
RELATIVIZED OBLIVIOUSNESS *)

(Extended abstract)

Paul M.B. Vit~nyi

Mathematisch Centrum

Amsterdam, The Netherlands

ABSTRACT

Relativized obliviousness is introduced to capture the intuitive idea, that some

problems allow fastest computations which are more oblivious than do other problems,

without any of such computations being oblivious in the standard sense. It is shown

that each increase in the obliviousness of an algorithm (in several different well-

defined meanings), for the solution of some problems, may necessarily require an in-

crease in computation time from T(n) steps to T(n) log T(n) steps. There is, however,

no problem for which a total oblivious algorithm requires more than order T(n) log T(n)

steps, if the best algorithm for it runs in T(n) steps. We use on-line Turing machines

as model of computation.

i. INTRODUCTION

An oblivious on-line Turing machine is one whose head movements are fixed func-

tions of time, independent of the actual inputs to the machine. In this paper we in-

troduce the notion of relativized obliviousness, to capture the nature of algorithms

(and problems) which seem partly oblivious and partly not. The results show that a

small difference in obliviousness between algorithms used for the solution of a given

problem may incur an increase in running time which is as great as the penalty for

using a completely oblivious algorithm.

The concept of an oblivious algorithm is interesting for several reasons. Just

as a machine model provides a certain formalization of the idea of an algorithm, so

does the notion of an oblivious machine provide a certain formalization for the notion

of an oblivious algorithm. Apparently, the concept was first introduced by PATERSON,

M. FISCHER and MEYER [19743 to capture the notion of an algorithm being independent

of the actual data. For instance, a table look-up by sequential search can be prog-

rammed obliviously (reading to the end-of-table after having found the looked-for

item), while a binary search cannot be, since the number of items examined is small

compared to the entire table and which items are examined depend on the item sought.

Oblivious algorithms have been considered in a growing number of papers, since they

allow us easier to derive lower bounds on time complexity of such computations, or

time-space trade-offs, for concrete problems like sorting, searching, multiplication

.)
%~nis paper is registered at the Mathematical Centre as report IW 137/80

666

of binary numbers, matrix inversion and so on. (See the recent conference proceedings

of e.g. FOCS and STOC meetings.) However, there are, for non-oblivious algorithms,

very often but a few places in the computation where nonoblivious behaviour is re-

quired; but inbetween these places the computation proceeds obliviously. Hence the

machine performing the computation (and the nature of the problem it solves) is obliv-

ious to certain parts or aspects of the problem presented. In the sequel we select

from the possiblities which suggest themselves, to make the idea of relativized (or

partial) obliviousness concrete, the following: obliviousness relative to a subset
w

of E , where ~ is the input alphabet; obliviousness relative to a subset of E (through-

out the input-string, in a sense to be defined); the degree k of nonobliviousness,

where k is the least number of disjoint subsets in which ~ can be partitioned so that

the computation proceeds oblivious relative to each such subalphabet; and finally a

finite bound on the total number of nonoblivious moves the machine can make during

the processing of the input. We indicate how these different notions of relativized

obliviousness and degrees of nonobliviousness are related and derive the following

main results.

For each k > 1 there is language O k which can be recognized in real-time by a

k-nonoblivious on-line Turing machine, but for any k' < k the fastest on-line k'-

nonoblivious T~ring machine recognizes O k in time 0(n log n).

For each k > 0 there is a language N k which can be recognized in real-time by an

on-line Turing machine which makes at most k nonoblivious moves during the processing

of an input, but for any k' < k the fastest on-line Turing machine making at most k'

nonoblivious moves during the processing of an input recognizing N uses time 0(n log n).

This paper is an extended abstract of a preliminary investigation; complete

proofs, additional results as well as justification of the naturalness of the chosen

concepts by illustrating them in relation to some storage-retrieval problems will be

given in a final version to appear elsewhere.

