree of n leaves to any other tree with 
the same set of leaves. But the question is, is this the best upper bound? D. 
Sleator, R. Tarjan, and W. Thurston [23] proved an il(nlogn) lower bound for 

most pairs of trees, essentially using the incompressibility method. (Note, they 
proved their results for a more general graph transformation system.) 

The idea behind the proof is simple. Consider T1 and T2 such that C(T1 IT2 ) 2: 
n logn. If we can encode each nni move with 0(1) bits, then there must be at 

least D( n log n) nni moves since otherwise C(T1 IT2 ) < n log n. It is the encoding 
process that is hard and we refer the reader to [23]. 

. In [14], we applied similar proof techniques to computational geometry study
mg the average number of edge-flips required to transform a triangulation to a 

Delaunay triangulation and related problems. 
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Reptilian Ancestor 

(ii) 

Fig. 2. The nni distance between (i) and (ii) is 2 

5 Compact Routing in Computer Networks 

In very large networks like the global telephone network or the internet the mass 
of messages being routed creates major bottlenecks degrading performance. In 
this section, we are interested in determining the optimal space to represent rout
ing schemes in communication networks on the average for all static networks. 
We follow [3). 

A universal routing strategy for static communication networks will, for every 
network, generate a routing scheme for that particular network. Such a routing 
scheme comprises a local routing function for every node in this network. The 
routing function of node u returns for every destination v :f:. u an edge incident 
to u on a path from u to v. This way, a routing scheme describes a path, called 
a route, between every pair of nodes u, v in the network. 

It is easy to see that we can do shortest path routing by entering a routing 
table in each node u which for each destination node v indicates to what adjacent 
node w a message to v should be routed first. If u has degree d, it requires a 
table of at most n log d bits, and the overall number of bits in all local routing 
tables never exceeds n2 log n. 

Several factors may influence the cost of representing a routing scheme for a 
particular network. We use a basic model and refer the readers to [3] for other 
variations. Here, we consider point to point communication networks on n nodes 
described by an undirected labeled graph G = (V, E), where V = {l, ... , n}. 
Assume that the nodes know the identities of their neighbors. This information 
is for free. 
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Theorem 5. For shortest path routing in O(log n)-mndom gmphs local routing 
functions can be stored in 6n bits per node. Hence the complete routing scheme 
is represented by 6n2 bits. 

Proof. The next two lemmas can be proved easily by Kolmogorov complexity, 
we leave the proofs to the readers. 

Lemma6. All o(n)-mndom labeled graphs have diameter 2. 

Lemma 7. Let c be a fixed constant. If G is a clogn-random labeled graph, then 
from each node i all other nodes are either directly connected to i or are directly 
connected to one of the least (c+3)logn nodes directly adjacent to i. 

Let G be an O(log n )-random graph on n nodes. By Lemma 7 we know that 
from each node u we can shortest path route to each node v through the least 
O(logn) directly adjacent nodes of u. By Lemma 6, G has diameter 2. Once the 
message reached node v its destination is either node v or a direct neighbor of 
node v (which is known in node v by assumption). Therefore, routing functions 
of size O(nloglogn) can be used to do shortest path routing. We can do better 
than this. 

Let Ao ~ V be the set of nodes in G which are not directly connected to u. 
Let v1, ... , Vm be the O(logn) least nodes directly adjacent to node u, Lemma 7, 
through which we can shortest path route to all nodes in A0 • For t = 1, 2 ... , l 
define At = {w E Ao - LJ!:~ A, : (vt, w) E E}. Let mo = d(Ao) and define 
mt+1 = mt - d(At+1). Let l be the first t such that mt < n/ loglogn. Then 
we claim that Vt is connected by an edge in E to at least 1/3 of the nodes not 
connected by edges in E to nodes u, v1, ... , Vt-1 · 

Claim 8 d(At) > mt-1/3 for 1 ::; t ::; l. 

Proof. Suppose, by way of contradiction, that there exists a least t < l such that 
ld(At) - mt-i/21;:::: mt-i/6. Then we can describe G, given n, as f;llows. 

- This discussion in 0(1) bits. 
- Nodes u, Vt in 2 log n bits, padded with O's if need be. 
- The presence or absence of edges incident with nodes u, vi, ... , Vt-l in r = 

n - 1 + · · · + n - (t - 1) bits. This gives us the characteristic sequences of 
Ao, ... , At-1 in V, where a characteristic sequence of A in V is a string of 
d(V) bits with, for each v E V, the vth bit equals 1 if v EA and the vth bit 
is 0 otherwise. 