2. RELATIVIZED OBLIVIOUSNESS

We assume the reader to be familiar with the concepts of k-tape on-line deter-

ministic Turing machines, real-time computations on such machines etc., as used by

e.g.P. FISHER, MEYER and ROSENBERG [19721. Recall, that such machines have a separate

one-way read-only input tape, and a one-way write-only output tape, apart from the k

storage tapes. This is the model of computation we shall use throughout the paper,

and is intended by the unqualified use of the term "Turing machine", although the

definitions and results below hold also for more sophisticated models such as multi-

head Turing machines with jumps. We say that a Turing machine is oblivious if the

movement of head i at step t, i = 1,2, k when we talk about a k-tape machine, de-

pends only on i and t, for each storage tape head i. Likewise, the movements of the

input tape head and output tape head at step t depend on t only. One may think of

the head movements as being controlled by a second autonomous machine which has

667

storage tapes but no input or output tapes. In the introduction we mentioned some

grounds to refine the notion of nonobliviousness by identifying large oblivious parts

of a computation which is not oblivious altogether. Below we define several concepts

of relativized obliviousness, and of measures of degrees of nonobliviousness, all of

which definitions hold for each model of computation for which obliviousness is de-

fined.

Let ~ be a Turing machine with input alphabet Z. By grouping together equal

length input words, which cause M to execute identical sequences of head movements

(~aking into consideration the movements of the input tape head, the storage tape
w

heads, and the output tape head), ~4 induces an equivalence relation z~4 on Z .

DEFINITION i.

(i) s {A4 e.

(ii) xa E~ yb, x,y e ~ and a,b ~ E, if x ~ y and ~4 makes exactly the same sequence

of head movements from shifting its input tape head to a till just before it

shifts its input tape head to the right of a, on an input word starting with

xa, as it does from shifting its input tape head to b till just before it shifts

its input tape head to the right of b, on an input word starting with yb.

(iii) For no x,y ~ E it holds that x .~4 y if not by (i)-(ii).

It is easy to see that E~4 is an equivalence relation on E , and that it can only

hold between equal length words. In this paper we consider on-line computations only.

In defining a similar notion for off-line computations, or to capture some more as-

pects of relativized obliviousness of on-line computations, we may need to add the

following requirement to (ii):

(*) x ---,, y iff for all z £ Z holds xz -11 yz.
H

This has the effect of turning ~ into a right congruence relation, and means that if

x H~4 y then the future head movements of ~ do not depend on whether ~4 first processes

x or y. Our main results, however, do not depend on whether or not restriction (*)

is included in (ii), since they deal with the notion introduced in definition 3 below,

which essentially is concerned with infinite words, and therefore is invariant under

this restriction.

DEFINITION 2. A Turing machine ~4 with input alphabet E is oblivious relative to W,
w

W ~ Z , if for all words x,y ~ W, Ixl = lyl, holds x ,~ y. For short we call such an

M: W-oblivious.

DEFINITION 3. A Turing machine ~4 with input alphabet E is oblivious relative to the

alphabet A, A ~ Z, if
w w

(i) h is a homomorphism h: E ÷ ({~} u (~-A)) defined by h(a) = ~ for all a e A

and h(a) = a for all a c Z-A;

668

* h-lh(w) (ii) for all w E Z , ~ is -oblivious.

For short we call such an ~: A-alphabet-oblivious.

Note that alphabet-obliviousness is a weaker notion than the corresponding monoid

obliviousness. Thus, if ~ is A-alphabet-oblivious, then ~ is also A*-oblivious. But

may very well be A*-oblivious without being also A-alphabet-oblivious for ~ c Z.

We now relate the above defined relativized obliviousness to the earlier concepts.

- M is oblivious iff ~4 is Z-alphabet-oblivious iff ~4 is E*-oblivious, for Z the input

alphabet of M.

- If {a} is a singleton subset of the input alphabet of ~, then ~ is both {a}-

alphabet-oblivious and {a}e-oblivious.

- The input monoid Z can contain infinitely many distinct subsets Wi, i c ~, such

that a given machine is W.-oblivious for each i e ~, but not W-oblivious for any
1

W c Z* such that W. c W for some i e i~.
1

- The input alphabet Z can contain at most #Z subalphabets A. such that a given
1

machine is a.-oblivious for each i, i ~ i ~ #~. This fact will form the basis for
l

measuring degree of nonobliviousness below.

DEFINITION 4. A Turing machine ~ with input alphabet Z has degree of nonobliviousness

k, or is k-nonoblivious, if

(i) E can be partitioned into k disjoint nonempty subsets al,a2,...,Ak, such that

M is Ai-alphabet-oblivious for each i, i ~ i ~ k;

i i (ii) Z cannot be partitioned into k' < k disjoint nonempty subsets AI,A2,..,,A~,,

such that ~ is A'.-alphabet-oblivious for all i, I -< i <- k'.
1

Hence every Turing machine M with input alphabet Z has a degree of nonoblivious-

hess between i (~ is oblivious) and #~ (that is, M is totally nonoblivious). PIPPENGER

and M. FISCHER [1979] showed that any multitape Turing machine can be simulated on-

line by an oblivious 2-tape Turing machine in time 0(n log n) for n steps. They showed

that this result cannot be improved in general, since there is a language L which is

recognized by a l-tape real-time Turing machine ~, and any oblivious Turing machine

M' recognizing L must use at least order n log n steps. B~low we refine this result

by showing that it holds for arbitrary small differences in degree of nonobliviousness.

(The time complexity expressed is the worst-case complexity.)

THEOREM i. For each k > i there is a language O k which can be recognized in real-time

by a Turing machine ~ which is k-nonoblivious; any k'-nonoblivious Turing machine

recognizing O k has to use at least order n log n steps to do so in case k' < k. More-

over, for each k' < k there are k'-nonoblivious Turing machine which recognize O k in

time 0(n log n).

k
PROOF SKETCH. First we define O k . O k is over the alphabet Zk = U A i where A. =

i=i l
{ai, ai } for all i, I ~ i ~ k.

O k is defined in terms of a k-nonoblivious machine ~4k which recognizes it in real-

669

time using k stacks in which each cell may contain a 0 or a i. Initialize all k

stacks to empty and the finite control to the start state. Start reading, one symbol

.. . At each step ~k processes the read input at a step, the input word sls2...s i .s n

symbol as follows: (at the ith step Mk reads s i)

(i) Say that the input symbol s i ~% reads at the i th step is in A. (i ~ i ~ n,
3

I S j ~ k), then this symbol s. is pushed on all stacks h, i ~ h < j and
l

j < h ~ k, as a 0 or a i subject to the following interpretation. The first

symbol s I of the current input word sls2...s n is in this computation henceforth

interpreted as a I, and its counterpart in the subalphabet is hails from, say

A~, is henceforth interpreted as 0. The first symbol i~ k meets, subsequent to

processing s I in the process of recognizing sls2...Sn, which is unequal to sl,

say s £ A~,, is henceforth ihterpreted as a 0 while its counterpart in A~, is

interpreted as a i. For the remaining symbols in Ek-(A~uA~,) the unbarred symbols

are interpreted as a 1 and the barred symbols as a 0.

(ii) M k pops stack j. If the popped symbol was a 0 then ~ outputs a 0; if the popped

symbol was a 1 then ~ outputs a i; if the stack is empty then ~k outputs a 0.

The language O k consists of those words w ~ ~k' for which ~4k outputs a I when

it processes the last symbol of w.

CLAIM i. ~k is k-nonoblivious, i.e., by the partition of Zk into AI,A2,...,A k.

CLAIM 2. O k is not recognized by any k'-nonoblivious Turing machine with k' < k in

time less than order n log n.