- A self-delimiting description of the characteristic sequence of At in Ao -
u::~ A., using Chernoff's bound, in at most mt-l - {1/6) 2mt_ 1 loge+ 
O(logmt-1) bits. 

- The description E(G) with all bits corresponding to the presence or absence 
of edges between Vt and the nodes in Ao-U~:~ A, deleted, saving mt-l bits. 
Furthermore, we delete also all bits corresponding to presence or absence of 
edges incident with u, v1, ... , Vt- l saving a further r bits. 
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This description of G uses at most 

n(n - 1)/2 + O(logn) + mi- 1 - (1/6) 2mt_ 1 loge - mt-l 

bits, which contradicts the O(log n)-randomness of G because mi-l > n/ log log n. 

Recall that l is the least integer such that m1 < n/loglogn. We construct 
the local routing function F(u) as follows. 

A table of intermediate routing node entries for all the nodes in Ao in in
creasing order. For each node w in LJ~=l A, we enter in the wth position 
in the table the unary representation of the least intermediate node v, with 
( u, v), ( v, w) E E, followed by a 0. For the nodes that are not in LJ~=l A, 
we enter a 0 in their position in the table indicating that an entry for this 
node can be found in the second table. By Claim 8, the size of this table is 
bounded by: 

I oo 

n + 2:(1/3)(2/3)'- 1sn '.Sn+ L(l/3)(2/3)'-1sn '.S 4n 
s=l •=1 

A table with explicitly binary coded intermediate nodes on a shortest path 
for the ordered set of the remaining destination nodes. Those nodes had a 
0 entry in the first table and there are at most m1 < n/ log log n of them, 

namely the nodes in Ao - LJ~=l A,. Each entry consists of the code of length 
log log n + 0 ( 1) for the position in increasing order of a node out of v1 , ... , Vm 

with m = O(logn) by Lemma 7. Hence this second table requires at most 
2n bits. 

The routing algorithm is as follows. The direct neighbors of u are known in node 
u and are routed without routing table. If we route from start node u to target 
node w which is not directly adjacent to u, then we do the following. If node w 

has an entry in the first table then route over the edge coded in unary, otherwise 
find an entry for node w in the second table. 

Altogether, we have d(F( u)) '.S 6n. Slightly more precise counting and choos
ing l such that m 1 is the first such quantity< n/logn shows d(F(u)) '.S 3n. 

A matching lower bound of D(n2 ) can also be proved. 

Theore1119. For shortest path routing in o(n)-random graphs each local routing 

function must be stored in at least n/2 - o(n) bits per node. Hence the complete 

routing scheme requires at least n 2 /2 - o( n 2) bits to be stored. 

The results on Kolmogorov random graphs above have the following corollar
ies. Consider the subset of (3 log n)-random graphs within the class of O(log n)
random graphs on n nodes. They constitute a fraction of at least (I - l / n3 ) 

of the class of all graphs on n nodes. The trivial upper bound on the minimal 
total number of bits for all routing functions together is 0 ( n 2 log n) for shortest 
path routing on all graphs on n nodes. Simple computation of the average of the 
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total number of bits used to store the routing scheme over all graphs on n nodes 
shows that both Theorem 5 and Theorem 9, hold for the average case. 

The average case consists of the average cost, taken over all labeled graphs of 
n nodes, of representing a routing scheme for graphs over n nodes. For a graph 
G, let T( G) be the number of bits used to store its routing scheme. The average 
total number of bits to store the routing scheme for routing over labeled graphs 
on n nodes is 2: T( G) /2n(n-I)/2 with the sum taken over all graphs G on nodes 
{ 1 , 2, ... , n}. That is, the uniform average over all the labeled graphs on n nodes. 

6 Addition in log2 n Steps on Average 

Half a century ago, Burks, Goldstine, and von Neumann obtained a log2 n ex
pected upper bound on the 'longest carry sequence' for adding two n-bit binary 
numbers [2]. In computer architecture design, efficient design of adders directly 
affects the length of CPU clock cycle. The following algorithm (and its analysis 
using [2]) for adding two n-bit binary numbers x and y is known to the computer 
designers and can be found in standard computer arithmetic design books such 
as [10]. 

l. S := x $ y (add bit-wise ignoring carries); C :=carry sequence; 
2. while C :j::. 0 do 

S := SEB C; 
C := new carry sequence. 