PROOF SKETCH OF CLAIM 2. Assume that O k is recognized by a k'-nonoblivious Turing

machine i~ with k' < k. Then there is a partition of Zk into disjoint nonempty sub-

sets ~1,f2,...,Fk, such that ~ is F.-alphabet-obliviousl for i = 1,2,...,k'. Since Z k

contains 2k elements, there must be a su~set, say Fj (i ~ j ~ k'), which contains at

least 3 distinct letters, say sl, s 2 and s 3. Now change M into a machine M* recognizing

O k N {sls2s3s3}{Sl,S2,S3}* by checking for inclusion in S = {sls2s3s3}{sl,s2,s3}* with

the finite control. Since k ~ 2, either two out of sl,s2,s 3 hail from the same sub-

alphabet A £ {All I ~ i s k} while the third comes from Z-A, or all 3 of sl,s2,s 3

come from distinct subalphabets A,A',A" E {Ail I < i ~ k}. Hence we can select two

elements~ say sl,s 2, which represent a push I and push 0 respectively on some stack

in Mk' while the remaining s 3 represents a pop from that stack. Since M is by assump-

tion {sl,s2,s3}-alphabet-oblivious , on the input ensemble {sl,s2, s3}* its head move-

ments are independent of the received input symbols, but according to the pushing

and popping regime of sl,s 2 and s 3 it receives, it must store and retrieve informa-

tion in an arbitrary and continuous manner. Using an elegant counting argument intro-

duced by COOK and AANDERAA [19691, called an overlap argument, applicable to computa-

tions where heavy use is made continuously of previously read-in information, we can

670

prove that M*, and hence M, must spend at least order n log n steps on inputs of

length n in S.

END of Proof sketch of Claim 2.

Since PIPPENGER and FISCHER [19791 showed that each on-line Turing machine can

be simulated on-line by a 2-tape oblivious Turing machine in time 0(n log n), their

result proves the last sentence of Theorem I; and Claims 1 and 2 prove the first

sentence.

The reader will notice that we actually showed that no k'-nonoblivious Turing

machine can on-line simulate certain aspects of k pushdown stores in less than order

n log n time for k' < k. The whole result is perhaps more elegantly worded in terms

of transducers or abstract storage units instead of on-line language recognizers.

It would then read something like:

" There is an abstract storage unit consisting of k pushdown stores with a restricted

set of possible commands, viz., pop stack j and push all other stacks (i ~ j ~ k),

which is k-nonoblivious. Each k'-nonoblivious abstract storage unit (Turing machine-

like) which simulates it on-line must use at least order n log n time to do so in

case k' < k "

COROLLARY 2. For each k > i and each i (i ~ i < k) there is a k-nonoblivious Turing

machine such that any (k-i)-nonoblivious Turing machine simulating it on-line must

use at least order n log n steps for n steps of the former.

\
COROLLARY 3. Let T(n) be any time bound n ~ T(n) = o(n log n) (f = o(g) means

lim f(n) = 0). The class of languages recognized in DTIME(T(n)), by multitape on-line
n-~= g (n)

Turing machines, contains an infinite proper hierarchy of language families, according

to increasing degree of nonobliviousness of the fastest Turing machines accepting them.

Another measure of degree of nonobliviousness is formed by bounds on the number

of nonoblivious moves a machine is allowed to make during a computation. We may think

of a machine which keeps count of the number of nonoblivious moves it makes, and,

when that count exceeds a certain threshold, becomes oblivious. This measure of degree

of nonobliviousness, although totally different from the preceding one, yields analog

results, as shown below. One might therefore conjecture that such results hold for

each (or many) meaningful measures of degree of nonobliviousness.

THEOREM 4. FO~ eadh integer k ~ I there is a language N k which can be recognized by

a k-tape real-time Turing machine N k which makes k or less nonoblivious moves during

each computation; any Turing machine which expends at most k-I nonoblivious moves

during each computation and recognizes N k has to use at least order n log n time.

Moreover, there is an oblivious Turing machine recognizing N k in time 0(n log n).

PROOF SKETCH. We first define N k over the alphabet {0,1,2}.

671

N consists of all strings xay2za such that a e {0,i}, xy 6 {0,i,2}*, z E {0,i}* and
k

the following 2 conditions hold:

(i) The letter 2 appears in xay2 at most k times.

(ii) The length of z is equal to the length of y minus the number of occurrences of

the letter 2 in y.

N k is defined as follows:

Nk records the incoming bit-stream on all of its k stacks until the first 2

arrives. Then on the first stack ~k starts to pop and compare the popped symbol

against the incoming symbol. If they are equal ~k outputs I otherwise 0. If the stack

is empty N k outputs 0. Meanwhile, on all remaining stacks ~k continues to push the

incoming bits. When the second 2 arrives ~k starts similarly popping the second stack

and comparing the popped symbol against the incoming symbol; meanwhile ignoring stack

i and continueing the head movement there, and pushing all incoming bits on stacks 3

3 rd k th to k. And so on, for the to arriving letter 2. Therefore, Nk need make at

most k nonoblivious moves in its computation, since it always rejects when it has

seen k+l letters 2.

The fact that the recognition of N k by a Turing machine spending at most k-1

nonoblivious moves during its computation takes at least n log n steps is proven by

induction on k. For k = i the theorem can be proved by applying an overlap argument

similar to the one hinted at in the proof sketch of the previous theorem. For

k = j > i we can show that we can reduce the problem either to the truth of the theo-

rem for k = i or the truth of the theorem for the case k = j-l, both of which are

true by induction assumption. The last sentence of the theorem follows as before.

Because of the above Theorem 4, Corollaries 2 and 3 also hold with the concept

of "k-nonobliviousness" replaced by "number of nonoblivious steps k" for each k. By

the nature of the concept of k-nonobliviousness, a language over a finite alphabet

cannot be inherently ~-nonoblivious. However, no such natural restriction holds for

the measure of the number of nonoblivious steps in a computation.

THEOREM 5. There is a language N which is recognizable by a real-time Turing machine

but which, for each T(n) = o(n log n), n ~ T(n), cannot be recognized by a T(n)-time

bounded Turing machine with a finite bound on the number of nonoblivious steps it may

make during a computation. However, N can be recognized by an oblivious Turing ma-

chine in time 0(n log n).

PROOF S~ETCH. Define N as N k without restriction (i), i.e., there is no restriction

on the number of times 2 may appear in the xay-part of a word. It is easy to see

that N can be recognized by a multihead real-time Turing machine with head-to-head

jumps; SAVITCH and VITANYI [19773. KOSARAJU [19793 has shown that these devices can

be simulated on-line in real-time by multitape Turing machines. Hence N is recogniz-

able by a real-time Turing machine. By PIPPENGER and FISCHER's [19793 result it is

672

recognizable by an 0(n log n) time bounded oblivious Turing machine. Since U Nk= N,
k=1

it follows from Theorem 4 that any Turing machine which is allowed but a finitely

bounded number of nonoblivious steps, need use at least order n log n time to recog-

nize N.

Since N is 2-nonoblivious for each k, and also N is 2-nonoblivious, we have
k

that already each class of languages recognized by 2-nonoblivious Turing machines in

time T(n) = o(n log n), T(n) Z n, contains a whole infinite hierarchy as discussed,

with respect the number of allowed nonoblivious steps, of T(n)-time-bounded Turing

machine accepted language classes.

Yet another measure of bounded nonobliviousness to bound the number of non-

oblivious steps as a function f(n) of the input length n.

REFERENCES

[13 COOK, S,A, & S.O. AANDERAA [19691, On the minimum computation time of functions,

Trans. AMS 142, 291-314.

[21 FISCHER, P.C., A.R. MEYER & A.L. ROSENBERG [19721, Real-time simulation of multi-

head tape units, JACM i_~4, 590-607.

[33 KOSARAJU, R. [19791, Real-time simulation of concatenable double-ended queues by

double-ended queues, Proceedings llth ACM-STOC, 346-351.

[41 PATERSON, M.S., M.J. FISCHER & A.R. MEYER [19741, An improved overlap argument

for on-line multiplication, SIAM-AMS Proceedings, Vol. 7, (Complexity of

Computation), 97-112.

[5] PIPPENGER, N. & M.J. FISCHER [19793, Relations among complexity measures, JACM

26, 361-381.

[63 SAVITCH, W.J. & P.M.B. VITANYI [19771, Linear time simulation of multihead

Turing machines with head-to-head jumps, Springer Lecture Notes in Com-

puter Science (ICALP 4) 52, 453-464.