Let's call this 'no-carry adder' algorithm. The expected log2 n carry sequence 
length upper bound of [2] implies that this algorithm runs in 1 + log2 n expected 
rounds (step 2). It turns out that this algorithm is the most efficient addition 
algorithm in the expected case currently known. Of course, it takes n steps in 
the worst case. This algorithm, in the average case, is exponentially faster than 
the trivial linear time 'ripple-carry adder' and it is two time faster than the 
well-known 'carry-lookahead adder'. 

In the ripple-carry adder, the carry ripples from right to left, bit by bit, and 
hence it takes D(n) steps to compute the summation of two n-bit numbers. 

The carry-lookahead adder is based on a divide and conquer algorithm which 
adds two n-bit numbers in l + 2 log2 n steps. It is used in nearly all modern com
puters. For details about both adders, see any standard computer architecture 
textbook such as [10, 5]. 

The results in [2], [l], and [20] imply that the no-carry adder has expected 
tix:ne of at most 1 + log2 n. But these proofs are all nontrivial probabilistic anal
ysis. 

[4] has given an almost trivial and elementary proof of the same fact using 
Kolmogorov complexity. We present their proof here. 

Theorelll 10. The no-carry adder has the average running time of at most 1 + 
log2 n. 
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Proof. For any binary string input x and y such that l(x) = l(y) = n, if the 
no-carry adder uses t rounds (i.e., excuting Step 2 fort times), then x and y can 
be written as 

x = x'bulx", y = y'buiy", 

where l(u) = t - 1, l(x') = l(y'), bis 0 or I, and u is the complement of u. Now 
we can describe x using y, n, q and the concatentation of the following binary 
strings: 

- the position of u in y (in exactly log2 n bits by padding), 
- x'x". 

Here the program q contains information telling U how to compose x from the 
given information. Since the above two strings have total length n-t- l +log2 n, 
the value t can be deduced from n and input length. So t + l bits of x are 
saved at the cost of extra log2 n bits. See [4] for more careful discussion. Thus 
C(xln, y, q) ~ n - t - 1 + log2 n. Therefore, for any string x of length n with 
C(xln, y, q) = n - i, the algorithm must stop in at most log2 n + i - I steps on 
input x and y. 

Since there are only 2n-i programs of length n - i. there are at most 2n-i 

strings x of length n with Kolmogorov complexity C(xln, y, q) = n - i. Let p; 
denote the probability that C(xln,y,q) = n - i for l(x) = n. Then Pi:::; 2; and 
:Z:: p; = l. Thus the average running time for each y is bounded above by 

n 

I: p; ( i - 1 + log n) :::; l + log 11 

i:2-logn 

Since this holds for every y, this is also the average running time of the algorithm. 

7 Average-Case Complexity Equals Worst-Case 
Complexity Under Universal Distributions 

Consider a Turing machine such that the set of programs for which it halts is 
prefix-free, that is, no such program is the proper prefix of another such program. 
Such self-delimiting Turing machines compute all partial recursive functions and 
contain an appropriate universal machine U'. Similar to before we can define 
Kolmogorov complexity with respect to U' which is now induced by a set of 
prefix-free programs. The resulting prefix complexity /{ ( x) is slightly larger than 
C(x), that is, C(x) $ K(x) ~ C(x) + 2 logC(x). 

The universal distribution m defined by m(x) = 2-K(x) is one of the foremost 
notions in all of the the theory of Kolmogorov complexity. In [17] we give many 
remarkable properties and applications for this fundamental notion. It multi
plicatively dominates all enumerable distributions (and therefore also all com
putable ones). Therefore, a priori it maximizes ignorance by assigning maximal 
probability to all objects. In [16, 17] we showed that the average-case computa
tional complexity of any algorithm whatsoever under the universal distribution 
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turns out to be of the same order of magnitude as the worst-case complexity. 
This holds both for time complexity and for space complexity. 

For many algorithms the average-case running time under some distribu
tions on the inputs is less than the worst-case running time. For instance, using 
(nonrandomized) Quicksort on a list of n items to be sorted gives under the uni
form distribution on the inputs an average running time of O(n logn) while the 
worst-case running time is D(n2 ). The worst-case running time of Quicksort is 
typically reached if the list is already sorted or almost sorted, that is, exactly in 
cases where we actually should not have to do much work at all. Since in practice 
the lists to be sorted occurring in computer computations are often sorted or 
almost sorted, programmers often prefer other sorting algorithms which might 
run faster with almost sorted lists. Without loss of generality we identify inputs 
oflength n with the natural numbers corresponding with binary strings of length 
n. 

Definition 11. Consider a discrete sample space N with probability density 
function P. Let t(x) be the running time of algorithm A on problem instance 
x. Define the worst-case time complexity of A as T(n) = max{t(x) : l(x) = n}. 
Define the ?-average time complexity of A 

T(nlP) = Ei(x)=n P(x)t(x). 
Ei(x)=n P(x) 

We compare the average time complexity for Quicksort under the Uniform Distri
bution L(x) and under the Universal distribution m(x). Define L(x) = 2- 21 (xJ- 1 , 

such that the conditional probability L(xll(x) = n) = 2-n. We encode the list 
of elements to be sorted as nonnegative integers in some standard way. 

For Quicksort, T(nlL) = E>(nlogn). We may expect the same complexity 
under m, that is, T(nlm) = D(nlogn). But Theorem 12 will tell us much more, 
namely, T(nim) = D(n2). Let us give some insight why this is the case. 

With the low average time complexity under the Uniform Distribution, there 
can only be o((logn)2n /n) strings x of length n with t(x) = D(n2 ). Therefore, 
given n, each such string can be described by its sequence number in this small 
set, and hence for each such x we find K (x In) :::; n - log n + 3 log log n. (Since n 
is known, we can find each n - k by coding k self-delimiting in 2 log k bits. The 
inequality follows by setting k 2:: log n - log log n.) 

Therefore, no really random x, with K(xln) ;:=:: n, can achieve the worst-case 
run time D(n2). Only strings x which are nonrandom, with J{(xln) < n, among 
which are the sorted or almost sorted lists, and lists exhibiting other regulari
ties, can have il(n2 ) running time. Such lists x have relatively low Kolmogorov 
complexity I<(x) since they are regular (can be shortly described), and therefore 
m(x) = 2-K(x) is very high. Therefore, the contribution of these strings to the 
average running time is weighted very heavily. 

Theorem 12 m-A verage Complexity. Let A be an algorithm with inputs i11 
N. Let the inputs to A be distributed according to the universal distribution ui. 
Then, the avemge case time complexity is of the same order of magnitude as the 
corresponding worst-case time complexity. 
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Proof. We define a probability distribution P(x) on the inputs that assigns high 
probability to the inputs for which the worst-case complexity is reached, and 
zero probability for other cases. 

Let A be the algorithm involved. Let T(n) be the worst-case time complexity 
of A. Clearly, T(n) is recursive (for instance by running A on all x's of length 
n). Define the probability distribution P(x) by 

Step 1 For each n = 0, 1, ... , set an := I:i(r)=n m(x). 

Step 2 If l(x) = n and x is lexicographically least with t(x) = T(n) then 
P(x) :=an else P(x) := 0. 

It is easy to see that an is enumerable since m(x) is enumerable. Therefore, P(x) 
is enumerable. Below we use a fact from [17], Theorem 4.1 and the following 
Example 4;5, that cpm(x) 2: P(x), where cp = I<(P) + 0(1) is a constant 
depending on P but not on x. We have defined P(x) such that I:xE.Af P(x) 2: 
I:xE.N" m(x), and P(x) is an enumerable probability distribution. The average 
case time complexity T(nlm) with respect to them distribution on the inputs, 
is now obtained by 

T(nlm) = L m(x)t(x) 
l(x)=n 2=1(x)=n m(x) 

> ]_ L P(x) T(n) 
- Cp l(x)=n I:i(x)=n m(x) 

I ~ P(x) 1 
= - L.J I: ( ) T(n) = -T(n). 

Cp !( ) p X Cp 
l(x)=n x =n 

The inequality T(n) 2: T(nlm) holds vacuously. 

The analogue of the theorem holds for other complexity measures (like space 

complexity), by about the same proof. Further research has been done on related 
measures that exhibit similar behaviour. See for example (18, 13, 12]. 
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